Search Results

Search found 4357 results on 175 pages for 'retrieve'.

Page 34/175 | < Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >

  • C# : WHAT KIND OF CONNECTION SHOULD I USE ? [closed]

    - by Harun
    I am developing a network based application. I need to retrieve data through internet. The scenario is like this - a client machine will send data through internet to the server machine and data size will be big enough. So should i use simple TCP/IP socket concept or else? Because i never did a socket program which will retrieve data through internet..... Any suggestion will be very helpful....... Thanks.

    Read the article

  • C# networking app - should I use sockets or something else? [closed]

    - by Harun
    I am developing a network based application. I need to retrieve data through internet. The scenario is like this - a client machine will send data through internet to the server machine and data size will be big enough. So should i use simple TCP/IP socket concept or else? Because i never did a socket program which will retrieve data through internet..... Any suggestion will be very helpful....... Thanks.

    Read the article

  • Http.Request and cookies Python

    - by Kyle
    I am trying to retrieve source code from a webpage with an already issued cookie and write the source code to a txt file. If I remove the cookies=cookie portion I can retrieve the source code but I need to somehow send the cookie with the http.request. output = open('Filler.txt', 'w+') http = urllib3.PoolManager() cookie =('users' , '1597413515') r = http.request('http://google.com' , 'GET' , cookies=cookie) output.write(r.data) output.close() I get a KeyError: None

    Read the article

  • Play a wav file retrieved from a database on the iPhone?

    - by user312917
    I have alot of wav files stored in sqlite3, but when I retrieve one of them, I can't play it. The retrieve code is NSData *soundData = (NSDATA *)sqlite3_column_blob(statement, 0); mPlayer = [[AVAudioPlayer alloc] initWithData:soundData error:&error]; The data is stored as binary and it's there when I search for it using sqlite3.

    Read the article

  • SQL ENQUIRY In how to Get defined number of records

    - by ramadan2050
    I have a select statement, retrieve about 1000 record I want to modify it to return only some records defined by @startIndex and @count e.g. : If I said @startIndex=20 and @count=20 the result will be : from the 21th record to 40th I try to make it, but it take the same time as if I retrieve the 1000 record what is the best way to do that

    Read the article

  • Linked List manipulation, issues retrieving data c++

    - by floatfil
    I'm trying to implement some functions to manipulate a linked list. The implementation is a template typename T and the class is 'List' which includes a 'head' pointer and also a struct: struct Node { // the node in a linked list T* data; // pointer to actual data, operations in T Node* next; // pointer to a Node }; Since it is a template, and 'T' can be any data, how do I go about checking the data of a list to see if it matches the data input into the function? The function is called 'retrieve' and takes two parameters, the data and a pointer: bool retrieve(T target, T*& ptr); // This is the prototype we need to use for the project "bool retrieve : similar to remove, but not removed from list. If there are duplicates in the list, the first one encountered is retrieved. Second parameter is unreliable if return value is false. E.g., " Employee target("duck", "donald"); success = company1.retrieve(target, oneEmployee); if (success) { cout << "Found in list: " << *oneEmployee << endl; } And the function is called like this: company4.retrieve(emp3, oneEmployee) So that when you cout *oneEmployee, you'll get the data of that pointer (in this case the data is of type Employee). (Also, this is assuming all data types have the apropriate overloaded operators) I hope this makes sense so far, but my issue is in comparing the data in the parameter and the data while going through the list. (The data types that we use all include overloads for equality operators, so oneData == twoData is valid) This is what I have so far: template <typename T> bool List<T>::retrieve(T target , T*& ptr) { List<T>::Node* dummyPtr = head; // point dummy pointer to what the list's head points to for(;;) { if (*dummyPtr->data == target) { // EDIT: it now compiles, but it breaks here and I get an Access Violation error. ptr = dummyPtr->data; // set the parameter pointer to the dummy pointer return true; // return true } else { dummyPtr = dummyPtr->next; // else, move to the next data node } } return false; } Here is the implementation for the Employee class: //-------------------------- constructor ----------------------------------- Employee::Employee(string last, string first, int id, int sal) { idNumber = (id >= 0 && id <= MAXID? id : -1); salary = (sal >= 0 ? sal : -1); lastName = last; firstName = first; } //-------------------------- destructor ------------------------------------ // Needed so that memory for strings is properly deallocated Employee::~Employee() { } //---------------------- copy constructor ----------------------------------- Employee::Employee(const Employee& E) { lastName = E.lastName; firstName = E.firstName; idNumber = E.idNumber; salary = E.salary; } //-------------------------- operator= --------------------------------------- Employee& Employee::operator=(const Employee& E) { if (&E != this) { idNumber = E.idNumber; salary = E.salary; lastName = E.lastName; firstName = E.firstName; } return *this; } //----------------------------- setData ------------------------------------ // set data from file bool Employee::setData(ifstream& inFile) { inFile >> lastName >> firstName >> idNumber >> salary; return idNumber >= 0 && idNumber <= MAXID && salary >= 0; } //------------------------------- < ---------------------------------------- // < defined by value of name bool Employee::operator<(const Employee& E) const { return lastName < E.lastName || (lastName == E.lastName && firstName < E.firstName); } //------------------------------- <= ---------------------------------------- // < defined by value of inamedNumber bool Employee::operator<=(const Employee& E) const { return *this < E || *this == E; } //------------------------------- > ---------------------------------------- // > defined by value of name bool Employee::operator>(const Employee& E) const { return lastName > E.lastName || (lastName == E.lastName && firstName > E.firstName); } //------------------------------- >= ---------------------------------------- // < defined by value of name bool Employee::operator>=(const Employee& E) const { return *this > E || *this == E; } //----------------- operator == (equality) ---------------- // if name of calling and passed object are equal, // return true, otherwise false // bool Employee::operator==(const Employee& E) const { return lastName == E.lastName && firstName == E.firstName; } //----------------- operator != (inequality) ---------------- // return opposite value of operator== bool Employee::operator!=(const Employee& E) const { return !(*this == E); } //------------------------------- << --------------------------------------- // display Employee object ostream& operator<<(ostream& output, const Employee& E) { output << setw(4) << E.idNumber << setw(7) << E.salary << " " << E.lastName << " " << E.firstName << endl; return output; } I will include a check for NULL pointer but I just want to get this working and will test it on a list that includes the data I am checking. Thanks to whoever can help and as usual, this is for a course so I don't expect or want the answer, but any tips as to what might be going wrong will help immensely!

    Read the article

  • Retriving requried data form Content Providers using single cursor.

    - by HellBoy
    I want to retrieve Name,Number,Company,and Designation so I am retrieving it using 2 cursor as follow Cursor cursor1 = getContentResolver().query(Data.CONTENT_URI, new String[]{Organization.COMPANY, Organization.TITLE}, Data.MIMETYPE + "='" + Organization.CONTENT_ITEM_TYPE + "'", null, null); Cursor cursor2 = getContentResolver().query(Phone.CONTENT_URI, new String[]{Phone.NUMBER, Phone.DISPLAY_NAME}, null, null, null); but How retrieve using one cursor or passing query one time only.

    Read the article

  • Save PHP variables to a text file

    - by Ajith
    I was wondering how to save PHP variables to a txt file and then retrieve them again. Example: There is an input box, after submitted the stuff that was written in the input box will be saved to a text file. Later on the results need to be brought back as a variable. So lets say the variable is $text I need that to be saved to a text file and be able to retrieve it back again. Hope it makes sense, Thanks in advance!!!

    Read the article

  • json retrival failed with jquery .each

    - by user545520
    {"paging": {"pageNum":2,"action":"Next","type":"","availableCacheName":"getAllFunds","selectedCacheName":"","showFrom":101,"showTo":200,"totalRec":289,"pageSize":100}, "Data":[{"sourceCodeId":0,"radio_fund":"individua l","availableFunds":[],"fundId":288,"searchName":[],"fundName":"Asian Equity Fund A Class Income","srcFundGrpId":"PGI","firstElement":0,"las tElement":0,"totalElements":0,"pageList":[],"standardExtract":true}] I have json file with above format with two fileds,one paging and one is Data array. I able to retrieve values of paging,but i am not able to retrieve the values of data array with .each function of jquery. Any suggestions or inputs really appreciated.

    Read the article

  • Passing C string reference to C#

    - by user336109
    c code extern "C" __declspec(dllexport) int export(LPCTSTR inputFile, string &msg) { msg = "haha" } c# code [DllImport("libXmlEncDll.dll")] public static extern int XmlDecrypt(StringBuilder inputFile, ref Stringbuilder newMsg) } I got an error when I try to retrieve the content of newMsg saying that I'm trying to write to a protected memory area. What is the best way to retrieve the string from c to c#. Thanks.

    Read the article

  • Is there something in MySQL like IN but which uses AND instead of OR?

    - by Skatox
    I need a SQL statement to retrieve records where it key (or any column) is in a associate table, for example: documentId termId 4 1 4 2 3 3 5 1 This: SELECT documentId FROM table WHERE termId IN (1,2,3) ...will retrieve any documentid value where the termid value is 1 or 2 or 3. Is there something like this but return documentid values where the termid values are 1 and 2 and 3? Like an IN but with AND.

    Read the article

  • ASP.NET and HTML5 Local Storage

    - by Stephen Walther
    My favorite feature of HTML5, hands-down, is HTML5 local storage (aka DOM storage). By taking advantage of HTML5 local storage, you can dramatically improve the performance of your data-driven ASP.NET applications by caching data in the browser persistently. Think of HTML5 local storage like browser cookies, but much better. Like cookies, local storage is persistent. When you add something to browser local storage, it remains there when the user returns to the website (possibly days or months later). Importantly, unlike the cookie storage limitation of 4KB, you can store up to 10 megabytes in HTML5 local storage. Because HTML5 local storage works with the latest versions of all modern browsers (IE, Firefox, Chrome, Safari), you can start taking advantage of this HTML5 feature in your applications right now. Why use HTML5 Local Storage? I use HTML5 Local Storage in the JavaScript Reference application: http://Superexpert.com/JavaScriptReference The JavaScript Reference application is an HTML5 app that provides an interactive reference for all of the syntax elements of JavaScript (You can read more about the application and download the source code for the application here). When you open the application for the first time, all of the entries are transferred from the server to the browser (all 300+ entries). All of the entries are stored in local storage. When you open the application in the future, only changes are transferred from the server to the browser. The benefit of this approach is that the application performs extremely fast. When you click the details link to view details on a particular entry, the entry details appear instantly because all of the entries are stored on the client machine. When you perform key-up searches, by typing in the filter textbox, matching entries are displayed very quickly because the entries are being filtered on the local machine. This approach can have a dramatic effect on the performance of any interactive data-driven web application. Interacting with data on the client is almost always faster than interacting with the same data on the server. Retrieving Data from the Server In the JavaScript Reference application, I use Microsoft WCF Data Services to expose data to the browser. WCF Data Services generates a REST interface for your data automatically. Here are the steps: Create your database tables in Microsoft SQL Server. For example, I created a database named ReferenceDB and a database table named Entities. Use the Entity Framework to generate your data model. For example, I used the Entity Framework to generate a class named ReferenceDBEntities and a class named Entities. Expose your data through WCF Data Services. I added a WCF Data Service to my project and modified the data service class to look like this:   using System.Data.Services; using System.Data.Services.Common; using System.Web; using JavaScriptReference.Models; namespace JavaScriptReference.Services { [System.ServiceModel.ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class EntryService : DataService<ReferenceDBEntities> { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { config.UseVerboseErrors = true; config.SetEntitySetAccessRule("*", EntitySetRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } // Define a change interceptor for the Products entity set. [ChangeInterceptor("Entries")] public void OnChangeEntries(Entry entry, UpdateOperations operations) { if (!HttpContext.Current.Request.IsAuthenticated) { throw new DataServiceException("Cannot update reference unless authenticated."); } } } }     The WCF data service is named EntryService. Notice that it derives from DataService<ReferenceEntitites>. Because it derives from DataService<ReferenceEntities>, the data service exposes the contents of the ReferenceEntitiesDB database. In the code above, I defined a ChangeInterceptor to prevent un-authenticated users from making changes to the database. Anyone can retrieve data through the service, but only authenticated users are allowed to make changes. After you expose data through a WCF Data Service, you can use jQuery to retrieve the data by performing an Ajax call. For example, I am using an Ajax call that looks something like this to retrieve the JavaScript entries from the EntryService.svc data service: $.ajax({ dataType: "json", url: “/Services/EntryService.svc/Entries”, success: function (result) { var data = callback(result["d"]); } });     Notice that you must unwrap the data using result[“d”]. After you unwrap the data, you have a JavaScript array of the entries. I’m transferring all 300+ entries from the server to the client when the application is opened for the first time. In other words, I transfer the entire database from the server to the client, once and only once, when the application is opened for the first time. The data is transferred using JSON. Here is a fragment: { "d" : [ { "__metadata": { "uri": "http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries(1)", "type": "ReferenceDBModel.Entry" }, "Id": 1, "Name": "Global", "Browsers": "ff3_6,ie8,ie9,c8,sf5,es3,es5", "Syntax": "object", "ShortDescription": "Contains global variables and functions", "FullDescription": "<p>\nThe Global object is determined by the host environment. In web browsers, the Global object is the same as the windows object.\n</p>\n<p>\nYou can use the keyword <code>this</code> to refer to the Global object when in the global context (outside of any function).\n</p>\n<p>\nThe Global object holds all global variables and functions. For example, the following code demonstrates that the global <code>movieTitle</code> variable refers to the same thing as <code>window.movieTitle</code> and <code>this.movieTitle</code>.\n</p>\n<pre>\nvar movieTitle = \"Star Wars\";\nconsole.log(movieTitle === this.movieTitle); // true\nconsole.log(movieTitle === window.movieTitle); // true\n</pre>\n", "LastUpdated": "634298578273756641", "IsDeleted": false, "OwnerId": null }, { "__metadata": { "uri": "http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries(2)", "type": "ReferenceDBModel.Entry" }, "Id": 2, "Name": "eval(string)", "Browsers": "ff3_6,ie8,ie9,c8,sf5,es3,es5", "Syntax": "function", "ShortDescription": "Evaluates and executes JavaScript code dynamically", "FullDescription": "<p>\nThe following code evaluates and executes the string \"3+5\" at runtime.\n</p>\n<pre>\nvar result = eval(\"3+5\");\nconsole.log(result); // returns 8\n</pre>\n<p>\nYou can rewrite the code above like this:\n</p>\n<pre>\nvar result;\neval(\"result = 3+5\");\nconsole.log(result);\n</pre>", "LastUpdated": "634298580913817644", "IsDeleted": false, "OwnerId": 1 } … ]} I worried about the amount of time that it would take to transfer the records. According to Google Chome, it takes about 5 seconds to retrieve all 300+ records on a broadband connection over the Internet. 5 seconds is a small price to pay to avoid performing any server fetches of the data in the future. And here are the estimated times using different types of connections using Fiddler: Notice that using a modem, it takes 33 seconds to download the database. 33 seconds is a significant chunk of time. So, I would not use the approach of transferring the entire database up front if you expect a significant portion of your website audience to connect to your website with a modem. Adding Data to HTML5 Local Storage After the JavaScript entries are retrieved from the server, the entries are stored in HTML5 local storage. Here’s the reference documentation for HTML5 storage for Internet Explorer: http://msdn.microsoft.com/en-us/library/cc197062(VS.85).aspx You access local storage by accessing the windows.localStorage object in JavaScript. This object contains key/value pairs. For example, you can use the following JavaScript code to add a new item to local storage: <script type="text/javascript"> window.localStorage.setItem("message", "Hello World!"); </script>   You can use the Google Chrome Storage tab in the Developer Tools (hit CTRL-SHIFT I in Chrome) to view items added to local storage: After you add an item to local storage, you can read it at any time in the future by using the window.localStorage.getItem() method: <script type="text/javascript"> window.localStorage.setItem("message", "Hello World!"); </script>   You only can add strings to local storage and not JavaScript objects such as arrays. Therefore, before adding a JavaScript object to local storage, you need to convert it into a JSON string. In the JavaScript Reference application, I use a wrapper around local storage that looks something like this: function Storage() { this.get = function (name) { return JSON.parse(window.localStorage.getItem(name)); }; this.set = function (name, value) { window.localStorage.setItem(name, JSON.stringify(value)); }; this.clear = function () { window.localStorage.clear(); }; }   If you use the wrapper above, then you can add arbitrary JavaScript objects to local storage like this: var store = new Storage(); // Add array to storage var products = [ {name:"Fish", price:2.33}, {name:"Bacon", price:1.33} ]; store.set("products", products); // Retrieve items from storage var products = store.get("products");   Modern browsers support the JSON object natively. If you need the script above to work with older browsers then you should download the JSON2.js library from: https://github.com/douglascrockford/JSON-js The JSON2 library will use the native JSON object if a browser already supports JSON. Merging Server Changes with Browser Local Storage When you first open the JavaScript Reference application, the entire database of JavaScript entries is transferred from the server to the browser. Two items are added to local storage: entries and entriesLastUpdated. The first item contains the entire entries database (a big JSON string of entries). The second item, a timestamp, represents the version of the entries. Whenever you open the JavaScript Reference in the future, the entriesLastUpdated timestamp is passed to the server. Only records that have been deleted, updated, or added since entriesLastUpdated are transferred to the browser. The OData query to get the latest updates looks like this: http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries?$filter=(LastUpdated%20gt%20634301199890494792L) If you remove URL encoding, the query looks like this: http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries?$filter=(LastUpdated gt 634301199890494792L) This query returns only those entries where the value of LastUpdated > 634301199890494792 (the version timestamp). The changes – new JavaScript entries, deleted entries, and updated entries – are merged with the existing entries in local storage. The JavaScript code for performing the merge is contained in the EntriesHelper.js file. The merge() method looks like this:   merge: function (oldEntries, newEntries) { // concat (this performs the add) oldEntries = oldEntries || []; var mergedEntries = oldEntries.concat(newEntries); // sort this.sortByIdThenLastUpdated(mergedEntries); // prune duplicates (this performs the update) mergedEntries = this.pruneDuplicates(mergedEntries); // delete mergedEntries = this.removeIsDeleted(mergedEntries); // Sort this.sortByName(mergedEntries); return mergedEntries; },   The contents of local storage are then updated with the merged entries. I spent several hours writing the merge() method (much longer than I expected). I found two resources to be extremely useful. First, I wrote extensive unit tests for the merge() method. I wrote the unit tests using server-side JavaScript. I describe this approach to writing unit tests in this blog entry. The unit tests are included in the JavaScript Reference source code. Second, I found the following blog entry to be super useful (thanks Nick!): http://nicksnettravels.builttoroam.com/post/2010/08/03/OData-Synchronization-with-WCF-Data-Services.aspx One big challenge that I encountered involved timestamps. I originally tried to store an actual UTC time as the value of the entriesLastUpdated item. I quickly discovered that trying to work with dates in JSON turned out to be a big can of worms that I did not want to open. Next, I tried to use a SQL timestamp column. However, I learned that OData cannot handle the timestamp data type when doing a filter query. Therefore, I ended up using a bigint column in SQL and manually creating the value when a record is updated. I overrode the SaveChanges() method to look something like this: public override int SaveChanges(SaveOptions options) { var changes = this.ObjectStateManager.GetObjectStateEntries( EntityState.Modified | EntityState.Added | EntityState.Deleted); foreach (var change in changes) { var entity = change.Entity as IEntityTracking; if (entity != null) { entity.LastUpdated = DateTime.Now.Ticks; } } return base.SaveChanges(options); }   Notice that I assign Date.Now.Ticks to the entity.LastUpdated property whenever an entry is modified, added, or deleted. Summary After building the JavaScript Reference application, I am convinced that HTML5 local storage can have a dramatic impact on the performance of any data-driven web application. If you are building a web application that involves extensive interaction with data then I recommend that you take advantage of this new feature included in the HTML5 standard.

    Read the article

  • Handling HumanTask attachments in Oracle BPM 11g PS4FP+ (II)

    - by ccasares
    Retrieving uploaded attachments -UCM- As stated in my previous blog entry, Oracle BPM 11g 11.1.1.5.1 (aka PS4FP) introduced a new cool feature whereby you can use Oracle WebCenter Content (previously known as Oracle UCM) as the repository for the human task attached documents. For more information about how to use or enable this feature, have a look here. The attachment scope (either TASK or PROCESS) also applies to UCM-attachments. But even with this other feature, one question might arise when using UCM attachments. How can I get them from within the process? The first answer would be to use the same getTaskAttachmentContents() XPath function already explained in my previous blog entry. In fact, that's the way it should be. But in Oracle BPM 11g 11.1.1.5.1 (PS4FP) and 11.1.1.6.0 (PS5) there's a bug that prevents you to do that. If you invoke such function against a UCM-attachment, you'll get a null content response (bug#13907552). Even if the attachment was correctly uploaded. While this bug gets fixed, next I will show a workaround that lets me to retrieve the UCM-attached documents from within a BPM process. Besides, the sample will show how to interact with WCC API from within a BPM process.Aside note: I suggest you to read my previous blog entry about Human Task attachments where I briefly describe some concepts that are used next, such as the execData/attachment[] structure. Sample Process I will be using the following sample process: A dummy UserTask using "HumanTask2" Human Task, followed by an Embedded Subprocess that will retrieve the attachments payload. In this case, and here's the key point of the sample, we will retrieve such payload using WebCenter Content WebService API (IDC): and once retrieved, we will write each of them back to a file in the server using a File Adapter service: In detail:  We will use the same attachmentCollection XSD structure and same BusinessObject definition as in the previous blog entry. However we create a separate variable, named attachmentUCM, based on such BusinessObject. We will still need to keep a copy of the HumanTask output's execData structure. Therefore we need to create a new variable of type TaskExecutionData (different one than the other used for non-UCM attachments): As in the non-UCM attachments flow, in the output tab of the UserTask mapping, we'll keep a copy of the execData structure: Now we get into the embedded subprocess that will retrieve the attachments' payload. First, and using an XSLT transformation, we feed the attachmentUCM variable with the following information: The name of each attachment (from execData/attachment/name element) The WebCenter Content ID of the uploaded attachment. This info is stored in execData/attachment/URI element with the format ecm://<id>. As we just want the numeric <id>, we need to get rid of the protocol prefix ("ecm://"). We do so with some XPath functions as detailed below: with these two functions being invoked, respectively: We, again, set the target payload element with an empty string, to get the <payload></payload> tag created. The complete XSLT transformation is shown below. Remember that we're using the XSLT for-each node to create as many target structures as necessary.  Once we have fed the attachmentsUCM structure and so it now contains the name of each of the attachments along with each WCC unique id (dID), it is time to iterate through it and get the payload. Therefore we will use a new embedded subprocess of type MultiInstance, that will iterate over the attachmentsUCM/attachment[] element: In each iteration we will use a Service activity that invokes WCC API through a WebService. Follow these steps to create and configure the Partner Link needed: Login to WCC console with an administrator user (i.e. weblogic). Go to Administration menu and click on "Soap Wsdls" link. We will use the GetFile service to retrieve a file based on its dID. Thus we'll need such service WSDL definition that can be downloaded by clicking the GetFile link. Save the WSDL file in your JDev project folder. In the BPM project's composite view, drag & drop a WebService adapter to create a new External Reference, based on the just added GetFile.wsdl. Name it UCM_GetFile. WCC services are secured through basic HTTP authentication. Therefore we need to enable the just created reference for that: Right-click the reference and click on Configure WS Policies. Under the Security section, click "+" to add the "oracle/wss_username_token_client_policy" policy The last step is to set the credentials for the security policy. For the sample we will use the admin user for WCC (weblogic/welcome1). Open the composite.xml file and select the Source view. Search for the UCM_GetFile entry and add the following highlighted elements into it:   <reference name="UCM_GetFile" ui:wsdlLocation="GetFile.wsdl">     <interface.wsdl interface="http://www.stellent.com/GetFile/#wsdl.interface(GetFileSoap)"/>     <binding.ws port="http://www.stellent.com/GetFile/#wsdl.endpoint(GetFile/GetFileSoap)"                 location="GetFile.wsdl" soapVersion="1.1">       <wsp:PolicyReference URI="oracle/wss_username_token_client_policy"                            orawsp:category="security" orawsp:status="enabled"/>       <property name="weblogic.wsee.wsat.transaction.flowOption"                 type="xs:string" many="false">WSDLDriven</property>       <property name="oracle.webservices.auth.username"                 type="xs:string">weblogic</property>       <property name="oracle.webservices.auth.password"                 type="xs:string">welcome1</property>     </binding.ws>   </reference> Now the new external reference is ready: Once the reference has just been created, we should be able now to use it from our BPM process. However we find here a problem. The WCC GetFile service operation that we will use, GetFileByID, accepts as input a structure similar to this one, where all element tags are optional: <get:GetFileByID xmlns:get="http://www.stellent.com/GetFile/">    <get:dID>?</get:dID>   <get:rendition>?</get:rendition>   <get:extraProps>      <get:property>         <get:name>?</get:name>         <get:value>?</get:value>      </get:property>   </get:extraProps></get:GetFileByID> and we need to fill up just the <get:dID> tag element. Due to some kind of restriction or bug on WCC, the rest of the tag elements must NOT be sent, not even empty (i.e.: <get:rendition></get:rendition> or <get:rendition/>). A sample request that performs the query just by the dID, must be in the following format: <get:GetFileByID xmlns:get="http://www.stellent.com/GetFile/">   <get:dID>12345</get:dID></get:GetFileByID> The issue here is that the simple mapping in BPM does create empty tags being a sample result as follows: <get:GetFileByID xmlns:get="http://www.stellent.com/GetFile/"> <get:dID>12345</get:dID> <get:rendition/> <get:extraProps/> </get:GetFileByID> Although the above structure is perfectly valid, it is not accepted by WCC. Therefore, we need to bypass the problem. The workaround we use (many others are available) is to add a Mediator component between the BPM process and the Service that simply copies the input structure from BPM but getting rid of the empty tags. Follow these steps to configure the Mediator: Drag & drop a new Mediator component into the composite. Uncheck the creation of the SOAP bindings and use the Interface Definition from WSDL template and select the existing GetFile.wsdl Double click in the mediator to edit it. Add a static routing rule to the GetFileByID operation, of type Service and select References/UCM_GetFile/GetFileByID target service: Create the request and reply XSLT mappers: Make sure you map only the dID element in the request: And do an Auto-mapper for the whole response: Finally, we can now add and configure the Service activity in the BPM process. Drag & drop it to the embedded subprocess and select the NormalizedGetFile service and getFileByID operation: Map both the input: ...and the output: Once this embedded subprocess ends, we will have all attachments (name + payload) in the attachmentsUCM variable, which is the main goal of this sample. But in order to test everything runs fine, we finish the sample writing each attachment to a file. To that end we include a final embedded subprocess to concurrently iterate through each attachmentsUCM/attachment[] element: On each iteration we will use a Service activity that invokes a File Adapter write service. In here we have two important parameters to set. First, the payload itself. The file adapter awaits binary data in base64 format (string). We have to map it using XPath (Simple mapping doesn't recognize a String as a base64-binary valid target): Second, we must set the target filename using the Service Properties dialog box: Again, note how we're making use of the loopCounter index variable to get the right element within the embedded subprocess iteration. Final blog entry about attachments will handle how to inject documents to Human Tasks from the BPM process and how to share attachments between different User Tasks. Will come soon. Again, once I finish will all posts on this matter, I will upload the whole sample project to java.net.

    Read the article

  • solved: puppet master REST API returns 403 when running under passenger works when master runs from command line

    - by Anadi Misra
    I am using the standard auth.conf provided in puppet install for the puppet master which is running through passenger under Nginx. However for most of the catalog, files and certitifcate request I get a 403 response. ### Authenticated paths - these apply only when the client ### has a valid certificate and is thus authenticated # allow nodes to retrieve their own catalog path ~ ^/catalog/([^/]+)$ method find allow $1 # allow nodes to retrieve their own node definition path ~ ^/node/([^/]+)$ method find allow $1 # allow all nodes to access the certificates services path ~ ^/certificate_revocation_list/ca method find allow * # allow all nodes to store their reports path /report method save allow * # unconditionally allow access to all file services # which means in practice that fileserver.conf will # still be used path /file allow * ### Unauthenticated ACL, for clients for which the current master doesn't ### have a valid certificate; we allow authenticated users, too, because ### there isn't a great harm in letting that request through. # allow access to the master CA path /certificate/ca auth any method find allow * path /certificate/ auth any method find allow * path /certificate_request auth any method find, save allow * path /facts auth any method find, search allow * # this one is not stricly necessary, but it has the merit # of showing the default policy, which is deny everything else path / auth any Puppet master however does not seems to be following this as I get this error on client [amisr1@blramisr195602 ~]$ sudo puppet agent --no-daemonize --verbose --server bangvmpllda02.XXXXX.com [sudo] password for amisr1: Starting Puppet client version 3.0.1 Warning: Unable to fetch my node definition, but the agent run will continue: Warning: Error 403 on SERVER: Forbidden request: XX.XXX.XX.XX(XX.XXX.XX.XX) access to /certificate_revocation_list/ca [find] at :110 Info: Retrieving plugin Error: /File[/var/lib/puppet/lib]: Failed to generate additional resources using 'eval_generate: Error 403 on SERVER: Forbidden request: XX.XXX.XX.XX(XX.XXX.XX.XX) access to /file_metadata/plugins [search] at :110 Error: /File[/var/lib/puppet/lib]: Could not evaluate: Error 403 on SERVER: Forbidden request: XX.XXX.XX.XX(XX.XXX.XX.XX) access to /file_metadata/plugins [find] at :110 Could not retrieve file metadata for puppet://devops.XXXXX.com/plugins: Error 403 on SERVER: Forbidden request: XX.XXX.XX.XX(XX.XXX.XX.XX) access to /file_metadata/plugins [find] at :110 Error: Could not retrieve catalog from remote server: Error 403 on SERVER: Forbidden request: XX.XXX.XX.XX(XX.XXX.XX.XX) access to /catalog/blramisr195602.XXXXX.com [find] at :110 Using cached catalog Error: Could not retrieve catalog; skipping run Error: Could not send report: Error 403 on SERVER: Forbidden request: XX.XXX.XX.XX(XX.XXX.XX.XX) access to /report/blramisr195602.XXXXX.com [save] at :110 and the server logs show XX.XXX.XX.XX - - [10/Dec/2012:14:46:52 +0530] "GET /production/certificate_revocation_list/ca? HTTP/1.1" 403 102 "-" "Ruby" XX.XXX.XX.XX - - [10/Dec/2012:14:46:52 +0530] "GET /production/file_metadatas/plugins?links=manage&recurse=true&&ignore=---+%0A++-+%22.svn%22%0A++-+CVS%0A++-+%22.git%22&checksum_type=md5 HTTP/1.1" 403 95 "-" "Ruby" XX.XXX.XX.XX - - [10/Dec/2012:14:46:52 +0530] "GET /production/file_metadata/plugins? HTTP/1.1" 403 93 "-" "Ruby" XX.XXX.XX.XX - - [10/Dec/2012:14:46:53 +0530] "POST /production/catalog/blramisr195602.XXXXX.com HTTP/1.1" 403 106 "-" "Ruby" XX.XXX.XX.XX - - [10/Dec/2012:14:46:53 +0530] "PUT /production/report/blramisr195602.XXXXX.com HTTP/1.1" 403 105 "-" "Ruby" thefile server conf file is as follows (and goin by what they say on puppet site, It is better to regulate access in auth.conf for reaching file server and then allow file server to server all) [files] path /apps/puppet/files allow * [private] path /apps/puppet/private/%H allow * [modules] allow * I am using server and client version 3 Nginx has been compiled using the following options nginx version: nginx/1.3.9 built by gcc 4.4.6 20120305 (Red Hat 4.4.6-4) (GCC) TLS SNI support enabled configure arguments: --prefix=/apps/nginx --conf-path=/apps/nginx/nginx.conf --pid-path=/apps/nginx/run/nginx.pid --error-log-path=/apps/nginx/logs/error.log --http-log-path=/apps/nginx/logs/access.log --with-http_ssl_module --with-http_gzip_static_module --add-module=/usr/lib/ruby/gems/1.8/gems/passenger-3.0.18/ext/nginx --add-module=/apps/Downloads/nginx/nginx-auth-ldap-master/ and the standard nginx puppet master conf server { ssl on; listen 8140 ssl; server_name _; passenger_enabled on; passenger_set_cgi_param HTTP_X_CLIENT_DN $ssl_client_s_dn; passenger_set_cgi_param HTTP_X_CLIENT_VERIFY $ssl_client_verify; passenger_min_instances 5; access_log logs/puppet_access.log; error_log logs/puppet_error.log; root /apps/nginx/html/rack/public; ssl_certificate /var/lib/puppet/ssl/certs/bangvmpllda02.XXXXXX.com.pem; ssl_certificate_key /var/lib/puppet/ssl/private_keys/bangvmpllda02.XXXXXX.com.pem; ssl_crl /var/lib/puppet/ssl/ca/ca_crl.pem; ssl_client_certificate /var/lib/puppet/ssl/certs/ca.pem; ssl_ciphers SSLv2:-LOW:-EXPORT:RC4+RSA; ssl_prefer_server_ciphers on; ssl_verify_client optional; ssl_verify_depth 1; ssl_session_cache shared:SSL:128m; ssl_session_timeout 5m; } Puppet is picking up the correct settings from the files mentioned because config print command points to /etc/puppet [amisr1@bangvmpllDA02 puppet]$ sudo puppet config print | grep conf async_storeconfigs = false authconfig = /etc/puppet/namespaceauth.conf autosign = /etc/puppet/autosign.conf catalog_cache_terminus = store_configs confdir = /etc/puppet config = /etc/puppet/puppet.conf config_file_name = puppet.conf config_version = "" configprint = all configtimeout = 120 dblocation = /var/lib/puppet/state/clientconfigs.sqlite3 deviceconfig = /etc/puppet/device.conf fileserverconfig = /etc/puppet/fileserver.conf genconfig = false hiera_config = /etc/puppet/hiera.yaml localconfig = /var/lib/puppet/state/localconfig name = config rest_authconfig = /etc/puppet/auth.conf storeconfigs = true storeconfigs_backend = puppetdb tagmap = /etc/puppet/tagmail.conf thin_storeconfigs = false I checked the firewall rules on this VM; 80, 443, 8140, 3000 are allowed. Do I still have to tweak any specifics to auth.conf for getting this to work? Update I added verbose logging to the puppet master and restarted nginx; here's the additional info I see in logs Mon Dec 10 18:19:15 +0530 2012 Puppet (err): Could not resolve 10.209.47.31: no name for 10.209.47.31 Mon Dec 10 18:19:15 +0530 2012 access[/] (info): defaulting to no access for 10.209.47.31 Mon Dec 10 18:19:15 +0530 2012 Puppet (warning): Denying access: Forbidden request: 10.209.47.31(10.209.47.31) access to /file_metadata/plugins [find] at :111 Mon Dec 10 18:19:15 +0530 2012 Puppet (err): Forbidden request: 10.209.47.31(10.209.47.31) access to /file_metadata/plugins [find] at :111 10.209.47.31 - - [10/Dec/2012:18:19:15 +0530] "GET /production/file_metadata/plugins? HTTP/1.1" 403 93 "-" "Ruby" On the agent machine facter fqdn and hostname both return a fully qualified host name [amisr1@blramisr195602 ~]$ sudo facter fqdn blramisr195602.XXXXXXX.com I then updated the agent configuration to add dns_alt_names = 10.209.47.31 cleaned all certificates on master and agent and regenerated the certificates and signed them on master using the option --allow-dns-alt-names [amisr1@bangvmpllDA02 ~]$ sudo puppet cert sign blramisr195602.XXXXXX.com Error: CSR 'blramisr195602.XXXXXX.com' contains subject alternative names (DNS:10.209.47.31, DNS:blramisr195602.XXXXXX.com), which are disallowed. Use `puppet cert --allow-dns-alt-names sign blramisr195602.XXXXXX.com` to sign this request. [amisr1@bangvmpllDA02 ~]$ sudo puppet cert --allow-dns-alt-names sign blramisr195602.XXXXXX.com Signed certificate request for blramisr195602.XXXXXX.com Removing file Puppet::SSL::CertificateRequest blramisr195602.XXXXXX.com at '/var/lib/puppet/ssl/ca/requests/blramisr195602.XXXXXX.com.pem' however, that doesn't help either; I get same errors as before. Not sure why in the logs it shows comparing access rules by IP and not hostname. Is there any Nginx configuration to change this behavior?

    Read the article

  • Handling HumanTask attachments in Oracle BPM 11g PS4FP+ (I)

    - by ccasares
    Adding attachments to a HumanTask is a feature that exists in Oracle HWF (Human Workflow) since 10g. However, in 11g there have been many improvements on this feature and this entry will try to summarize them. Oracle BPM 11g 11.1.1.5.1 (aka PS4 Feature Pack or PS4FP) introduced two great features: Ability to link attachments at a Task scope or at a Process scope: "Task" attachments are only visible within the scope (lifetime) of a task. This means that, initially, any member of the assignment pattern of the Human Task will be able to handle (add, review or remove) attachments. However, once the task is completed, subsequent human tasks will not have access to them. This does not mean those attachments got lost. Once the human task is completed, attachments can be retrieved in order to, i.e., check them in to a Content Server or to inject them to a new and different human task. Aside note: a "re-initiated" human task will inherit comments and attachments, along with history and -optionally- payload. See here for more info. "Process" attachments are visible within the scope of the process. This means that subsequent human tasks in the same process instance will have access to them. Ability to use Oracle WebCenter Content (previously known as "Oracle UCM") as the backend for the attachments instead of using HWF database backend. This feature adds all content server document lifecycle capabilities to HWF attachments (versioning, RBAC, metadata management, etc). As of today, only Oracle WCC is supported. However, Oracle BPM Suite does include a license of Oracle WCC for the solely usage of document management within BPM scope. Here are some code samples that leverage the above features. Retrieving uploaded attachments -Non UCM- Non UCM attachments (default ones or those that have existed from 10g, and are stored "as-is" in HWK database backend) can be retrieved after the completion of the Human Task. Firstly, we need to know whether any attachment has been effectively uploaded to the human task. There are two ways to find it out: Through an XPath function: Checking the execData/attachment[] structure. For example: Once we are sure one ore more attachments were uploaded to the Human Task, we want to get them. In this example, by "get" I mean to get the attachment name and the payload of the file. Aside note: Oracle HWF lets you to upload two kind of [non-UCM] attachments: a desktop document and a Web URL. This example focuses just on the desktop document one. In order to "retrieve" an uploaded Web URL, you can get it directly from the execData/attachment[] structure. Attachment content (payload) is retrieved through the getTaskAttachmentContents() XPath function: This example shows how to retrieve as many attachments as those had been uploaded to the Human Task and write them to the server using the File Adapter service. The sample process excerpt is as follows:  A dummy UserTask using "HumanTask1" Human Task followed by a Embedded Subprocess that will retrieve the attachments (we're assuming at least one attachment is uploaded): and once retrieved, we will write each of them back to a file in the server using a File Adapter service: In detail: We've defined an XSD structure that will hold the attachments (both name and payload): Then, we can create a BusinessObject based on such element (attachmentCollection) and create a variable (named attachmentBPM) of such BusinessObject type. We will also need to keep a copy of the HumanTask output's execData structure. Therefore we need to create a variable of type TaskExecutionData... ...and copy the HumanTask output execData to it: Now we get into the embedded subprocess that will retrieve the attachments' payload. First, and using an XSLT transformation, we feed the attachmentBPM variable with the name of each attachment and setting an empty value to the payload: Please note that we're using the XSLT for-each node to create as many target structures as necessary. Also note that we're setting an Empty text to the payload variable. The reason for this is to make sure the <payload></payload> tag gets created. This is needed when we map the payload to the XML variable later. Aside note: We are assuming that we're retrieving non-UCM attachments. However in real life you might want to check the type of attachment you're handling. The execData/attachment[]/storageType contains the values "UCM" for UCM type attachments, "TASK" for non-UCM ones or "URL" for Web URL ones. Those values are part of the "Ext.Com.Oracle.Xmlns.Bpel.Workflow.Task.StorageTypeEnum" enumeration. Once we have fed the attachmentsBPM structure and so it now contains the name of each of the attachments, it is time to iterate through it and get the payload. Therefore we will use a new embedded subprocess of type MultiInstance, that will iterate over the attachmentsBPM/attachment[] element: In every iteration we will use a Script activity to map the corresponding payload element with the result of the XPath function getTaskAttachmentContents(). Please, note how the target array element is indexed with the loopCounter predefined variable, so that we make sure we're feeding the right element during the array iteration:  The XPath function used looks as follows: hwf:getTaskAttachmentContents(bpmn:getDataObject('UserTask1LocalExecData')/ns1:systemAttributes/ns1:taskId, bpmn:getDataObject('attachmentsBPM')/ns:attachment[bpmn:getActivityInstanceAttribute('SUBPROCESS3067107484296', 'loopCounter')]/ns:fileName)  where the input parameters are: taskId of the just completed Human Task attachment name we're retrieving the payload from array index (loopCounter predefined variable)  Aside note: The reason whereby we're iterating the execData/attachment[] structure through embedded subprocess and not, i.e., using XSLT and for-each nodes, is mostly because the getTaskAttachmentContents() XPath function is currently not available in XSLT mappings. So all this example might be considered as a workaround until this gets fixed/enhanced in future releases. Once this embedded subprocess ends, we will have all attachments (name + payload) in the attachmentsBPM variable, which is the main goal of this sample. But in order to test everything runs fine, we finish the sample writing each attachment to a file. To that end we include a final embedded subprocess to concurrently iterate through each attachmentsBPM/attachment[] element: On each iteration we will use a Service activity that invokes a File Adapter write service. In here we have two important parameters to set. First, the payload itself. The file adapter awaits binary data in base64 format (string). We have to map it using XPath (Simple mapping doesn't recognize a String as a base64-binary valid target):  Second, we must set the target filename using the Service Properties dialog box:  Again, note how we're making use of the loopCounter index variable to get the right element within the embedded subprocess iteration. Handling UCM attachments will be part of a different and upcoming blog entry. Once I finish will all posts on this matter, I will upload the whole sample project to java.net.

    Read the article

  • How to use Azure storage for uploading and displaying pictures.

    - by Magnus Karlsson
    Basic set up of Azure storage for local development and production. This is a somewhat completion of the following guide from http://www.windowsazure.com/en-us/develop/net/how-to-guides/blob-storage/ that also involves a practical example that I believe is commonly used, i.e. upload and present an image from a user.   First we set up for local storage and then we configure for them to work on a web role. Steps: 1. Configure connection string locally. 2. Configure model, controllers and razor views.   1. Setup connectionsstring 1.1 Right click your web role and choose “Properties”. 1.2 Click Settings. 1.3 Add setting. 1.4 Name your setting. This will be the name of the connectionstring. 1.5 Click the ellipsis to the right. (the ellipsis appear when you mark the area. 1.6 The following window appears- Select “Windows Azure storage emulator” and click ok.   Now we have a connection string to use. To be able to use it we need to make sure we have windows azure tools for storage. 2.1 Click Tools –> Library Package manager –> Manage Nuget packages for solution. 2.2 This is what it looks like after it has been added.   Now on to what the code should look like. 3.1 First we need a view which collects images to upload. Here Index.cshtml. 1: @model List<string> 2:  3: @{ 4: ViewBag.Title = "Index"; 5: } 6:  7: <h2>Index</h2> 8: <form action="@Url.Action("Upload")" method="post" enctype="multipart/form-data"> 9:  10: <label for="file">Filename:</label> 11: <input type="file" name="file" id="file1" /> 12: <br /> 13: <label for="file">Filename:</label> 14: <input type="file" name="file" id="file2" /> 15: <br /> 16: <label for="file">Filename:</label> 17: <input type="file" name="file" id="file3" /> 18: <br /> 19: <label for="file">Filename:</label> 20: <input type="file" name="file" id="file4" /> 21: <br /> 22: <input type="submit" value="Submit" /> 23: 24: </form> 25:  26: @foreach (var item in Model) { 27:  28: <img src="@item" alt="Alternate text"/> 29: } 3.2 We need a controller to receive the post. Notice the “containername” string I send to the blobhandler. I use this as a folder for the pictures for each user. If this is not a requirement you could just call it container or anything with small characters directly when creating the container. 1: public ActionResult Upload(IEnumerable<HttpPostedFileBase> file) 2: { 3: BlobHandler bh = new BlobHandler("containername"); 4: bh.Upload(file); 5: var blobUris=bh.GetBlobs(); 6: 7: return RedirectToAction("Index",blobUris); 8: } 3.3 The handler model. I’ll let the comments speak for themselves. 1: public class BlobHandler 2: { 3: // Retrieve storage account from connection string. 4: CloudStorageAccount storageAccount = CloudStorageAccount.Parse( 5: CloudConfigurationManager.GetSetting("StorageConnectionString")); 6: 7: private string imageDirecoryUrl; 8: 9: /// <summary> 10: /// Receives the users Id for where the pictures are and creates 11: /// a blob storage with that name if it does not exist. 12: /// </summary> 13: /// <param name="imageDirecoryUrl"></param> 14: public BlobHandler(string imageDirecoryUrl) 15: { 16: this.imageDirecoryUrl = imageDirecoryUrl; 17: // Create the blob client. 18: CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient(); 19: 20: // Retrieve a reference to a container. 21: CloudBlobContainer container = blobClient.GetContainerReference(imageDirecoryUrl); 22: 23: // Create the container if it doesn't already exist. 24: container.CreateIfNotExists(); 25: 26: //Make available to everyone 27: container.SetPermissions( 28: new BlobContainerPermissions 29: { 30: PublicAccess = BlobContainerPublicAccessType.Blob 31: }); 32: } 33: 34: public void Upload(IEnumerable<HttpPostedFileBase> file) 35: { 36: // Create the blob client. 37: CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient(); 38: 39: // Retrieve a reference to a container. 40: CloudBlobContainer container = blobClient.GetContainerReference(imageDirecoryUrl); 41: 42: if (file != null) 43: { 44: foreach (var f in file) 45: { 46: if (f != null) 47: { 48: CloudBlockBlob blockBlob = container.GetBlockBlobReference(f.FileName); 49: blockBlob.UploadFromStream(f.InputStream); 50: } 51: } 52: } 53: } 54: 55: public List<string> GetBlobs() 56: { 57: // Create the blob client. 58: CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient(); 59: 60: // Retrieve reference to a previously created container. 61: CloudBlobContainer container = blobClient.GetContainerReference(imageDirecoryUrl); 62: 63: List<string> blobs = new List<string>(); 64: 65: // Loop over blobs within the container and output the URI to each of them 66: foreach (var blobItem in container.ListBlobs()) 67: blobs.Add(blobItem.Uri.ToString()); 68: 69: return blobs; 70: } 71: } 3.4 So, when the files have been uploaded we will get them to present them to out user in the index page. Pretty straight forward. In this example we only present the image by sending the Uri’s to the view. A better way would be to save them up in a view model containing URI, metadata, alternate text, and other relevant information but for this example this is all we need.   4. Now press F5 in your solution to try it out. You can see the storage emulator UI here:     4.1 If you get any exceptions or errors I suggest to first check if the service Is running correctly. I had problem with this and they seemed related to the installation and a reboot fixed my problems.     5. Set up for Cloud storage. To do this we need to add configuration for cloud just as we did for local in step one. 5.1 We need our keys to do this. Go to the windows Azure menagement portal, select storage icon to the right and click “Manage keys”. (Image from a different blog post though).   5.2 Do as in step 1.but replace step 1.6 with: 1.6 Choose “Manually entered credentials”. Enter your account name. 1.7 Paste your Account Key from step 5.1. and click ok.   5.3. Save, publish and run! Please feel free to ask any questions using the comments form at the bottom of this page. I will get back to you to help you solve any questions. Our consultancy agency also provides services in the Nordic regions if you would like any further support.

    Read the article

  • Set Context User Principal for Customized Authentication in SignalR

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2014/05/27/set-context-user-principal-for-customized-authentication-in-signalr.aspxCurrently I'm working on a single page application project which is built on AngularJS and ASP.NET WebAPI. When I need to implement some features that needs real-time communication and push notifications from server side I decided to use SignalR. SignalR is a project currently developed by Microsoft to build web-based, read-time communication application. You can find it here. With a lot of introductions and guides it's not a difficult task to use SignalR with ASP.NET WebAPI and AngularJS. I followed this and this even though it's based on SignalR 1. But when I tried to implement the authentication for my SignalR I was struggled 2 days and finally I got a solution by myself. This might not be the best one but it actually solved all my problem.   In many articles it's said that you don't need to worry about the authentication of SignalR since it uses the web application authentication. For example if your web application utilizes form authentication, SignalR will use the user principal your web application authentication module resolved, check if the principal exist and authenticated. But in my solution my ASP.NET WebAPI, which is hosting SignalR as well, utilizes OAuth Bearer authentication. So when the SignalR connection was established the context user principal was empty. So I need to authentication and pass the principal by myself.   Firstly I need to create a class which delivered from "AuthorizeAttribute", that will takes the responsible for authenticate when SignalR connection established and any method was invoked. 1: public class QueryStringBearerAuthorizeAttribute : AuthorizeAttribute 2: { 3: public override bool AuthorizeHubConnection(HubDescriptor hubDescriptor, IRequest request) 4: { 5: } 6:  7: public override bool AuthorizeHubMethodInvocation(IHubIncomingInvokerContext hubIncomingInvokerContext, bool appliesToMethod) 8: { 9: } 10: } The method "AuthorizeHubConnection" will be invoked when any SignalR connection was established. And here I'm going to retrieve the Bearer token from query string, try to decrypt and recover the login user's claims. 1: public override bool AuthorizeHubConnection(HubDescriptor hubDescriptor, IRequest request) 2: { 3: var dataProtectionProvider = new DpapiDataProtectionProvider(); 4: var secureDataFormat = new TicketDataFormat(dataProtectionProvider.Create()); 5: // authenticate by using bearer token in query string 6: var token = request.QueryString.Get(WebApiConfig.AuthenticationType); 7: var ticket = secureDataFormat.Unprotect(token); 8: if (ticket != null && ticket.Identity != null && ticket.Identity.IsAuthenticated) 9: { 10: // set the authenticated user principal into environment so that it can be used in the future 11: request.Environment["server.User"] = new ClaimsPrincipal(ticket.Identity); 12: return true; 13: } 14: else 15: { 16: return false; 17: } 18: } In the code above I created "TicketDataFormat" instance, which must be same as the one I used to generate the Bearer token when user logged in. Then I retrieve the token from request query string and unprotect it. If I got a valid ticket with identity and it's authenticated this means it's a valid token. Then I pass the user principal into request's environment property which can be used in nearly future. Since my website was built in AngularJS so the SignalR client was in pure JavaScript, and it's not support to set customized HTTP headers in SignalR JavaScript client, I have to pass the Bearer token through request query string. This is not a restriction of SignalR, but a restriction of WebSocket. For security reason WebSocket doesn't allow client to set customized HTTP headers from browser. Next, I need to implement the authentication logic in method "AuthorizeHubMethodInvocation" which will be invoked when any SignalR method was invoked. 1: public override bool AuthorizeHubMethodInvocation(IHubIncomingInvokerContext hubIncomingInvokerContext, bool appliesToMethod) 2: { 3: var connectionId = hubIncomingInvokerContext.Hub.Context.ConnectionId; 4: // check the authenticated user principal from environment 5: var environment = hubIncomingInvokerContext.Hub.Context.Request.Environment; 6: var principal = environment["server.User"] as ClaimsPrincipal; 7: if (principal != null && principal.Identity != null && principal.Identity.IsAuthenticated) 8: { 9: // create a new HubCallerContext instance with the principal generated from token 10: // and replace the current context so that in hubs we can retrieve current user identity 11: hubIncomingInvokerContext.Hub.Context = new HubCallerContext(new ServerRequest(environment), connectionId); 12: return true; 13: } 14: else 15: { 16: return false; 17: } 18: } Since I had passed the user principal into request environment in previous method, I can simply check if it exists and valid. If so, what I need is to pass the principal into context so that SignalR hub can use. Since the "User" property is all read-only in "hubIncomingInvokerContext", I have to create a new "ServerRequest" instance with principal assigned, and set to "hubIncomingInvokerContext.Hub.Context". After that, we can retrieve the principal in my Hubs through "Context.User" as below. 1: public class DefaultHub : Hub 2: { 3: public object Initialize(string host, string service, JObject payload) 4: { 5: var connectionId = Context.ConnectionId; 6: ... ... 7: var domain = string.Empty; 8: var identity = Context.User.Identity as ClaimsIdentity; 9: if (identity != null) 10: { 11: var claim = identity.FindFirst("Domain"); 12: if (claim != null) 13: { 14: domain = claim.Value; 15: } 16: } 17: ... ... 18: } 19: } Finally I just need to add my "QueryStringBearerAuthorizeAttribute" into the SignalR pipeline. 1: app.Map("/signalr", map => 2: { 3: // Setup the CORS middleware to run before SignalR. 4: // By default this will allow all origins. You can 5: // configure the set of origins and/or http verbs by 6: // providing a cors options with a different policy. 7: map.UseCors(CorsOptions.AllowAll); 8: var hubConfiguration = new HubConfiguration 9: { 10: // You can enable JSONP by uncommenting line below. 11: // JSONP requests are insecure but some older browsers (and some 12: // versions of IE) require JSONP to work cross domain 13: // EnableJSONP = true 14: EnableJavaScriptProxies = false 15: }; 16: // Require authentication for all hubs 17: var authorizer = new QueryStringBearerAuthorizeAttribute(); 18: var module = new AuthorizeModule(authorizer, authorizer); 19: GlobalHost.HubPipeline.AddModule(module); 20: // Run the SignalR pipeline. We're not using MapSignalR 21: // since this branch already runs under the "/signalr" path. 22: map.RunSignalR(hubConfiguration); 23: }); On the client side should pass the Bearer token through query string before I started the connection as below. 1: self.connection = $.hubConnection(signalrEndpoint); 2: self.proxy = self.connection.createHubProxy(hubName); 3: self.proxy.on(notifyEventName, function (event, payload) { 4: options.handler(event, payload); 5: }); 6: // add the authentication token to query string 7: // we cannot use http headers since web socket protocol doesn't support 8: self.connection.qs = { Bearer: AuthService.getToken() }; 9: // connection to hub 10: self.connection.start(); Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Seamless STP with Oracle SOA Suite

    - by user12339860
    STP stands for “Straight Through Processing”. Wikipedia describes STP as a solution that enables “the entire trade process for capital markets and payment transactions to be conducted electronically without the need for re-keying or manual intervention, subject to legal and regulatory restrictions” .I will deal with the later part of the definition i.e “payment transactions without manual intervention” in this article. The STP that I am writing about involves the interaction between a Bank and its’ corporate customers,to that extent this business case is also called “Corporate Payments”.Simply put a  Corporate Payment-STP solution needs to connect the payment transaction right from the Corporate ERP into the Bank’s Payment Hub. A SOA based STP solution can do a lot more than just process transaction. But before I get to the solution let me describe the perspectives of the two primary parties in this interaction. The Corporate customer and the Bank. Corporate's Interaction with Bank:  Typically it is the treasury department of an enterprise which interacts with the Bank on a daily basis. Here is how a day of interaction would look like from the treasury department of a corp. Corporate Cash Retrieve Beginning of day totals Monitor Cash Accounts Send or receive cash between accounts Supply chain payments Payment Settlements Calculate settlement positions Retrieve End of Day totals Assess Transaction Financial Impact Short Term Investment Desk Retrieve Current Account information Conduct Investment activities Bank’s Interaction with the Corporate :  From the Bank’s perspective, the interaction starts from the point of on boarding a corporate customer to billing the corporate for the value added services it provides. Once the corporate is on-boarded the daily interaction involves Handle the various formats of data arriving from customers Process Beginning of Day & End of Day reporting request from customers Meet compliance requirements Process Payments Transmit Payment Status Challenges with this Interaction :  Both the Bank & the Corporate face many challenges from these interactions. Some of the challenges include Keeping a consistent view of transaction data for various LOBs of the corporate & the Bank Corporate customers use different ERPs, hence the data formats are bound to be different Can the Bank’s IT systems convert the data formats that can be easily mapped to the corporate ERP How does the Bank manage the communication profiles of these customers?  Corporate customers are demanding near real time visibility on their corporate accounts Corporate customers can make better cash management decisions if they can analyse the impact. Can the Bank create opportunities to sell its products to the investment desks at corporate houses & manage their orders? How will the Bank bill the corporate customer for the value added services it provides. What does a SOA based Seamless STP solution bring to the table? Highlights of Oracle SOA based STP solution For the Corporate Customer: No Manual or Paper based banking transactions Secure Delivery of Payment data to the Bank from multiple ERPs without customization Single Portal for monitoring & administering payment transactions Rule based validation of payments Customer has data necessary for more effective handling of payment and cash management decisions  Business measurements track progress toward payment cost goals  For the Bank: Reduces time & complexity of transactions Simplifies the process of introducing new products to corporate customers Single Payment hub for all corporate ERP payments across multiple instruments New Revenue sources by delivering value added services to customers Leverages existing payment infrastructure Remove Inconsistent data formats and interchange between bank and corporate systems  Compliance and many other benefits

    Read the article

  • MSMQ first Message.Body in queue is OK, all following Message.Body in queue are empty

    - by Andrew A
    I send a handful of identical (except for Id#, obviously) messages to an MSMQ queue on my local machine. The body of the messages is a serialized XElement object. When I try to process the first message in the queue, I am able to successfully de-serialize the Message.Body object and save it to file. However, when trying to process the next (or any subsequent) message, the Message.Body is absent, and an exception is thrown. I have verified the Message ID's are correct for the message attempting to be processed. The XML being serialized is properly formed. Any ideas? I am basing my code on the Microsoft MSMQ Book order sample found here: http://msdn.microsoft.com/en-us/library/ms180970%28VS.80%29.aspx // Create Envelope XML object XElement envelope = new XElement(env + "Envelope", new XAttribute(XNamespace.Xmlns + "env", env.NamespaceName) <snip> //Send envelope as message body MessageQueue myQueue = new MessageQueue(String.Format(@"FORMATNAME:DIRECT=OS:localhost\private$\mqsample")); myQueue.DefaultPropertiesToSend.Recoverable = true; // Prepare message Message myMessage = new Message(); myMessage.ResponseQueue = new MessageQueue(String.Format(System.Globalization.CultureInfo.InvariantCulture, @"FORMATNAME:DIRECT=TCP:192.168.1.217\private$\mqdemoAck")); myMessage.Body = envelope; // Send the message into the queue. myQueue.Send(myMessage,"message label"); //Retrieve messages from queue LabelIdMapping labelID = (LabelIdMapping)mqlistBox3.SelectedItem; System.Messaging.Message message = mqOrderQueue.ReceiveById(labelID.Id); The Message.Body value I see on the 1st retrieve is as expected: <?xml version="1.0" encoding="utf-8"?> <string>Some String</string> However, the 2nd and subsequent retrieve operations Message.Body is: "Cannot deserialize the message passed as an argument. Cannot recognize the serialization format." How does this work fine the first time but not after that? I have tried message.Dispose() after retrieving it but it did not help. Thank you very much for any help on this!

    Read the article

< Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >