Search Results

Search found 97231 results on 3890 pages for 'code design'.

Page 34/3890 | < Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >

  • Design of Business Layer

    - by Adil Mughal
    Hi, We are currently revamping our architecture and design of application. We have just completed design of Data Access Layer which is generic in the sense that it works using XML and reflection to persist data. Any ways now we are in the phase of designing business layer. We have read some books related to Enterprise Architecture and Design so we have found that there are few patterns that can be applied on business layer. Table Pattern and Domain Model are example of such patterns. Also we have found Domain Driven Design as well. Earlier we decided to build Entities against table objects. But we found that there is difference in Entities and Value Objects when it comes to DDD. For those of you who have gone through such design. Please guide me related to pattern, practice and sample. Thank you in advance! Also please feel free to discuss if you didn't get any point of mine.

    Read the article

  • What design pattern do you use the most?

    - by spoon16
    I'm interested in understanding what design patterns people find themselves using often. Hopefully this list will help other recognize common scenarios and the associated design pattern that can be used to solve them. Please describe a common problem you find yourself solving and the design pattern(s) you use to solve it. Links to blogs or documentation describing the pattern are also appreciated. Edit: Please expand on your answers a bit, I would like this to be a useful reference for someone who wants to learn more about design patterns and is curious on what situations a specific design pattern might be used. Nobody has linked to any "more learning" resources.

    Read the article

  • Documenting a policy based design

    - by academicRobot
    I'm re-working some prototype code into a policy based design in C++, and I'm wondering what the best practice is for documenting the design. My current plan is to document: Policy hierarchy Overview of each policy Description of each type/value/function in each policy I was thinking of putting this into a doxygen module, but this looks like it will be a bit awkward since formatting will have to be done by hand without code to base the doc on (that is, documenting the policies rather than the implementation of the policies). So my questions are: Are there other aspects of the design that should be documented? Are there any tricks to doing this efficiently in doxygen? Is there a tool other than doxygen thats better suited to this? What are some examples of well documented policy based design? This is my first serious attempt at policy based design. I think I have a working grasp of the principles, but whatever naivety I expose in this question is fair game for an answer too.

    Read the article

  • Analysis and Design for Functional Programming

    - by edalorzo
    How do you deal with analysis and design phases when you plan to develop a system using a functional programming language like Haskell? My background is in imperative/object-oriented programming languages, and therefore, I am used to use case analysis and the use of UML to document the design of program. But the thing is that UML is inherently related to the object-oriented way of doing software. And I am intrigued about what would be the best way to develop documentation and define software designs for a system that is going to be developed using functional programming. Would you still use use case analysis or perhaps structured analysis and design instead? How do software architects define the high-level design of the system so that developers follow it? What do you show to you clients or to new developers when you are supposed to present a design of the solution? How do you document a picture of the whole thing without having first to write it all? Is there anything comparable to UML in the functional world?

    Read the article

  • Flow-Design Cheat Sheet &ndash; Part I, Notation

    - by Ralf Westphal
    You want to avoid the pitfalls of object oriented design? Then this is the right place to start. Use Flow-Oriented Analysis (FOA) and –Design (FOD or just FD for Flow-Design) to understand a problem domain and design a software solution. Flow-Orientation as described here is related to Flow-Based Programming, Event-Based Programming, Business Process Modelling, and even Event-Driven Architectures. But even though “thinking in flows” is not new, I found it helpful to deviate from those precursors for several reasons. Some aim at too big systems for the average programmer, some are concerned with only asynchronous processing, some are even not very much concerned with programming at all. What I was looking for was a design method to help in software projects of any size, be they large or tiny, involing synchronous or asynchronous processing, being local or distributed, running on the web or on the desktop or on a smartphone. That´s why I took ideas from all of the above sources and some additional and came up with Event-Based Components which later got repositioned and renamed to Flow-Design. In the meantime this has generated some discussion (in the German developer community) and several teams have started to work with Flow-Design. Also I´ve conducted quite some trainings using Flow-Orientation for design. The results are very promising. Developers find it much easier to design software using Flow-Orientation than OOAD-based object orientation. Since Flow-Orientation is moving fast and is not covered completely by a single source like a book, demand has increased for at least an overview of the current state of its notation. This page is trying to answer this demand by briefly introducing/describing every notational element as well as their translation into C# source code. Take this as a cheat sheet to put next to your whiteboard when designing software. However, please do not expect any explanation as to the reasons behind Flow-Design elements. Details on why Flow-Design at all and why in this specific way you´ll find in the literature covering the topic. Here´s a resource page on Flow-Design/Event-Based Components, if you´re able to read German. Notation Connected Functional Units The basic element of any FOD are functional units (FU): Think of FUs as some kind of software code block processing data. For the moment forget about classes, methods, “components”, assemblies or whatever. See a FU as an abstract piece of code. Software then consists of just collaborating FUs. I´m using circles/ellipses to draw FUs. But if you like, use rectangles. Whatever suites your whiteboard needs best.   The purpose of FUs is to process input and produce output. FUs are transformational. However, FUs are not called and do not call other FUs. There is no dependency between FUs. Data just flows into a FU (input) and out of it (output). From where and where to is of no concern to a FU.   This way FUs can be concatenated in arbitrary ways:   Each FU can accept input from many sources and produce output for many sinks:   Flows Connected FUs form a flow with a start and an end. Data is entering a flow at a source, and it´s leaving it through a sink. Think of sources and sinks as special FUs which conntect wires to the environment of a network of FUs.   Wiring Details Data is flowing into/out of FUs through wires. This is to allude to electrical engineering which since long has been working with composable parts. Wires are attached to FUs usings pins. They are the entry/exit points for the data flowing along the wires. Input-/output pins currently need not be drawn explicitly. This is to keep designing on a whiteboard simple and quick.   Data flowing is of some type, so wires have a type attached to them. And pins have names. If there is only one input pin and output pin on a FU, though, you don´t need to mention them. The default is Process for a single input pin, and Result for a single output pin. But you´re free to give even single pins different names.   There is a shortcut in use to address a certain pin on a destination FU:   The type of the wire is put in parantheses for two reasons. 1. This way a “no-type” wire can be easily denoted, 2. this is a natural way to describe tuples of data.   To describe how much data is flowing, a star can be put next to the wire type:   Nesting – Boards and Parts If more than 5 to 10 FUs need to be put in a flow a FD starts to become hard to understand. To keep diagrams clutter free they can be nested. You can turn any FU into a flow: This leads to Flow-Designs with different levels of abstraction. A in the above illustration is a high level functional unit, A.1 and A.2 are lower level functional units. One of the purposes of Flow-Design is to be able to describe systems on different levels of abstraction and thus make it easier to understand them. Humans use abstraction/decomposition to get a grip on complexity. Flow-Design strives to support this and make levels of abstraction first class citizens for programming. You can read the above illustration like this: Functional units A.1 and A.2 detail what A is supposed to do. The whole of A´s responsibility is decomposed into smaller responsibilities A.1 and A.2. FU A thus does not do anything itself anymore! All A is responsible for is actually accomplished by the collaboration between A.1 and A.2. Since A now is not doing anything anymore except containing A.1 and A.2 functional units are devided into two categories: boards and parts. Boards are just containing other functional units; their sole responsibility is to wire them up. A is a board. Boards thus depend on the functional units nested within them. This dependency is not of a functional nature, though. Boards are not dependent on services provided by nested functional units. They are just concerned with their interface to be able to plug them together. Parts are the workhorses of flows. They contain the real domain logic. They actually transform input into output. However, they do not depend on other functional units. Please note the usage of source and sink in boards. They correspond to input-pins and output-pins of the board.   Implicit Dependencies Nesting functional units leads to a dependency tree. Boards depend on nested functional units, they are the inner nodes of the tree. Parts are independent, they are the leafs: Even though dependencies are the bane of software development, Flow-Design does not usually draw these dependencies. They are implicitly created by visually nesting functional units. And they are harmless. Boards are so simple in their functionality, they are little affected by changes in functional units they are depending on. But functional units are implicitly dependent on more than nested functional units. They are also dependent on the data types of the wires attached to them: This is also natural and thus does not need to be made explicit. And it pertains mainly to parts being dependent. Since boards don´t do anything with regard to a problem domain, they don´t care much about data types. Their infrastructural purpose just needs types of input/output-pins to match.   Explicit Dependencies You could say, Flow-Orientation is about tackling complexity at its root cause: that´s dependencies. “Natural” dependencies are depicted naturally, i.e. implicitly. And whereever possible dependencies are not even created. Functional units don´t know their collaborators within a flow. This is core to Flow-Orientation. That makes for high composability of functional units. A part is as independent of other functional units as a motor is from the rest of the car. And a board is as dependend on nested functional units as a motor is on a spark plug or a crank shaft. With Flow-Design software development moves closer to how hardware is constructed. Implicit dependencies are not enough, though. Sometimes explicit dependencies make designs easier – as counterintuitive this might sound. So FD notation needs a ways to denote explicit dependencies: Data flows along wires. But data does not flow along dependency relations. Instead dependency relations represent service calls. Functional unit C is depending on/calling services on functional unit S. If you want to be more specific, name the services next to the dependency relation: Although you should try to stay clear of explicit dependencies, they are fundamentally ok. See them as a way to add another dimension to a flow. Usually the functionality of the independent FU (“Customer repository” above) is orthogonal to the domain of the flow it is referenced by. If you like emphasize this by using different shapes for dependent and independent FUs like above. Such dependencies can be used to link in resources like databases or shared in-memory state. FUs can not only produce output but also can have side effects. A common pattern for using such explizit dependencies is to hook a GUI into a flow as the source and/or the sink of data: Which can be shortened to: Treat FUs others depend on as boards (with a special non-FD API the dependent part is connected to), but do not embed them in a flow in the diagram they are depended upon.   Attributes of Functional Units Creation and usage of functional units can be modified with attributes. So far the following have shown to be helpful: Singleton: FUs are by default multitons. FUs in the same of different flows with the same name refer to the same functionality, but to different instances. Think of functional units as objects that get instanciated anew whereever they appear in a design. Sometimes though it´s helpful to reuse the same instance of a functional unit; this is always due to valuable state it holds. Signify this by annotating the FU with a “(S)”. Multiton: FUs on which others depend are singletons by default. This is, because they usually are introduced where shared state comes into play. If you want to change them to be a singletons mark them with a “(M)”. Configurable: Some parts need to be configured before the can do they work in a flow. Annotate them with a “(C)” to have them initialized before any data items to be processed by them arrive. Do not assume any order in which FUs are configured. How such configuration is happening is an implementation detail. Entry point: In each design there needs to be a single part where “it all starts”. That´s the entry point for all processing. It´s like Program.Main() in C# programs. Mark the entry point part with an “(E)”. Quite often this will be the GUI part. How the entry point is started is an implementation detail. Just consider it the first FU to start do its job.   Patterns / Standard Parts If more than a single wire is attached to an output-pin that´s called a split (or fork). The same data is flowing on all of the wires. Remember: Flow-Designs are synchronous by default. So a split does not mean data is processed in parallel afterwards. Processing still happens synchronously and thus one branch after another. Do not assume any specific order of the processing on the different branches after the split.   It is common to do a split and let only parts of the original data flow on through the branches. This effectively means a map is needed after a split. This map can be implicit or explicit.   Although FUs can have multiple input-pins it is preferrable in most cases to combine input data from different branches using an explicit join: The default output of a join is a tuple of its input values. The default behavior of a join is to output a value whenever a new input is received. However, to produce its first output a join needs an input for all its input-pins. Other join behaviors can be: reset all inputs after an output only produce output if data arrives on certain input-pins

    Read the article

  • How does an optimizing compiler react to a program with nested loops?

    - by D.Singh
    Say you have a bunch of nested loops. public void testMethod() { for(int i = 0; i<1203; i++){ //some computation for(int k=2; k<123; k++){ //some computation for(int j=2; j<12312; j++){ //some computation for(int l=2; l<123123; l++){ //some computation for(int p=2; p<12312; p++){ //some computation } } } } } } When the above code reaches the stage where the compiler will try to optimize it (I believe it's when the intermediate language needs to converted to machine code?), what will the compiler try to do? Is there any significant optimization that will take place? I understand that the optimizer will break up the loops by means of loop fission. But this is only per loop isn't it? What I mean with my question is will it take any action exclusively based on seeing the nested loops? Or will it just optimize the loops one by one? If the Java VM complicates the explanation then please just assume that it's C or C++ code.

    Read the article

  • Code formatter for SSMS

    - by blakmk
      I was searching recently for a code formatter for T-Sql and I came accross this nice little utility that I wanted to share: http://www.wangz.net/cgi-bin/pp/gsqlparser/sqlpp/sqlformat.tpl I've been dealing with a lot of legacy code latley and there is nothing I find more infuriating than unformatted code. This tool seems to work quite well. Just one click and it formats everything nicely. There is also a free web version.                                           This Web Page Created with PageBreeze Free HTML Editor

    Read the article

  • Demonstrate bad code to client?

    - by jtiger
    I have a new client that has asked me to do a redesign of their website, an ASP.NET Webforms application that was developed by another consultant. It seemed straight-forward (it never is) but I took a look at the code to make sure I knew what I was in for. This application was not written well. At all. It is extremely vulnerable to SQL Injection attacks, business logic is spread throughout the entire application, a lot of duplication, and dead end code that does nothing. On top of that, it keeps throwing exceptions that are being smothered, so it all appears to be running smoothly. My job is to simply update the html and css, but much of the html is being generated in business logic and would be a nightmare for me to sort everything out. My estimates on the redesign were longer than the client was aiming for, and they are asking why so long. How can I explain to my client just how bad this code is? In their mind, the application is running great and the redesign should be a quick one-off. It's my word against the previous consultant, so how can I actually give simple, concrete examples that a non-technical client would understand?

    Read the article

  • Code structure for multiple applications with a common core

    - by Azrael Seraphin
    I want to create two applications that will have a lot of common functionality. Basically, one system is a more advanced version of the other system. Let's call them Simple and Advanced. The Advanced system will add to, extend, alter and sometimes replace the functionality of the Simple system. For instance, the Advanced system will add new classes, add properties and methods to existing Simple classes, change the behavior of classes, etc. Initially I was thinking that the Advanced classes simply inherited from the Simple classes but I can see the functionality diverging quite significantly as development progresses, even while maintaining a core base functionality. For instance, the Simple system might have a Project class with a Sponsor property whereas the Advanced system has a list of Project.Sponsors. It seems poor practice to inherit from a class and then hide, alter or throw away significant parts of its features. An alternative is just to run two separate code bases and copy the common code between them but that seems inefficient, archaic and fraught with peril. Surely we have moved beyond the days of "copy-and-paste inheritance". Another way to structure it would be to use partial classes and have three projects: Core which has the common functionality, Simple which extends the Core partial classes for the simple system, and Advanced which also extends the Core partial classes for the advanced system. Plus having three test projects as well for each system. This seems like a cleaner approach. What would be the best way to structure the solution/projects/code to create two versions of a similar system? Let's say I later want to create a third system called Extreme, largely based on the Advanced system. Do I then create an AdvancedCore project which both Advanced and Extreme extend using partial classes? Is there a better way to do this? If it matters, this is likely to be a C#/MVC system but I'd be happy to do this in any language/framework that is suitable.

    Read the article

  • Need help eliminating dead code paths and variables from C source code

    - by Anjum Kaiser
    I have a legacy C code on my hands, and I am given the task to filter dead/unused symbols and paths from it. Over the time there were many insertions and deletions, causing lots of unused symbols. I have identified many dead variables which were only being written to once or twice, but were never being read from. Both blackbox/whitebox/regression testing proved that dead code removal did not affected any procedures. (We have a comprehensive test-suite). But this removal was done only on a small part of code. Now I am looking for some way to automate this work. We rely on GCC to do the work. P.S. I'm interested in removing stuff like: variables which are being read just for the sake of reading from them. variables which are spread across multiple source files and only being written to. For example: file1.c: int i; file2.c: extern int i; .... i=x;

    Read the article

  • How to tell whether Code Access Security is allowed in library code

    - by Sander Rijken
    In .NET 4 Code Access Security (CAS) is deprecated. Whenever you call a method that implicitly uses it, it fails with a NotSupportedException, that can be resolved with a configuration switch that makes it fall back to the old behavior. We have a common library that's used in both .NET 3.5 and .NET 4, so we need to be able to tell whether or not we should use the CAS method. For example, in .NET 3.5 I should call: Assembly.Load(string, Evidence); Whereas in .NET 4 I want to call Assembly.Load(string); Calling Load(string, Evidence) throws a NotSupportedException. Of course this works, but I'd like to know if there's a better method: try { asm = Assembly.Load(someString, someEvidence); } catch(NotSupportedException) { asm = Assembly.Load(someString); }

    Read the article

  • How to tell wether Code Access Security is allowed in library code

    - by Sander Rijken
    in .NET 4 Code Access Security (CAS) is deprecated. Whenever you call a method that implicitly uses it, it fails with a NotSupportedException, that can be resolved with a configuration switch that makes it fall back to the old behavior. We have a common library that's used in both .NET 3.5 and .NET 4, so we need to be able to tell wether or not we should use the CAS method. For example, in .NET 3.5 I should call: Assembly.Load(string, Evidence); Whereas in .NET 4 I want to call Assembly.Load(string); Calling Load(string, Evidence) throws a NotSupportedException. Ofcourse this works, but I'd like to know if there's a better method: try { asm = Assembly.Load(someString, someEvidence); } catch(NotSupportedException) { asm = Assembly.Load(someString); }

    Read the article

  • Decision Tree code golf

    - by Chris Jester-Young
    In Google Code Jam 2009, Round 1B, there is a problem called Decision Tree that lent itself to rather creative solutions. Post your shortest solution; I'll update the Accepted Answer to the current shortest entry on a semi-frequent basis, assuming you didn't just create a new language just to solve this problem. :-P Current rankings: 107 Perl 121 PostScript (binary) 136 Ruby 154 Arc 160 PostScript (ASCII85) 170 PostScript 192 Python 199 Common Lisp 214 LilyPond 222 JavaScript 273 Scheme 280 R 312 Haskell 314 PHP 339 m4 346 C 406 Fortran 462 Java 476 Java (well, kind of) 718 OCaml 759 F# 1741 sed C++ not qualified for now

    Read the article

  • Array Searching code challenge

    - by RCIX
    Here's my (code golf) challenge: Take two arrays of bytes and determine if the second array is a substring of the first. If it is, output the index at which the contents of the second array appear in the first. If you do not find the second array in the first, then output -1. Example Input: { 63, 101, 245, 215, 0 } { 245, 215 } Expected Output: 2 Example Input 2: { 24, 55, 74, 3, 1 } { 24, 56, 74 } Expected Output 2: -1 Edit: Someone has pointed out that the bool is redundant, so all your function has to do is return an int representing the index of the value or -1 if not found.

    Read the article

  • Oracle Launches Mobile Applications User Experience Design Patterns

    - by ultan o'broin
    OK, you heard Joe Huang (@JoeHuang_Oracle) Product Manager for Oracle Application Development Framework (ADF) Mobile. If you're an ADF developer, or a Java (yeah, Java in iOS) developer, well now you're a mobile developer as well. And, using the newly launched Applications User Experience (UX) team's Mobile UX Design Patterns, you're a UX developer rockstar too, offering users so much more than just cool functionality. Mobile Design Pattern for Inline Actions Mobile design requires a different way of thinking. Use Oracle’s mobile design patterns to design iPhone, Android, or browser-based smartphone apps. Oracle's sharing these cutting edge mobile design patterns and their baked-in, scientifically proven usability to enable Oracle customers and partners to build mobile apps quickly. The design patterns are common solutions that developers can easily apply across all application suites. Crafted by the UX team's insight into Oracle Fusion Middleware, the patterns are designed to work with the mobile technology provided by the Oracle Application Development Framework. Other great UX-related information on using ADF Mobile to design task flows and the development experience on offer are on the ADF EMG podcast series. Check out FXAer Brian 'Bex' Huff (@bex of Bezzotech talking about ADF Mobile in podcast number 6 and also number 8 which has great tips about getting going with Android and iOS mobile app development too.

    Read the article

  • Is this a well known design pattern? what is it's name

    - by GenEric35
    Hi I have seen this often in code, but when I speak of it i don't know the name of such 'pattern' I have a method with 2 arguments that calls an overloaded method that has 3 arguments and intentionality sets the 3rd one to empty string. public DoWork(string name, string phoneNumber) { CreateContact(name, phoneNumber, string.Empty) } public DoWork(string name, string phoneNumber, string emailAddress) { //do the work } The reason I'm doing this is I to not duplicate code, and allow the existing callers to still call the method that has only 2 parameters. I have associate a few tags to this question, but it probably fit in more categories of questions. Is this a pattern, and does it have a name?

    Read the article

  • How can a code editor effectively hint at code nesting level - without using indentation?

    - by pgfearo
    I'm writing an XML text editor that provides 2 view options for the same XML text, one indented (virtually), the other left-justified. The motivation for the left-justified view is to help users 'see' the whitespace characters they're using for indentation of plain-text or XPath code without interference from indentation that is an automated side-effect of the XML context. I want to provide visual clues (in the non-editable part of the editor) for the left-justified mode that will help the user, but without getting too elaborate. I tried just using connecting lines, but that seemed too busy. The best I've come up with so far is shown in a mocked up screenshot of the editor below, but I'm seeking better/simpler alternatives (that don't require too much code). [Edit] Taking the heatmap idea (from: @jimp) I get something like this: or even these alternates:

    Read the article

  • MUD source code

    - by Tchalvak
    I haven't been able to find a lot of the old, open source mud source codes. I find the way they did things very applicable to text-based/browser based games, and I'd love to be able to skim through parts of 'em for inspiration. For instance, we have this huge list of muds and the relationships between them, but little by way of access to source code. http://en.wikipedia.org/wiki/MUD_trees Often (I'm looking at you, dikumud, http://www.dikumud.com/links.aspx ) the sites of the mud itself doesn't even have a working link to the source. https://github.com/alexmchale/merc-mud has a copy of merc that I found, which certainly contains other works within it's history, but the pickings seems sparse. Does anyone have better resources for gaining access to MUD source code than these?

    Read the article

  • Maintaining packages with code - Adding a property expression programmatically

    Every now and then I've come across scenarios where I need to update a lot of packages all in the same way. The usual scenario revolves around a group of packages all having been built off the same package template, and something needs to updated to keep up with new requirements, a new logging standard for example.You'd probably start by updating your template package, but then you need to address all your existing packages. Often this can run into the hundreds of packages and clearly that's not a job anyone wants to do by hand. I normally solve the problem by writing a simple console application that looks for files and patches any package it finds, and it is an example of this I'd thought I'd tidy up a bit and publish here. This sample will look at the package and find any top level Execute SQL Tasks, and change the SQL Statement property to use an expression. It is very simplistic working on top level tasks only, so nothing inside a Sequence Container or Loop will be checked but obviously the code could be extended for this if required. The code that actually sets the expression is shown below, the rest is just wrapper code to find the package and to find the task. /// <summary> /// The CreationName of the Tasks to target, e.g. Execute SQL Task /// </summary> private const string TargetTaskCreationName = "Microsoft.SqlServer.Dts.Tasks.ExecuteSQLTask.ExecuteSQLTask, Microsoft.SqlServer.SQLTask, Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91"; /// <summary> /// The name of the task property to target. /// </summary> private const string TargetPropertyName = "SqlStatementSource"; /// <summary> /// The property expression to set. /// </summary> private const string ExpressionToSet = "@[User::SQLQueryVariable]"; .... // Check if the task matches our target task type if (taskHost.CreationName == TargetTaskCreationName) { // Check for the target property if (taskHost.Properties.Contains(TargetPropertyName)) { // Get the property, check for an expression and set expression if not found DtsProperty property = taskHost.Properties[TargetPropertyName]; if (string.IsNullOrEmpty(property.GetExpression(taskHost))) { property.SetExpression(taskHost, ExpressionToSet); changeCount++; } } } This is a console application, so to specify which packages you want to target you have three options: Find all packages in the current folder, the default behaviour if no arguments are specified TaskExpressionPatcher.exe .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Find all packages in a specified folder, pass the folder as the argument TaskExpressionPatcher.exe C:\Projects\Alpha\Packages\ .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Find a specific package, pass the file path as the argument TaskExpressionPatcher.exe C:\Projects\Alpha\Packages\Package.dtsx The code was written against SQL Server 2005, but just change the reference to Microsoft.SQLServer.ManagedDTS to be the SQL Server 2008 version and it will work fine. If you get an error Microsoft.SqlServer.Dts.Runtime.DtsRuntimeException: The package failed to load due to error 0xC0011008… then check that the package is from the correct version of SSIS compared to the referenced assemblies, 2005 vs 2008 in other words. Download Sample Project TaskExpressionPatcher.zip (6 KB)

    Read the article

< Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >