Search Results

Search found 5520 results on 221 pages for 'compound primary'.

Page 34/221 | < Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >

  • Gnome 3 freezes on logon on samsung RV 509

    - by Noufal
    I have a Samsung NP-RV509 A0FIN and I tried to install GNU/Linux with gnome 3.2 on it. I tried Fedora 16, Ubuntu 11.10 and Linux Mint 12 RC, but with no success. All of these freezes upon login into gnome shell. I think it is the problem with graphics driver, so I tried xorg-edgers ppa on my last installation, ie., Linux Mint. I also tried various intel graphics packages listed on Synaptic package manager, but no success again. My device configuration is as follows(obtained from windows 7): More details about my computer Component Details Subscore Base score Processor Intel(R) Pentium(R) CPU P6200 @ 2.13GHz 5.6 4.6 Memory (RAM) 4.00 GB 7.2 Graphics Intel(R) HD Graphics 4.6 Gaming graphics 1562 MB Total available graphics memory 5.2 Primary hard disk 12GB Free (50GB Total) 5.9 Windows 7 Ultimate System -------------------------------------------------------------------------------- Manufacturer SAMSUNG ELECTRONICS CO., LTD. Model RV409/RV509/RV709 Total amount of system memory 4.00 GB RAM System type 32-bit operating system Number of processor cores 2 64-bit capable Yes Storage -------------------------------------------------------------------------------- Total size of hard disk(s) 418 GB Disk partition (C:) 12 GB Free (50 GB Total) Media drive (D:) CD/DVD Disk partition (E:) 526 MB Free (191 GB Total) Disk partition (F:) 101 GB Free (177 GB Total) Graphics -------------------------------------------------------------------------------- Display adapter type Intel(R) HD Graphics Total available graphics memory 1562 MB Dedicated graphics memory 64 MB Dedicated system memory 0 MB Shared system memory 1498 MB Display adapter driver version 8.15.10.2202 Primary monitor resolution 1366x768 DirectX version DirectX 10 Network -------------------------------------------------------------------------------- Network Adapter Realtek PCIe GBE Family Controller Network Adapter Broadcom 802.11n Network Adapter Network Adapter Microsoft Virtual WiFi Miniport Adapter Notes -------------------------------------------------------------------------------- The gaming graphics score is based on the primary graphics adapter. If this system has linked or multiple graphics adapters, some software applications may see additional performance benefits. Any help is appreciated, and thanks in advance.

    Read the article

  • So…is it a Seek or a Scan?

    - by Paul White
    You’re probably most familiar with the terms ‘Seek’ and ‘Scan’ from the graphical plans produced by SQL Server Management Studio (SSMS).  The image to the left shows the most common ones, with the three types of scan at the top, followed by four types of seek.  You might look to the SSMS tool-tip descriptions to explain the differences between them: Not hugely helpful are they?  Both mention scans and ranges (nothing about seeks) and the Index Seek description implies that it will not scan the index entirely (which isn’t necessarily true). Recall also yesterday’s post where we saw two Clustered Index Seek operations doing very different things.  The first Seek performed 63 single-row seeking operations; and the second performed a ‘Range Scan’ (more on those later in this post).  I hope you agree that those were two very different operations, and perhaps you are wondering why there aren’t different graphical plan icons for Range Scans and Seeks?  I have often wondered about that, and the first person to mention it after yesterday’s post was Erin Stellato (twitter | blog): Before we go on to make sense of all this, let’s look at another example of how SQL Server confusingly mixes the terms ‘Scan’ and ‘Seek’ in different contexts.  The diagram below shows a very simple heap table with two columns, one of which is the non-clustered Primary Key, and the other has a non-unique non-clustered index defined on it.  The right hand side of the diagram shows a simple query, it’s associated query plan, and a couple of extracts from the SSMS tool-tip and Properties windows. Notice the ‘scan direction’ entry in the Properties window snippet.  Is this a seek or a scan?  The different references to Scans and Seeks are even more pronounced in the XML plan output that the graphical plan is based on.  This fragment is what lies behind the single Index Seek icon shown above: You’ll find the same confusing references to Seeks and Scans throughout the product and its documentation. Making Sense of Seeks Let’s forget all about scans for a moment, and think purely about seeks.  Loosely speaking, a seek is the process of navigating an index B-tree to find a particular index record, most often at the leaf level.  A seek starts at the root and navigates down through the levels of the index to find the point of interest: Singleton Lookups The simplest sort of seek predicate performs this traversal to find (at most) a single record.  This is the case when we search for a single value using a unique index and an equality predicate.  It should be readily apparent that this type of search will either find one record, or none at all.  This operation is known as a singleton lookup.  Given the example table from before, the following query is an example of a singleton lookup seek: Sadly, there’s nothing in the graphical plan or XML output to show that this is a singleton lookup – you have to infer it from the fact that this is a single-value equality seek on a unique index.  The other common examples of a singleton lookup are bookmark lookups – both the RID and Key Lookup forms are singleton lookups (an RID lookup finds a single record in a heap from the unique row locator, and a Key Lookup does much the same thing on a clustered table).  If you happen to run your query with STATISTICS IO ON, you will notice that ‘Scan Count’ is always zero for a singleton lookup. Range Scans The other type of seek predicate is a ‘seek plus range scan’, which I will refer to simply as a range scan.  The seek operation makes an initial descent into the index structure to find the first leaf row that qualifies, and then performs a range scan (either backwards or forwards in the index) until it reaches the end of the scan range. The ability of a range scan to proceed in either direction comes about because index pages at the same level are connected by a doubly-linked list – each page has a pointer to the previous page (in logical key order) as well as a pointer to the following page.  The doubly-linked list is represented by the green and red dotted arrows in the index diagram presented earlier.  One subtle (but important) point is that the notion of a ‘forward’ or ‘backward’ scan applies to the logical key order defined when the index was built.  In the present case, the non-clustered primary key index was created as follows: CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col ASC) ) ; Notice that the primary key index specifies an ascending sort order for the single key column.  This means that a forward scan of the index will retrieve keys in ascending order, while a backward scan would retrieve keys in descending key order.  If the index had been created instead on key_col DESC, a forward scan would retrieve keys in descending order, and a backward scan would return keys in ascending order. A range scan seek predicate may have a Start condition, an End condition, or both.  Where one is missing, the scan starts (or ends) at one extreme end of the index, depending on the scan direction.  Some examples might help clarify that: the following diagram shows four queries, each of which performs a single seek against a column holding every integer from 1 to 100 inclusive.  The results from each query are shown in the blue columns, and relevant attributes from the Properties window appear on the right: Query 1 specifies that all key_col values less than 5 should be returned in ascending order.  The query plan achieves this by seeking to the start of the index leaf (there is no explicit starting value) and scanning forward until the End condition (key_col < 5) is no longer satisfied (SQL Server knows it can stop looking as soon as it finds a key_col value that isn’t less than 5 because all later index entries are guaranteed to sort higher). Query 2 asks for key_col values greater than 95, in descending order.  SQL Server returns these results by seeking to the end of the index, and scanning backwards (in descending key order) until it comes across a row that isn’t greater than 95.  Sharp-eyed readers may notice that the end-of-scan condition is shown as a Start range value.  This is a bug in the XML show plan which bubbles up to the Properties window – when a backward scan is performed, the roles of the Start and End values are reversed, but the plan does not reflect that.  Oh well. Query 3 looks for key_col values that are greater than or equal to 10, and less than 15, in ascending order.  This time, SQL Server seeks to the first index record that matches the Start condition (key_col >= 10) and then scans forward through the leaf pages until the End condition (key_col < 15) is no longer met. Query 4 performs much the same sort of operation as Query 3, but requests the output in descending order.  Again, we have to mentally reverse the Start and End conditions because of the bug, but otherwise the process is the same as always: SQL Server finds the highest-sorting record that meets the condition ‘key_col < 25’ and scans backward until ‘key_col >= 20’ is no longer true. One final point to note: seek operations always have the Ordered: True attribute.  This means that the operator always produces rows in a sorted order, either ascending or descending depending on how the index was defined, and whether the scan part of the operation is forward or backward.  You cannot rely on this sort order in your queries of course (you must always specify an ORDER BY clause if order is important) but SQL Server can make use of the sort order internally.  In the four queries above, the query optimizer was able to avoid an explicit Sort operator to honour the ORDER BY clause, for example. Multiple Seek Predicates As we saw yesterday, a single index seek plan operator can contain one or more seek predicates.  These seek predicates can either be all singleton seeks or all range scans – SQL Server does not mix them.  For example, you might expect the following query to contain two seek predicates, a singleton seek to find the single record in the unique index where key_col = 10, and a range scan to find the key_col values between 15 and 20: SELECT key_col FROM dbo.Example WHERE key_col = 10 OR key_col BETWEEN 15 AND 20 ORDER BY key_col ASC ; In fact, SQL Server transforms the singleton seek (key_col = 10) to the equivalent range scan, Start:[key_col >= 10], End:[key_col <= 10].  This allows both range scans to be evaluated by a single seek operator.  To be clear, this query results in two range scans: one from 10 to 10, and one from 15 to 20. Final Thoughts That’s it for today – tomorrow we’ll look at monitoring singleton lookups and range scans, and I’ll show you a seek on a heap table. Yes, a seek.  On a heap.  Not an index! If you would like to run the queries in this post for yourself, there’s a script below.  Thanks for reading! IF OBJECT_ID(N'dbo.Example', N'U') IS NOT NULL BEGIN DROP TABLE dbo.Example; END ; -- Test table is a heap -- Non-clustered primary key on 'key_col' CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ; -- Non-unique non-clustered index on the 'data' column CREATE NONCLUSTERED INDEX [IX dbo.Example data] ON dbo.Example (data) ; -- Add 100 rows INSERT dbo.Example WITH (TABLOCKX) ( key_col, data ) SELECT key_col = V.number, data = V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 100 ; -- ================ -- Singleton lookup -- ================ ; -- Single value equality seek in a unique index -- Scan count = 0 when STATISTIS IO is ON -- Check the XML SHOWPLAN SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 32 ; -- =========== -- Range Scans -- =========== ; -- Query 1 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col <= 5 ORDER BY E.key_col ASC ; -- Query 2 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col > 95 ORDER BY E.key_col DESC ; -- Query 3 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 10 AND E.key_col < 15 ORDER BY E.key_col ASC ; -- Query 4 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 20 AND E.key_col < 25 ORDER BY E.key_col DESC ; -- Final query (singleton + range = 2 range scans) SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 10 OR E.key_col BETWEEN 15 AND 20 ORDER BY E.key_col ASC ; -- === TIDY UP === DROP TABLE dbo.Example; © 2011 Paul White email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Log shipping and shrinking transaction logs

    - by DavidWimbush
    I just solved a problem that had me worried for a bit. I'm log shipping from three primary servers to a single secondary server, and the transaction log disk on the secondary server was getting very full. I established that several primary databases had unused space that resulted from big, one-off updates so I could shrink their logs. But would this action be log shipped and applied to the secondary database too? I thought probably not. And, more importantly, would it break log shipping? My secondary databases are in a Standby / Read Only state so I didn't think I could shrink their logs. I RTFMd, Googled, and asked on a Q&A site (not the evil one) but was none the wiser. So I was facing a monumental round of shrink, full backup, full secondary restore and re-start log shipping (which would leave us without a disaster recovery facility for the duration). Then I thought it might be worthwhile to take a non-essential database and just make absolutely sure a log shrink on the primary wouldn't ship over and occur on the secondary as well. So I did a DBCC SHRINKFILE and kept an eye on the secondary. Bingo! Log shipping didn't blink and the log on the secondary shrank too. I just love it when something turns out even better than I dared to hope. (And I guess this highlights something I need to learn about what activities are logged.)

    Read the article

  • Hello Operator, My Switch Is Bored

    - by Paul White
    This is a post for T-SQL Tuesday #43 hosted by my good friend Rob Farley. The topic this month is Plan Operators. I haven’t taken part in T-SQL Tuesday before, but I do like to write about execution plans, so this seemed like a good time to start. This post is in two parts. The first part is primarily an excuse to use a pretty bad play on words in the title of this blog post (if you’re too young to know what a telephone operator or a switchboard is, I hate you). The second part of the post looks at an invisible query plan operator (so to speak). 1. My Switch Is Bored Allow me to present the rare and interesting execution plan operator, Switch: Books Online has this to say about Switch: Following that description, I had a go at producing a Fast Forward Cursor plan that used the TOP operator, but had no luck. That may be due to my lack of skill with cursors, I’m not too sure. The only application of Switch in SQL Server 2012 that I am familiar with requires a local partitioned view: CREATE TABLE dbo.T1 (c1 int NOT NULL CHECK (c1 BETWEEN 00 AND 24)); CREATE TABLE dbo.T2 (c1 int NOT NULL CHECK (c1 BETWEEN 25 AND 49)); CREATE TABLE dbo.T3 (c1 int NOT NULL CHECK (c1 BETWEEN 50 AND 74)); CREATE TABLE dbo.T4 (c1 int NOT NULL CHECK (c1 BETWEEN 75 AND 99)); GO CREATE VIEW V1 AS SELECT c1 FROM dbo.T1 UNION ALL SELECT c1 FROM dbo.T2 UNION ALL SELECT c1 FROM dbo.T3 UNION ALL SELECT c1 FROM dbo.T4; Not only that, but it needs an updatable local partitioned view. We’ll need some primary keys to meet that requirement: ALTER TABLE dbo.T1 ADD CONSTRAINT PK_T1 PRIMARY KEY (c1);   ALTER TABLE dbo.T2 ADD CONSTRAINT PK_T2 PRIMARY KEY (c1);   ALTER TABLE dbo.T3 ADD CONSTRAINT PK_T3 PRIMARY KEY (c1);   ALTER TABLE dbo.T4 ADD CONSTRAINT PK_T4 PRIMARY KEY (c1); We also need an INSERT statement that references the view. Even more specifically, to see a Switch operator, we need to perform a single-row insert (multi-row inserts use a different plan shape): INSERT dbo.V1 (c1) VALUES (1); And now…the execution plan: The Constant Scan manufactures a single row with no columns. The Compute Scalar works out which partition of the view the new value should go in. The Assert checks that the computed partition number is not null (if it is, an error is returned). The Nested Loops Join executes exactly once, with the partition id as an outer reference (correlated parameter). The Switch operator checks the value of the parameter and executes the corresponding input only. If the partition id is 0, the uppermost Clustered Index Insert is executed, adding a row to table T1. If the partition id is 1, the next lower Clustered Index Insert is executed, adding a row to table T2…and so on. In case you were wondering, here’s a query and execution plan for a multi-row insert to the view: INSERT dbo.V1 (c1) VALUES (1), (2); Yuck! An Eager Table Spool and four Filters! I prefer the Switch plan. My guess is that almost all the old strategies that used a Switch operator have been replaced over time, using things like a regular Concatenation Union All combined with Start-Up Filters on its inputs. Other new (relative to the Switch operator) features like table partitioning have specific execution plan support that doesn’t need the Switch operator either. This feels like a bit of a shame, but perhaps it is just nostalgia on my part, it’s hard to know. Please do let me know if you encounter a query that can still use the Switch operator in 2012 – it must be very bored if this is the only possible modern usage! 2. Invisible Plan Operators The second part of this post uses an example based on a question Dave Ballantyne asked using the SQL Sentry Plan Explorer plan upload facility. If you haven’t tried that yet, make sure you’re on the latest version of the (free) Plan Explorer software, and then click the Post to SQLPerformance.com button. That will create a site question with the query plan attached (which can be anonymized if the plan contains sensitive information). Aaron Bertrand and I keep a close eye on questions there, so if you have ever wanted to ask a query plan question of either of us, that’s a good way to do it. The problem The issue I want to talk about revolves around a query issued against a calendar table. The script below creates a simplified version and adds 100 years of per-day information to it: USE tempdb; GO CREATE TABLE dbo.Calendar ( dt date NOT NULL, isWeekday bit NOT NULL, theYear smallint NOT NULL,   CONSTRAINT PK__dbo_Calendar_dt PRIMARY KEY CLUSTERED (dt) ); GO -- Monday is the first day of the week for me SET DATEFIRST 1;   -- Add 100 years of data INSERT dbo.Calendar WITH (TABLOCKX) (dt, isWeekday, theYear) SELECT CA.dt, isWeekday = CASE WHEN DATEPART(WEEKDAY, CA.dt) IN (6, 7) THEN 0 ELSE 1 END, theYear = YEAR(CA.dt) FROM Sandpit.dbo.Numbers AS N CROSS APPLY ( VALUES (DATEADD(DAY, N.n - 1, CONVERT(date, '01 Jan 2000', 113))) ) AS CA (dt) WHERE N.n BETWEEN 1 AND 36525; The following query counts the number of weekend days in 2013: SELECT Days = COUNT_BIG(*) FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; It returns the correct result (104) using the following execution plan: The query optimizer has managed to estimate the number of rows returned from the table exactly, based purely on the default statistics created separately on the two columns referenced in the query’s WHERE clause. (Well, almost exactly, the unrounded estimate is 104.289 rows.) There is already an invisible operator in this query plan – a Filter operator used to apply the WHERE clause predicates. We can see it by re-running the query with the enormously useful (but undocumented) trace flag 9130 enabled: Now we can see the full picture. The whole table is scanned, returning all 36,525 rows, before the Filter narrows that down to just the 104 we want. Without the trace flag, the Filter is incorporated in the Clustered Index Scan as a residual predicate. It is a little bit more efficient than using a separate operator, but residual predicates are still something you will want to avoid where possible. The estimates are still spot on though: Anyway, looking to improve the performance of this query, Dave added the following filtered index to the Calendar table: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear) WHERE isWeekday = 0; The original query now produces a much more efficient plan: Unfortunately, the estimated number of rows produced by the seek is now wrong (365 instead of 104): What’s going on? The estimate was spot on before we added the index! Explanation You might want to grab a coffee for this bit. Using another trace flag or two (8606 and 8612) we can see that the cardinality estimates were exactly right initially: The highlighted information shows the initial cardinality estimates for the base table (36,525 rows), the result of applying the two relational selects in our WHERE clause (104 rows), and after performing the COUNT_BIG(*) group by aggregate (1 row). All of these are correct, but that was before cost-based optimization got involved :) Cost-based optimization When cost-based optimization starts up, the logical tree above is copied into a structure (the ‘memo’) that has one group per logical operation (roughly speaking). The logical read of the base table (LogOp_Get) ends up in group 7; the two predicates (LogOp_Select) end up in group 8 (with the details of the selections in subgroups 0-6). These two groups still have the correct cardinalities as trace flag 8608 output (initial memo contents) shows: During cost-based optimization, a rule called SelToIdxStrategy runs on group 8. It’s job is to match logical selections to indexable expressions (SARGs). It successfully matches the selections (theYear = 2013, is Weekday = 0) to the filtered index, and writes a new alternative into the memo structure. The new alternative is entered into group 8 as option 1 (option 0 was the original LogOp_Select): The new alternative is to do nothing (PhyOp_NOP = no operation), but to instead follow the new logical instructions listed below the NOP. The LogOp_GetIdx (full read of an index) goes into group 21, and the LogOp_SelectIdx (selection on an index) is placed in group 22, operating on the result of group 21. The definition of the comparison ‘the Year = 2013’ (ScaOp_Comp downwards) was already present in the memo starting at group 2, so no new memo groups are created for that. New Cardinality Estimates The new memo groups require two new cardinality estimates to be derived. First, LogOp_Idx (full read of the index) gets a predicted cardinality of 10,436. This number comes from the filtered index statistics: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH STAT_HEADER; The second new cardinality derivation is for the LogOp_SelectIdx applying the predicate (theYear = 2013). To get a number for this, the cardinality estimator uses statistics for the column ‘theYear’, producing an estimate of 365 rows (there are 365 days in 2013!): DBCC SHOW_STATISTICS (Calendar, theYear) WITH HISTOGRAM; This is where the mistake happens. Cardinality estimation should have used the filtered index statistics here, to get an estimate of 104 rows: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH HISTOGRAM; Unfortunately, the logic has lost sight of the link between the read of the filtered index (LogOp_GetIdx) in group 22, and the selection on that index (LogOp_SelectIdx) that it is deriving a cardinality estimate for, in group 21. The correct cardinality estimate (104 rows) is still present in the memo, attached to group 8, but that group now has a PhyOp_NOP implementation. Skipping over the rest of cost-based optimization (in a belated attempt at brevity) we can see the optimizer’s final output using trace flag 8607: This output shows the (incorrect, but understandable) 365 row estimate for the index range operation, and the correct 104 estimate still attached to its PhyOp_NOP. This tree still has to go through a few post-optimizer rewrites and ‘copy out’ from the memo structure into a tree suitable for the execution engine. One step in this process removes PhyOp_NOP, discarding its 104-row cardinality estimate as it does so. To finish this section on a more positive note, consider what happens if we add an OVER clause to the query aggregate. This isn’t intended to be a ‘fix’ of any sort, I just want to show you that the 104 estimate can survive and be used if later cardinality estimation needs it: SELECT Days = COUNT_BIG(*) OVER () FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; The estimated execution plan is: Note the 365 estimate at the Index Seek, but the 104 lives again at the Segment! We can imagine the lost predicate ‘isWeekday = 0’ as sitting between the seek and the segment in an invisible Filter operator that drops the estimate from 365 to 104. Even though the NOP group is removed after optimization (so we don’t see it in the execution plan) bear in mind that all cost-based choices were made with the 104-row memo group present, so although things look a bit odd, it shouldn’t affect the optimizer’s plan selection. I should also mention that we can work around the estimation issue by including the index’s filtering columns in the index key: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear, isWeekday) WHERE isWeekday = 0 WITH (DROP_EXISTING = ON); There are some downsides to doing this, including that changes to the isWeekday column may now require Halloween Protection, but that is unlikely to be a big problem for a static calendar table ;)  With the updated index in place, the original query produces an execution plan with the correct cardinality estimation showing at the Index Seek: That’s all for today, remember to let me know about any Switch plans you come across on a modern instance of SQL Server! Finally, here are some other posts of mine that cover other plan operators: Segment and Sequence Project Common Subexpression Spools Why Plan Operators Run Backwards Row Goals and the Top Operator Hash Match Flow Distinct Top N Sort Index Spools and Page Splits Singleton and Range Seeks Bitmaps Hash Join Performance Compute Scalar © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Help, broken Gsettings

    - by Rene
    I was trying to disable the global menu as per http://ubuntuhandbook.org/index.php/2013/07/disable-global-menu-on-ubuntu-13-10-saucy/#comment-8612, but while it didn't change anything, after running the autoremove command unity-tweak-tool broke. Obviously my first reaction was to re-install the removed package but it remains broken. TBH I don't know if it is even related or just a coincidence. When I start it from the launcher it just blinks and disappear. When I start it from terminal I get this error: $ gnome-tweak-tool WARNING : Shell not installed or running WARNING : Error detecting shell Traceback (most recent call last): File "/usr/lib/python2.7/dist-packages/gtweak/tweaks/tweak_shell_extensions.py", line 199, in __init__ raise Exception("Shell not running or DBus service not available") Exception: Shell not running or DBus service not available INFO : GSettings missing key org.gnome.nautilus.desktop (key computer-icon-visible) WARNING : Shell not running None INFO : GSettings missing key org.gnome.mutter (key workspaces-only-on-primary) Segmentation fault (core dumped) I had a look with dconf-editor if I could just add the missing key, but apparently keys aren't meant to be added "by hand". So how can I fix this? I'd rather prefer not having to reinstall everything. Which package is broken, can I just reinstall that? EDIT: I found by being root gnome-tweak-tool no longer crashed so possibly a permission issue somewhere. I don't know that I changed any permissions. Another related problem, actually the reason I noticed the problem at all, is that unity-tweak-tool seem no longer to want to save the values edited. I normally just have the Unity launcher on the primary display but wanted to check what it was like having it on both. I didn't like it so I went into unity-tweak-tool to set it back - but regardless how many time I tick "only primary display" it never changes anything. What does the Unity-tweak-tool actually change and can I do this directly somehow?

    Read the article

  • Why is my Internet connection randomly dropping?

    - by Jeanno
    Ever since I have installed 12.04 (clean install not an upgrade), i have been having a drop in the Internet connection. The drop in the connection can be anything from 15 seconds to about 3 mins, and then the connection comes back. This behaviour happens while I am actively browsing the Internet, or if I wake up the computer and open Firefox (sometimes I have connection and sometimes I don't) . Please note that when the internet connection is on, it is not slow (as speedtest.net results show) In the beginning, I thought it was a problem with the driver r8169 for my RTL8111/8168B Ethernet card, so I downloaded the r8168 from Realtek website, followed the detailed instructions (blacklisted r8169, changed the file to '.bsh' ...), but still the same problem persisted. So I switched to a wireless connection, and I got the same problem with internet connection dropping randomly. Any ideas? Thanks in advance Output from 'lspci -v' Code: 00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09) Subsystem: Dell Device 04a7 Flags: bus master, fast devsel, latency 0 Capabilities: [e0] Vendor Specific Information: Len=0c <?> 00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=01, subordinate=01, sec-latency=0 I/O behind bridge: 0000e000-0000efff Memory behind bridge: f8000000-fa0fffff Prefetchable memory behind bridge: 00000000d0000000-00000000dbffffff Capabilities: [88] Subsystem: Dell Device 04a7 Capabilities: [80] Power Management version 3 Capabilities: [90] MSI: Enable+ Count=1/1 Maskable- 64bit- Capabilities: [a0] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Capabilities: [140] Root Complex Link Kernel driver in use: pcieport Kernel modules: shpchp 00:01.1 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=02, subordinate=02, sec-latency=0 I/O behind bridge: 0000d000-0000dfff Memory behind bridge: f4000000-f60fffff Prefetchable memory behind bridge: 00000000c0000000-00000000cbffffff Capabilities: [88] Subsystem: Dell Device 04a7 Capabilities: [80] Power Management version 3 Capabilities: [90] MSI: Enable+ Count=1/1 Maskable- 64bit- Capabilities: [a0] Express Root Port (Slot+), MSI 00 Capabilities: [100] Virtual Channel Capabilities: [140] Root Complex Link Kernel driver in use: pcieport Kernel modules: shpchp 00:16.0 Communication controller: Intel Corporation 6 Series/C200 Series Chipset Family MEI Controller #1 (rev 04) Subsystem: Dell Device 04a7 Flags: bus master, fast devsel, latency 0, IRQ 52 Memory at f6108000 (64-bit, non-prefetchable) [size=16] Capabilities: [50] Power Management version 3 Capabilities: [8c] MSI: Enable+ Count=1/1 Maskable- 64bit+ Kernel driver in use: mei Kernel modules: mei 00:1a.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2 (rev 05) (prog-if 20 [EHCI]) Subsystem: Dell Device 04a7 Flags: bus master, medium devsel, latency 0, IRQ 16 Memory at f6107000 (32-bit, non-prefetchable) [size=1K] Capabilities: [50] Power Management version 2 Capabilities: [58] Debug port: BAR=1 offset=00a0 Capabilities: [98] PCI Advanced Features Kernel driver in use: ehci_hcd 00:1b.0 Audio device: Intel Corporation 6 Series/C200 Series Chipset Family High Definition Audio Controller (rev 05) Subsystem: Dell Device 04a7 Flags: bus master, fast devsel, latency 0, IRQ 53 Memory at f6100000 (64-bit, non-prefetchable) [size=16K] Capabilities: [50] Power Management version 2 Capabilities: [60] MSI: Enable+ Count=1/1 Maskable- 64bit+ Capabilities: [70] Express Root Complex Integrated Endpoint, MSI 00 Capabilities: [100] Virtual Channel Capabilities: [130] Root Complex Link Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 1 (rev b5) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=03, subordinate=03, sec-latency=0 Memory behind bridge: fa400000-fa4fffff Capabilities: [40] Express Root Port (Slot+), MSI 00 Capabilities: [80] MSI: Enable- Count=1/1 Maskable- 64bit- Capabilities: [90] Subsystem: Dell Device 04a7 Capabilities: [a0] Power Management version 2 Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.1 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 2 (rev b5) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=04, subordinate=04, sec-latency=0 I/O behind bridge: 0000c000-0000cfff Prefetchable memory behind bridge: 00000000dc100000-00000000dc1fffff Capabilities: [40] Express Root Port (Slot+), MSI 00 Capabilities: [80] MSI: Enable- Count=1/1 Maskable- 64bit- Capabilities: [90] Subsystem: Dell Device 04a7 Capabilities: [a0] Power Management version 2 Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.2 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 3 (rev b5) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=05, subordinate=05, sec-latency=0 I/O behind bridge: 0000b000-0000bfff Memory behind bridge: fa300000-fa3fffff Capabilities: [40] Express Root Port (Slot+), MSI 00 Capabilities: [80] MSI: Enable- Count=1/1 Maskable- 64bit- Capabilities: [90] Subsystem: Dell Device 04a7 Capabilities: [a0] Power Management version 2 Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.3 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 4 (rev b5) (prog-if 00 [Normal decode]) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=06, subordinate=06, sec-latency=0 I/O behind bridge: 0000a000-0000afff Memory behind bridge: fa200000-fa2fffff Capabilities: [40] Express Root Port (Slot+), MSI 00 Capabilities: [80] MSI: Enable- Count=1/1 Maskable- 64bit- Capabilities: [90] Subsystem: Dell Device 04a7 Capabilities: [a0] Power Management version 2 Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1 (rev 05) (prog-if 20 [EHCI]) Subsystem: Dell Device 04a7 Flags: bus master, medium devsel, latency 0, IRQ 23 Memory at f6106000 (32-bit, non-prefetchable) [size=1K] Capabilities: [50] Power Management version 2 Capabilities: [58] Debug port: BAR=1 offset=00a0 Capabilities: [98] PCI Advanced Features Kernel driver in use: ehci_hcd 00:1f.0 ISA bridge: Intel Corporation P67 Express Chipset Family LPC Controller (rev 05) Subsystem: Dell Device 04a7 Flags: bus master, medium devsel, latency 0 Capabilities: [e0] Vendor Specific Information: Len=0c <?> Kernel modules: iTCO_wdt 00:1f.2 RAID bus controller: Intel Corporation 82801 SATA Controller [RAID mode] (rev 05) Subsystem: Dell Device 04a7 Flags: bus master, 66MHz, medium devsel, latency 0, IRQ 42 I/O ports at f070 [size=8] I/O ports at f060 [size=4] I/O ports at f050 [size=8] I/O ports at f040 [size=4] I/O ports at f020 [size=32] Memory at f6105000 (32-bit, non-prefetchable) [size=2K] Capabilities: [80] MSI: Enable+ Count=1/1 Maskable- 64bit- Capabilities: [70] Power Management version 3 Capabilities: [a8] SATA HBA v1.0 Capabilities: [b0] PCI Advanced Features Kernel driver in use: ahci 00:1f.3 SMBus: Intel Corporation 6 Series/C200 Series Chipset Family SMBus Controller (rev 05) Subsystem: Dell Device 04a7 Flags: medium devsel, IRQ 5 Memory at f6104000 (64-bit, non-prefetchable) [size=256] I/O ports at f000 [size=32] Kernel modules: i2c-i801 01:00.0 VGA compatible controller: NVIDIA Corporation Device 0dc5 (rev a1) (prog-if 00 [VGA controller]) Subsystem: NVIDIA Corporation Device 085b Flags: bus master, fast devsel, latency 0, IRQ 16 Memory at f8000000 (32-bit, non-prefetchable) [size=16M] Memory at d0000000 (64-bit, prefetchable) [size=128M] Memory at d8000000 (64-bit, prefetchable) [size=32M] I/O ports at e000 [size=128] Expansion ROM at fa000000 [disabled] [size=512K] Capabilities: [60] Power Management version 3 Capabilities: [68] MSI: Enable- Count=1/1 Maskable- 64bit+ Capabilities: [78] Express Endpoint, MSI 00 Capabilities: [b4] Vendor Specific Information: Len=14 <?> Capabilities: [100] Virtual Channel Capabilities: [128] Power Budgeting <?> Capabilities: [600] Vendor Specific Information: ID=0001 Rev=1 Len=024 <?> Kernel driver in use: nouveau Kernel modules: nouveau, nvidiafb 01:00.1 Audio device: NVIDIA Corporation GF106 High Definition Audio Controller (rev a1) Subsystem: NVIDIA Corporation Device 085b Flags: bus master, fast devsel, latency 0, IRQ 17 Memory at fa080000 (32-bit, non-prefetchable) [size=16K] Capabilities: [60] Power Management version 3 Capabilities: [68] MSI: Enable- Count=1/1 Maskable- 64bit+ Capabilities: [78] Express Endpoint, MSI 00 Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 02:00.0 VGA compatible controller: NVIDIA Corporation Device 0dc5 (rev a1) (prog-if 00 [VGA controller]) Subsystem: NVIDIA Corporation Device 085b Flags: bus master, fast devsel, latency 0, IRQ 17 Memory at f4000000 (32-bit, non-prefetchable) [size=32M] Memory at c0000000 (64-bit, prefetchable) [size=128M] Memory at c8000000 (64-bit, prefetchable) [size=64M] I/O ports at d000 [size=128] Expansion ROM at f6000000 [disabled] [size=512K] Capabilities: [60] Power Management version 3 Capabilities: [68] MSI: Enable- Count=1/1 Maskable- 64bit+ Capabilities: [78] Express Endpoint, MSI 00 Capabilities: [b4] Vendor Specific Information: Len=14 <?> Capabilities: [100] Virtual Channel Capabilities: [128] Power Budgeting <?> Capabilities: [600] Vendor Specific Information: ID=0001 Rev=1 Len=024 <?> Kernel driver in use: nouveau Kernel modules: nouveau, nvidiafb 02:00.1 Audio device: NVIDIA Corporation GF106 High Definition Audio Controller (rev a1) Subsystem: NVIDIA Corporation Device 085b Flags: bus master, fast devsel, latency 0, IRQ 18 Memory at f6080000 (32-bit, non-prefetchable) [size=16K] Capabilities: [60] Power Management version 3 Capabilities: [68] MSI: Enable- Count=1/1 Maskable- 64bit+ Capabilities: [78] Express Endpoint, MSI 00 Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 03:00.0 USB controller: NEC Corporation uPD720200 USB 3.0 Host Controller (rev 03) (prog-if 30 [XHCI]) Subsystem: Dell Device 04a7 Flags: bus master, fast devsel, latency 0, IRQ 16 Memory at fa400000 (64-bit, non-prefetchable) [size=8K] Capabilities: [50] Power Management version 3 Capabilities: [70] MSI: Enable- Count=1/8 Maskable- 64bit+ Capabilities: [90] MSI-X: Enable+ Count=8 Masked- Capabilities: [a0] Express Endpoint, MSI 00 Capabilities: [100] Advanced Error Reporting Capabilities: [140] Device Serial Number ff-ff-ff-ff-ff-ff-ff-ff Capabilities: [150] Latency Tolerance Reporting Kernel driver in use: xhci_hcd 04:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 06) Subsystem: Dell Device 04a7 Flags: bus master, fast devsel, latency 0, IRQ 51 I/O ports at c000 [size=256] Memory at dc104000 (64-bit, prefetchable) [size=4K] Memory at dc100000 (64-bit, prefetchable) [size=16K] Capabilities: [40] Power Management version 3 Capabilities: [50] MSI: Enable+ Count=1/1 Maskable- 64bit+ Capabilities: [70] Express Endpoint, MSI 01 Capabilities: [b0] MSI-X: Enable- Count=4 Masked- Capabilities: [d0] Vital Product Data Capabilities: [100] Advanced Error Reporting Capabilities: [140] Virtual Channel Capabilities: [160] Device Serial Number 03-00-00-00-68-4c-e0-00 Kernel driver in use: r8168 Kernel modules: r8168 05:00.0 FireWire (IEEE 1394): VIA Technologies, Inc. VT6315 Series Firewire Controller (rev 01) (prog-if 10 [OHCI]) Subsystem: Dell Device 04a7 Flags: bus master, fast devsel, latency 0, IRQ 18 Memory at fa300000 (64-bit, non-prefetchable) [size=2K] I/O ports at b000 [size=256] Capabilities: [50] Power Management version 3 Capabilities: [80] MSI: Enable- Count=1/1 Maskable+ 64bit+ Capabilities: [98] Express Endpoint, MSI 00 Capabilities: [100] Advanced Error Reporting Capabilities: [130] Device Serial Number 00-10-dc-ff-ff-cf-56-1a Kernel driver in use: firewire_ohci Kernel modules: firewire-ohci 06:00.0 SATA controller: JMicron Technology Corp. JMB362 SATA Controller (rev 10) (prog-if 01 [AHCI 1.0]) Subsystem: Dell Device 04a7 Flags: bus master, fast devsel, latency 0, IRQ 19 I/O ports at a040 [size=8] I/O ports at a030 [size=4] I/O ports at a020 [size=8] I/O ports at a010 [size=4] I/O ports at a000 [size=16] Memory at fa210000 (32-bit, non-prefetchable) [size=512] Capabilities: [8c] Power Management version 3 Capabilities: [50] Express Legacy Endpoint, MSI 00 Kernel driver in use: ahci Note that my wireless card is not showing, I have the Ralink 3390 card (which apparently does not show up on Ubuntu for some reason), however I am able to connect to wireless network and connect to the internet (when it is working)

    Read the article

  • Demo on Data Guard Protection From Lost-Write Corruption

    - by Rene Kundersma
    Today I received the news a new demo has been made available on OTN for Data Guard protection from lost-write corruption. Since this is a typical MAA solution and a very nice demo I decided to mention this great feature also in this blog even while it's a recommended best practice for some time. When lost writes occur an I/O subsystem acknowledges the completion of the block write even though the write I/O did not occur in the persistent storage. On a subsequent block read on the primary database, the I/O subsystem returns the stale version of the data block, which might be used to update other blocks of the database, thereby corrupting it.  Lost writes can occur after an OS or storage device driver failure, faulty host bus adapters, disk controller failures and volume manager errors. In the demo a data block lost write occurs when an I/O subsystem acknowledges the completion of the block write, while in fact the write did not occur in the persistent storage. When a primary database lost write corruption is detected by a Data Guard physical standby database, Redo Apply (MRP) will stop and the standby will signal an ORA-752 error to explicitly indicate a primary lost write has occurred (preventing corruption from spreading to the standby database). Links: MOS (1302539.1). "Best Practices for Corruption Detection, Prevention, and Automatic Repair - in a Data Guard Configuration" Demo MAA Best Practices Rene Kundersma

    Read the article

  • Daily Blog Archives and Duplicate Content

    - by nemmy
    A few weeks back I realised that my blog software was creating daily post archives. Which basically resulted in duplicate content especially if I only had one post a day. The situation is something like this: www.sitename.com/blog/archives/2013/06/01 - daily archive for 1 June 2013 www.sitename.com/blog/archives/2013/06/my-post-name.html So, here we have two pages that are basically identical except the daily archive has some meaningless title like "Daily Archive for 1 June 2003". And I have no control over which content Google decides is the primary content. It's quite possible (and likely) that the daily archive could be the "primary" content and the actual post itself the "duplicate". Once I realised it was doing this I modified the daily archive template to include <meta name="robots" content="noindex"> Here we are a few weeks later and I still see some daily archives coming up in Google search results. I realise some of those deep pages might not be crawled yet but I am worried that the original post (which should be the PRIMARY content) has been marked duplicate content by Google. Now I've no indexed the daily archives I might end up with no indexed content AND the original articles still flagged as duplicates. And nothing will show up in search at all. Have I screwed myself here or is there a way out?

    Read the article

  • Difficulty Mounting Volumes on a Partitioned External HD

    - by Todd
    I'm having a great deal of difficulty with an external hard drive. I'm currently running a dual boot system (XP Service Pack 3 and Ubuntu 11.04 Natty Narwahl) on a Dell Inspiron B120. I'm trying to set up a new 80 GB Hitachi external HD. Using GParted, I formatted the drive and set up the partitions. The partitioning scheme is as follows 10GB NTFS Primary, 2GB Linux-Swap Primary, 50GB FAT32 Primary, 12GB Unallocated. After applying those changes, I went into Disk Utility and the HD appears along with the correct partitions. When I try to mount the volumes for partitions 1 and 3, I get a pop-up stating: Error Mounting Volume An error occurred while performing an operation on "Home" (Partition 3 of HTS548080m9AT00): The daemon is being inhibited. When I try to to check the filesystem I get a pop-up stating: Error Checking filesystem on volume An error occurred while performing an operation on "Home" (Partition 3 of HTS548080m9AT00): The daemon is being inhibited. Throughout the time that I'm attempting to troubleshoot the problem, the external drive light is on and blinking. With my frustration hitting a boiling point, I try to shut down the drive and remove it so that I can plug in a different external HD that works PERFECTLY. However, when I try to shut down and safely remove the drive, I get a pop-up stating: Error Detaching Drive An error occurred while performing an operation on "80GB Hard Disk" (HTS548080m9AT00): The daemon is being inhibited. Can anyone tell me what I'm doing wrong? I'm a newbie and not that skilled with terminal commands, so please dumb it down for me if you request specific command output.

    Read the article

  • "The daemon is being inhibited" error message when mounting volumes on a partitioned external HD [closed]

    - by Todd
    I'm having a great deal of difficulty with an external hard drive. I'm currently running a dual boot system (XP Service Pack 3 and Ubuntu 11.04 Natty Narwahl) on a Dell Inspiron B120. I'm trying to set up a new 80 GB Hitachi external HD. Using GParted, I formatted the drive and set up the partitions. The partitioning scheme is as follows 10GB NTFS Primary, 2GB Linux-Swap Primary, 50GB FAT32 Primary, 12GB Unallocated. After applying those changes, I went into Disk Utility and the HD appears along with the correct partitions. When I try to mount the volumes for partitions 1 and 3, I get a pop-up stating: Error Mounting Volume An error occurred while performing an operation on "Home" (Partition 3 of HTS548080m9AT00): The daemon is being inhibited. When I try to to check the filesystem I get a pop-up stating: Error Checking filesystem on volume An error occurred while performing an operation on "Home" (Partition 3 of HTS548080m9AT00): The daemon is being inhibited. Throughout the time that I'm attempting to troubleshoot the problem, the external drive light is on and blinking. With my frustration hitting a boiling point, I try to shut down the drive and remove it so that I can plug in a different external HD that works PERFECTLY. However, when I try to shut down and safely remove the drive, I get a pop-up stating: Error Detaching Drive An error occurred while performing an operation on "80GB Hard Disk" (HTS548080m9AT00): The daemon is being inhibited. Can anyone tell me what I'm doing wrong? I'm a newbie and not that skilled with terminal commands, so please dumb it down for me if you request specific command output.

    Read the article

  • LDoms with Solaris 11

    - by Orgad Kimchi
    Oracle VM Server for SPARC (LDoms) release 2.2 came out on May 24. You can get the software, see the release notes, reference manual, and admin guide here on the Oracle VM for SPARC page. Oracle VM Server for SPARC enables you to create multiple virtual systems on a single physical system.Each virtual system is called alogical domain and runs its own instance of Oracle Solaris 10 or Oracle Solaris 11. The version of the Oracle Solaris OS software that runs on a guest domain is independent of the Oracle Solaris OS version that runs on the primary domain. So, if you run the Oracle Solaris 10 OS in the primary domain, you can still run the Oracle Solaris 11 OS in a guest domain, and if you run the Oracle Solaris 11 OS in the primary domain, you can still run the Oracle Solaris 10 OS in a guest domain In addition to that starting with the Oracle VM Server for SPARC 2.2 release you can migrate guest domain even if source and target machines have different processor type. You can migrate guest domain from a system with UltraSPARC  T2+ or SPARC T3 CPU to a system with a SPARC T4 CPU.The guest domain on the source and target system must run Solaris 11 In order to enable cross CPU migration.In addition to that you need to change the cpu-arch property value on the source system. For more information about Oracle VM Server for SPARC (LDoms) with Solaris 11 and  Cross CPU Migration refer to the following white paper

    Read the article

  • Database Migration Scripts: Getting from place A to place B

    - by Phil Factor
    We’ll be looking at a typical database ‘migration’ script which uses an unusual technique to migrate existing ‘de-normalised’ data into a more correct form. So, the book-distribution business that uses the PUBS database has gradually grown organically, and has slipped into ‘de-normalisation’ habits. What’s this? A new column with a list of tags or ‘types’ assigned to books. Because books aren’t really in just one category, someone has ‘cured’ the mismatch between the database and the business requirements. This is fine, but it is now proving difficult for their new website that allows searches by tags. Any request for history book really has to look in the entire list of associated tags rather than the ‘Type’ field that only keeps the primary tag. We have other problems. The TypleList column has duplicates in there which will be affecting the reporting, and there is the danger of mis-spellings getting there. The reporting system can’t be persuaded to do reports based on the tags and the Database developers are complaining about the unCoddly things going on in their database. In your version of PUBS, this extra column doesn’t exist, so we’ve added it and put in 10,000 titles using SQL Data Generator. /* So how do we refactor this database? firstly, we create a table of all the tags. */IF  OBJECT_ID('TagName') IS NULL OR OBJECT_ID('TagTitle') IS NULL  BEGIN  CREATE TABLE  TagName (TagName_ID INT IDENTITY(1,1) PRIMARY KEY ,     Tag VARCHAR(20) NOT NULL UNIQUE)  /* ...and we insert into it all the tags from the list (remembering to take out any leading spaces */  INSERT INTO TagName (Tag)     SELECT DISTINCT LTRIM(x.y.value('.', 'Varchar(80)')) AS [Tag]     FROM     (SELECT  Title_ID,          CONVERT(XML, '<list><i>' + REPLACE(TypeList, ',', '</i><i>') + '</i></list>')          AS XMLkeywords          FROM   dbo.titles)g    CROSS APPLY XMLkeywords.nodes('/list/i/text()') AS x ( y )  /* we can then use this table to provide a table that relates tags to articles */  CREATE TABLE TagTitle   (TagTitle_ID INT IDENTITY(1, 1),   [title_id] [dbo].[tid] NOT NULL REFERENCES titles (Title_ID),   TagName_ID INT NOT NULL REFERENCES TagName (Tagname_ID)   CONSTRAINT [PK_TagTitle]       PRIMARY KEY CLUSTERED ([title_id] ASC, TagName_ID)       ON [PRIMARY])        CREATE NONCLUSTERED INDEX idxTagName_ID  ON  TagTitle (TagName_ID)  INCLUDE (TagTitle_ID,title_id)        /* ...and it is easy to fill this with the tags for each title ... */        INSERT INTO TagTitle (Title_ID, TagName_ID)    SELECT DISTINCT Title_ID, TagName_ID      FROM        (SELECT  Title_ID,          CONVERT(XML, '<list><i>' + REPLACE(TypeList, ',', '</i><i>') + '</i></list>')          AS XMLkeywords          FROM   dbo.titles)g    CROSS APPLY XMLkeywords.nodes('/list/i/text()') AS x ( y )    INNER JOIN TagName ON TagName.Tag=LTRIM(x.y.value('.', 'Varchar(80)'))    END    /* That's all there was to it. Now we can select all titles that have the military tag, just to try things out */SELECT Title FROM titles  INNER JOIN TagTitle ON titles.title_ID=TagTitle.Title_ID  INNER JOIN Tagname ON Tagname.TagName_ID=TagTitle.TagName_ID  WHERE tagname.tag='Military'/* and see the top ten most popular tags for titles */SELECT Tag, COUNT(*) FROM titles  INNER JOIN TagTitle ON titles.title_ID=TagTitle.Title_ID  INNER JOIN Tagname ON Tagname.TagName_ID=TagTitle.TagName_ID  GROUP BY Tag ORDER BY COUNT(*) DESC/* and if you still want your list of tags for each title, then here they are */SELECT title_ID, title, STUFF(  (SELECT ','+tagname.tag FROM titles thisTitle    INNER JOIN TagTitle ON titles.title_ID=TagTitle.Title_ID    INNER JOIN Tagname ON Tagname.TagName_ID=TagTitle.TagName_ID  WHERE ThisTitle.title_id=titles.title_ID  FOR XML PATH(''), TYPE).value('.', 'varchar(max)')  ,1,1,'')    FROM titles  ORDER BY title_ID So we’ve refactored our PUBS database without pain. We’ve even put in a check to prevent it being re-run once the new tables are created. Here is the diagram of the new tag relationship We’ve done both the DDL to create the tables and their associated components, and the DML to put the data in them. I could have also included the script to remove the de-normalised TypeList column, but I’d do a whole lot of tests first before doing that. Yes, I’ve left out the assertion tests too, which should check the edge cases and make sure the result is what you’d expect. One thing I can’t quite figure out is how to deal with an ordered list using this simple XML-based technique. We can ensure that, if we have to produce a list of tags, we can get the primary ‘type’ to be first in the list, but what if the entire order is significant? Thank goodness it isn’t in this case. If it were, we might have to revisit a string-splitter function that returns the ordinal position of each component in the sequence. You’ll see immediately that we can create a synchronisation script for deployment from a comparison tool such as SQL Compare, to change the schema (DDL). On the other hand, no tool could do the DML to stuff the data into the new table, since there is no way that any tool will be able to work out where the data should go. We used some pretty hairy code to deal with a slightly untypical problem. We would have to do this migration by hand, and it has to go into source control as a batch. If most of your database changes are to be deployed by an automated process, then there must be a way of over-riding this part of the data synchronisation process to do this part of the process taking the part of the script that fills the tables, Checking that the tables have not already been filled, and executing it as part of the transaction. Of course, you might prefer the approach I’ve taken with the script of creating the tables in the same batch as the data conversion process, and then using the presence of the tables to prevent the script from being re-run. The problem with scripting a refactoring change to a database is that it has to work both ways. If we install the new system and then have to rollback the changes, several books may have been added, or had their tags changed, in the meantime. Yes, you have to script any rollback! These have to be mercilessly tested, and put in source control just in case of the rollback of a deployment after it has been in place for any length of time. I’ve shown you how to do this with the part of the script .. /* and if you still want your list of tags for each title, then here they are */SELECT title_ID, title, STUFF(  (SELECT ','+tagname.tag FROM titles thisTitle    INNER JOIN TagTitle ON titles.title_ID=TagTitle.Title_ID    INNER JOIN Tagname ON Tagname.TagName_ID=TagTitle.TagName_ID  WHERE ThisTitle.title_id=titles.title_ID  FOR XML PATH(''), TYPE).value('.', 'varchar(max)')  ,1,1,'')    FROM titles  ORDER BY title_ID …which would be turned into an UPDATE … FROM script. UPDATE titles SET  typelist= ThisTaglistFROM     (SELECT title_ID, title, STUFF(    (SELECT ','+tagname.tag FROM titles thisTitle      INNER JOIN TagTitle ON titles.title_ID=TagTitle.Title_ID      INNER JOIN Tagname ON Tagname.TagName_ID=TagTitle.TagName_ID    WHERE ThisTitle.title_id=titles.title_ID    ORDER BY CASE WHEN tagname.tag=titles.[type] THEN 1 ELSE 0  END DESC    FOR XML PATH(''), TYPE).value('.', 'varchar(max)')    ,1,1,'')  AS ThisTagList  FROM titles)fINNER JOIN Titles ON f.title_ID=Titles.title_ID You’ll notice that it isn’t quite a round trip because the tags are in a different order, though we’ve managed to make sure that the primary tag is the first one as originally. So, we’ve improved the database for the poor book distributors using PUBS. It is not a major deal but you’ve got to be prepared to provide a migration script that will go both forwards and backwards. Ideally, database refactoring scripts should be able to go from any version to any other. Schema synchronization scripts can do this pretty easily, but no data synchronisation scripts can deal with serious refactoring jobs without the developers being able to specify how to deal with cases like this.

    Read the article

  • Ubuntu 13.04 alongside Windows 8 - How to partition from Windows

    - by mengelkoch
    I plan to install Ubuntu 13.04 alongside Windows 8, and I'm looking for a CLEAR answer on how to conduct partitioning appropriately. I'm very new to all of this so a thorough explanation with minimal jargon would be great. I have an Acer Aspire M5 x64 with 6G RAM. I think I already figured out how to deal with the fast startup, UEFI and SecureBoot issues (I disabled fast startup and disabled Secure Boot). I am able to boot into Ubuntu from a LiveUSB, and I think I am ready to install Ubuntu. Note - despite some advice found here, I do have to disable SecureBoot to boot 13.04 from my LiveUSB. From what I have read here, it seems that I should (at least at first) create the partitions from WITHIN Windows 8, not from the LiveUSB, to avoid reported problems. I have run compmgmt.msc and I see the existing partitions. I see the following: Disk 0: 400 MB Recovery; 300 MB EFI System; Acer (C:) 444.95 GB (Boot, Page File, Crash Dump, Primary Partition); 20 GB Recovery Disk 1: 3.74 GB Primary Partition; 14.90 GB Primary Partition I gather I need to create a mounting point '/' Partition (??), a swap partition, and a home partition. Please explain what these are, how big they should be, how I create them from Windows Disk Management, and anything else I need to know. Eventually, I plan to fully replace Windows 8 with Ubuntu, but for now I want to run alongside Windows 8 and not screw things up. I don't have any critical files saved on this computer yet. Thanks.

    Read the article

  • How to move ubuntu 12.04 on another drive

    - by Maksim
    How I can move my ubuntu on another drive? I know about clonezilla but problem is that destination drive is smaller the source one. Gparted can't copy-paste partition if destination not the end last partition. I tried dpkg --selected-packages and apt-clone. First one just not install all my packages and removed existed that now I have no full unity and not my all packages. Second one just fail on configuration package. But before I did that way I copy-paste my /etc to new system. My partition table destination : gpt 1 1049kB 106MB 105MB fat32 EFI System ??????????? 2 106MB 12,1GB 12,0GB ext4 3 12,1GB 66,3GB 54,2GB ext4 source: msdos 1 1049kB 12,0GB 12,0GB primary ext4 ??????????? 2 12,0GB 492GB 480GB primary ext4 3 492GB 500GB 8107MB primary linux-swap(v1) Gpt not working with ubuntu that use grub 1.99. I don't know why but my laptop can't boot any device with uefi just black screen and ubuntu detect it on fresh install.

    Read the article

  • "The volume filesystem root has only..."

    - by jcslzr
    I am having this problem in ubuntu 12.04, but I fin strange that when I go to /tmp it wont allow me to delete some files, with message "Operation not permitted" or "this file could not be handled because you dont have permissions to read it". It is only a PC and I have the root password. I was trying to get at least 2000 MB of free space on the root file system to upgrade to 12.10 and see if that resolved the problem. Currently free space on root file system is 190 MB. This is my output: root@jcsalazar-Vostro-3550:~# df Filesystem 1K-blocks Used Available Use% Mounted on /dev/sda6 7688360 7112824 184984 98% / udev 2009288 4 2009284 1% /dev tmpfs 806636 1024 805612 1% /run none 5120 0 5120 0% /run/lock none 2016584 5316 2011268 1% /run/shm /dev/sda5 472036 255920 191745 58% /boot /dev/sda7 30758848 7085480 22110900 25% /home root@jcsalazar-Vostro-3550:~# sudo parted -l Model: ATA TOSHIBA MK3261GS (scsi) Disk /dev/sda: 320GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 106MB 105MB primary fat16 2 106MB 15.8GB 15.7GB primary ntfs boot 3 15.8GB 278GB 262GB primary ntfs 4 278GB 320GB 41.9GB extended 5 278GB 279GB 499MB logical ext4 6 279GB 287GB 7999MB logical ext4 7 287GB 319GB 32.0GB logical ext4 8 319GB 320GB 1443MB logical linux-swap(v1) I apprecciate any new ideas that can help me. Thnx Carlos

    Read the article

  • LDoms with Solaris 11

    - by Orgad Kimchi
    Oracle VM Server for SPARC (LDoms) release 2.2 came out on May 24. You can get the software, see the release notes, reference manual, and admin guide here on the Oracle VM for SPARC page. Oracle VM Server for SPARC enables you to create multiple virtual systems on a single physical system.Each virtual system is called alogical domain and runs its own instance of Oracle Solaris 10 or Oracle Solaris 11. The version of the Oracle Solaris OS software that runs on a guest domain is independent of the Oracle Solaris OS version that runs on the primary domain. So, if you run the Oracle Solaris 10 OS in the primary domain, you can still run the Oracle Solaris 11 OS in a guest domain, and if you run the Oracle Solaris 11 OS in the primary domain, you can still run the Oracle Solaris 10 OS in a guest domain In addition to that starting with the Oracle VM Server for SPARC 2.2 release you can migrate guest domain even if source and target machines have different processor type. You can migrate guest domain from a system with UltraSPARC  T2+ or SPARC T3 CPU to a system with a SPARC T4 CPU.The guest domain on the source and target system must run Solaris 11 In order to enable cross CPU migration.In addition to that you need to change the cpu-arch property value on the source system. For more information about Oracle VM Server for SPARC (LDoms) with Solaris 11 and  Cross CPU Migration refer to the following white paper

    Read the article

  • Why isn't my query using any indices when I use a subquery?

    - by sfussenegger
    I have the following tables (removed columns that aren't used for my examples): CREATE TABLE `person` ( `id` int(11) NOT NULL, `name` varchar(1024) NOT NULL, `sortname` varchar(1024) NOT NULL, PRIMARY KEY (`id`), KEY `sortname` (`sortname`(255)), KEY `name` (`name`(255)) ); CREATE TABLE `personalias` ( `id` int(11) NOT NULL, `person` int(11) NOT NULL, `name` varchar(1024) NOT NULL, PRIMARY KEY (`id`), KEY `person` (`person`), KEY `name` (`name`(255)) ) Currently, I'm using this query which works just fine: select p.* from person p where name = 'John Mayer' or sortname = 'John Mayer'; mysql> explain select p.* from person p where name = 'John Mayer' or sortname = 'John Mayer'; +----+-------------+-------+-------------+---------------+---------------+---------+------+------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------------+---------------+---------------+---------+------+------+----------------------------------------------+ | 1 | SIMPLE | p | index_merge | name,sortname | name,sortname | 767,767 | NULL | 3 | Using sort_union(name,sortname); Using where | +----+-------------+-------+-------------+---------------+---------------+---------+------+------+----------------------------------------------+ 1 row in set (0.00 sec) Now I'd like to extend this query to also consider aliases. First, I've tried using a join: select p.* from person p join personalias a where p.name = 'John Mayer' or p.sortname = 'John Mayer' or a.name = 'John Mayer'; mysql> explain select p.* from person p join personalias a on p.id = a.person where p.name = 'John Mayer' or p.sortname = 'John Mayer' or a.name = 'John Mayer'; +----+-------------+-------+--------+-----------------------+---------+---------+-------------------+-------+-----------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+-----------------------+---------+---------+-------------------+-------+-----------------+ | 1 | SIMPLE | a | ALL | ref,name | NULL | NULL | NULL | 87401 | Using temporary | | 1 | SIMPLE | p | eq_ref | PRIMARY,name,sortname | PRIMARY | 4 | musicbrainz.a.ref | 1 | Using where | +----+-------------+-------+--------+-----------------------+---------+---------+-------------------+-------+-----------------+ 2 rows in set (0.00 sec) This looks bad: no index, 87401 rows, using temporary. Using temporary only appears when I use distinct, but as an alias might be the same as the name, I can't really get rid of it. Next, I've tried to replace the join with a subquery: select p.* from person p where p.name = 'John Mayer' or p.sortname = 'John Mayer' or p.id in (select person from personalias a where a.name = 'John Mayer'); mysql> explain select p.* from person p where p.name = 'John Mayer' or p.sortname = 'John Mayer' or p.id in (select id from personalias a where a.name = 'John Mayer'); +----+--------------------+-------+----------------+------------------+--------+---------+------+--------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------------+-------+----------------+------------------+--------+---------+------+--------+-------------+ | 1 | PRIMARY | p | ALL | name,sortname | NULL | NULL | NULL | 540309 | Using where | | 2 | DEPENDENT SUBQUERY | a | index_subquery | person,name | person | 4 | func | 1 | Using where | +----+--------------------+-------+----------------+------------------+--------+---------+------+--------+-------------+ 2 rows in set (0.00 sec) Again, this looks pretty bad: no index, 540309 rows. Interestingly, both queries (select p.* from person ... or p.id in (4711,12345) and select id from personalias a where a.name = 'John Mayer') work extremely well. Why doesn't MySQL use any indices for both of my queries? What else could I do? Currently, it looks best to fetch person.ids for aliases and add them statically as an in(...) to the second query. There certainly has to be another way to do this with a single query. I'm currently out of ideas though. Could I somehow force MySQL into using another (better) query plan?

    Read the article

  • Foreign Key Relationships and "belongs to many"

    - by jan
    I have the following model: S belongs to T T has many S A,B,C,D,E (etc) have 1 T each, so the T should belong to each of A,B,C,D,E (etc) At first I set up my foreign keys so that in A, fk_a_t would be the foreign key on A.t to T(id), in B it'd be fk_b_t, etc. Everything looks fine in my UML (using MySQLWorkBench), but generating the yii models results in it thinking that T has many A,B,C,D (etc) which to me is the reverse. It sounds to me like either I need to have A_T, B_T, C_T (etc) tables, but this would be a pain as there are a lot of tables that have this relationship. I've also googled that the better way to do this would be some sort of behavior, such that A,B,C,D (etc) can behave as a T, but I'm not clear on exactly how to do this (I will continue to google more on this) What do you think is the better solution? UML: Here's the DDL (auto generated). Just pretend that there is more than 3 tables referencing T. -- ----------------------------------------------------- -- Table `mydb`.`T` -- ----------------------------------------------------- CREATE TABLE IF NOT EXISTS `mydb`.`T` ( `id` INT NOT NULL AUTO_INCREMENT , PRIMARY KEY (`id`) ) ENGINE = InnoDB; -- ----------------------------------------------------- -- Table `mydb`.`S` -- ----------------------------------------------------- CREATE TABLE IF NOT EXISTS `mydb`.`S` ( `id` INT NOT NULL AUTO_INCREMENT , `thing` VARCHAR(45) NULL , `t` INT NOT NULL , PRIMARY KEY (`id`) , INDEX `fk_S_T` (`id` ASC) , CONSTRAINT `fk_S_T` FOREIGN KEY (`id` ) REFERENCES `mydb`.`T` (`id` ) ON DELETE NO ACTION ON UPDATE NO ACTION) ENGINE = InnoDB; -- ----------------------------------------------------- -- Table `mydb`.`A` -- ----------------------------------------------------- CREATE TABLE IF NOT EXISTS `mydb`.`A` ( `id` INT NOT NULL AUTO_INCREMENT , `T` INT NOT NULL , `stuff` VARCHAR(45) NULL , `bar` VARCHAR(45) NULL , `foo` VARCHAR(45) NULL , PRIMARY KEY (`id`) , INDEX `fk_A_T` (`T` ASC) , CONSTRAINT `fk_A_T` FOREIGN KEY (`T` ) REFERENCES `mydb`.`T` (`id` ) ON DELETE NO ACTION ON UPDATE NO ACTION) ENGINE = InnoDB; -- ----------------------------------------------------- -- Table `mydb`.`B` -- ----------------------------------------------------- CREATE TABLE IF NOT EXISTS `mydb`.`B` ( `id` INT NOT NULL AUTO_INCREMENT , `T` INT NOT NULL , `stuff2` VARCHAR(45) NULL , `foobar` VARCHAR(45) NULL , `other` VARCHAR(45) NULL , PRIMARY KEY (`id`) , INDEX `fk_A_T` (`T` ASC) , CONSTRAINT `fk_A_T` FOREIGN KEY (`T` ) REFERENCES `mydb`.`T` (`id` ) ON DELETE NO ACTION ON UPDATE NO ACTION) ENGINE = InnoDB; -- ----------------------------------------------------- -- Table `mydb`.`C` -- ----------------------------------------------------- CREATE TABLE IF NOT EXISTS `mydb`.`C` ( `id` INT NOT NULL AUTO_INCREMENT , `T` INT NOT NULL , `stuff3` VARCHAR(45) NULL , `foobar2` VARCHAR(45) NULL , `other4` VARCHAR(45) NULL , PRIMARY KEY (`id`) , INDEX `fk_A_T` (`T` ASC) , CONSTRAINT `fk_A_T` FOREIGN KEY (`T` ) REFERENCES `mydb`.`T` (`id` ) ON DELETE NO ACTION ON UPDATE NO ACTION) ENGINE = InnoDB;

    Read the article

  • WPF windows locked when calling webservice. Even when run asynchronously

    - by SumGuy
    Hi there. I'm having a big problem when calling a web service from my WPF application. The application/window locks until the process has completed. I've attempted to run this asynchronously but the problem still persists. Currently, the web service call I'm making can last 45-60 seconds. It runs a process on the server to fetch a big chunk of data. As it take a little while I wanted to have a progress bar moving indeterminately for the user to see that the application hasn't stalled or anything (you know how impatatient they get). So: private void btnSelect_Click(object sender, RoutedEventArgs e) { wDrawingList = new WindowDrawingList(systemManager); AsyncMethodHandler caller = default(AsyncMethodHandler); caller = new AsyncMethodHandler(setupDrawingList); // open new thread with callback method caller.BeginInvoke((Guid)((Button)sender).Tag, MyAsyncCallback, null); } Click a button and the app will create the form that the async stuff will be posted to and set up the async stuff calling the async method. public bool setupDrawingList(Guid ID) { if (systemManager.set(ID)) { wDrawingList.Dispatcher.Invoke(DispatcherPriority.Background, new Action(() => { wDrawingList.ShowForm(); Hide(); })); return true; } return false; } This is the async method. The showForm method contains the calls to setup the new form including the monster web service call public void MyAsyncCallback(IAsyncResult ar) { // Because you passed your original delegate in the asyncState parameter of the Begin call, you can get it back here to complete the call. MethodDelegate dlgt = (MethodDelegate)ar.AsyncState; // Complete the call. bool output = dlgt.EndInvoke(ar); try { // Retrieve the delegate. AsyncResult result = (AsyncResult)ar; AsyncMethodHandler caller = (AsyncMethodHandler)result.AsyncDelegate; // Because this method is running from secondary thread it can never access ui objects because they are created // on the primary thread. // Call EndInvoke to retrieve the results. bool returnValue = caller.EndInvoke(ar); // Still on secondary thread, must update ui on primary thread UpdateUI(returnValue == true ? "Success" : "Failed"); } catch (Exception ex) { string exMessage = null; exMessage = "Error: " + ex.Message; UpdateUI(exMessage); } } public void UpdateUI(string outputValue) { // Get back to primary thread to update ui UpdateUIHandler uiHandler = new UpdateUIHandler(UpdateUIIndicators); string results = outputValue; // Run new thread off Dispatched (primary thread) this.Dispatcher.Invoke(System.Windows.Threading.DispatcherPriority.Normal, uiHandler, results); } public void UpdateUIIndicators(string outputValue) { // update user interface controls from primary UI thread sbi3.Content = "Processing Completed."; } Any help or theories are appreciated. I'm at a loss. Thanks in advance

    Read the article

  • MySQL forgot about automatically creating an index for a foreign key?

    - by bobo
    After running the following SQL statements, you will see that, MySQL has automatically created the non-unique index question_tag_tag_id_tag_id on the tag_id column for me after the first ALTER TABLE statement has run. But after the second ALTER TABLE statement has run, I think MySQL should also automatically create another non-unique index question_tag_question_id_question_id on the question_id column for me. But as you can see from the SHOW INDEXES statement output, it's not there. Why does MySQL forget about the second ALTER TABLE statement? By the way, since I have already created a unique index question_id_tag_id_idx used by both question_id and tag_id columns. Is creating a separate index for each of them redundant? mysql> DROP DATABASE mydatabase; Query OK, 1 row affected (0.00 sec) mysql> CREATE DATABASE mydatabase; Query OK, 1 row affected (0.00 sec) mysql> USE mydatabase; Database changed mysql> CREATE TABLE question (id BIGINT AUTO_INCREMENT, html TEXT, PRIMARY KEY(id)) ENGINE = INNODB; Query OK, 0 rows affected (0.05 sec) mysql> CREATE TABLE tag (id BIGINT AUTO_INCREMENT, name VARCHAR(10) NOT NULL, UNIQUE INDEX name_idx (name), PRIMARY KEY(id)) ENGINE = INNODB; Query OK, 0 rows affected (0.05 sec) mysql> CREATE TABLE question_tag (question_id BIGINT, tag_id BIGINT, UNIQUE INDEX question_id_tag_id_idx (question_id, tag_id), PRIMARY KEY(question_id, tag_id)) ENGINE = INNODB; Query OK, 0 rows affected (0.00 sec) mysql> ALTER TABLE question_tag ADD CONSTRAINT question_tag_tag_id_tag_id FOREIGN KEY (tag_id) REFERENCES tag(id); Query OK, 0 rows affected (0.10 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> ALTER TABLE question_tag ADD CONSTRAINT question_tag_question_id_question_id FOREIGN KEY (question_id) REFERENCES question(id); Query OK, 0 rows affected (0.13 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> SHOW INDEXES FROM question_tag; +--------------+------------+----------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | +--------------+------------+----------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+ | question_tag | 0 | PRIMARY | 1 | question_id | A | 0 | NULL | NULL | | BTREE | | | question_tag | 0 | PRIMARY | 2 | tag_id | A | 0 | NULL | NULL | | BTREE | | | question_tag | 0 | question_id_tag_id_idx | 1 | question_id | A | 0 | NULL | NULL | | BTREE | | | question_tag | 0 | question_id_tag_id_idx | 2 | tag_id | A | 0 | NULL | NULL | | BTREE | | | question_tag | 1 | question_tag_tag_id_tag_id | 1 | tag_id | A | 0 | NULL | NULL | | BTREE | | +--------------+------------+----------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+ 5 rows in set (0.01 sec) mysql>

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Automatic Standby Recreation for Data Guard

    - by pablo.boixeda(at)oracle.com
    Hi,Unfortunately sometimes a Standby Instance needs to be recreated. This can happen for many reasons such as lost archive logs, standby data files, failover, among others.This is why we wanted to have one script to recreate standby instances in an easy way.This script recreates the standby considering some prereqs:-Database Version should be at least 11gR1-Dummy instance started on the standby node (Seeking to improve this so it won't be needed)-Broker configuration hasn't been removed-In our case we have two TNSNAMES files, one for the Standby creation (using SID) and the other one for production using service names (including broker service name)-Some environment variables set up by the environment db script (like ORACLE_HOME, PATH...)-The directory tree should not have been modified in the stanby hostWe are currently using it on our 11gR2 Data Guard tests.Any improvements will be welcome! Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} #!/bin/ksh ###    NOMBRE / VERSION ###       recrea_dg.sh   v.1.00 ### ###    DESCRIPCION ###       reacreacion de la Standby ### ###    DEVUELVE ###       0 Creacion de STANDBY correcta ###       1 Fallo ### ###    NOTAS ###       Este shell script NO DEBE MODIFICARSE. ###       Todas las variables y constantes necesarias se toman del entorno. ### ###    MODIFICADO POR:    FECHA:        COMENTARIOS: ###    ---------------    ----------    ------------------------------------- ###      Oracle           15/02/2011    Creacion. ### ### ### Cargar entorno ### V_ADMIN_DIR=`dirname $0` . ${V_ADMIN_DIR}/entorno_bd.sh 1>>/dev/null if [ $? -ne 0 ] then   echo "Error Loading the environment."   exit 1 fi V_RET=0 V_DATE=`/bin/date` V_DATE_F=`/bin/date +%Y%m%d_%H%M%S` V_LOGFILE=${V_TRAZAS}/recrea_dg_${V_DATE_F}.log exec 4>&1 tee ${V_FICH_LOG} >&4 |& exec 1>&p 2>&1 ### ### Variables para Recrear el Data Guard ### V_DB_BR=`echo ${V_DB_NAME}|tr '[:lower:]' '[:upper:]'` if [ "${ORACLE_SID}" = "${V_DB_NAME}01" ] then         V_LOCAL_BR=${V_DB_BR}'01'         V_REMOTE_BR=${V_DB_BR}'02' else         V_LOCAL_BR=${V_DB_BR}'02'         V_REMOTE_BR=${V_DB_BR}'01' fi echo " Getting local instance ROLE ${ORACLE_SID} ..." sqlplus -s /nolog 1>>/dev/null 2>&1 <<-! whenever sqlerror exit 1 connect / as sysdba variable salida number declare   v_database_role v\$database.database_role%type; begin   select database_role into v_database_role from v\$database;   :salida := case v_database_role        when 'PRIMARY' then 2        when 'PHYSICAL STANDBY' then 3        else 4      end; end; / exit :salida ! case $? in 1) echo " ERROR: Cannot get instance ROLE ." | tee -a ${V_LOGFILE}   2>&1    V_RET=1 ;; 2) echo " Local Instance with PRIMARY role." | tee -a ${V_LOGFILE}   2>&1    V_DB_ROLE_LCL=PRIMARY ;; 3) echo " Local Instance with PHYSICAL STANDBY role." | tee -a ${V_LOGFILE}   2>&1    V_DB_ROLE_LCL=STANDBY ;; *) echo " ERROR: UNKNOWN ROLE." | tee -a ${V_LOGFILE}   2>&1    V_RET=1 ;; esac if [ "${V_DB_ROLE_LCL}" = "PRIMARY" ] then         echo "####################################################################" | tee -a ${V_LOGFILE}   2>&1         echo "${V_DATE} - Reacreating  STANDBY Instance." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "DATAFILES, CONTROL FILES, REDO LOGS and ARCHIVE LOGS in standby instance ${V_REMOTE_BR} will be removed" | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         V_PRIMARY=${V_LOCAL_BR}         V_STANDBY=${V_REMOTE_BR} fi if [ "${V_DB_ROLE_LCL}" = "STANDBY" ] then         echo "####################################################################" | tee -a ${V_LOGFILE}   2>&1         echo "${V_DATE} - Reacreating  STANDBY Instance." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "DATAFILES, CONTROL FILES, REDO LOGS and ARCHIVE LOGS in standby instance ${V_LOCAL_BR} will be removed" | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         V_PRIMARY=${V_REMOTE_BR}         V_STANDBY=${V_LOCAL_BR} fi # Cargamos las variables de los hosts # Cargamos las variables de los hosts PRY_HOST=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_PRIMARY} as sysdba select 'KEEP',host_name from v\\$instance; EOF` SBY_HOST=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba select 'KEEP',host_name from v\\$instance; EOF` echo "el HOST primary es: ${PRY_HOST}" | tee -a ${V_LOGFILE}   2>&1 echo "el HOST standby es: ${SBY_HOST}" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 ## ## Paramos la instancia STANDBY ## V_DATE=`/bin/date` echo "${V_DATE} - Shutting down Standby instance" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ## ## Paramos la instancia STANDBY ## SBY_STATUS=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba select 'KEEP',status from v\\$instance; EOF` if [ ${SBY_STATUS} = 'STARTED' ] || [ ${SBY_STATUS} = 'MOUNTED' ] || [ ${SBY_STATUS} = 'OPEN' ] then         echo "${V_DATE} - Standby instance shutdown in progress..." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1         sqlplus -s /nolog 1>>/dev/null 2>&1 <<-!         whenever sqlerror exit 1         connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba         shutdown abort         ! fi V_DATE=`/bin/date` echo "" echo "${V_DATE} - Standby instance stopped" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ## ## Eliminamos los ficheros de la base de datos ## V_SBY_SID=`echo ${V_STANDBY}|tr '[:upper:]' '[:lower:]'` V_PRY_SID=`echo ${V_PRIMARY}|tr '[:upper:]' '[:lower:]'` ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/data/*.dbf ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/arch/*.arc ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/ctl/*.ctl ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/*.ctl ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/*.rdo ## ## Startup nomount stby instance ## V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Starting  DUMMY Standby Instance " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ssh ${SBY_HOST} touch /home/oracle/init_dg.ora ssh ${SBY_HOST} 'echo "DB_NAME='${V_DB_NAME}'">>/home/oracle/init_dg.ora' ssh ${SBY_HOST} touch /home/oracle/start_dummy.sh ssh ${SBY_HOST} 'echo "ORACLE_HOME=/opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2 ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export ORACLE_HOME">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "PATH=\$ORACLE_HOME/bin:\$PATH">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export PATH">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "ORACLE_SID='${V_SBY_SID}'">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export ORACLE_SID">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "sqlplus -s /nolog <<-!" >>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      whenever sqlerror exit 1 ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      connect / as sysdba ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      startup nomount pfile='\''/home/oracle/init_dg.ora'\''">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "! ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'chmod 744 /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'sh /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'rm /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'rm /home/oracle/init_dg.ora' ## ## TNSNAMES change, specific for RMAN duplicate ## V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Setting up TNSNAMES in PRIMARY host " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ssh ${PRY_HOST} 'cp /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora.inst  /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora' V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Starting STANDBY creation with RMAN.. " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 rman<<-! >>${V_LOGFILE} connect target sys/${V_DB_PWD}@${V_PRIMARY} connect auxiliary sys/${V_DB_PWD}@${V_STANDBY} run { allocate channel prmy1 type disk; allocate channel prmy2 type disk; allocate channel prmy3 type disk; allocate channel prmy4 type disk; allocate auxiliary channel stby type disk; duplicate target database for standby from active database dorecover spfile parameter_value_convert '${V_PRY_SID}','${V_SBY_SID}' set control_files='/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/ctl/control01.ctl','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/control02.ctl' set db_file_name_convert='/opt/oracle/db/db${V_DB_NAME}/${V_PRY_SID}/','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/' set log_file_name_convert='/opt/oracle/db/db${V_DB_NAME}/${V_PRY_SID}/','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/' set 'db_unique_name'='${V_SBY_SID}' set log_archive_config='DG_CONFIG=(${V_PRIMARY},${V_STANDBY})' set fal_client='${V_STANDBY}' set fal_server='${V_PRIMARY}' set log_archive_dest_1='LOCATION=/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/arch DB_UNIQUE_NAME=${V_SBY_SID} MANDATORY VALID_FOR=(ALL_LOGFILES,ALL_ROLES)' set log_archive_dest_2='SERVICE="${V_PRIMARY}"','SYNC AFFIRM DB_UNIQUE_NAME=${V_PRY_SID} DELAY=0 MAX_FAILURE=0 REOPEN=300 REGISTER VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)' nofilenamecheck ; } ! V_DATE=`/bin/date` if [ $? -ne 0 ] then         echo ""         echo "${V_DATE} - Error creating STANDBY instance"         echo ""         echo "********************************************************************************" else         echo ""         echo "${V_DATE} - STANDBY instance created SUCCESSFULLY "         echo ""         echo "********************************************************************************" fi sqlplus -s /nolog 1>>/dev/null 2>&1 <<-!         whenever sqlerror exit 1         connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba         alter system set local_listener='(ADDRESS=(PROTOCOL=TCP)(HOST=${SBY_HOST})(PORT=1544))' scope=both;         alter system set service_names='${V_DB_NAME}.eu.roca.net,${V_SBY_SID}.eu.roca.net,${V_SBY_SID}_DGMGRL.eu.roca.net' scope=both;         alter database recover managed standby database using current logfile disconnect from session;         alter system set dg_broker_start=true scope=both; ! ## ## TNSNAMES change, back to Production Mode ## V_DATE=`/bin/date` echo " " | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Restoring TNSNAMES in PRIMARY "  | tee -a ${V_LOGFILE}   2>&1 echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************"  | tee -a ${V_LOGFILE}   2>&1 ssh ${PRY_HOST} 'cp /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora.prod  /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora' echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} -  Waiting for media recovery before check the DATA GUARD Broker"  | tee -a ${V_LOGFILE}   2>&1 echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************"  | tee -a ${V_LOGFILE}   2>&1 sleep 200 dgmgrl <<-! | grep SUCCESS 1>/dev/null 2>&1     connect ${V_DB_USR}/${V_DB_PWD}@${V_STANDBY}     show configuration verbose; ! if [ $? -ne 0 ] ; then         echo "       ERROR: El status del Broker no es SUCCESS" | tee -a ${V_LOGFILE}   2>&1 ;         V_RET=1 else          echo "      DATA GUARD OK " | tee -a ${V_LOGFILE}   2>&1 ; Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}         V_RET=0 fi Hope it helps.

    Read the article

  • PC hangs and reboots from time to time

    - by Bevor
    Hello, I have a very strange problem: Since I have my new PC, I have always had problems with it. From time to time the computer freezes for some seconds and suddendly reboots by itself. I've had this problem since Ubuntu 9.10. The same with 10.04 and 10.10. That's why I don't think it's a software failure because the problem persist too long. It doesn't have anything to do with what I'm doing at this time. Sometimes I listen to music, sometimes I only use Firefox, sometimes I'm running 2 or 3 VMs, sometimes I watch DVD. So it's not isolatable. I could freeze once a day or once a week. I put the PC to the vendor twice(!). The first time they changed my power supply but the problem persisted. The second time they told me that they made some heavy performance tests 50 hours long but they didn't find anything. (How can that be that I have daily freezes with normal usage). The vendor didn't check the hard discs because they used their own disc with Windows. (So they never checked the Linux installation). Yesterday I made some intensive hard disc scans with "SMART" but no errors were found. I ran memtest for 3 times but no errors found. I already had this problem in my old flat, so I doubt that I has something to do with current fluctuation. I already tried another electrical socket and changed to connector strip but the problem persists. At the moment I removed 2 of the RAMs (2x 2GB). In all I have 6GB, 2x2GB and 2x1GB. Could this difference maybe be a problem? Here is a list of my components. I hope that anybody find something I didn't think about yet. And here a list of my components: 1x AMD Phenom II X4 965 Black Edition, 3,4Ghz, Quad Core, S-AM3, Boxed 2x DDR3-RAM 2048MB, PC3-1333 Mhz, CL9, Kingston ValueRAM 2x DDR3-RAM 1024MB, PC3-1333 Mhz, CL9, Kingston ValueRAM 2x SATA II Seagate Barracuda 7200.12, 1TB 32MB Cache = RAID 1 1x DVD ROM SATA LG DH16NSR, 16x/52x 1x DVD-+R/-+RW SATA LG GH-22NS50 1x Cardreader 18in1 1x PCI-E 2.0 GeForce GTS 250, Retail, 1024MB 1x Power Supply ATX 400 Watt, CHIEFTEC APS-400S, 80 Plus 1x Network card PCI Intel PRO/1000GT 10/100/1000 MBit 1x Mainboard Socket-AM3 ASUS M4A79XTD EVO, ATX lshw: description: Desktop Computer product: System Product Name vendor: System manufacturer version: System Version serial: System Serial Number width: 64 bits capabilities: smbios-2.5 dmi-2.5 vsyscall64 vsyscall32 configuration: boot=normal chassis=desktop uuid=80E4001E-8C00-002C-AA59-E0CB4EBAC29A *-core description: Motherboard product: M4A79XTD EVO vendor: ASUSTeK Computer INC. physical id: 0 version: Rev X.0X serial: MT709CK11101196 slot: To Be Filled By O.E.M. *-firmware description: BIOS vendor: American Megatrends Inc. physical id: 0 version: 0704 (11/25/2009) size: 64KiB capacity: 960KiB capabilities: isa pci pnp apm upgrade shadowing escd cdboot bootselect socketedrom edd int13floppy1200 int13floppy720 int13floppy2880 int5printscreen int9keyboard int14serial int17printer int10video acpi usb ls120boot zipboot biosbootspecification *-cpu description: CPU product: AMD Phenom(tm) II X4 965 Processor vendor: Advanced Micro Devices [AMD] physical id: 4 bus info: cpu@0 version: AMD Phenom(tm) II X4 965 Processor serial: To Be Filled By O.E.M. slot: AM3 size: 800MHz capacity: 3400MHz width: 64 bits clock: 200MHz capabilities: fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp x86-64 3dnowext 3dnow constant_tsc rep_good nonstop_tsc extd_apicid pni monitor cx16 popcnt lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt npt lbrv svm_lock nrip_save cpufreq *-cache:0 description: L1 cache physical id: 5 slot: L1-Cache size: 512KiB capacity: 512KiB capabilities: pipeline-burst internal varies data *-cache:1 description: L2 cache physical id: 6 slot: L2-Cache size: 2MiB capacity: 2MiB capabilities: pipeline-burst internal varies unified *-cache:2 description: L3 cache physical id: 7 slot: L3-Cache size: 6MiB capacity: 6MiB capabilities: pipeline-burst internal varies unified *-memory description: System Memory physical id: 36 slot: System board or motherboard size: 2GiB *-bank:0 description: DIMM Synchronous 1333 MHz (0.8 ns) product: ModulePartNumber00 vendor: Manufacturer00 physical id: 0 serial: SerNum00 slot: DIMM0 size: 1GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: DIMM Synchronous 1333 MHz (0.8 ns) product: ModulePartNumber01 vendor: Manufacturer01 physical id: 1 serial: SerNum01 slot: DIMM1 size: 1GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:2 description: DIMM [empty] product: ModulePartNumber02 vendor: Manufacturer02 physical id: 2 serial: SerNum02 slot: DIMM2 *-bank:3 description: DIMM [empty] product: ModulePartNumber03 vendor: Manufacturer03 physical id: 3 serial: SerNum03 slot: DIMM3 *-pci:0 description: Host bridge product: RD780 Northbridge only dual slot PCI-e_GFX and HT1 K8 part vendor: ATI Technologies Inc physical id: 100 bus info: pci@0000:00:00.0 version: 00 width: 32 bits clock: 66MHz *-pci:0 description: PCI bridge product: RD790 PCI to PCI bridge (external gfx0 port A) vendor: ATI Technologies Inc physical id: 2 bus info: pci@0000:00:02.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:a000(size=4096) memory:f8000000-fbbfffff ioport:d0000000(size=268435456) *-display description: VGA compatible controller product: G92 [GeForce GTS 250] vendor: nVidia Corporation physical id: 0 bus info: pci@0000:01:00.0 version: a2 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vga_controller bus_master cap_list rom configuration: driver=nvidia latency=0 resources: irq:18 memory:fa000000-faffffff memory:d0000000-dfffffff memory:f8000000-f9ffffff ioport:ac00(size=128) memory:fbbe0000-fbbfffff *-pci:1 description: PCI bridge product: RD790 PCI to PCI bridge (PCI express gpp port C) vendor: ATI Technologies Inc physical id: 6 bus info: pci@0000:00:06.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:41 ioport:b000(size=4096) memory:fbc00000-fbcfffff ioport:f6f00000(size=1048576) *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:02:00.0 logical name: eth0 version: 03 serial: e0:cb:4e:ba:c2:9a size: 10MB/s capacity: 1GB/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half latency=0 link=no multicast=yes port=MII speed=10MB/s resources: irq:45 ioport:b800(size=256) memory:f6fff000-f6ffffff memory:f6ff8000-f6ffbfff memory:fbcf0000-fbcfffff *-pci:2 description: PCI bridge product: RD790 PCI to PCI bridge (PCI express gpp port D) vendor: ATI Technologies Inc physical id: 7 bus info: pci@0000:00:07.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:42 ioport:c000(size=4096) memory:fbd00000-fbdfffff *-firewire description: FireWire (IEEE 1394) product: VT6315 Series Firewire Controller vendor: VIA Technologies, Inc. physical id: 0 bus info: pci@0000:03:00.0 version: 00 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress ohci bus_master cap_list configuration: driver=firewire_ohci latency=0 resources: irq:19 memory:fbdff800-fbdfffff ioport:c800(size=256) *-pci:3 description: PCI bridge product: RD790 PCI to PCI bridge (PCI express gpp port E) vendor: ATI Technologies Inc physical id: 9 bus info: pci@0000:00:09.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:43 ioport:d000(size=4096) memory:fbe00000-fbefffff *-ide description: IDE interface product: 88SE6121 SATA II Controller vendor: Marvell Technology Group Ltd. physical id: 0 bus info: pci@0000:04:00.0 version: b2 width: 32 bits clock: 33MHz capabilities: ide pm msi pciexpress bus_master cap_list configuration: driver=pata_marvell latency=0 resources: irq:17 ioport:dc00(size=8) ioport:d880(size=4) ioport:d800(size=8) ioport:d480(size=4) ioport:d400(size=16) memory:fbeffc00-fbefffff *-storage description: SATA controller product: SB700/SB800 SATA Controller [IDE mode] vendor: ATI Technologies Inc physical id: 11 bus info: pci@0000:00:11.0 logical name: scsi0 logical name: scsi2 version: 00 width: 32 bits clock: 66MHz capabilities: storage msi ahci_1.0 bus_master cap_list emulated configuration: driver=ahci latency=64 resources: irq:44 ioport:9000(size=8) ioport:8000(size=4) ioport:7000(size=8) ioport:6000(size=4) ioport:5000(size=16) memory:f7fffc00-f7ffffff *-disk:0 description: ATA Disk product: ST31000528AS vendor: Seagate physical id: 0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: CC38 serial: 9VP3WD9Z size: 931GiB (1TB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=000ad206 *-volume:0 UNCLAIMED description: Linux filesystem partition vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 version: 1.0 serial: 81839235-21ea-4853-90a4-814779f49000 size: 972MiB capacity: 972MiB capabilities: primary ext2 initialized configuration: filesystem=ext2 modified=2010-12-06 18:32:58 mounted=2010-11-01 07:05:10 state=unknown *-volume:1 UNCLAIMED description: Linux swap volume physical id: 2 bus info: scsi@0:0.0.0,2 version: 1 serial: 22b881d5-6f5c-484d-94e8-e231896fa91b size: 486MiB capacity: 486MiB capabilities: primary nofs swap initialized configuration: filesystem=swap pagesize=4096 *-volume:2 UNCLAIMED description: EXT3 volume vendor: Linux physical id: 3 bus info: scsi@0:0.0.0,3 version: 1.0 serial: ad5b0daf-11e8-4f8f-8598-4e89da9c0d84 size: 47GiB capacity: 47GiB capabilities: primary journaled extended_attributes large_files recover ext3 ext2 initialized configuration: created=2010-02-16 20:42:29 filesystem=ext3 modified=2010-11-29 17:02:34 mounted=2010-12-06 18:32:50 state=clean *-volume:3 UNCLAIMED description: Extended partition physical id: 4 bus info: scsi@0:0.0.0,4 size: 882GiB capacity: 882GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume UNCLAIMED description: Linux filesystem partition physical id: 5 capacity: 882GiB *-disk:1 description: ATA Disk product: ST31000528AS vendor: Seagate physical id: 1 bus info: scsi@2:0.0.0 logical name: /dev/sdb version: CC38 serial: 9VP3SCPF size: 931GiB (1TB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=000ad206 *-volume:0 UNCLAIMED description: Linux filesystem partition vendor: Linux physical id: 1 bus info: scsi@2:0.0.0,1 version: 1.0 serial: 81839235-21ea-4853-90a4-814779f49000 size: 972MiB capacity: 972MiB capabilities: primary ext2 initialized configuration: filesystem=ext2 modified=2010-12-06 18:32:58 mounted=2010-11-01 07:05:10 state=unknown *-volume:1 UNCLAIMED description: Linux swap volume physical id: 2 bus info: scsi@2:0.0.0,2 version: 1 serial: 22b881d5-6f5c-484d-94e8-e231896fa91b size: 486MiB capacity: 486MiB capabilities: primary nofs swap initialized configuration: filesystem=swap pagesize=4096 *-volume:2 UNCLAIMED description: EXT3 volume vendor: Linux physical id: 3 bus info: scsi@2:0.0.0,3 version: 1.0 serial: ad5b0daf-11e8-4f8f-8598-4e89da9c0d84 size: 47GiB capacity: 47GiB capabilities: primary journaled extended_attributes large_files recover ext3 ext2 initialized configuration: created=2010-02-16 20:42:29 filesystem=ext3 modified=2010-11-29 17:02:34 mounted=2010-12-06 18:32:50 state=clean *-volume:3 UNCLAIMED description: Extended partition physical id: 4 bus info: scsi@2:0.0.0,4 size: 882GiB capacity: 882GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume UNCLAIMED description: Linux filesystem partition physical id: 5 capacity: 882GiB *-usb:0 description: USB Controller product: SB700/SB800 USB OHCI0 Controller vendor: ATI Technologies Inc physical id: 12 bus info: pci@0000:00:12.0 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:16 memory:f7ffd000-f7ffdfff *-usb:1 description: USB Controller product: SB700 USB OHCI1 Controller vendor: ATI Technologies Inc physical id: 12.1 bus info: pci@0000:00:12.1 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:16 memory:f7ffe000-f7ffefff *-usb:2 description: USB Controller product: SB700/SB800 USB EHCI Controller vendor: ATI Technologies Inc physical id: 12.2 bus info: pci@0000:00:12.2 version: 00 width: 32 bits clock: 66MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=64 resources: irq:17 memory:f7fff800-f7fff8ff *-usb:3 description: USB Controller product: SB700/SB800 USB OHCI0 Controller vendor: ATI Technologies Inc physical id: 13 bus info: pci@0000:00:13.0 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:18 memory:f7ffb000-f7ffbfff *-usb:4 description: USB Controller product: SB700 USB OHCI1 Controller vendor: ATI Technologies Inc physical id: 13.1 bus info: pci@0000:00:13.1 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:18 memory:f7ffc000-f7ffcfff *-usb:5 description: USB Controller product: SB700/SB800 USB EHCI Controller vendor: ATI Technologies Inc physical id: 13.2 bus info: pci@0000:00:13.2 version: 00 width: 32 bits clock: 66MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=64 resources: irq:19 memory:f7fff400-f7fff4ff *-serial UNCLAIMED description: SMBus product: SBx00 SMBus Controller vendor: ATI Technologies Inc physical id: 14 bus info: pci@0000:00:14.0 version: 3c width: 32 bits clock: 66MHz capabilities: ht cap_list configuration: latency=0 *-ide description: IDE interface product: SB700/SB800 IDE Controller vendor: ATI Technologies Inc physical id: 14.1 bus info: pci@0000:00:14.1 logical name: scsi5 version: 00 width: 32 bits clock: 66MHz capabilities: ide msi bus_master cap_list emulated configuration: driver=pata_atiixp latency=64 resources: irq:16 ioport:1f0(size=8) ioport:3f6 ioport:170(size=8) ioport:376 ioport:ff00(size=16) *-cdrom:0 description: DVD reader product: DVDROM DH16NS30 vendor: HL-DT-ST physical id: 0.0.0 bus info: scsi@5:0.0.0 logical name: /dev/cdrom1 logical name: /dev/dvd1 logical name: /dev/scd0 logical name: /dev/sr0 version: 1.00 capabilities: removable audio dvd configuration: ansiversion=5 status=nodisc *-cdrom:1 description: DVD-RAM writer product: DVDRAM GH22NS50 vendor: HL-DT-ST physical id: 0.1.0 bus info: scsi@5:0.1.0 logical name: /dev/cdrom logical name: /dev/cdrw logical name: /dev/dvd logical name: /dev/dvdrw logical name: /dev/scd1 logical name: /dev/sr1 version: TN02 capabilities: removable audio cd-r cd-rw dvd dvd-r dvd-ram configuration: ansiversion=5 status=nodisc *-multimedia description: Audio device product: SBx00 Azalia (Intel HDA) vendor: ATI Technologies Inc physical id: 14.2 bus info: pci@0000:00:14.2 version: 00 width: 64 bits clock: 33MHz capabilities: pm bus_master cap_list configuration: driver=HDA Intel latency=64 resources: irq:16 memory:f7ff4000-f7ff7fff *-isa description: ISA bridge product: SB700/SB800 LPC host controller vendor: ATI Technologies Inc physical id: 14.3 bus info: pci@0000:00:14.3 version: 00 width: 32 bits clock: 66MHz capabilities: isa bus_master configuration: latency=0 *-pci:4 description: PCI bridge product: SBx00 PCI to PCI Bridge vendor: ATI Technologies Inc physical id: 14.4 bus info: pci@0000:00:14.4 version: 00 width: 32 bits clock: 66MHz capabilities: pci subtractive_decode bus_master resources: ioport:e000(size=4096) memory:fbf00000-fbffffff *-network description: Ethernet interface product: 82541PI Gigabit Ethernet Controller vendor: Intel Corporation physical id: 5 bus info: pci@0000:05:05.0 logical name: eth1 version: 05 serial: 00:1b:21:56:f3:60 size: 100MB/s capacity: 1GB/s width: 32 bits clock: 66MHz capabilities: pm pcix bus_master cap_list rom ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=e1000 driverversion=7.3.21-k6-NAPI duplex=full firmware=N/A ip=192.168.1.2 latency=64 link=yes mingnt=255 multicast=yes port=twisted pair speed=100MB/s resources: irq:20 memory:fbfe0000-fbffffff memory:fbfc0000-fbfdffff ioport:ec00(size=64) memory:fbfa0000-fbfbffff *-usb:6 description: USB Controller product: SB700/SB800 USB OHCI2 Controller vendor: ATI Technologies Inc physical id: 14.5 bus info: pci@0000:00:14.5 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:18 memory:f7ffa000-f7ffafff *-pci:1 description: Host bridge product: Family 10h Processor HyperTransport Configuration vendor: Advanced Micro Devices [AMD] physical id: 101 bus info: pci@0000:00:18.0 version: 00 width: 32 bits clock: 33MHz *-pci:2 description: Host bridge product: Family 10h Processor Address Map vendor: Advanced Micro Devices [AMD] physical id: 102 bus info: pci@0000:00:18.1 version: 00 width: 32 bits clock: 33MHz *-pci:3 description: Host bridge product: Family 10h Processor DRAM Controller vendor: Advanced Micro Devices [AMD] physical id: 103 bus info: pci@0000:00:18.2 version: 00 width: 32 bits clock: 33MHz *-pci:4 description: Host bridge product: Family 10h Processor Miscellaneous Control vendor: Advanced Micro Devices [AMD] physical id: 104 bus info: pci@0000:00:18.3 version: 00 width: 32 bits clock: 33MHz configuration: driver=k10temp resources: irq:0 *-pci:5 description: Host bridge product: Family 10h Processor Link Control vendor: Advanced Micro Devices [AMD] physical id: 105 bus info: pci@0000:00:18.4 version: 00 width: 32 bits clock: 33MHz *-scsi physical id: 1 bus info: usb@2:3 logical name: scsi8 capabilities: emulated scsi-host configuration: driver=usb-storage *-disk:0 description: SCSI Disk physical id: 0.0.0 bus info: scsi@8:0.0.0 logical name: /dev/sdc *-disk:1 description: SCSI Disk physical id: 0.0.1 bus info: scsi@8:0.0.1 logical name: /dev/sdd *-disk:2 description: SCSI Disk physical id: 0.0.2 bus info: scsi@8:0.0.2 logical name: /dev/sde *-disk:3 description: SCSI Disk physical id: 0.0.3 bus info: scsi@8:0.0.3 logical name: /dev/sdf *-network DISABLED description: Ethernet interface physical id: 1 logical name: vboxnet0 serial: 0a:00:27:00:00:00 capabilities: ethernet physical configuration: broadcast=yes multicast=yes

    Read the article

  • No device file for partition on logical volume (Linux LVM)

    - by Brian
    I created a logical volume (scandata) containing a single ext3 partition. It is the only logical volume in its volume group (case4t). Said volume group is comprised by 3 physical volumes, which are three primary partitions on a single block device (/dev/sdb). When I created it, I could mount the partition via the block device /dev/mapper/case4t-scandatap1. Since last reboot the aforementioned block device file has disappeared. It may be of note -- I'm not sure -- that my superior (a college professor) had prompted this reboot by running sudo chmod -R [his name] /usr/bin, which obliterated all suid in its path, preventing the both of us from sudo-ing. That issue has been (temporarily) rectified via this operation. Now I'll cut the chatter and get started with the terminal dumps: $ sudo pvs; sudo vgs; sudo lvs Logging initialised at Sat Jan 8 11:42:34 2011 Set umask to 0077 Scanning for physical volume names PV VG Fmt Attr PSize PFree /dev/sdb1 case4t lvm2 a- 819.32G 0 /dev/sdb2 case4t lvm2 a- 866.40G 0 /dev/sdb3 case4t lvm2 a- 47.09G 0 Wiping internal VG cache Logging initialised at Sat Jan 8 11:42:34 2011 Set umask to 0077 Finding all volume groups Finding volume group "case4t" VG #PV #LV #SN Attr VSize VFree case4t 3 1 0 wz--n- 1.69T 0 Wiping internal VG cache Logging initialised at Sat Jan 8 11:42:34 2011 Set umask to 0077 Finding all logical volumes LV VG Attr LSize Origin Snap% Move Log Copy% Convert scandata case4t -wi-a- 1.69T Wiping internal VG cache $ sudo vgchange -a y Logging initialised at Sat Jan 8 11:43:14 2011 Set umask to 0077 Finding all volume groups Finding volume group "case4t" 1 logical volume(s) in volume group "case4t" already active 1 existing logical volume(s) in volume group "case4t" monitored Found volume group "case4t" Activated logical volumes in volume group "case4t" 1 logical volume(s) in volume group "case4t" now active Wiping internal VG cache $ ls /dev | grep case4t case4t $ ls /dev/mapper case4t-scandata control $ sudo fdisk -l /dev/case4t/scandata Disk /dev/case4t/scandata: 1860.5 GB, 1860584865792 bytes 255 heads, 63 sectors/track, 226203 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Disk identifier: 0x00049bf5 Device Boot Start End Blocks Id System /dev/case4t/scandata1 1 226203 1816975566 83 Linux $ sudo parted /dev/case4t/scandata print Model: Linux device-mapper (linear) (dm) Disk /dev/mapper/case4t-scandata: 1861GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 32.3kB 1861GB 1861GB primary ext3 $ sudo fdisk -l /dev/sdb Disk /dev/sdb: 1860.5 GB, 1860593254400 bytes 255 heads, 63 sectors/track, 226204 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Disk identifier: 0x00000081 Device Boot Start End Blocks Id System /dev/sdb1 1 106955 859116006 83 Linux /dev/sdb2 113103 226204 908491815 83 Linux /dev/sdb3 106956 113102 49375777+ 83 Linux Partition table entries are not in disk order $ sudo parted /dev/sdb print Model: DELL PERC 6/i (scsi) Disk /dev/sdb: 1861GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 32.3kB 880GB 880GB primary reiserfs 3 880GB 930GB 50.6GB primary 2 930GB 1861GB 930GB primary I find it a bit strange that partition one above is said to be reiserfs, or if it matters -- it was previously reiserfs, but LVM recognizes it as a PV. To reiterate, neither /dev/mapper/case4t-scandatap1 (which I had used previously) nor /dev/case4t/scandata1 (as printed by fdisk) exists. And /dev/case4t/scandata (no partition number) cannot be mounted: $sudo mount -t ext3 /dev/case4t/scandata /mnt/new mount: wrong fs type, bad option, bad superblock on /dev/mapper/case4t-scandata, missing codepage or helper program, or other error In some cases useful info is found in syslog - try dmesg | tail or so All I get on syslog is: [170059.538137] VFS: Can't find ext3 filesystem on dev dm-0. Thanks in advance for any help you can offer, Brian P.S. I am on Ubuntu GNU/Linux 2.6.28-11-server (Jaunty) (out of date, I know -- that's on the laundry list).

    Read the article

  • How to resize / enlarge / grow a non-LVM ext4 partition

    - by Mischa
    I have already searched the forums, but couldnt find a good suitable answer: I have an Ubuntu Server 10.04 as KVM Host and a guest system, that also runs 10.04. The host system uses LVM and there are three logical volumes, which are provided to the guest as virtual block devices - one for /, one for /home and one for swap. The guest had been partitioned without LVM. I have already enlarged the logical volume in the host system - the guest successfully sees the bigger virtual disk. However, this virtual disk contains one "good old" partition, which still has the old small size. The output of fdisk -l is me@produktion:/$ LC_ALL=en_US sudo fdisk -l Disk /dev/vda: 32.2 GB, 32212254720 bytes 255 heads, 63 sectors/track, 3916 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000c8ce7 Device Boot Start End Blocks Id System /dev/vda1 * 1 3917 31455232 83 Linux Disk /dev/vdb: 2147 MB, 2147483648 bytes 244 heads, 47 sectors/track, 365 cylinders Units = cylinders of 11468 * 512 = 5871616 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000f2bf7 Device Boot Start End Blocks Id System /dev/vdb1 1 366 2095104 82 Linux swap / Solaris Partition 1 has different physical/logical beginnings (non-Linux?): phys=(0, 32, 33) logical=(0, 43, 28) Partition 1 has different physical/logical endings: phys=(260, 243, 47) logical=(365, 136, 44) Disk /dev/vdc: 225.5 GB, 225485783040 bytes 255 heads, 63 sectors/track, 27413 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00027f25 Device Boot Start End Blocks Id System /dev/vdc1 1 9138 73398272 83 Linux The output of parted print all is Model: Virtio Block Device (virtblk) Disk /dev/vda: 32.2GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 32.2GB 32.2GB primary ext4 boot Model: Virtio Block Device (virtblk) Disk /dev/vdb: 2147MB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 2146MB 2145MB primary linux-swap(v1) Model: Virtio Block Device (virtblk) Disk /dev/vdc: 225GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 75.2GB 75.2GB primary ext4 What I want to achieve is to simply grow or resize the partition /dev/vdc1 so that it uses the whole space provided by the virtual block device /dev/vdc. The problem is, that when I try to do that with parted, it complains: (parted) select /dev/vdc Using /dev/vdc (parted) print Model: Virtio Block Device (virtblk) Disk /dev/vdc: 225GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 75.2GB 75.2GB primary ext4 (parted) resize 1 WARNING: you are attempting to use parted to operate on (resize) a file system. parted's file system manipulation code is not as robust as what you'll find in dedicated, file-system-specific packages like e2fsprogs. We recommend you use parted only to manipulate partition tables, whenever possible. Support for performing most operations on most types of file systems will be removed in an upcoming release. Start? [1049kB]? End? [75.2GB]? 224GB Error: File system has an incompatible feature enabled. Compatible features are has_journal, dir_index, filetype, sparse_super and large_file. Use tune2fs or debugfs to remove features. So what can I do? This is a headless production system. What is a safe way to grow this partition? I CAN unmount it, though - so this is not the problem.

    Read the article

< Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >