Search Results

Search found 1603 results on 65 pages for 'coordinate transformation'.

Page 34/65 | < Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >

  • standard c library for escaping a string.

    - by rampion
    Is there a standard C library function to escape C-strings? For example, if I had the C string: char example[] = "first line\nsecond line: \"inner quotes\""; And I wanted to print "first line\nsecond line: \"inner quotes\"" Is there a library function that will do that transformation for me? Rolling my own just seems a little silly. Bonus points if I can give it a length to escape (so it stops before or beyond the \0).

    Read the article

  • The date is always ignored

    - by TheLearner
    I cannot understand why the date is never set in the title - it's always ignored and if I swap around the date and the title, then the title is ignored! -(id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t { [super init]; coordinate = c; NSDate *today = [NSDate date]; [self setTitle:(@"%@%@", [today description], t)]; //[today release]; return self; }

    Read the article

  • Writing an ostream filter?

    - by shoosh
    I'd like to write a simple ostream which wraps an argument ostream and changes the stream in some way before passing it on to the argument stream. The transformation is something simple like changing a letter or erasing a word What would a simple class inheriting from ostream look like? What methods should I override?

    Read the article

  • Windows Server 2003 provide network mutexes

    - by arpal
    Hi! I want to coordinate use of common files on Windows Server 2003 from two Windows XP Workstations. Does Windows Server 2003 provide network mutexes for this purpose? Are there any libraries of C functions to access to them? I couldn’t find such functions in Visual C++ 2008.

    Read the article

  • Accessing Extension Objects

    - by LB
    I've added an object to the XsltArgumentList. I was wondering how I could access and display it in my transformation? xslarg.AddExtensionObject("someKey", "someValue"); However, when I transform, I wan't to be able to display "someValue". Any idea how? Thanks.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Oracle Data Mining a Star Schema: Telco Churn Case Study

    - by charlie.berger
    There is a complete and detailed Telco Churn case study "How to" Blog Series just posted by Ari Mozes, ODM Dev. Manager.  In it, Ari provides detailed guidance in how to leverage various strengths of Oracle Data Mining including the ability to: mine Star Schemas and join tables and views together to obtain a complete 360 degree view of a customer combine transactional data e.g. call record detail (CDR) data, etc. define complex data transformation, model build and model deploy analytical methodologies inside the Database  His blog is posted in a multi-part series.  Below are some opening excerpts for the first 3 blog entries.  This is an excellent resource for any novice to skilled data miner who wants to gain competitive advantage by mining their data inside the Oracle Database.  Many thanks Ari! Mining a Star Schema: Telco Churn Case Study (1 of 3) One of the strengths of Oracle Data Mining is the ability to mine star schemas with minimal effort.  Star schemas are commonly used in relational databases, and they often contain rich data with interesting patterns.  While dimension tables may contain interesting demographics, fact tables will often contain user behavior, such as phone usage or purchase patterns.  Both of these aspects - demographics and usage patterns - can provide insight into behavior.Churn is a critical problem in the telecommunications industry, and companies go to great lengths to reduce the churn of their customer base.  One case study1 describes a telecommunications scenario involving understanding, and identification of, churn, where the underlying data is present in a star schema.  That case study is a good example for demonstrating just how natural it is for Oracle Data Mining to analyze a star schema, so it will be used as the basis for this series of posts...... Mining a Star Schema: Telco Churn Case Study (2 of 3) This post will follow the transformation steps as described in the case study, but will use Oracle SQL as the means for preparing data.  Please see the previous post for background material, including links to the case study and to scripts that can be used to replicate the stages in these posts.1) Handling missing values for call data recordsThe CDR_T table records the number of phone minutes used by a customer per month and per call type (tariff).  For example, the table may contain one record corresponding to the number of peak (call type) minutes in January for a specific customer, and another record associated with international calls in March for the same customer.  This table is likely to be fairly dense (most type-month combinations for a given customer will be present) due to the coarse level of aggregation, but there may be some missing values.  Missing entries may occur for a number of reasons: the customer made no calls of a particular type in a particular month, the customer switched providers during the timeframe, or perhaps there is a data entry problem.  In the first situation, the correct interpretation of a missing entry would be to assume that the number of minutes for the type-month combination is zero.  In the other situations, it is not appropriate to assume zero, but rather derive some representative value to replace the missing entries.  The referenced case study takes the latter approach.  The data is segmented by customer and call type, and within a given customer-call type combination, an average number of minutes is computed and used as a replacement value.In SQL, we need to generate additional rows for the missing entries and populate those rows with appropriate values.  To generate the missing rows, Oracle's partition outer join feature is a perfect fit.  select cust_id, cdre.tariff, cdre.month, minsfrom cdr_t cdr partition by (cust_id) right outer join     (select distinct tariff, month from cdr_t) cdre     on (cdr.month = cdre.month and cdr.tariff = cdre.tariff);   ....... Mining a Star Schema: Telco Churn Case Study (3 of 3) Now that the "difficult" work is complete - preparing the data - we can move to building a predictive model to help identify and understand churn.The case study suggests that separate models be built for different customer segments (high, medium, low, and very low value customer groups).  To reduce the data to a single segment, a filter can be applied: create or replace view churn_data_high asselect * from churn_prep where value_band = 'HIGH'; It is simple to take a quick look at the predictive aspects of the data on a univariate basis.  While this does not capture the more complex multi-variate effects as would occur with the full-blown data mining algorithms, it can give a quick feel as to the predictive aspects of the data as well as validate the data preparation steps.  Oracle Data Mining includes a predictive analytics package which enables quick analysis. begin  dbms_predictive_analytics.explain(   'churn_data_high','churn_m6','expl_churn_tab'); end; /select * from expl_churn_tab where rank <= 5 order by rank; ATTRIBUTE_NAME       ATTRIBUTE_SUBNAME EXPLANATORY_VALUE RANK-------------------- ----------------- ----------------- ----------LOS_BAND                                      .069167052          1MINS_PER_TARIFF_MON  PEAK-5                   .034881648          2REV_PER_MON          REV-5                    .034527798          3DROPPED_CALLS                                 .028110322          4MINS_PER_TARIFF_MON  PEAK-4                   .024698149          5From the above results, it is clear that some predictors do contain information to help identify churn (explanatory value > 0).  The strongest uni-variate predictor of churn appears to be the customer's (binned) length of service.  The second strongest churn indicator appears to be the number of peak minutes used in the most recent month.  The subname column contains the interior piece of the DM_NESTED_NUMERICALS column described in the previous post.  By using the object relational approach, many related predictors are included within a single top-level column. .....   NOTE:  These are just EXCERPTS.  Click here to start reading the Oracle Data Mining a Star Schema: Telco Churn Case Study from the beginning.    

    Read the article

  • Complex type support in process flow &ndash; XMLTYPE

    - by shawn
        Before OWB 11.2 release, there are only 5 simple data types supported in process flow: DATE, BOOLEAN, INTEGER, FLOAT and STRING. A new complex data type – XMLTYPE is added in 11.2, in order to support complex data being passed between the process flow activities. In this article we will give a simple example to illustrate the usage of the new type and some related editors.     Suppose there is a bookstore that uses XML format orders as shown below (we use the simplest form for the illustration purpose), then we can create a process flow to handle the order, take the order as the input, then extract necessary information, and generate a confirmation email to the customer automatically. <order id=’0001’>     <customer>         <name>Tom</name>         <email>[email protected]</email>     </customer>     <book id=’Java_001’>         <quantity>3</quantity>     </book> </order>     Considering a simple user case here: we use an input parameter/variable with XMLTYPE to hold the XML content of the order; then we can use an Assign activity to retrieve the email info from the order; after that, we can create an email activity to send the email (Other activities might be added in practical case, but will not be described here). 1) Set XML content value     For testing purpose, we will create a variable to hold the sample order, and then this will be used among the process flow activities. When the variable is of XMLTYPE and the “Literal” value is set the true, the advance editor will be enabled.     Click the “Advance Editor” shown as above, a simple xml editor will popup. The editor has basic features like syntax highlight and check as shown below:     We can also do the basic validation or validation against schema with the editor by selecting the normalized schema. With this, it will be easier to provide the value for XMLTYPE variables. 2) Extract information from XML content     After setting the value, we need to extract the email information with the Assign activity. In process flow, an enhanced expression builder is used to help users construct the XPath for extracting values from XML content. When the variable’s literal value is set the false, the advance editor is enabled.     Click the button, the advance editor will popup, as shown below:     The editor is based on the expression builder (which is often used in mapping etc), an XPath lib panel is appended which provides some help information on how to write the XPath. The expression used here is: “XMLTYPE.EXTRACT(XML_ORDER,'/order/customer/email/text()').getStringVal()”, which uses ‘/order/customer/email/text()’ as the XPath to extract the email info from the XML document.     A variable called “EMAIL_ADDR” is created with String data type to hold the value extracted.     Then we bind the “VARIABLE” parameter of Assign activity to “EMAIL_ADDR” variable, which means the value of the “EMAIL_ADDR” activity will be set to the result of the “VALUE” parameter of Assign activity. 3) Use the extracted information in Email activity     We bind the “TO_ADDRESS” parameter of the email activity to the “EMAIL_ADDR” variable created in above step.     We can also extract other information from the xml order directly through the expression, for example, we can set the “MESSAGE_BODY” with value “'Dear '||XMLTYPE.EXTRACT(XML_ORDER,'/order/customer/name/text()').getStringVal()||chr(13)||chr(10)||'   You have ordered '||XMLTYPE.EXTRACT(XML_ORDER,'/order/book/quantity/text()').getStringVal()||' '||XMLTYPE.EXTRACT(XML_ORDER,'/order/book/@id').getStringVal()”. This expression will extract the customer name, the quantity and the book id from the order to compose the message body.     To make the email activity work, we need provide some other necessary information, Such as “SMTP_SERVER” (which is the SMTP server used to send the emails, like “mail.bookstore.com”. The default PORT number is set to 25. You need to change the value accordingly), “FROM_ADDRESS” and “SUBJECT”. Then the process flow is ready to go.     After deploying the process flow package, we can simply run the process flow to check if the result is as expected (An email will be sent to the specified email address with proper subject and message body).     Note: In oracle 11g, there is an enhanced security feature - ACL (Access Control List), which restrict the network access within db, so we need to edit the list to allow UTL_SMTP work if you are using oracle 11g. Refer to chapter “Access Control Lists for UTL_TCP/HTTP/SMTP” and “Managing Fine-Grained Access to External Network Services” for more details.       In previous releases, XMLTYPE already exists in other OWB objects, like mapping/transformation etc. When the mapping/transformation is dragged into a process flow, the parameters with XMLTYPE are mapped to STRING. Now with the XMLTYPE support in process flow, the XMLTYPE will map to XMLTYPE in a more natural way, and we can leverage the new data type for the design.

    Read the article

  • Why Fusion Middleware matters to Oracle Applications and Fusion Applications customers?

    - by Harish Gaur
    Did you miss this general session on Monday morning presented by Amit Zavery, VP of Oracle Fusion Middleware Product Management? There will be a recording made available shortly and in the meanwhile, here is a recap. Amit presented 5 strategies customers can leverage today to extend their applications. Figure 1: 5 Oracle Fusion Middleware strategies to extend Oracle Applications & Oracle Fusion Apps 1. Engage Everyone – Provide intuitive and social experience for application users using Oracle WebCenter 2. Extend Enterprise – Extend Oracle Applications to mobile devices using Oracle ADF Mobile 3. Orchestrate Processes – Automate key organization processes across on-premise & cloud applications using Oracle BPM Suite & Oracle SOA Suite 4. Secure the core – Provide single sign-on and self-service provisioning across multiple apps using Oracle Identity Management 5. Optimize Performance – Leverage Exalogic stack to consolidate multiple instance and improve performance of Oracle Applications Session included 3 demonstrations to illustrate these strategies. 1. First demo highlighted significance of mobile applications for unlocking existing investment in Applications such as EBS. Using a native iPhone application interacting with e-Business Suite, demo showed how expense approval can be mobile enabled with enhanced visibility using BI dashboards. 2. Second demo showed how you can extend a banking process in Siebel and Oracle Policy Automation with Oracle BPM Suite.Process starts in Siebel with a customer requesting a loan, and then jumps to OPA for loan recommendations and decision making and loan processing with approvals in handled in BPM Suite. Once approvals are completed Siebel is updated to complete the process. 3. Final demo showcased FMW components inside Fusion Applications, specifically WebCenter. Boeing, Underwriter Laboratories and Electronic Arts joined this quest and discussed 3 different approaches of leveraging Fusion Middleware stack to maximize their investment in Oracle Applications and/or Fusion Applications technology. Let’s briefly review what these customers shared during the session: 1. Extend Fusion Applications We know that Oracle Fusion Middleware is the underlying technology infrastructure for Oracle Fusion Applications. Architecturally, Oracle Fusion Apps leverages several components of Oracle Fusion Middleware from Oracle WebCenter for rich collaborative interface, Oracle SOA Suite & Oracle BPM Suite for orchestrating key underlying processes to Oracle BIEE for dash boarding and analytics. Boeing talked about how they are using Oracle BPM Suite 11g, a key component of Oracle Fusion Middleware with Oracle Fusion Apps to transform their supply chain. Tim Murnin, Director of Supply Chain talked about Boeing’s 5 year supply chain transformation journey. Boeing’s Integrated and Information Management division began with automation of critical RFQ process using Oracle BPM Suite. This 1st phase resulted in 38% reduction in labor costs for RFP. As a next step in this effort, Boeing is now creating a platform to enable electronic Order Management. Fusion Apps are playing a significant role in this phase. Boeing has gone live with Oracle Fusion Product Hub and efforts are underway with Oracle Fusion Distributed Order Orchestration (DOO). So, where does Oracle BPM Suite 11g fit in this equation? Let me explain. Business processes within Fusion Apps are designed using 2 standards: Business Process Execution Language (BPEL) and Business Process Modeling Notation (BPMN). These processes can be easily configured using declarative set of tools. Boeing leverages Oracle BPM Suite 11g (which supports BPMN 2.0) and Oracle SOA Suite (which supports BPEL) to “extend” these applications. Traditionally, customizations are done within an app using native technologies. But, instead of making process changes within Fusion Apps, Boeing has taken an approach of building “extensions” layer on top of the application. Fig 2: Boeing’s use of Oracle BPM Suite to orchestrate key supply chain processes across Fusion Apps 2. Maximize Oracle Applications investment Fusion Middleware appeals not only to Fusion Apps customers, but is also leveraged by Oracle E-Business Suite, PeopleSoft, Siebel and JD Edwards customers significantly. Using Oracle BPM Suite and Oracle SOA Suite is the recommended extension strategy for Oracle Fusion Apps and Oracle Applications Unlimited customers. Electronic Arts, E-Business Suite customer, spoke about their strategy to transform their order-to-cash process using Oracle SOA Suite, Oracle Foundation Packs and Oracle BAM. Udesh Naicker, Sr Director of IT at Elecronic Arts (EA), discussed how growth of social and digital gaming had started to put tremendous pressure on EA’s existing IT infrastructure. He discussed the challenge with millions of micro-transactions coming from several sources – Microsoft Xbox, Paypal, several service providers. EA found Order-2-Cash processes stretched to their limits. They lacked visibility into these transactions across the entire value chain. EA began by consolidating their E-Business Suite R11 instances into single E-Business Suite R12. EA needed to cater to a variety of service requirements, connectivity methods, file formats, and information latency. Their integration strategy was tactical, i.e., using file uploads, TIBCO, SQL scripts. After consolidating E-Business suite, EA standardized their integration approach with Oracle SOA Suite and Oracle AIA Foundation Pack. Oracle SOA Suite is the platform used to extend E-Business Suite R12 and standardize 60+ interfaces across several heterogeneous systems including PeopleSoft, Demantra, SF.com, Workday, and Managed EDI services spanning on-premise, hosted and cloud applications. EA believes that Oracle SOA Suite 11g based extension strategy has helped significantly in the followings ways: - It helped them keep customizations out of E-Business Suite, thereby keeping EBS R12 vanilla and upgrade safe - Developers are now proficient in technology which is also leveraged by Fusion Apps. This has helped them prepare for adoption of Fusion Apps in the future Fig 3: Using Oracle SOA Suite & Oracle e-Business Suite, Electronic Arts built new platform for order processing 3. Consolidate apps and improve scalability Exalogic is an optimal platform for customers to consolidate their application deployments and enhance performance. Underwriter Laboratories talked about their strategy to run their mission critical applications including e-Business Suite on Exalogic. Christian Anschuetz, CIO of Underwriter Laboratories (UL) shared how UL is on a growth path - $1B to $2.5B in 5 years- and planning a significant business transformation from a not-for-profit to a for-profit business. To support this growth, UL is planning to simplify its IT environment and the deployment complexity associated with ERP applications and technology it runs on. Their current applications were deployed on variety of hardware platforms and lacked comprehensive disaster recovery architecture. UL embarked on a mission to deploy E-Business Suite on Exalogic. UL’s solution is unique because it is one of the first to deploy a large number of Oracle applications and related Fusion Middleware technologies (SOA, BI, Analytical Applications AIA Foundation Pack and AIA EBS to Siebel UCM prebuilt integration) on the combined Exalogic and Exadata environment. UL is planning to move to a virtualized architecture toward the end of 2012 to securely host external facing applications like iStore Fig 4: Underwrites Labs deployed e-Business Suite on Exalogic to achieve performance gains Key takeaways are: - Fusion Middleware platform is certified with major Oracle Applications Unlimited offerings. Fusion Middleware is the underlying technological infrastructure for Fusion Apps - Customers choose Oracle Fusion Middleware to extend their applications (Apps Unlimited or Fusion Apps) to keep applications upgrade safe and prepare for Fusion Apps - Exalogic is an optimum platform to consolidate applications deployments and enhance performance

    Read the article

  • Why Fusion Middleware matters to Oracle Applications and Fusion Applications customers?

    - by Harish Gaur
    Did you miss this general session on Monday morning presented by Amit Zavery, VP of Oracle Fusion Middleware Product Management? There will be a recording made available shortly and in the meanwhile, here is a recap. Amit presented 5 strategies customers can leverage today to extend their applications. Figure 1: 5 Oracle Fusion Middleware strategies to extend Oracle Applications & Oracle Fusion Apps 1. Engage Everyone – Provide intuitive and social experience for application users using Oracle WebCenter 2. Extend Enterprise – Extend Oracle Applications to mobile devices using Oracle ADF Mobile 3. Orchestrate Processes – Automate key organization processes across on-premise & cloud applications using Oracle BPM Suite & Oracle SOA Suite 4. Secure the core – Provide single sign-on and self-service provisioning across multiple apps using Oracle Identity Management 5. Optimize Performance – Leverage Exalogic stack to consolidate multiple instance and improve performance of Oracle Applications Session included 3 demonstrations to illustrate these strategies. 1. First demo highlighted significance of mobile applications for unlocking existing investment in Applications such as EBS. Using a native iPhone application interacting with e-Business Suite, demo showed how expense approval can be mobile enabled with enhanced visibility using BI dashboards. 2. Second demo showed how you can extend a banking process in Siebel and Oracle Policy Automation with Oracle BPM Suite.Process starts in Siebel with a customer requesting a loan, and then jumps to OPA for loan recommendations and decision making and loan processing with approvals in handled in BPM Suite. Once approvals are completed Siebel is updated to complete the process. 3. Final demo showcased FMW components inside Fusion Applications, specifically WebCenter. Boeing, Underwriter Laboratories and Electronic Arts joined this quest and discussed 3 different approaches of leveraging Fusion Middleware stack to maximize their investment in Oracle Applications and/or Fusion Applications technology. Let’s briefly review what these customers shared during the session: 1. Extend Fusion Applications We know that Oracle Fusion Middleware is the underlying technology infrastructure for Oracle Fusion Applications. Architecturally, Oracle Fusion Apps leverages several components of Oracle Fusion Middleware from Oracle WebCenter for rich collaborative interface, Oracle SOA Suite & Oracle BPM Suite for orchestrating key underlying processes to Oracle BIEE for dash boarding and analytics. Boeing talked about how they are using Oracle BPM Suite 11g, a key component of Oracle Fusion Middleware with Oracle Fusion Apps to transform their supply chain. Tim Murnin, Director of Supply Chain talked about Boeing’s 5 year supply chain transformation journey. Boeing’s Integrated and Information Management division began with automation of critical RFQ process using Oracle BPM Suite. This 1st phase resulted in 38% reduction in labor costs for RFP. As a next step in this effort, Boeing is now creating a platform to enable electronic Order Management. Fusion Apps are playing a significant role in this phase. Boeing has gone live with Oracle Fusion Product Hub and efforts are underway with Oracle Fusion Distributed Order Orchestration (DOO). So, where does Oracle BPM Suite 11g fit in this equation? Let me explain. Business processes within Fusion Apps are designed using 2 standards: Business Process Execution Language (BPEL) and Business Process Modeling Notation (BPMN). These processes can be easily configured using declarative set of tools. Boeing leverages Oracle BPM Suite 11g (which supports BPMN 2.0) and Oracle SOA Suite (which supports BPEL) to “extend” these applications. Traditionally, customizations are done within an app using native technologies. But, instead of making process changes within Fusion Apps, Boeing has taken an approach of building “extensions” layer on top of the application. Fig 2: Boeing’s use of Oracle BPM Suite to orchestrate key supply chain processes across Fusion Apps 2. Maximize Oracle Applications investment Fusion Middleware appeals not only to Fusion Apps customers, but is also leveraged by Oracle E-Business Suite, PeopleSoft, Siebel and JD Edwards customers significantly. Using Oracle BPM Suite and Oracle SOA Suite is the recommended extension strategy for Oracle Fusion Apps and Oracle Applications Unlimited customers. Electronic Arts, E-Business Suite customer, spoke about their strategy to transform their order-to-cash process using Oracle SOA Suite, Oracle Foundation Packs and Oracle BAM. Udesh Naicker, Sr Director of IT at Elecronic Arts (EA), discussed how growth of social and digital gaming had started to put tremendous pressure on EA’s existing IT infrastructure. He discussed the challenge with millions of micro-transactions coming from several sources – Microsoft Xbox, Paypal, several service providers. EA found Order-2-Cash processes stretched to their limits. They lacked visibility into these transactions across the entire value chain. EA began by consolidating their E-Business Suite R11 instances into single E-Business Suite R12. EA needed to cater to a variety of service requirements, connectivity methods, file formats, and information latency. Their integration strategy was tactical, i.e., using file uploads, TIBCO, SQL scripts. After consolidating E-Business suite, EA standardized their integration approach with Oracle SOA Suite and Oracle AIA Foundation Pack. Oracle SOA Suite is the platform used to extend E-Business Suite R12 and standardize 60+ interfaces across several heterogeneous systems including PeopleSoft, Demantra, SF.com, Workday, and Managed EDI services spanning on-premise, hosted and cloud applications. EA believes that Oracle SOA Suite 11g based extension strategy has helped significantly in the followings ways: - It helped them keep customizations out of E-Business Suite, thereby keeping EBS R12 vanilla and upgrade safe - Developers are now proficient in technology which is also leveraged by Fusion Apps. This has helped them prepare for adoption of Fusion Apps in the future Fig 3: Using Oracle SOA Suite & Oracle e-Business Suite, Electronic Arts built new platform for order processing 3. Consolidate apps and improve scalability Exalogic is an optimal platform for customers to consolidate their application deployments and enhance performance. Underwriter Laboratories talked about their strategy to run their mission critical applications including e-Business Suite on Exalogic. Christian Anschuetz, CIO of Underwriter Laboratories (UL) shared how UL is on a growth path - $1B to $2.5B in 5 years- and planning a significant business transformation from a not-for-profit to a for-profit business. To support this growth, UL is planning to simplify its IT environment and the deployment complexity associated with ERP applications and technology it runs on. Their current applications were deployed on variety of hardware platforms and lacked comprehensive disaster recovery architecture. UL embarked on a mission to deploy E-Business Suite on Exalogic. UL’s solution is unique because it is one of the first to deploy a large number of Oracle applications and related Fusion Middleware technologies (SOA, BI, Analytical Applications AIA Foundation Pack and AIA EBS to Siebel UCM prebuilt integration) on the combined Exalogic and Exadata environment. UL is planning to move to a virtualized architecture toward the end of 2012 to securely host external facing applications like iStore Fig 4: Underwrites Labs deployed e-Business Suite on Exalogic to achieve performance gains Key takeaways are: - Fusion Middleware platform is certified with major Oracle Applications Unlimited offerings. Fusion Middleware is the underlying technological infrastructure for Fusion Apps - Customers choose Oracle Fusion Middleware to extend their applications (Apps Unlimited or Fusion Apps) to keep applications upgrade safe and prepare for Fusion Apps - Exalogic is an optimum platform to consolidate applications deployments and enhance performance TAGS: Fusion Apps, Exalogic, BPM Suite, SOA Suite, e-Business Suite Integration

    Read the article

  • Deferred rendering with VSM - Scaling light depth loses moments

    - by user1423893
    I'm calculating my shadow term using a VSM method. This works correctly when using forward rendered lights but fails with deferred lights. // Shadow term (1 = no shadow) float shadow = 1; // [Light Space -> Shadow Map Space] // Transform the surface into light space and project // NB: Could be done in the vertex shader, but doing it here keeps the // "light shader" abstraction and doesn't limit the number of shadowed lights float4x4 LightViewProjection = mul(LightView, LightProjection); float4 surf_tex = mul(position, LightViewProjection); // Re-homogenize // 'w' component is not used in later calculations so no need to homogenize (it will equal '1' if homogenized) surf_tex.xyz /= surf_tex.w; // Rescale viewport to be [0,1] (texture coordinate system) float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = -surf_tex.y * 0.5f + 0.5f; // Half texel offset //shadow_tex += (0.5 / 512); // Scaled distance to light (instead of 'surf_tex.z') float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; //float rescaled_dist_to_light = surf_tex.z; // [Variance Shadow Map Depth Calculation] // No filtering float2 moments = tex2D(ShadowSampler, shadow_tex).xy; // Flip the moments values to bring them back to their original values moments.x = 1.0 - moments.x; moments.y = 1.0 - moments.y; // Compute variance float E_x2 = moments.y; float Ex_2 = moments.x * moments.x; float variance = E_x2 - Ex_2; variance = max(variance, Bias.y); // Surface is fully lit if the current pixel is before the light occluder (lit_factor == 1) // One-tailed inequality valid if float lit_factor = (rescaled_dist_to_light <= moments.x - Bias.x); // Compute probabilistic upper bound (mean distance) float m_d = moments.x - rescaled_dist_to_light; // Chebychev's inequality float p = variance / (variance + m_d * m_d); p = ReduceLightBleeding(p, Bias.z); // Adjust the light color based on the shadow attenuation shadow *= max(lit_factor, p); This is what I know for certain so far: The lighting is correct if I do not try and calculate the shadow term. (No shadows) The shadow term is correct when calculated using forward rendered lighting. (VSM works with forward rendered lights) With the current rescaled light distance (lightAttenuation.y is the far plane value): float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; The light is correct and the shadow appears to be zoomed in and misses the blurring: When I do not rescale the light and use the homogenized 'surf_tex': float rescaled_dist_to_light = surf_tex.z; the shadows are blurred correctly but the lighting is incorrect and the cube model is no longer lit Why is scaling by the far plane value (LightAttenuation.y) zooming in too far? The only other factor involved is my world pixel position, which is calculated as follows: // [Position] float4 position; // [Screen Position] position.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above position.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component position.z = 1.0 - position.z; position.w = 1.0; // 1.0 = position.w / position.w // [World Position] position = mul(position, CameraViewProjectionInverse); // Re-homogenize position (xyz AND w, otherwise shadows will bend when camera is close) position.xyz /= position.w; position.w = 1.0; Using the inverse matrix of the camera's view x projection matrix does work for lighting but maybe it is incorrect for shadow calculation? EDIT: Light calculations for shadow including 'dist_to_light' // Work out the light position and direction in world space float3 light_position = float3(LightViewInverse._41, LightViewInverse._42, LightViewInverse._43); // Direction might need to be negated float3 light_direction = float3(-LightViewInverse._31, -LightViewInverse._32, -LightViewInverse._33); // Unnormalized light vector float3 dir_to_light = light_position - position; // Direction from vertex float dist_to_light = length(dir_to_light); // Normalise 'toLight' vector for lighting calculations dir_to_light = normalize(dir_to_light); EDIT2: These are the calculations for the moments (depth) //============================================= //---[Vertex Shaders]-------------------------- //============================================= DepthVSOutput depth_VS( float4 Position : POSITION, uniform float4x4 shadow_view, uniform float4x4 shadow_view_projection) { DepthVSOutput output = (DepthVSOutput)0; // First transform position into world space float4 position_world = mul(Position, World); output.position_screen = mul(position_world, shadow_view_projection); output.light_vec = mul(position_world, shadow_view).xyz; return output; } //============================================= //---[Pixel Shaders]--------------------------- //============================================= DepthPSOutput depth_PS(DepthVSOutput input) { DepthPSOutput output = (DepthPSOutput)0; // Work out the depth of this fragment from the light, normalized to [0, 1] float2 depth; depth.x = length(input.light_vec) / FarPlane; depth.y = depth.x * depth.x; // Flip depth values to avoid floating point inaccuracies depth.x = 1.0f - depth.x; depth.y = 1.0f - depth.y; output.depth = depth.xyxy; return output; } EDIT 3: I have tried the folloiwng: float4 pp; pp.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above pp.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component pp.z = 1.0 - pp.z; pp.w = 1.0; // 1.0 = position.w / position.w // Determine the depth of the pixel with respect to the light float4x4 LightViewProjection = mul(LightView, LightProjection); float4x4 matViewToLightViewProj = mul(CameraViewProjectionInverse, LightViewProjection); float4 vPositionLightCS = mul(pp, matViewToLightViewProj); float fLightDepth = vPositionLightCS.z / vPositionLightCS.w; // Transform from light space to shadow map texture space. float2 vShadowTexCoord = 0.5 * vPositionLightCS.xy / vPositionLightCS.w + float2(0.5f, 0.5f); vShadowTexCoord.y = 1.0f - vShadowTexCoord.y; // Offset the coordinate by half a texel so we sample it correctly vShadowTexCoord += (0.5f / 512); //g_vShadowMapSize This suffers the same problem as the second picture. I have tried storing the depth based on the view x projection matrix: output.position_screen = mul(position_world, shadow_view_projection); //output.light_vec = mul(position_world, shadow_view); output.light_vec = output.position_screen; depth.x = input.light_vec.z / input.light_vec.w; This gives a shadow that has lots surface acne due to horrible floating point precision errors. Everything is lit correctly though. EDIT 4: Found an OpenGL based tutorial here I have followed it to the letter and it would seem that the uv coordinates for looking up the shadow map are incorrect. The source uses a scaled matrix to get the uv coordinates for the shadow map sampler /// <summary> /// The scale matrix is used to push the projected vertex into the 0.0 - 1.0 region. /// Similar in role to a * 0.5 + 0.5, where -1.0 < a < 1.0. /// <summary> const float4x4 ScaleMatrix = float4x4 ( 0.5, 0.0, 0.0, 0.0, 0.0, -0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); I had to negate the 0.5 for the y scaling (M22) in order for it to work but the shadowing is still not correct. Is this really the correct way to scale? float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = surf_tex.y * -0.5f + 0.5f; The depth calculations are exactly the same as the source code yet they still do not work, which makes me believe something about the uv calculation above is incorrect.

    Read the article

  • Big Data Matters with ODI12c

    - by Madhu Nair
    contributed by Mike Eisterer On October 17th, 2013, Oracle announced the release of Oracle Data Integrator 12c (ODI12c).  This release signifies improvements to Oracle’s Data Integration portfolio of solutions, particularly Big Data integration. Why Big Data = Big Business Organizations are gaining greater insights and actionability through increased storage, processing and analytical benefits offered by Big Data solutions.  New technologies and frameworks like HDFS, NoSQL, Hive and MapReduce support these benefits now. As further data is collected, analytical requirements increase and the complexity of managing transformations and aggregations of data compounds and organizations are in need for scalable Data Integration solutions. ODI12c provides enterprise solutions for the movement, translation and transformation of information and data heterogeneously and in Big Data Environments through: The ability for existing ODI and SQL developers to leverage new Big Data technologies. A metadata focused approach for cataloging, defining and reusing Big Data technologies, mappings and process executions. Integration between many heterogeneous environments and technologies such as HDFS and Hive. Generation of Hive Query Language. Working with Big Data using Knowledge Modules  ODI12c provides developers with the ability to define sources and targets and visually develop mappings to effect the movement and transformation of data.  As the mappings are created, ODI12c leverages a rich library of prebuilt integrations, known as Knowledge Modules (KMs).  These KMs are contextual to the technologies and platforms to be integrated.  Steps and actions needed to manage the data integration are pre-built and configured within the KMs.  The Oracle Data Integrator Application Adapter for Hadoop provides a series of KMs, specifically designed to integrate with Big Data Technologies.  The Big Data KMs include: Check Knowledge Module Reverse Engineer Knowledge Module Hive Transform Knowledge Module Hive Control Append Knowledge Module File to Hive (LOAD DATA) Knowledge Module File-Hive to Oracle (OLH-OSCH) Knowledge Module  Nothing to beat an Example: To demonstrate the use of the KMs which are part of the ODI Application Adapter for Hadoop, a mapping may be defined to move data between files and Hive targets.  The mapping is defined by dragging the source and target into the mapping, performing the attribute (column) mapping (see Figure 1) and then selecting the KM which will govern the process.  In this mapping example, movie data is being moved from an HDFS source into a Hive table.  Some of the attributes, such as “CUSTID to custid”, have been mapped over. Figure 1  Defining the Mapping Before the proper KM can be assigned to define the technology for the mapping, it needs to be added to the ODI project.  The Big Data KMs have been made available to the project through the KM import process.   Generally, this is done prior to defining the mapping. Figure 2  Importing the Big Data Knowledge Modules Following the import, the KMs are available in the Designer Navigator. v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US ZH-TW X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Figure 3  The Project View in Designer, Showing Installed IKMs Once the KM is imported, it may be assigned to the mapping target.  This is done by selecting the Physical View of the mapping and examining the Properties of the Target.  In this case MOVIAPP_LOG_STAGE is the target of our mapping. Figure 4  Physical View of the Mapping and Assigning the Big Data Knowledge Module to the Target Alternative KMs may have been selected as well, providing flexibility and abstracting the logical mapping from the physical implementation.  Our mapping may be applied to other technologies as well. The mapping is now complete and is ready to run.  We will see more in a future blog about running a mapping to load Hive. To complete the quick ODI for Big Data Overview, let us take a closer look at what the IKM File to Hive is doing for us.  ODI provides differentiated capabilities by defining the process and steps which normally would have to be manually developed, tested and implemented into the KM.  As shown in figure 5, the KM is preparing the Hive session, managing the Hive tables, performing the initial load from HDFS and then performing the insert into Hive.  HDFS and Hive options are selected graphically, as shown in the properties in Figure 4. Figure 5  Process and Steps Managed by the KM What’s Next Big Data being the shape shifting business challenge it is is fast evolving into the deciding factor between market leaders and others. Now that an introduction to ODI and Big Data has been provided, look for additional blogs coming soon using the Knowledge Modules which make up the Oracle Data Integrator Application Adapter for Hadoop: Importing Big Data Metadata into ODI, Testing Data Stores and Loading Hive Targets Generating Transformations using Hive Query language Loading Oracle from Hadoop Sources For more information now, please visit the Oracle Data Integrator Application Adapter for Hadoop web site, http://www.oracle.com/us/products/middleware/data-integration/hadoop/overview/index.html Do not forget to tune in to the ODI12c Executive Launch webcast on the 12th to hear more about ODI12c and GG12c. Normal 0 false false false EN-US ZH-TW X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";}

    Read the article

  • The Top 5 MDM Sessions You Can’t Miss at OpenWorld

    - by Mala Narasimharajan
    Sessions, Demo pods, Hands On Labs, and much more – but where should you focus?  MDM has some excellent sessions planned for OOW –  here is a top 5 list to identify the sessions you just can’t afford to miss. October 3, 2012  1:15 PM - 2:15 PM    Moscone West - 3002/3004     What's There to Know About Oracle’s Master Data Management Portfolio and Roadmap? Hear about product strategy our vision for the future and how Oracle MDM is positioned to excel in helping organizations make the most of their customer,      partner, supplier or product data. October 3, 2012  5:00 PM - 6:00 PM   Westin San Francisco – Metropolitan I Oracle Customer MDM Applications: Implementation Best Practices, Data Governance, and ROI       Customers successes provide solid examples of technology at work and how organizations derive value from it. Attend this session and hear from our customers on how they built a business case, established governance and are realizing the benefits of Oracle Customer Hub. October 2, 2012  10:15 AM - 11:15 AM   Moscone West – 3001 Mastering Product Data: Strategies for Effective Product Information Management                                                                      Product data is vital for any enterprise in being able to provide a consolidated representation of products to their partners, customers and suppliers.  Hear how our customers leverage product information to be a leader in their respective area and how Oracle is critical to achieving this. October 2, 2012  11:45 AM - 12:45 PM   Moscone West – 2022 Enabling Trusted Enterprise Product Data with Oracle Fusion Product Hub                                                                                       Learn how Oracle Fusion Product Hub is paving the way for providing organizations with trusted product data as well as helping organizations make the most of the information and infrastructure they already possess. October 1, 2012  4:45 PM – 5:45 PM   InterContinental - Ballroom A Oracle Hyperion Data Relationship Management: Enabling Enterprise Transformation                                                                         Hear how Data Relationship Management drives enterprise transformation and why any organization embarking on an master data management initiative needs it, plus hear from our customers best practices as well as lessons learned.  Check out the Master Data Management Focus On document for all our sessions at OpenWorld 2012. 

    Read the article

  • Pixel Shader Giving Black output

    - by Yashwinder
    I am coding in C# using Windows Forms and the SlimDX API to show the effect of a pixel shader. When I am setting the pixel shader, I am getting a black output screen but if I am not using the pixel shader then I am getting my image rendered on the screen. I have the following C# code using System; using System.Collections.Generic; using System.Linq; using System.Windows.Forms; using System.Runtime.InteropServices; using SlimDX.Direct3D9; using SlimDX; using SlimDX.Windows; using System.Drawing; using System.Threading; namespace WindowsFormsApplication1 { // Vertex structure. [StructLayout(LayoutKind.Sequential)] struct Vertex { public Vector3 Position; public float Tu; public float Tv; public static int SizeBytes { get { return Marshal.SizeOf(typeof(Vertex)); } } public static VertexFormat Format { get { return VertexFormat.Position | VertexFormat.Texture1; } } } static class Program { public static Device D3DDevice; // Direct3D device. public static VertexBuffer Vertices; // Vertex buffer object used to hold vertices. public static Texture Image; // Texture object to hold the image loaded from a file. public static int time; // Used for rotation caculations. public static float angle; // Angle of rottaion. public static Form1 Window =new Form1(); public static string filepath; static VertexShader vertexShader = null; static ConstantTable constantTable = null; static ImageInformation info; [STAThread] static void Main() { filepath = "C:\\Users\\Public\\Pictures\\Sample Pictures\\Garden.jpg"; info = new ImageInformation(); info = ImageInformation.FromFile(filepath); PresentParameters presentParams = new PresentParameters(); // Below are the required bare mininum, needed to initialize the D3D device. presentParams.BackBufferHeight = info.Height; // BackBufferHeight, set to the Window's height. presentParams.BackBufferWidth = info.Width+200; // BackBufferWidth, set to the Window's width. presentParams.Windowed =true; presentParams.DeviceWindowHandle = Window.panel2 .Handle; // DeviceWindowHandle, set to the Window's handle. // Create the device. D3DDevice = new Device(new Direct3D (), 0, DeviceType.Hardware, Window.Handle, CreateFlags.HardwareVertexProcessing, presentParams); // Create the vertex buffer and fill with the triangle vertices. (Non-indexed) // Remember 3 vetices for a triangle, 2 tris per quad = 6. Vertices = new VertexBuffer(D3DDevice, 6 * Vertex.SizeBytes, Usage.WriteOnly, VertexFormat.None, Pool.Managed); DataStream stream = Vertices.Lock(0, 0, LockFlags.None); stream.WriteRange(BuildVertexData()); Vertices.Unlock(); // Create the texture. Image = Texture.FromFile(D3DDevice,filepath ); // Turn off culling, so we see the front and back of the triangle D3DDevice.SetRenderState(RenderState.CullMode, Cull.None); // Turn off lighting D3DDevice.SetRenderState(RenderState.Lighting, false); ShaderBytecode sbcv = ShaderBytecode.CompileFromFile("C:\\Users\\yashwinder singh\\Desktop\\vertexShader.vs", "vs_main", "vs_1_1", ShaderFlags.None); constantTable = sbcv.ConstantTable; vertexShader = new VertexShader(D3DDevice, sbcv); ShaderBytecode sbc = ShaderBytecode.CompileFromFile("C:\\Users\\yashwinder singh\\Desktop\\pixelShader.txt", "ps_main", "ps_3_0", ShaderFlags.None); PixelShader ps = new PixelShader(D3DDevice, sbc); VertexDeclaration vertexDecl = new VertexDeclaration(D3DDevice, new[] { new VertexElement(0, 0, DeclarationType.Float3, DeclarationMethod.Default, DeclarationUsage.PositionTransformed, 0), new VertexElement(0, 12, DeclarationType.Float2 , DeclarationMethod.Default, DeclarationUsage.TextureCoordinate , 0), VertexElement.VertexDeclarationEnd }); Application.EnableVisualStyles(); MessagePump.Run(Window, () => { // Clear the backbuffer to a black color. D3DDevice.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.Black, 1.0f, 0); // Begin the scene. D3DDevice.BeginScene(); // Setup the world, view and projection matrices. //D3DDevice.VertexShader = vertexShader; //D3DDevice.PixelShader = ps; // Render the vertex buffer. D3DDevice.SetStreamSource(0, Vertices, 0, Vertex.SizeBytes); D3DDevice.VertexFormat = Vertex.Format; // Setup our texture. Using Textures introduces the texture stage states, // which govern how Textures get blended together (in the case of multiple // Textures) and lighting information. D3DDevice.SetTexture(0, Image); // Now drawing 2 triangles, for a quad. D3DDevice.DrawPrimitives(PrimitiveType.TriangleList , 0, 2); // End the scene. D3DDevice.EndScene(); // Present the backbuffer contents to the screen. D3DDevice.Present(); }); if (Image != null) Image.Dispose(); if (Vertices != null) Vertices.Dispose(); if (D3DDevice != null) D3DDevice.Dispose(); } private static Vertex[] BuildVertexData() { Vertex[] vertexData = new Vertex[6]; vertexData[0].Position = new Vector3(-1.0f, 1.0f, 0.0f); vertexData[0].Tu = 0.0f; vertexData[0].Tv = 0.0f; vertexData[1].Position = new Vector3(-1.0f, -1.0f, 0.0f); vertexData[1].Tu = 0.0f; vertexData[1].Tv = 1.0f; vertexData[2].Position = new Vector3(1.0f, 1.0f, 0.0f); vertexData[2].Tu = 1.0f; vertexData[2].Tv = 0.0f; vertexData[3].Position = new Vector3(-1.0f, -1.0f, 0.0f); vertexData[3].Tu = 0.0f; vertexData[3].Tv = 1.0f; vertexData[4].Position = new Vector3(1.0f, -1.0f, 0.0f); vertexData[4].Tu = 1.0f; vertexData[4].Tv = 1.0f; vertexData[5].Position = new Vector3(1.0f, 1.0f, 0.0f); vertexData[5].Tu = 1.0f; vertexData[5].Tv = 0.0f; return vertexData; } } } And my pixel shader and vertex shader code are as following // Pixel shader input structure struct PS_INPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Pixel shader output structure struct PS_OUTPUT { float4 Color : COLOR0; }; // Global variables sampler2D Tex0; // Name: Simple Pixel Shader // Type: Pixel shader // Desc: Fetch texture and blend with constant color // PS_OUTPUT ps_main( in PS_INPUT In ) { PS_OUTPUT Out; //create an output pixel Out.Color = tex2D(Tex0, In.Texture); //do a texture lookup Out.Color *= float4(0.9f, 0.8f, 0.0f, 1); //do a simple effect return Out; //return output pixel } // Vertex shader input structure struct VS_INPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Vertex shader output structure struct VS_OUTPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Global variables float4x4 WorldViewProj; // Name: Simple Vertex Shader // Type: Vertex shader // Desc: Vertex transformation and texture coord pass-through // VS_OUTPUT vs_main( in VS_INPUT In ) { VS_OUTPUT Out; //create an output vertex Out.Position = mul(In.Position, WorldViewProj); //apply vertex transformation Out.Texture = In.Texture; //copy original texcoords return Out; //return output vertex }

    Read the article

  • Emtel Knowledge Series - Q2/2014

    From Cyber Island to Smart Mauritius Cyber Island? Smart Mauritius? - What is Emtel talking about? "With the majority of the population living in urban environments today, the concept of "Smart Cities" has become an urgent necessity. "Smart Cities" refer to an urban transformation which, by using latest ICT technologies makes cities more efficient. Many Governments are setting out ambitious plans to build the cities of the future based on massive connectivity, high bandwidth communications, intelligent sensors and analysis of huge volumes of data. Various researches have shown four key enablers for smart city success - Government leadership, suitable technology infrastructure, solid public-private partnerships and engaged citizens. It is around these enabling factors that telecoms companies can play a vital role in assisting governments to deliver on the smart city vision." The Emtel Knowledge Series goes in compliance with Emtel's 25th anniversary celebrations throughout the year and the master of ceremony, Kim Andersen, mentioned that there will be more upcoming events on a quarterly base. As a representative of the Mauritius Software Craftsmanship Community (MSCC) there was absolutely no hesitation to join in again. Following my visit to the first Emtel Knowledge Series workshop back in February this year, it was great to have another opportunity to meet and exchange with technology experts. But quite frankly what is it with those buzz words... As far as I remember and how it was mentioned "Cyber Island" is an old initiative from around 2005/2006 which has been refreshed in 2010. It implies the empowerment of Information & Communication Technologies (ICT) as an essential factor of growth by the government here in Mauritius. Actually, the first promotional period of Cyber Island brought me here but that's another story. The venue and its own problems Like last time the event was organised and held at the Conference Hall at Cyber Tower I in Ebene. As I've been working there for some years, I know about the frustrating situation of finding a proper parking. So, does Smart Island include better solutions for the search of parking spaces? Maybe, let's see whether I will be able to answer that question at the end of the article. Anyway, after circling around the tower almost two times, I finally got a decent space to put the car, without risking to get a ticket or damage actually. International speakers and their experience Once again, Emtel did a great job to get international expertise onto the stage to share their experience and vision on this kind of embarkment. Personally, I really appreciated the fact they were speakers of global reach and could provide own-experience knowledge. Johan Gott spoke about the fundamental change that the Swedish government ignited in order to move their society and workers' environment away from heavy industry towards a knowledge-based approach. Additionally, we spoke about the effort and transformation of New York City into a greener and more efficient Smart City. Given modern technology he also advised that any kind of available Big Data should be opened to the general public - this openness would provide a playground for anyone to garner new ideas and most probably solid solutions of which no one else thought about before. Emtel Knowledge Series on moving from Cyber Island to Smart Mauritus Later during the afternoon that exact statement regarding openness to and transparency of government-owned Big Data has been emphasised again by the Danish speaker Kim Andersen and his former colleague Mika Jantunen from Finland. Mika continued to underline the important role of the government to provide a solid foundation for a knowledge-based society and mentioned that Finnish citizens have a constitutional right to broadband connectivity. Next to free higher (tertiary) education Finland already produced a good number of innovations, among them are: First country to grant voting rights to women Free higher education Constitutional right to broadband connectivity Nokia Linux Angry Birds Sauna and others...  General access to internet via broadband and/or mobile connectivity is surely a key factor towards Smart Cities, or better said Smart Mauritius given the area dimensions and size of population. CTO Paul Valette gave the audience a brief overview of the essential role that Emtel will have to move Mauritius forward towards a knowledge-based and innovation-driven environment for its citizen. What I have seen looks really promising and with recently published information that Mauritians have 127% of mobile capacity - meaning more than 1 mobile, smartphone or tablet per person - it will be crucial to have the right infrastructure for these connected devices. How would it be possible to achieve a knowledge-based society? YouTube to the rescue!Seriously, gaining more knowledge will require to have fast access to educational course material as explained by Dr Kaviraj Sukon, General Director of the Open University of Mauritius. According to him a good number of high-profile universities in the world have opened their course libraries to the general public, among them EDX, Coursera and Open University. Nowadays, you're actually able and enabled to learn for and earn a BSc or even MSc certification on your own pace - no need to attend classed on campus. It was really impressive to see the number of available hours - more than enough for a life-long learning experience! {loadposition content_adsense} Networking in the name of MSCC As briefly mentioned above I was about to combine two approaches for this workshop. Of course, getting latest information and updates on Emtel services available, especially for my business here on the west coast of the island, but also to meet and greet new people for the MSCC. And I think it was very positive on both sides. Let me quickly describe some of the key aspects that happened during the day: Met with Arnaud Meslier and Kellie, both Microsoft to swap latest information on IT events. Hereby, I got an invite to Microsoft Windows Phone 8.1 Dev Camp. Got in touch with Arvin Lockee, Emtel to check our options to meet with the data team, and seizing the opportunity to have a visiting tour at the Emtel Data Centre. Had a great chat with Avinash Meetoo, Knowledge 7, Kim Andersen and Mika Jantunen about the situation of teaching and learning in general and specifically in the private sector here in Mauritius. Additionally, a number of various other interesting chats... Once again, I'm catching up on a couple of business cards in order to provide more background information about the MSCC, and to create a better awareness of MSCC within the local IT businesses. There is more to come soon!  Resume of the day The number of attendees during this event has been doubled or even tripled this time. The whole organisation has been improved massively and the combination of presentation and summarizing panel discussions was better than during the previous workshop back in February. Overall, once again a well-organised workshop and I'm already looking forward to join the next workshop in Q3. Update End of July we finally managed to visit the Emtel Data Centre in Arsenal. It was an interesting opportunity for some of our MSCC members.

    Read the article

  • My vertex shader doesn't affect texture coords or diffuse info but works for position

    - by tina nyaa
    I am new to 3D and DirectX - in the past I have only used abstractions for 2D drawing. Over the past month I've been studying really hard and I'm trying to modify and adapt some of the shaders as part of my personal 'study project'. Below I have a shader, modified from one of the Microsoft samples. I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? // // Skinned Mesh Effect file // Copyright (c) 2000-2002 Microsoft Corporation. All rights reserved. // float4 lhtDir = {0.0f, 0.0f, -1.0f, 1.0f}; //light Direction float4 lightDiffuse = {0.6f, 0.6f, 0.6f, 1.0f}; // Light Diffuse float4 MaterialAmbient : MATERIALAMBIENT = {0.1f, 0.1f, 0.1f, 1.0f}; float4 MaterialDiffuse : MATERIALDIFFUSE = {0.8f, 0.8f, 0.8f, 1.0f}; // Matrix Pallette static const int MAX_MATRICES = 100; float4x3 mWorldMatrixArray[MAX_MATRICES] : WORLDMATRIXARRAY; float4x4 mViewProj : VIEWPROJECTION; /////////////////////////////////////////////////////// struct VS_INPUT { float4 Pos : POSITION; float4 BlendWeights : BLENDWEIGHT; float4 BlendIndices : BLENDINDICES; float3 Normal : NORMAL; float3 Tex0 : TEXCOORD0; }; struct VS_OUTPUT { float4 Pos : POSITION; float4 Diffuse : COLOR; float2 Tex0 : TEXCOORD0; }; float3 Diffuse(float3 Normal) { float CosTheta; // N.L Clamped CosTheta = max(0.0f, dot(Normal, lhtDir.xyz)); // propogate scalar result to vector return (CosTheta); } VS_OUTPUT VShade(VS_INPUT i, uniform int NumBones) { VS_OUTPUT o; float3 Pos = 0.0f; float3 Normal = 0.0f; float LastWeight = 0.0f; // Compensate for lack of UBYTE4 on Geforce3 int4 IndexVector = D3DCOLORtoUBYTE4(i.BlendIndices); // cast the vectors to arrays for use in the for loop below float BlendWeightsArray[4] = (float[4])i.BlendWeights; int IndexArray[4] = (int[4])IndexVector; // calculate the pos/normal using the "normal" weights // and accumulate the weights to calculate the last weight for (int iBone = 0; iBone < NumBones-1; iBone++) { LastWeight = LastWeight + BlendWeightsArray[iBone]; Pos += mul(i.Pos, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; Normal += mul(i.Normal, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; } LastWeight = 1.0f - LastWeight; // Now that we have the calculated weight, add in the final influence Pos += (mul(i.Pos, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); Normal += (mul(i.Normal, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); // transform position from world space into view and then projection space //o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Diffuse.x = 0.0f; o.Diffuse.y = 0.0f; o.Diffuse.z = 0.0f; o.Diffuse.w = 0.0f; o.Tex0 = float2(0,0); return o; } technique t0 { pass p0 { VertexShader = compile vs_3_0 VShade(4); } } I am currently using the SlimDX .NET wrapper around DirectX, but the API is extremely similar: public void Draw() { var device = vertexBuffer.Device; device.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.White, 1.0f, 0); device.SetRenderState(RenderState.Lighting, true); device.SetRenderState(RenderState.DitherEnable, true); device.SetRenderState(RenderState.ZEnable, true); device.SetRenderState(RenderState.CullMode, Cull.Counterclockwise); device.SetRenderState(RenderState.NormalizeNormals, true); device.SetSamplerState(0, SamplerState.MagFilter, TextureFilter.Anisotropic); device.SetSamplerState(0, SamplerState.MinFilter, TextureFilter.Anisotropic); device.SetTransform(TransformState.World, Matrix.Identity * Matrix.Translation(0, -50, 0)); device.SetTransform(TransformState.View, Matrix.LookAtLH(new Vector3(-200, 0, 0), Vector3.Zero, Vector3.UnitY)); device.SetTransform(TransformState.Projection, Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); var material = new Material(); material.Ambient = material.Diffuse = material.Emissive = material.Specular = new Color4(Color.White); material.Power = 1f; device.SetStreamSource(0, vertexBuffer, 0, vertexSize); device.VertexDeclaration = vertexDeclaration; device.Indices = indexBuffer; device.Material = material; device.SetTexture(0, texture); var param = effect.GetParameter(null, "mWorldMatrixArray"); var boneWorldTransforms = bones.OrderedBones.OrderBy(x => x.Id).Select(x => x.CombinedTransformation).ToArray(); effect.SetValue(param, boneWorldTransforms); effect.SetValue(effect.GetParameter(null, "mViewProj"), Matrix.Identity);// Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); effect.SetValue(effect.GetParameter(null, "MaterialDiffuse"), material.Diffuse); effect.SetValue(effect.GetParameter(null, "MaterialAmbient"), material.Ambient); effect.Technique = effect.GetTechnique(0); var passes = effect.Begin(FX.DoNotSaveState); for (var i = 0; i < passes; i++) { effect.BeginPass(i); device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, skin.Vertices.Length, 0, skin.Indicies.Length / 3); effect.EndPass(); } effect.End(); } Again, I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? Also, whatever I set in the bone transformation matrices doesn't seem to have an effect on my model. If I set every bone transformation to a zero matrix, the model still shows up as if nothing had happened, but changing the Pos field in shader output makes the model disappear. I don't understand why I'm getting this kind of behaviour. Thank you!

    Read the article

  • Projected Results

    - by Sylvie MacKenzie, PMP
    Excerpt from PROFIT - ORACLE - by Monica Mehta Yasser Mahmud has seen a revolution in project management over the past decade. During that time, the former Primavera product strategist (who joined Oracle when his company was acquired in 2008) has not only observed a transformation in the way IT systems support corporate projects but the role project portfolio management (PPM) plays in the enterprise. “15 years ago project management was the domain of project management office (PMO),” Mahmud recalls of earlier days. “But over the course of the past decade, we've seen it transform into a mission critical enterprise discipline, that has made Primavera indispensable in the board room. Now, as a senior manager, a board member, or a C-level executive you have direct and complete visibility into what’s kind of going on in the organization—at a level of detail that you're going to consume that information.” Now serving as Oracle’s vice president of product strategy and industry marketing, Mahmud shares his thoughts on how Oracle’s Primavera solutions have evolved and how best-in-class project portfolio management systems can help businesses stay competitive. Profit: What do you feel are the market dynamics that are changing project management today? Mahmud: First, the data explosion. We're generating data at twice the rate at which we can actually store it. The same concept applies for project-intensive organizations. A lot of data is gathered, but what are we really doing with it? Are we turning data into insight? Are we using that insight and turning it into foresight with analytics tools? This is a key driver that will separate the very good companies—the very competitive companies—from those that are not as competitive. Another trend is centered on the explosion of mobile computing. By the year 2013, an estimated 35 percent of the world’s workforce is going to be mobile. That’s one billion people. So the question is not if you're going to go mobile, it’s how fast you are going to go mobile. What kind of impact does that have on how the workforce participates in projects? What worked ten to fifteen years ago is not going to work today. It requires a real rethink around the interfaces and how data is actually presented. Profit: What is the role of project management in this new landscape? Mahmud: We recently conducted a PPM study with the Economist Intelligence Unit centered to determine how important project management is considered within organizations. Our target was primarily CFOs, CIOs, and senior managers and we discovered that while 95 percent of participants believed it critical to their business, only six percent were confident that projects were delivered on time and on budget. That’s a huge gap. Most organizations are looking for efficiency, especially in these volatile financial times. But senior management can’t keep track of every project in a large organization. As a result, executives are attempting to inventory the work being conducted under their watch. What is often needed is a very high-level assessment conducted at the board level to say, “Here are the 50 initiatives that we have underway. How do they line up with our strategic drivers?” This line of questioning can provide early warning that work and strategy are out of alignment; finding the gap between what the business needs to do and the actual performance scorecard. That’s low-hanging fruit for any executive looking to increase efficiency and save money. But it can only be obtained through proper assessment of existing projects—and you need a project system of record to get that done. Over the next decade or so, project management is going to transform into holistic work management. Business leaders will want make sure key projects align with corporate strategy, but also the ability to drill down into daily activity and smaller projects to make sure they line up as well. Keeping employees from working on tasks—even for a few hours—that don’t line up with corporate goals will, in many ways, become a competitive differentiator. Profit: How do all of these market challenges and shifting trends impact Oracle’s Primavera solutions and meeting customers’ needs? Mahmud: For Primavera, it’s a transformation from being a project management application to a PPM system in the enterprise. Also making that system a mission-critical application by connecting to other key applications within the ecosystem, such as the enterprise resource planning (ERP), supply chain, and CRM systems. Analytics have also become a huge component. Business analytics have made Oracle’s Primavera applications pertinent in the boardroom. Now, as a senior manager, a board member, a CXO, CIO, or CEO, you have direct visibility into what’s going on in the organization at a level that you're able to consume that information. In addition, all of this information pairs up really well with your financials and other data. Certainly, when you're an Oracle shop, you have that visibility that you didn’t have before from a project execution perspective. Profit: What new strategies and tools are being implemented to create a more efficient workplace for users? Mahmud: We believe very strongly that just because you call something an enterprise project portfolio management system doesn’t make it so—you have to get people to want to participate in the system. This can’t be mandated down from the top. It simply doesn’t work that way. A truly adoptable solution is one that makes it super easy for all types users to participate, by providing them interfaces where they live. Keeping that in mind, a major area of development has been alternative user interfaces. This is increasingly resulting in the creation of lighter weight, targeted interfaces such as iOS applications, and smartphones interfaces such as for iPhone and Android platform. Profit: How does this translate into the development of Oracle’s Primavera solutions? Mahmud: Let me give you a few examples. We recently announced the launch of our Primavera P6 Team Member application, which is a native iOS application for the iPhone. This interface makes it easier for team members to do their jobs quickly and effectively. Similarly, we introduced the Primavera analytics application, which can be consumed via mobile devices, and when married with Oracle Spatial capabilities, users can get a geographical view of what’s going on and which projects are occurring in various locations around the world. Lastly, we introduced advanced email integration that allows project team members to status work via E-mail. This functionality leverages the fact that users are in E-mail system throughout the day and allows them to status their work without the need to launch the Primavera application. It comes back to a mantra: provide as many alternative user interfaces as possible, so you can give people the ability to work, to participate, to raise issues, to create projects, in the places where they live. Do it in such a way that it’s non-intrusive, do it in such a way that it’s easy and intuitive and they can get it done in a short amount of time. If you do that, workers can get back to doing what they're actually getting paid for.

    Read the article

  • Oracle Support Master Note for Troubleshooting Advanced Queuing and Oracle Streams Propagation Issues (Doc ID 233099.1)

    - by faye.todd(at)oracle.com
    Master Note for Troubleshooting Advanced Queuing and Oracle Streams Propagation Issues (Doc ID 233099.1) Copyright (c) 2010, Oracle Corporation. All Rights Reserved. In this Document  Purpose  Last Review Date  Instructions for the Reader  Troubleshooting Details     1. Scope and Application      2. Definitions and Classifications     3. How to Use This Guide     4. Basic AQ Propagation Troubleshooting     5. Additional Troubleshooting Steps for AQ Propagation of User-Enqueued and Dequeued Messages     6. Additional Troubleshooting Steps for Propagation in an Oracle Streams Environment     7. Performance Issues  References Applies to: Oracle Server - Enterprise Edition - Version: 8.1.7.0 to 11.2.0.2 - Release: 8.1.7 to 11.2Information in this document applies to any platform. Purpose This document presents a step-by-step methodology for troubleshooting and resolving problems with Advanced Queuing Propagation in both Streams and basic Advanced Queuing environments. It also serves as a master reference for other more specific notes on Oracle Streams Propagation and Advanced Queuing Propagation issues. Last Review Date December 20, 2010 Instructions for the Reader A Troubleshooting Guide is provided to assist in debugging a specific issue. When possible, diagnostic tools are included in the document to assist in troubleshooting. Troubleshooting Details 1. Scope and Application This note is intended for Database Administrators of Oracle databases where issues are being encountered with propagating messages between advanced queues, whether the queues are used for user-created messaging systems or for Oracle Streams. It contains troubleshooting steps and links to notes for further problem resolution.It can also be used a template to document a problem when it is necessary to engage Oracle Support Services. Knowing what is NOT happening can frequently speed up the resolution process by focusing solely on the pertinent problem area. This guide is divided into five parts: Section 2: Definitions and Classifications (discusses the different types and features of propagations possible - helpful for understanding the rest of the guide) Section 3: How to Use this Guide (to be used as a start part for determining the scope of the problem and what sections to consult) Section 4. Basic AQ propagation troubleshooting (applies to both AQ propagation of user enqueued and dequeued messages as well as Oracle Streams propagations) Section 5. Additional troubleshooting steps for AQ propagation of user enqueued and dequeued messages Section 6. Additional troubleshooting steps for Oracle Streams propagation Section 7. Performance issues 2. Definitions and Classifications Given the potential scope of issues that can be encountered with AQ propagation, the first recommended step is to do some basic diagnosis to determine the type of problem that is being encountered. 2.1. What Type of Propagation is Being Used? 2.1.1. Buffered Messaging For an advanced queue, messages can be maintained on disk (persistent messaging) or in memory (buffered messaging). To determine if a queue is buffered or not, reference the GV_$BUFFERED_QUEUES view. If the queue does not appear in this view, it is persistent. 2.1.2. Propagation mode - queue-to-dblink vs queue-to-queue As of 10.2, an AQ propagation can also be defined as queue-to-dblink, or queue-to-queue: queue-to-dblink: The propagation delivers messages or events from the source queue to all subscribing queues at the destination database identified by the dblink. A single propagation schedule is used to propagate messages to all subscribing queues. Hence any changes made to this schedule will affect message delivery to all the subscribing queues. This mode does not support multiple propagations from the same source queue to the same target database. queue-to-queue: Added in 10.2, this propagation mode delivers messages or events from the source queue to a specific destination queue identified on the database link. This allows the user to have fine-grained control on the propagation schedule for message delivery. This new propagation mode also supports transparent failover when propagating to a destination Oracle RAC system. With queue-to-queue propagation, you are no longer required to re-point a database link if the owner instance of the queue fails on Oracle RAC. This mode supports multiple propagations to the same target database if the target queues are different. The default is queue-to-dblink. To verify if queue-to-queue propagation is being used, in non-Streams environments query DBA_QUEUE_SCHEDULES.DESTINATION - if a remote queue is listed along with the remote database link, then queue-to-queue propagation is being used. For Streams environments, the DBA_PROPAGATION.QUEUE_TO_QUEUE column can be checked.See the following note for a method to switch between the two modes:Document 827473.1 How to alter propagation from queue-to-queue to queue-to-dblink 2.1.3. Combined Capture and Apply (CCA) for Streams In 11g Oracle Streams environments, an optimization called Combined Capture and Apply (CCA) is implemented by default when possible. Although a propagation is configured in this case, Streams does not use it; instead it passes information directly from capture to an apply receiver. To see if CCA is in use: COLUMN CAPTURE_NAME HEADING 'Capture Name' FORMAT A30COLUMN OPTIMIZATION HEADING 'CCA Mode?' FORMAT A10SELECT CAPTURE_NAME, DECODE(OPTIMIZATION,0, 'No','Yes') OPTIMIZATIONFROM V$STREAMS_CAPTURE; Also, see the following note:Document 463820.1 Streams Combined Capture and Apply in 11g 2.2. Queue Table Compatibility There are three types of queue table compatibility. In more recent databases, queue tables may be present in all three modes of compatibility: 8.0 - earliest version, deprecated in 10.2 onwards 8.1 - support added for RAC, asynchronous notification, secure queues, queue level access control, rule-based subscribers, separate storage of history information 10.0 - if the database is in 10.1-compatible mode, then the default value for queue table compatibility is 10.0 2.3. Single vs Multiple Consumer Queue Tables If more than one recipient can dequeue a message from a queue, then its queue table is multiple consumer. You can propagate messages from a multiple-consumer queue to a single-consumer queue. Propagation from a single-consumer queue to a multiple-consumer queue is not possible. 3. How to Use This Guide 3.1. Are Messages Being Propagated at All, or is the Propagation Just Slow? Run the following query on the source database for the propagation (assuming that it is running): select TOTAL_NUMBER from DBA_QUEUE_SCHEDULES where QNAME='<source_queue_name>'; If TOTAL_NUMBER is increasing, then propagation is most likely functioning, although it may be slow. For performance issues, see Section 7. 3.2. Propagation Between Persistent User-Created Queues See Sections 4 and 5 (and optionally Section 6 if performance is an issue). 3.3. Propagation Between Buffered User-Created Queues See Sections 4, 5, and 6 (and optionally Section 7 if performance is an issue). 3.4. Propagation between Oracle Streams Queues (without Combined Capture and Apply (CCA) Optimization) See Sections 4 and 6 (and optionally Section 7 if performance is an issue). 3.5. Propagation between Oracle Streams Queues (with Combined Capture and Apply (CCA) Optimization) Although an AQ propagation is not used directly in this case, some characteristics of the message transfer are inferred from the propagation parameters used. Some parts of Sections 4 and 6 still apply. 3.6. Messaging Gateway Propagations This note does not apply to Messaging Gateway propagations. 4. Basic AQ Propagation Troubleshooting 4.1. Double-check Your Code Make sure that you are consistent in your usage of the database link(s) names, queue names, etc. It may be useful to plot a diagram of which queues are connected via which database links to make sure that the logical structure is correct. 4.2. Verify that Job Queue Processes are Running 4.2.1. Versions 10.2 and Lower - DBA_JOBS Package For versions 10.2 and lower, a scheduled propagation is managed by DBMS_JOB package. The propagation is performed by job queue process background processes. Therefore we need to verify that there are sufficient processes available for the propagation process. We should have at least 4 job queue processes running and preferably more depending on the number of other jobs running in the database. It should be noted that for AQ specific work, AQ will only ever use half of the job queue processes available.An issue caused by an inadequate job queue processes parameter setting is described in the following note:Document 298015.1 Kwqjswproc:Excep After Loop: Assigning To Self 4.2.1.1. Job Queue Processes in Initalization Parameter File The parameter JOB_QUEUE_PROCESSES in the init.ora/spfile should be > 0. The value can be changed dynamically via connect / as sysdbaalter system set JOB_QUEUE_PROCESSES=10; 4.2.1.2. Job Queue Processes in Memory The following command will show how many job queue processes are currentlyin use by this instance (this may be different than what is in the init.ora/spfile): connect / as sysdbashow parameter job; 4.2.1.3. OS PIDs Corresponding to Job Queue Processes Identify the operating system process ids (spids) of job queue processes involved in propagation via select p.SPID, p.PROGRAM from V$PROCESS p, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j where s.SID=jr.SID and s.PADDR=p.ADDR and jr.JOB=j.JOBand j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%'; and these SPIDs can be used to check at the operating system level that they exist.In 8i a job queue process will have a name similar to: ora_snp1_<instance_name>.In 9i onwards you will see a coordinator process: ora_cjq0_ and multiple slave processes: ora_jnnn_<instance_name>, where nnn is an integer between 1 and 999. 4.2.2. Version 11.1 and Above - Oracle Scheduler In version 11.1 and above, Oracle Scheduler is used to perform AQ and Streams propagations. Oracle Scheduler automatically tunes the number of slave processes for these jobs based on the load on the computer system, and the JOB_QUEUE_PROCESSES initialization parameter is only used to specify the maximum number of slave processes. Therefore, the JOB_QUEUE_PROCESSES initialization parameter does not need to be set (it defaults to a very high number), unless you want to limit the number of slaves that can be created. If JOB_QUEUE_PROCESSES = 0, no propagation jobs will run.See the following note for a discussion of Oracle Streams 11g and Oracle Scheduler:Document 1083608.1 11g Streams and Oracle Scheduler 4.2.2.1. Job Queue Processes in Initalization Parameter File The parameter JOB_QUEUE_PROCESSES in the init.ora/spfile should be > 0, and preferably be left at its default value. The value can be changed dynamically via connect / as sysdbaalter system set JOB_QUEUE_PROCESSES=10; To set the JOB_QUEUE_PROCESSES parameter to its default value, run: connect / as sysdbaalter system reset JOB_QUEUE_PROCESSES; and then bounce the instance. 4.2.2.2. Job Queue Processes in Memory The following command will show how many job queue processes are currently in use by this instance (this may be different than what is in the init.ora/spfile): connect / as sysdbashow parameter job; 4.2.2.3. OS PIDs Corresponding to Job Queue Processes Identify the operating system process ids (SPIDs) of job queue processes involved in propagation via col PROGRAM for a30select p.SPID, p.PROGRAM, j.JOB_namefrom v$PROCESS p, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j where s.SID=jr.SESSION_ID and s.PADDR=p.ADDRand jr.JOB_name=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%'; and these SPIDs can be used to check at the operating system level that they exist.You will see a coordinator process: ora_cjq0_ and multiple slave processes: ora_jnnn_<instance_name>, where nnn is an integer between 1 and 999. 4.3. Check the Alert Log and Any Associated Trace Files The first place to check for propagation failures is the alert logs at all sites (local and if relevant all remote sites). When a job queue process attempts to execute a schedule and fails it will always write an error stack to the alert log. This error stack will also be written in a job queue process trace file, which will be written to the BACKGROUND_DUMP_DEST location for 10.2 and below, and in the DIAGNOSTIC_DEST location for 11g. The fact that errors are written to the alert log demonstrates that the schedule is executing. This means that the problem could be with the set up of the schedule. In this example the ORA-02068 demonstrates that the failure was at the remote site. Further investigation revealed that the remote database was not open, hence the ORA-03114 error. Starting the database resolved the problem. Thu Feb 14 10:40:05 2002 Propagation Schedule for (AQADM.MULTIPLEQ, SHANE816.WORLD) encountered following error:ORA-04052: error occurred when looking up Remote object [email protected]: error occurred at recursive SQL level 4ORA-02068: following severe error from SHANE816ORA-03114: not connected to ORACLEORA-06512: at "SYS.DBMS_AQADM_SYS", line 4770ORA-06512: at "SYS.DBMS_AQADM", line 548ORA-06512: at line 1 Other potential errors that may be written to the alert log can be found in the following notes:Document 827184.1 AQ Propagation with CLOB data types Fails with ORA-22990 (11.1)Document 846297.1 AQ Propagation Fails : ORA-00600[kope2upic2954] or Ora-00600[Kghsstream_copyn] (10.2, 11.1)Document 731292.1 ORA-25215 Reported on Local Propagation When Using Transformation with ANYDATA queue tables (10.2, 11.1, 11.2)Document 365093.1 ORA-07445 [kwqppay2aqe()+7360] Reported on Propagation of a Transformed Message (10.1, 10.2)Document 219416.1 Advanced Queuing Propagation Fails with ORA-22922 (9.0)Document 1203544.1 AQ Propagation Aborted with ORA-600 [ociksin: invalid status] on SYS.DBMS_AQADM_SYS.AQ$_PROPAGATION_PROCEDURE After Upgrade (11.1, 11.2)Document 1087324.1 ORA-01405 ORA-01422 reported by Advanced Queuing Propagation schedules after RAC reconfiguration (10.2)Document 1079577.1 Advanced Queuing Propagation Fails With "ORA-22370 incorrect usage of method" (9.2, 10.2, 11.1, 11.2)Document 332792.1 ORA-04061 error relating to SYS.DBMS_PRVTAQIP reported when setting up Statspack (8.1, 9.0, 9.2, 10.1)Document 353325.1 ORA-24056: Internal inconsistency for QUEUE <queue_name> and destination <dblink> (8.1, 9.0, 9.2, 10.1, 10.2, 11.1, 11.2)Document 787367.1 ORA-22275 reported on Propagating Messages with LOB component when propagating between 10.1 and 10.2 (10.1, 10.2)Document 566622.1 ORA-22275 when propagating >4K AQ$_JMS_TEXT_MESSAGEs from 9.2.0.8 to 10.2.0.1 (9.2, 10.1)Document 731539.1 ORA-29268: HTTP client error 401 Unauthorized Error when the AQ Servlet attempts to Propagate a message via HTTP (9.0, 9.2, 10.1, 10.2, 11.1)Document 253131.1 Concurrent Writes May Corrupt LOB Segment When Using Auto Segment Space Management (ORA-1555) (9.2)Document 118884.1 How to unschedule a propagation schedule stuck in pending stateDocument 222992.1 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE Returns ORA-24082Document 282987.1 Propagated Messages marked UNDELIVERABLE after Drop and Recreate Of Remote QueueDocument 1204080.1 AQ Propagation Failing With ORA-25329 After Upgraded From 8i or 9i to 10g or 11g.Document 1233675.1 AQ Propagation stops after upgrade to 11.2.0.1 ORA-30757 4.3.1. Errors Related to Incorrect Network Configuration The most common propagation errors result from an incorrect network configuration. The list below contains common errors caused by tnsnames.ora file or database links being configured incorrectly: - ORA-12154: TNS:could not resolve service name- ORA-12505: TNS:listener does not currently know of SID given in connect descriptor- ORA-12514: TNS:listener could not resolve SERVICE_NAME - ORA-12541: TNS-12541 TNS:no listener 4.4. Check the Database Links Exist and are Functioning Correctly For schedules to remote databases confirm the database link exists via. SQL> col DBLINK for a45SQL> select QNAME, NVL(REGEXP_SUBSTR(DESTINATION, '[^@]+', 1, 2), DESTINATION) dblink2 from DBA_QUEUE_SCHEDULES3 where MESSAGE_DELIVERY_MODE = 'PERSISTENT';QNAME DBLINK------------------------------ ---------------------------------------------MY_QUEUE ORCL102B.WORLD Connect as the owner of the link and select across it to verify it works and connects to the database we expect. i.e. select * from ALL_QUEUES@ ORCL102B.WORLD; You need to ensure that the userid that scheduled the propagation (using DBMS_AQADM.SCHEDULE_PROPAGATION or DBMS_PROPAGATION_ADM.CREATE_PROPAGATION if using Streams) has access to the database link for the destination. 4.5. Has Propagation Been Correctly Scheduled? Check that the propagation schedule has been created and that a job queue process has been assigned. Look for the entry in DBA_QUEUE_SCHEDULES and SYS.AQ$_SCHEDULES for your schedule. For 10g and below, check that it has a JOBNO entry in SYS.AQ$_SCHEDULES, and that there is an entry in DBA_JOBS with that JOBNO. For 11g and above, check that the schedule has a JOB_NAME entry in SYS.AQ$_SCHEDULES, and that there is an entry in DBA_SCHEDULER_JOBS with that JOB_NAME. Check the destination is as intended and spelled correctly. SQL> select SCHEMA, QNAME, DESTINATION, SCHEDULE_DISABLED, PROCESS_NAME from DBA_QUEUE_SCHEDULES;SCHEMA QNAME DESTINATION S PROCESS------- ---------- ------------------ - -----------AQADM MULTIPLEQ AQ$_LOCAL N J000 AQ$_LOCAL in the destination column shows that the queue to which we are propagating to is in the same database as the source queue. If the propagation was to a remote (different) database, a database link will be in the DESTINATION column. The entry in the SCHEDULE_DISABLED column, N, means that the schedule is NOT disabled. If Y (yes) appears in this column, propagation is disabled and the schedule will not be executed. If not using Oracle Streams, propagation should resume once you have enabled the schedule by invoking DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE (for 10.2 Oracle Streams and above, the DBMS_PROPAGATION_ADM.START_PROPAGATION procedure should be used). The PROCESS_NAME is the name of the job queue process currently allocated to execute the schedule. This process is allocated dynamically at execution time. If the PROCESS_NAME column is null (empty) the schedule is not currently executing. You may need to execute this statement a number of times to verify if a process is being allocated. If a process is at some time allocated to the schedule, it is attempting to execute. SQL> select SCHEMA, QNAME, LAST_RUN_DATE, NEXT_RUN_DATE from DBA_QUEUE_SCHEDULES;SCHEMA QNAME LAST_RUN_DATE NEXT_RUN_DATE------ ----- ----------------------- ----------------------- AQADM MULTIPLEQ 13-FEB-2002 13:18:57 13-FEB-2002 13:20:30 In 11g, these dates are expressed in TIMESTAMP WITH TIME ZONE datatypes. If the NEXT_RUN_DATE and NEXT_RUN_TIME columns are null when this statement is executed, the scheduled propagation is currently in progress. If they never change it would suggest that the schedule itself is never executing. If the next scheduled execution is too far away, change the NEXT_TIME parameter of the schedule so that schedules are executed more frequently (assuming that the window is not set to be infinite). Parameters of a schedule can be changed using the DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE call. In 10g and below, scheduling propagation posts a job in the DBA_JOBS view. The columns are more or less the same as DBA_QUEUE_SCHEDULES so you just need to recognize the job and verify that it exists. SQL> select JOB, WHAT from DBA_JOBS where WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%';JOB WHAT---- ----------------- 720 next_date := sys.dbms_aqadm.aq$_propaq(job); For 11g, scheduling propagation posts a job in DBA_SCHEDULER_JOBS instead: SQL> select JOB_NAME from DBA_SCHEDULER_JOBS where JOB_NAME like 'AQ_JOB$_%';JOB_NAME------------------------------AQ_JOB$_41 If no job exists, check DBA_QUEUE_SCHEDULES to make sure that the schedule has not been disabled. For 10g and below, the job number is dynamic for AQ propagation schedules. The procedure that is executed to expedite a propagation schedule runs, removes itself from DBA_JOBS, and then reposts a new job for the next scheduled propagation. The job number should therefore always increment unless the schedule has been set up to run indefinitely. 4.6. Is the Schedule Executing but Failing to Complete? Run the following query: SQL> select FAILURES, LAST_ERROR_MSG from DBA_QUEUE_SCHEDULES;FAILURES LAST_ERROR_MSG------------ -----------------------1 ORA-25207: enqueue failed, queue AQADM.INQ is disabled from enqueueingORA-02063: preceding line from SHANE816 The failures column shows how many times we have attempted to execute the schedule and failed. Oracle will attempt to execute the schedule 16 times after which it will be removed from the DBA_JOBS or DBA_SCHEDULER_JOBS view and the schedule will become disabled. The column DBA_QUEUE_SCHEDULES.SCHEDULE_DISABLED will show 'Y'. For 11g and above, the DBA_SCHEDULER_JOBS.STATE column will show 'BROKEN' for the job corresponding to DBA_QUEUE_SCHEDULES.JOB_NAME. Prior to 10g the back off algorithm for failures was exponential, whereas from 10g onwards it is linear. The propagation will become disabled on the 17th attempt. Only the last execution failure will be reflected in the LAST_ERROR_MSG column. That is, if the schedule fails 5 times for 5 different reasons, only the last set of errors will be recorded in DBA_QUEUE_SCHEDULES. Any errors need to be resolved to allow propagation to continue. If propagation has also become disabled due to 17 failures, first resolve the reason for the error and then re-enable the schedule using the DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE procedure, or DBMS_PROPAGATION_ADM.START_PROPAGATION if using 10.2 or above Oracle Streams. As soon as the schedule executes successfully the error message entries will be deleted. Oracle does not keep a history of past failures. However, when using Oracle Streams, the errors will be retained in the DBA_PROPAGATION view even after the schedule resumes successfully. See the following note for instructions on how to clear out the errors from the DBA_PROPAGATION view:Document 808136.1 How to clear the old errors from DBA_PROPAGATION view?If a schedule is active and no errors are being reported then the source queue may not have any messages to be propagated. 4.7. Do the Propagation Notification Queue Table and Queue Exist? Check to see that the propagation notification queue table and queue exist and are enabled for enqueue and dequeue. Propagation makes use of the propagation notification queue for handling propagation run-time events, and the messages in this queue are stored in a SYS-owned queue table. This queue should never be stopped or dropped and the corresponding queue table never be dropped. 10g and belowThe propagation notification queue table is of the format SYS.AQ$_PROP_TABLE_n, where 'n' is the RAC instance number, i.e. '1' for a non-RAC environment. This queue and queue table are created implicitly when propagation is first scheduled. If propagation has been scheduled and these objects do not exist, try unscheduling and rescheduling propagation. If they still do not exist contact Oracle Support. SQL> select QUEUE_TABLE from DBA_QUEUE_TABLES2 where QUEUE_TABLE like '%PROP_TABLE%' and OWNER = 'SYS';QUEUE_TABLE------------------------------AQ$_PROP_TABLE_1SQL> select NAME, ENQUEUE_ENABLED, DEQUEUE_ENABLED2 from DBA_QUEUES where owner='SYS'3 and QUEUE_TABLE like '%PROP_TABLE%';NAME ENQUEUE DEQUEUE------------------------------ ------- -------AQ$_PROP_NOTIFY_1 YES YESAQ$_AQ$_PROP_TABLE_1_E NO NO If the AQ$_PROP_NOTIFY_1 queue is not enabled for enqueue or dequeue, it should be so enabled using DBMS_AQADM.START_QUEUE. However, the exception queue AQ$_AQ$_PROP_TABLE_1_E should not be enabled for enqueue or dequeue.11g and aboveThe propagation notification queue table is of the format SYS.AQ_PROP_TABLE, and is created when the database is created. If they do not exist, contact Oracle Support. SQL> select QUEUE_TABLE from DBA_QUEUE_TABLES2 where QUEUE_TABLE like '%PROP_TABLE%' and OWNER = 'SYS';QUEUE_TABLE------------------------------AQ_PROP_TABLESQL> select NAME, ENQUEUE_ENABLED, DEQUEUE_ENABLED2 from DBA_QUEUES where owner='SYS'3 and QUEUE_TABLE like '%PROP_TABLE%';NAME ENQUEUE DEQUEUE------------------------------ ------- -------AQ_PROP_NOTIFY YES YESAQ$_AQ_PROP_TABLE_E NO NO If the AQ_PROP_NOTIFY queue is not enabled for enqueue or dequeue, it should be so enabled using DBMS_AQADM.START_QUEUE. However, the exception queue AQ$_AQ$_PROP_TABLE_E should not be enabled for enqueue or dequeue. 4.8. Does the Remote Queue Exist and is it Enabled for Enqueueing? Check that the remote queue the propagation is transferring messages to exists and is enabled for enqueue: SQL> select DESTINATION from USER_QUEUE_SCHEDULES where QNAME = 'OUTQ';DESTINATION-----------------------------------------------------------------------------"AQADM"."INQ"@M2V102.ESSQL> select OWNER, NAME, ENQUEUE_ENABLED, DEQUEUE_ENABLED from [email protected];OWNER NAME ENQUEUE DEQUEUE-------- ------ ----------- -----------AQADM INQ YES YES 4.9. Do the Target and Source Database Charactersets Differ? If a message fails to propagate, check the database charactersets of the source and target databases. Investigate whether the same message can propagate between the databases with the same characterset or it is only a particular combination of charactersets which causes a problem. 4.10. Check the Queue Table Type Agreement Propagation is not possible between queue tables which have types that differ in some respect. One way to determine if this is the case is to run the DBMS_AQADM.VERIFY_QUEUE_TYPES procedure for the two queues that the propagation operates on. If the types do not agree, DBMS_AQADM.VERIFY_QUEUE_TYPES will return '0'.For AQ propagation between databases which have different NLS_LENGTH_SEMANTICS settings, propagation will not work, unless the queues are Oracle Streams ANYDATA queues.See the following notes for issues caused by lack of type agreement:Document 1079577.1 Advanced Queuing Propagation Fails With "ORA-22370: incorrect usage of method"Document 282987.1 Propagated Messages marked UNDELIVERABLE after Drop and Recreate Of Remote QueueDocument 353754.1 Streams Messaging Propagation Fails between Single and Multi-byte Charactersets when using Chararacter Length Semantics in the ADT 4.11. Enable Propagation Tracing 4.11.1. System Level This is set it in the init.ora/spfile as follows: event="24040 trace name context forever, level 10" and restart the instanceThis event cannot be set dynamically with an alter system command until version 10.2: SQL> alter system set events '24040 trace name context forever, level 10'; To unset the event: SQL> alter system set events '24040 trace name context off'; Debugging information will be logged to job queue trace file(s) (jnnn) as propagation takes place. You can check the trace file for errors, and for statements indicating that messages have been sent. For the most part the trace information is understandable. This trace should also be uploaded to Oracle Support if a service request is created. 4.11.2. Attaching to a Specific Process We can also attach to an existing job queue processes that is running a propagation schedule and trace it individually using the oradebug utility, as follows:10.2 and below connect / as sysdbaselect p.SPID, p.PROGRAM from v$PROCESS p, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j where s.SID=jr.SID and s.PADDR=p.ADDR and jr.JOB=j.JOB and j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%';-- For the process id (SPID) attach to it via oradebug and generate the following traceoradebug setospid <SPID>oradebug unlimitoradebug Event 10046 trace name context forever, level 12oradebug Event 24040 trace name context forever, level 10-- Trace the process for 5 minutesoradebug Event 10046 trace name context offoradebug Event 24040 trace name context off-- The following command returns the pathname/filename to the file being written tooradebug tracefile_name 11g connect / as sysdbacol PROGRAM for a30select p.SPID, p.PROGRAM, j.JOB_NAMEfrom v$PROCESS p, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j where s.SID=jr.SESSION_ID and s.PADDR=p.ADDR and jr.JOB_NAME=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%';-- For the process id (SPID) attach to it via oradebug and generate the following traceoradebug setospid <SPID>oradebug unlimitoradebug Event 10046 trace name context forever, level 12oradebug Event 24040 trace name context forever, level 10-- Trace the process for 5 minutesoradebug Event 10046 trace name context offoradebug Event 24040 trace name context off-- The following command returns the pathname/filename to the file being written tooradebug tracefile_name 4.11.3. Further Tracing The previous tracing steps only trace the job queue process executing the propagation on the source. At times it is useful to trace the propagation receiver process (the session which is enqueueing the messages into the target queue) on the target database which is associated with the job queue process on the source database.These following queries provide ways of identifying the processes involved in propagation so that you can attach to them via oradebug to generate trace information.In order to identify the propagation receiver process you need to execute the query as a user with privileges to access the v$ views in both the local and remote databases so the database link must connect as a user with those privileges in the remote database. The <DBLINK> in the queries should be replaced by the appropriate database link.The queries have two forms due to the differences between operating systems. The value returned by 'Rem Process' is the operating system identifier of the propagation receiver on the remote database. Once identified, this process can be attached to and traced on the remote database using the commands given in Section 4.11.2.10.2 and below - Windows select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from v$PROCESS pl, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SID and s.PADDR=pl.ADDR and jr.JOB=j.JOB and j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%' and pl.SPID=substr(sr.PROCESS, instr(sr.PROCESS,':')+1); 10.2 and below - Unix select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from V$PROCESS pl, DBA_JOBS_RUNNING jr, V$SESSION s, DBA_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SID and s.PADDR=pl.ADDR and jr.JOB=j.JOB and j.WHAT like '%sys.dbms_aqadm.aq$_propaq(job)%' and pl.SPID=sr.PROCESS; 11g - Windows select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from V$PROCESS pl, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SESSION_ID and s.PADDR=pl.ADDR and jr.JOB_NAME=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%%' and pl.SPID=substr(sr.PROCESS, instr(sr.PROCESS,':')+1); 11g - Unix select pl.SPID "JobQ Process", pl.PROGRAM, sr.PROCESS "Rem Process" from V$PROCESS pl, DBA_SCHEDULER_RUNNING_JOBS jr, V$SESSION s, DBA_SCHEDULER_JOBS j, V$SESSION@<DBLINK> sr where s.SID=jr.SESSION_ID and s.PADDR=pl.ADDR and jr.JOB_NAME=j.JOB_NAME and j.JOB_NAME like '%AQ_JOB$_%%' and pl.SPID=sr.PROCESS;   5. Additional Troubleshooting Steps for AQ Propagation of User-Enqueued and Dequeued Messages 5.1. Check the Privileges of All Users Involved Ensure that the owner of the database link has the necessary privileges on the aq packages. SQL> select TABLE_NAME, PRIVILEGE from USER_TAB_PRIVS;TABLE_NAME PRIVILEGE------------------------------ ----------------------------------------DBMS_LOCK EXECUTEDBMS_AQ EXECUTEDBMS_AQADM EXECUTEDBMS_AQ_BQVIEW EXECUTEQT52814_BUFFER SELECT Note that when queue table is created, a view called QT<nnn>_BUFFER is created in the SYS schema, and the queue table owner is given SELECT privileges on it. The <nnn> corresponds to the object_id of the associated queue table. SQL> select * from USER_ROLE_PRIVS;USERNAME GRANTED_ROLE ADM DEF OS_------------------------------ ------------------------------ ---- ---- ---AQ_USER1 AQ_ADMINISTRATOR_ROLE NO YES NOAQ_USER1 CONNECT NO YES NOAQ_USER1 RESOURCE NO YES NO It is good practice to configure central AQ administrative user. All admin and processing jobs are created, executed and administered as this user. This configuration is not mandatory however, and the database link can be owned by any existing queue user. If this latter configuration is used, ensure that the connecting user has the necessary privileges on the AQ packages and objects involved. Privileges for an AQ Administrative user Execute on DBMS_AQADM Execute on DBMS_AQ Granted the AQ_ADMINISTRATOR_ROLE Privileges for an AQ user Execute on DBMS_AQ Execute on the message payload Enqueue privileges on the remote queue Dequeue privileges on the originating queue Privileges need to be confirmed on both sites when propagation is scheduled to remote destinations. Verify that the user ID used to login to the destination through the database link has been granted privileges to use AQ. 5.2. Verify Queue Payload Types AQ will not propagate messages from one queue to another if the payload types of the two queues are not verified to be equivalent. An AQ administrator can verify if the source and destination's payload types match by executing the DBMS_AQADM.VERIFY_QUEUE_TYPES procedure. The results of the type checking will be stored in the SYS.AQ$_MESSAGE_TYPES table. This table can be accessed using the object identifier OID of the source queue and the address database link of the destination queue, i.e. [schema.]queue_name[@destination]. Prior to Oracle 9i the payload (message type) had to be the same for all the queue tables involved in propagation. From Oracle9i onwards a transformation can be used so that payloads can be converted from one type to another. The following procedural call made on the source database can verify whether we can propagate between the source and the destination queue tables. connect aq_user1/[email protected] serverout onDECLARErc_value number;BEGINDBMS_AQADM.VERIFY_QUEUE_TYPES(src_queue_name => 'AQ_USER1.Q_1', dest_queue_name => 'AQ_USER2.Q_2',destination => 'dbl_aq_user2.es',rc => rc_value);dbms_output.put_line('rc_value code is '||rc_value);END;/ If propagation is possible then the return code value will be 1. If it is 0 then propagation is not possible and further investigation of the types and transformations used by and in conjunction with the queue tables is required. With regard to comparison of the types the following sql can be used to extract the DDL for a specific type with' %' changed appropriately on the source and target. This can then be compared for the source and target. SET LONG 20000 set pagesize 50 EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM, 'STORAGE',false); SELECT DBMS_METADATA.GET_DDL('TYPE',t.type_name) from user_types t WHERE t.type_name like '%'; EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(DBMS_METADATA.SESSION_TRANSFORM, 'DEFAULT'); 5.3. Check Message State and Destination The first step in this process is to identify the queue table associated with the problem source queue. Although you schedule propagation for a specific queue, most of the meta-data associated with that queue is stored in the underlying queue table. The following statement finds the queue table for a given queue (note that this is a multiple-consumer queue table). SQL> select QUEUE_TABLE from DBA_QUEUES where NAME = 'MULTIPLEQ';QUEUE_TABLE --------------------MULTIPLEQTABLE For a small amount of messages in a multiple-consumer queue table, the following query can be run: SQL> select MSG_STATE, CONSUMER_NAME, ADDRESS from AQ$MULTIPLEQTABLE where QUEUE = 'MULTIPLEQ';MSG_STATE CONSUMER_NAME ADDRESS-------------- ----------------------- -------------READY AQUSER2 [email protected] AQUSER1READY AQUSER3 AQADM.INQ In this example we see 2 messages ready to be propagated to remote queues and 1 that is not. If the address column is blank, the message is not scheduled for propagation and can only be dequeued from the queue upon which it was enqueued. The MSG_STATE column values are discussed in Document 102330.1 Advanced Queueing MSG_STATE Values and their Interpretation. If the address column has a value, the message has been enqueued for propagation to another queue. The first row in the example includes a database link (@M2V102.ES). This demonstrates that the message should be propagated to a queue at a remote database. The third row does not include a database link so will be propagated to a queue that resides on the same database as the source queue. The consumer name is the intended recipient at the target queue. Note that we are not querying the base queue table directly; rather, we are querying a view that is available on top of every queue table, AQ$<queue_table_name>.A more realistic query in an environment where the queue table contains thousands of messages is8.0.3-compatible multiple-consumer queue table and all compatibility single-consumer queue tables select count(*), MSG_STATE, QUEUE from AQ$<queue_table_name>  group by MSG_STATE, QUEUE; 8.1.3 and 10.0-compatible queue tables select count(*), MSG_STATE, QUEUE, CONSUMER_NAME from AQ$<queue_table_name>group by MSG_STATE, QUEUE, CONSUMER_NAME; For multiple-consumer queue tables, if you did not see the expected CONSUMER_NAME , check the syntax of the enqueue code and verify the recipients are declared correctly. If a recipients list is not used on enqueue, check the subscriber list in the AQ$_<queue_table_name>_S view (note that a single-consumer queue table does not have a subscriber view. This view records all members of the default subscription list which were added using the DBMS_AQADM.ADD_SUBSCRIBER procedure and also those enqueued using a recipient list. SQL> select QUEUE, NAME, ADDRESS from AQ$MULTIPLEQTABLE_S;QUEUE NAME ADDRESS---------- ----------- -------------MULTIPLEQ AQUSER2 [email protected] AQUSER1 In this example we have 2 subscribers registered with the queue. We have a local subscriber AQUSER1, and a remote subscriber AQUSER2, on the queue INQ, owned by AQADM, at M2V102.ES. Unless overridden with a recipient list during enqueue every message enqueued to this queue will be propagated to INQ at M2V102.ES.For 8.1 style and above multiple consumer queue tables, you can also check the following information at the target: select CONSUMER_NAME, DEQ_TXN_ID, DEQ_TIME, DEQ_USER_ID, PROPAGATED_MSGID from AQ$<queue_table_name> where QUEUE = '<QUEUE_NAME>'; For 8.0 style queues, if the queue table supports multiple consumers you can obtain the same information from the history column of the queue table: select h.CONSUMER, h.TRANSACTION_ID, h.DEQ_TIME, h.DEQ_USER, h.PROPAGATED_MSGIDfrom AQ$<queue_table_name> t, table(t.history) h where t.Q_NAME = '<QUEUE_NAME>'; A non-NULL TRANSACTION_ID indicates that the message was successfully propagated. Further, the DEQ_TIME indicates the time of propagation, the DEQ_USER indicates the userid used for propagation, and the PROPAGATED_MSGID indicates the message ID of the message that was enqueued at the destination. 6. Additional Troubleshooting Steps for Propagation in an Oracle Streams Environment 6.1. Is the Propagation Enabled? For a propagation job to propagate messages, the propagation must be enabled. For Streams, a special view called DBA_PROPAGATION exists to convey information about Streams propagations. If messages are not being propagated by a propagation as expected, then the propagation might not be enabled. To query for this: SELECT p.PROPAGATION_NAME, DECODE(s.SCHEDULE_DISABLED, 'Y', 'Disabled','N', 'Enabled') SCHEDULE_DISABLED, s.PROCESS_NAME, s.FAILURES, s.LAST_ERROR_MSGFROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION pWHERE p.DESTINATION_DBLINK = NVL(REGEXP_SUBSTR(s.DESTINATION, '[^@]+', 1, 2), s.DESTINATION) AND s.SCHEMA = p.SOURCE_QUEUE_OWNER AND s.QNAME = p.SOURCE_QUEUE_NAME AND MESSAGE_DELIVERY_MODE = 'PERSISTENT' order by PROPAGATION_NAME; At times, the propagation job may become "broken" or fail to start after an error has been encountered or after a database restart. If an error is indicated by the above query, an attempt to disable the propagation and then re-enable it can be made. In the examples below, for the propagation named STRMADMIN_PROPAGATE where the queue name is STREAMS_QUEUE owned by STRMADMIN and the destination database link is ORCL2.WORLD, the commands would be:10.2 and above exec dbms_propagation_adm.stop_propagation('STRMADMIN_PROPAGATE'); exec dbms_propagation_adm.start_propagation('STRMADMIN_PROPAGATE'); If the above does not fix the problem, stop the propagation specifying the force parameter (2nd parameter on stop_propagation) as TRUE: exec dbms_propagation_adm.stop_propagation('STRMADMIN_PROPAGATE',true); exec dbms_propagation_adm.start_propagation('STRMADMIN_PROPAGATE'); The statistics for the propagation as well as any old error messages are cleared when the force parameter is set to TRUE. Therefore if the propagation schedule is stopped with FORCE set to TRUE, and upon restart there is still an error message in DBA_PROPAGATION, then the error message is current.9.2 or 10.1 exec dbms_aqadm.disable_propagation_schedule('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); exec dbms.aqadm.enable_propagation_schedule('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); If the above does not fix the problem, perform an unschedule of propagation and then schedule_propagation: exec dbms_aqadm.unschedule_propagation('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); exec dbms_aqadm.schedule_propagation('STRMADMIN.STREAMS_QUEUE','ORCL2.WORLD'); Typically if the error from the first query in Section 6.1 recurs after restarting the propagation as shown above, further troubleshooting of the error is needed. 6.2. Check Propagation Rule Sets and Transformations Inspect the configuration of the rules in the rule set that is associated with the propagation process to make sure that they evaluate to TRUE as expected. If not, then the object or schema will not be propagated. Remember that when a negative rule evaluates to TRUE, the specified object or schema will not be propagated. Finally inspect any rule-based transformations that are implemented with propagation to make sure they are changing the data in the intended way.The following query shows what rule sets are assigned to a propagation: select PROPAGATION_NAME, RULE_SET_OWNER||'.'||RULE_SET_NAME "Positive Rule Set",NEGATIVE_RULE_SET_OWNER||'.'||NEGATIVE_RULE_SET_NAME "Negative Rule Set"from DBA_PROPAGATION; The next two queries list the propagation rules and their conditions. The first is for the positive rule set, the second is for the negative rule set: set long 4000select rsr.RULE_SET_OWNER||'.'||rsr.RULE_SET_NAME RULE_SET ,rsr.RULE_OWNER||'.'||rsr.RULE_NAME RULE_NAME,r.RULE_CONDITION CONDITION fromDBA_RULE_SET_RULES rsr, DBA_RULES rwhere rsr.RULE_NAME = r.RULE_NAME and rsr.RULE_OWNER = r.RULE_OWNER and RULE_SET_NAME in(select RULE_SET_NAME from DBA_PROPAGATION) order by rsr.RULE_SET_OWNER, rsr.RULE_SET_NAME;   set long 4000select c.PROPAGATION_NAME, rsr.RULE_SET_OWNER||'.'||rsr.RULE_SET_NAME RULE_SET ,rsr.RULE_OWNER||'.'||rsr.RULE_NAME RULE_NAME,r.RULE_CONDITION CONDITION fromDBA_RULE_SET_RULES rsr, DBA_RULES r ,DBA_PROPAGATION cwhere rsr.RULE_NAME = r.RULE_NAME and rsr.RULE_OWNER = r.RULE_OWNER andrsr.RULE_SET_OWNER=c.NEGATIVE_RULE_SET_OWNER and rsr.RULE_SET_NAME=c.NEGATIVE_RULE_SET_NAMEand rsr.RULE_SET_NAME in(select NEGATIVE_RULE_SET_NAME from DBA_PROPAGATION) order by rsr.RULE_SET_OWNER, rsr.RULE_SET_NAME; 6.3. Determining the Total Number of Messages and Bytes Propagated As in Section 3.1, determining if messages are flowing can be instructive to see whether the propagation is entirely hung or just slow. If the propagation is not in flow control (see Section 6.5.2), but the statistics are incrementing slowly, there may be a performance issue. For Streams implementations two views are available that can assist with this that can show the number of messages sent by a propagation, as well as the number of acknowledgements being returned from the target site: the V$PROPAGATION_SENDER view at the Source site and the V$PROPAGATION_RECEIVER view at the destination site. It is helpful to query both to determine if messages are being delivered to the target. Look for the statistics to increase.Source: select QUEUE_SCHEMA, QUEUE_NAME, DBLINK,HIGH_WATER_MARK, ACKNOWLEDGEMENT, TOTAL_MSGS, TOTAL_BYTESfrom V$PROPAGATION_SENDER; Target: select SRC_QUEUE_SCHEMA, SRC_QUEUE_NAME, SRC_DBNAME, DST_QUEUE_SCHEMA, DST_QUEUE_NAME, HIGH_WATER_MARK, ACKNOWLEDGEMENT, TOTAL_MSGS from V$PROPAGATION_RECEIVER; 6.4. Check Buffered Subscribers The V$BUFFERED_SUBSCRIBERS view displays information about subscribers for all buffered queues in the instance. This view can be queried to make sure that the site that the propagation is propagating to is listed as a subscriber address for the site being propagated from: select QUEUE_SCHEMA, QUEUE_NAME, SUBSCRIBER_ADDRESS from V$BUFFERED_SUBSCRIBERS; The SUBSCRIBER_ADDRESS column will not be populated when the propagation is local (between queues on the same database). 6.5. Common Streams Propagation Errors 6.5.1. ORA-02082: A loopback database link must have a connection qualifier. This error can occur if you use the Streams Setup Wizard in Oracle Enterprise Manager without first configuring the GLOBAL_NAME for your database. 6.5.2. ORA-25307: Enqueue rate too high. Enable flow control DBA_QUEUE_SCHEDULES will display this informational message for propagation when the automatic flow control (10g feature of Streams) has been invoked.Similar to Streams capture processes, a Streams propagation process can also go into a state of 'flow control. This is an informative message that indicates flow control has been automatically enabled to reduce the rate at which messages are being enqueued into at target queue.This typically occurs when the target site is unable to keep up with the rate of messages flowing from the source site. Other than checking that the apply process is running normally on the target site, usually no action is required by the DBA. Propagation and the capture process will be resumed automatically when the target site is able to accept more messages.The following document contains more information:Document 302109.1 Streams Propagation Error: ORA-25307 Enqueue rate too high. Enable flow controlSee the following document for one potential cause of this situation:Document 1097115.1 Oracle Streams Apply Reader is in 'Paused' State 6.5.3. ORA-25315 unsupported configuration for propagation of buffered messages This error typically occurs when the target database is RAC and usually indicates that an attempt was made to propagate buffered messages with the database link pointing to an instance in the destination database which is not the owner instance of the destination queue. To resolve the problem, use queue-to-queue propagation for buffered messages. 6.5.4. ORA-600 [KWQBMCRCPTS101] after dropping / recreating propagation For cause/fixes refer to:Document 421237.1 ORA-600 [KWQBMCRCPTS101] reported by a Qmon slave process after dropping a Streams Propagation 6.5.5. Stopping or Dropping a Streams Propagation Hangs See the following note:Document 1159787.1 Troubleshooting Streams Propagation When It is Not Functioning and Attempts to Stop It Hang 6.6. Streams Propagation-Related Notes for Common Issues Document 437838.1 Streams Specific PatchesDocument 749181.1 How to Recover Streams After Dropping PropagationDocument 368912.1 Queue to Queue Propagation Schedule encountered ORA-12514 in a RAC environmentDocument 564649.1 ORA-02068/ORA-03114/ORA-03113 Errors From Streams Propagation Process - Remote Database is Available and Unschedule/Reschedule Does Not ResolveDocument 553017.1 Stream Propagation Process Errors Ora-4052 Ora-6554 From 11g To 10201Document 944846.1 Streams Propagation Fails Ora-7445 [kohrsmc]Document 745601.1 ORA-23603 'STREAMS enqueue aborted due to low SGA' Error from Streams Propagation, and V$STREAMS_CAPTURE.STATE Hanging on 'Enqueuing Message'Document 333068.1 ORA-23603: Streams Enqueue Aborted Eue To Low SGADocument 363496.1 Ora-25315 Propagating on RAC StreamsDocument 368237.1 Unable to Unschedule Propagation. Streams Queue is InvalidDocument 436332.1 dbms_propagation_adm.stop_propagation hangsDocument 727389.1 Propagation Fails With ORA-12528Document 730911.1 ORA-4063 Is Reported After Dropping Negative Prop.RulesetDocument 460471.1 Propagation Blocked by Qmon Process - Streams_queue_table / 'library cache lock' waitsDocument 1165583.1 ORA-600 [kwqpuspse0-ack] In Streams EnvironmentDocument 1059029.1 Combined Capture and Apply (CCA) : Capture aborts : ORA-1422 after schedule_propagationDocument 556309.1 Changing Propagation/ queue_to_queue : false -> true does does not work; no LCRs propagatedDocument 839568.1 Propagation failing with error: ORA-01536: space quota exceeded for tablespace ''Document 311021.1 Streams Propagation Process : Ora 12154 After Reboot with Transparent Application Failover TAF configuredDocument 359971.1 STREAMS propagation to Primary of physical Standby configuation errors with Ora-01033, Ora-02068Document 1101616.1 DBMS_PROPAGATION_ADM.DROP_PROPAGATION FAILS WITH ORA-1747 7. Performance Issues A propagation may seem to be slow if the queries from Sections 3.1 and 6.3 show that the message statistics are not changing quickly. In Oracle Streams, this more usually is due to a slow apply process at the target rather than a slow propagation. Propagation could be inferred to be slow if the message statistics are changing, and the state of a capture process according to V$STREAMS_CAPTURE.STATE is PAUSED FOR FLOW CONTROL, but an ORA-25307 'Enqueue rate too high. Enable flow control' warning is NOT observed in DBA_QUEUE_SCHEDULES per Section 6.5.2. If this is the case, see the following notes / white papers for suggestions to increase performance:Document 335516.1 Master Note for Streams Performance RecommendationsDocument 730036.1 Overview for Troubleshooting Streams Performance IssuesDocument 780733.1 Streams Propagation Tuning with Network ParametersWhite Paper: http://www.oracle.com/technetwork/database/features/availability/maa-wp-10gr2-streams-performance-130059.pdfWhite Paper: Oracle Streams Configuration Best Practices: Oracle Database 10g Release 10.2, http://www.oracle.com/technetwork/database/features/availability/maa-10gr2-streams-configuration-132039.pdf, See APPENDIX A: USING STREAMS CONFIGURATIONS OVER A NETWORKFor basic AQ propagation, the network tuning in the aforementioned Appendix A of the white paper 'Oracle Streams Configuration Best Practices: Oracle Database 10g Release 10.2' is applicable. References NOTE:102330.1 - Advanced Queueing MSG_STATE Values and their InterpretationNOTE:102771.1 - Advanced Queueing Propagation using PL/SQLNOTE:1059029.1 - Combined Capture and Apply (CCA) : Capture aborts : ORA-1422 after schedule_propagationNOTE:1079577.1 - Advanced Queuing Propagation Fails With "ORA-22370: incorrect usage of method"NOTE:1083608.1 - 11g Streams and Oracle SchedulerNOTE:1087324.1 - ORA-01405 ORA-01422 reported by Adavanced Queueing Propagation schedules after RAC reconfigurationNOTE:1097115.1 - Oracle Streams Apply Reader is in 'Paused' StateNOTE:1101616.1 - DBMS_PROPAGATION_ADM.DROP_PROPAGATION FAILS WITH ORA-1747NOTE:1159787.1 - Troubleshooting Streams Propagation When It is Not Functioning and Attempts to Stop It HangNOTE:1165583.1 - ORA-600 [kwqpuspse0-ack] In Streams EnvironmentNOTE:118884.1 - How to unschedule a propagation schedule stuck in pending stateNOTE:1203544.1 - AQ PROPAGATION ABORTED WITH ORA-600[OCIKSIN: INVALID STATUS] ON SYS.DBMS_AQADM_SYS.AQ$_PROPAGATION_PROCEDURE AFTER UPGRADENOTE:1204080.1 - AQ Propagation Failing With ORA-25329 After Upgraded From 8i or 9i to 10g or 11g.NOTE:219416.1 - Advanced Queuing Propagation fails with ORA-22922NOTE:222992.1 - DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE Returns ORA-24082NOTE:253131.1 - Concurrent Writes May Corrupt LOB Segment When Using Auto Segment Space Management (ORA-1555)NOTE:282987.1 - Propagated Messages marked UNDELIVERABLE after Drop and Recreate Of Remote QueueNOTE:298015.1 - Kwqjswproc:Excep After Loop: Assigning To SelfNOTE:302109.1 - Streams Propagation Error: ORA-25307 Enqueue rate too high. Enable flow controlNOTE:311021.1 - Streams Propagation Process : Ora 12154 After Reboot with Transparent Application Failover TAF configuredNOTE:332792.1 - ORA-04061 error relating to SYS.DBMS_PRVTAQIP reported when setting up StatspackNOTE:333068.1 - ORA-23603: Streams Enqueue Aborted Eue To Low SGANOTE:335516.1 - Master Note for Streams Performance RecommendationsNOTE:353325.1 - ORA-24056: Internal inconsistency for QUEUE and destination NOTE:353754.1 - Streams Messaging Propagation Fails between Single and Multi-byte Charactersets when using Chararacter Length Semantics in the ADT.NOTE:359971.1 - STREAMS propagation to Primary of physical Standby configuation errors with Ora-01033, Ora-02068NOTE:363496.1 - Ora-25315 Propagating on RAC StreamsNOTE:365093.1 - ORA-07445 [kwqppay2aqe()+7360] reported on Propagation of a Transformed MessageNOTE:368237.1 - Unable to Unschedule Propagation. Streams Queue is InvalidNOTE:368912.1 - Queue to Queue Propagation Schedule encountered ORA-12514 in a RAC environmentNOTE:421237.1 - ORA-600 [KWQBMCRCPTS101] reported by a Qmon slave process after dropping a Streams PropagationNOTE:436332.1 - dbms_propagation_adm.stop_propagation hangsNOTE:437838.1 - Streams Specific PatchesNOTE:460471.1 - Propagation Blocked by Qmon Process - Streams_queue_table / 'library cache lock' waitsNOTE:463820.1 - Streams Combined Capture and Apply in 11gNOTE:553017.1 - Stream Propagation Process Errors Ora-4052 Ora-6554 From 11g To 10201NOTE:556309.1 - Changing Propagation/ queue_to_queue : false -> true does does not work; no LCRs propagatedNOTE:564649.1 - ORA-02068/ORA-03114/ORA-03113 Errors From Streams Propagation Process - Remote Database is Available and Unschedule/Reschedule Does Not ResolveNOTE:566622.1 - ORA-22275 when propagating >4K AQ$_JMS_TEXT_MESSAGEs from 9.2.0.8 to 10.2.0.1NOTE:727389.1 - Propagation Fails With ORA-12528NOTE:730036.1 - Overview for Troubleshooting Streams Performance IssuesNOTE:730911.1 - ORA-4063 Is Reported After Dropping Negative Prop.RulesetNOTE:731292.1 - ORA-25215 Reported On Local Propagation When Using Transformation with ANYDATA queue tablesNOTE:731539.1 - ORA-29268: HTTP client error 401 Unauthorized Error when the AQ Servlet attempts to Propagate a message via HTTPNOTE:745601.1 - ORA-23603 'STREAMS enqueue aborted due to low SGA' Error from Streams Propagation, and V$STREAMS_CAPTURE.STATE Hanging on 'Enqueuing Message'NOTE:749181.1 - How to Recover Streams After Dropping PropagationNOTE:780733.1 - Streams Propagation Tuning with Network ParametersNOTE:787367.1 - ORA-22275 reported on Propagating Messages with LOB component when propagating between 10.1 and 10.2NOTE:808136.1 - How to clear the old errors from DBA_PROPAGATION view ?NOTE:827184.1 - AQ Propagation with CLOB data types Fails with ORA-22990NOTE:827473.1 - How to alter propagation from queue_to_queue to queue_to_dblinkNOTE:839568.1 - Propagation failing with error: ORA-01536: space quota exceeded for tablespace ''NOTE:846297.1 - AQ Propagation Fails : ORA-00600[kope2upic2954] or Ora-00600[Kghsstream_copyn]NOTE:944846.1 - Streams Propagation Fails Ora-7445 [kohrsmc]

    Read the article

  • How do I make an on-screen HUD in libgdx?

    - by Devin Carless
    I'm new to libgdx, and I am finding I am getting stumped by the simplest of things. It seems to want me to do things a specific way, but the documentation won't tell me what that is. I want to make a very simple 2d game in which the player controls a spaceship. The mouse wheel will zoom in and out, and information and controls are displayed on the screen. But I can't seem to make the mouse wheel NOT zoom the UI. I've tried futzing with the projection matrices in between Here's my (current) code: public class PlayStage extends Stage { ... public void draw() { // tell the camera to update its matrices. camera.update(); // tell the SpriteBatch to render in the // coordinate system specified by the camera. spriteBatch.setProjectionMatrix(camera.combined); spriteBatch.begin(); aButton.draw(spriteBatch, 1F); playerShip.draw(spriteBatch, 1F); spriteBatch.end(); } } camera.zoom is set by scrolled(int amount). I've tried about a dozen variations on the theme of changing the camera's projection matrix after the button is drawn but before the ship is, but no matter what I do, the same things happen to both the button and the ship. So: What is the usual libgdx way of implementing an on-screen UI that isn't transformed by the camera's projection matrix/zoom?

    Read the article

  • 3D terrain map with Hexagon Grids

    - by Rob
    I'm working on a hobby project (I'm a web/backend developer by day) and I want to create a 3D Tile (terrain) engine. I'm using XNA, but I can use MonoGame, OpenGL, or straight DirectX, so the answer does not have to be XNA specific. I'm more looking for some high level advice on how to approach this problem. I know about creating height maps and such, there are thousands of references out there on the net for that, this is a bit more specific. I'm more concerned with is the approach to get a 3D hexagon tile grid out of my terrain (since the terrain, and all 3d objects, are basically triangles). The first approach I thought about is to basically draw the triangles on the screen in the following order (blue numbers) to give me the triangles for terrain (black triangles) and then make hexes out of the triangles (red hex). This approach seems complicated to me since i'm basically having to draw 4 different types of triangles. The next approach I thought of was to use the existing triangles like I did for a square grid and get my hexes from 6 triangles as follows This seems like the easier approach to me since there are only 2 types of triangles (i would have to play with the heights and widths to get a "perfect" hexagon, but the idea is the same. So I'm looking for: 1) Any suggestions on which approach I should take, and why. 2) How would I translate mouse position to a hexagon grid position (especially when moving the camera around), for example in the second image if the mouse pointer were the green circle, how would I determine to highlight that hexagon and then translating that into grid coordinates (assuming it is 0,0)? 3) Any references, articles, books, etc - to get me going in the right direction. Note: I've done hex grid's and mouse-grid coordinate conversion before in 2d. looking for some pointers on how to do the same in 3d. The result I would like to achieve is something similar to this video.

    Read the article

  • Tile Engine - Procedural generation, Data structures, Rendering methods - A lot of effort question!

    - by Trixmix
    Isometric Tile and GameObject rendering. To achive the desired looking game I need to take into consideration which tiles need to be drawn first and which last. What I used is a Object that is TileRenderQueue that you would give it a tile list and it will give you a queue on which ones to draw based on their Z coordinate, so that if the Z is higher then it needs to be drawn last. Now if you read above you would know that I want the location data to instead of being stored in the tile instance i want it to be that the index in the array is the location. and then maybe based on the array i could draw the tiles instead of taking a long time in for looping and ordering them by Z. This is the hardest part for me. It's hard for me to find a simple solution to the which one to draw when problem. Also there is the fact that if the X is larger than the gameobject where the X is larger needs to be drawn over the rest of the tiles and so on. Here is an example: All the parts work together to create an efficient engine so its important to me that you would answer all of the parts. I hope you will work on the answers hard just as much that I worked on this question! If there is any unclear part tell me so in the comments! Thanks for the help!

    Read the article

< Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >