Search Results

Search found 10438 results on 418 pages for 'power architecture'.

Page 35/418 | < Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >

  • What is the relationship between Turing Machine & Modern Computer ? [closed]

    - by smwikipedia
    I heard a lot that modern computers are based on Turing machine. I just cannot build a bridge between a conceptual Turing Machine and a modern computer. Could someone help me build this bridge? Below is my current understanding. I think the computer is a big general-purpose Turing machine. Each program we write is a small specific-purpose Turing machine. The classical Turing machine do its job based on the input and its current state inside and so do our programs. Let's take a running program (a process) as an example. We know that in the process's address space, there's areas for stack, heap, and code. A classical Turing machine doesn't have the ability to remember many things, so we borrow the concept of stack from the push-down automaton. The heap and stack areas contains the state of our specific-purpose Turing machine (our program). The code area represents the logic of this small Turing machine. And various I/O devices supply input to this Turing machine.

    Read the article

  • Turing Machine & Modern Computer

    - by smwikipedia
    I heard a lot that modern computers are based on Turing machine. I'd like to share my understanding and hear your comments. I think the computer is a big general-purpose Turing machine. Each program we write is a small specific-purpose Turing machine. The classical Turing machine do its job based on the input and its current state inside and so do our programs. Let's take a running program (a process) as an example. We know that in the process's address space, there's areas for stack, heap, and code. A classical Turing machine doesn't have the ability to remember many things, so we borrow the concept of stack from the push-down automaton. The heap and stack areas contains the state of our specific-purpose Turing machine (our program). The code area represents the logic of this small Turing machine. And various I/O devices supply input to this Turing machine. The above is my naive understanding about the working paradigm of modern computer. I couln't wait to hear your comments. Thanks very much.

    Read the article

  • EPM 11.1.2.2 Architecture: Financial Performance Management Applications

    - by Marc Schumacher
     Financial Management can be accessed either by a browser based client or by SmartView. Starting from release 11.1.2.2, the Financial Management Windows client does not longer access the Financial Management Consolidation server. All tasks that require an on line connection (e.g. load and extract tasks) can only be done using the web interface. Any client connection initiated by a browser or SmartView is send to the Oracle HTTP server (OHS) first. Based on the path given (e.g. hfmadf, hfmofficeprovider) in the URL, OHS makes a decision to forward this request either to the new Financial Management web application based on the Oracle Application Development Framework (ADF) or to the .NET based application serving SmartView retrievals running on Internet Information Server (IIS). Any requests send to the ADF web interface that need to be processed by the Financial Management application server are send to the IIS using HTTP protocol and will be forwarded further using DCOM to the Financial Management application server. SmartView requests, which are processes by IIS in first row, are forwarded to the Financial Management application server using DCOM as well. The Financial Management Application Server uses OLE DB database connections via native database clients to talk to the Financial Management database schema. Communication between the Financial Management DME Listener, which handles requests from EPMA, and the Financial Management application server is based on DCOM.  Unlike most other components Essbase Analytics Link (EAL) does not have an end user interface. The only user interface is a plug-in for the Essbase Administration Services console, which is used for administration purposes only. End users interact with a Transparent or Replicated Partition that is created in Essbase and populated with data by EAL. The Analytics Link Server deployed on WebLogic communicates through HTTP protocol with the Analytics Link Financial Management Connector that is deployed in IIS on the Financial Management web server. Analytics Link Server interacts with the Data Synchronisation server using the EAL API. The Data Synchronization server acts as a target of a Transparent or Replicated Partition in Essbase and uses a native database client to connect to the Financial Management database. Analytics Link Server uses JDBC to connect to relational repository databases and Essbase JAPI to connect to Essbase.  As most Oracle EPM System products, browser based clients and SmartView can be used to access Planning. The Java based Planning web application is deployed on WebLogic, which is configured behind an Oracle HTTP Server (OHS). Communication between Planning and the Planning RMI Registry Service is done using Java Remote Message Invocation (RMI). Planning uses JDBC to access relational repository databases and talks to Essbase using the CAPI. Be aware of the fact that beside the Planning System database a dedicated database schema is needed for each application that is set up within Planning.  As Planning, Profitability and Cost Management (HPCM) has a pretty simple architecture. Beside the browser based clients and SmartView, a web service consumer can be used as a client too. All clients access the Java based web application deployed on WebLogic through Oracle HHTP Server (OHS). Communication between Profitability and Cost Management and EPMA Web Server is done using HTTP protocol. JDBC is used to access the relational repository databases as well as data sources. Essbase JAPI is utilized to talk to Essbase.  For Strategic Finance, two clients exist, SmartView and a Windows client. While SmartView communicates through the web layer to the Strategic Finance Server, Strategic Finance Windows client makes a direct connection to the Strategic Finance Server using RPC calls. Connections from Strategic Finance Web as well as from Strategic Finance Web Services to the Strategic Finance Server are made using RPC calls too. The Strategic Finance Server uses its own file based data store. JDBC is used to connect to the EPM System Registry from web and application layer.  Disclosure Management has three kinds of clients. While the browser based client and SmartView interact with the Disclosure Management web application directly through Oracle HTTP Server (OHS), Taxonomy Designer does not connect to the Disclosure Management server. Communication to relational repository databases is done via JDBC, to connect to Essbase the Essbase JAPI is utilized.

    Read the article

  • The Power of Goals

    - by BuckWoody
    Every year we read blogs, articles, magazines, hear news stories and blurbs on making New Year’s Resolutions. Well, I for one don’t do that. I do something else. Each year, on January 1, my wife, daughter and I get up early - like before 6:00 A.M. - and find a breakfast place that’s open. When I used to live in Safety Harbor, Florida, that was the “Paradise Café”, which has some of the best waffles around…but I digress. We find that restaurant and have a great breakfast while everyone else is recuperating from the night before. And we bring along a worn leather book that we’ve been writing in since my daughter wasn’t even old enough to read. It’s our book of Goals. A resolution, as it is purely defined, is a decision to change, stop or start an action. It has a sense of continuance, and that’s the issue. Some people decide things like “I’m going to lose weight” or “I’m going to spend more time with my family or hobby”. But a goal is different. A goal tends to have a defined start and end point. It’s something that can be measured. So each year on January 1 we sit down with the little leather book and we make a few - and only a few - individual and family goals. Sometimes it’s to exercise three times a week at the gym, sometimes it’s to save a certain percentage of income, and sometimes it’s to give away some of our possessions or to help someone we know in a specific way. Each person is responsible for their own goals - coming up with them, and coming up with a plan to meet them. Then we write it down in the little leather book. But it doesn’t end there. Each month, we grab the little leather book and read out the goals from that year to each person with a question or two: How are you doing on your goal? And what are you doing about reaching it? Can I help? Am I helping? At the end of the year, we put a checkmark by the goals we reached, and an X by the ones we didn’t. There’s no judgment, there’s no statements, each person is just expected to handle the success or failure in their own way. We also have family goals, and those we work on together. This might seem a little “corny” to some people. “I don’t need to write goals down” they say, “I keep track in my head of the things I do all the time. That’s silly.” But let me give you a little challenge: find a book, get with your family, and write down the things you want to do by the next January 1. Each month, look at the book. You can make goals for your career, your education, your spiritual side, your family, whatever. But if you make your goals realistic, think them through, and think about how you will achieve them, you will be surprised by the power of written goals.

    Read the article

  • Resources how to architect a iPhone application?

    - by Frank Martin
    What resources can you recommend for learning how to architect a iPhone application? Background of the question is that most of the resources explain the usage of a single class or concept (and i appreciate that a lot to learn something about the specific topic) but as far as i can see they lack unfortunately to describe how to put things together for typical real world applications.

    Read the article

  • Supermicro X8SIL-F with Enermax Modu82+ 625W PSU booting issue

    - by Richard Whitman
    I am assembling a custom PC. The configuration is below: Motherboard: Supermicro X8SIL-F Processor: Intel Xeon 3430 Power Supply: Enermax Modu82+ 625W. Memory: Kingston KVR1333D3LQ8R9S/8GEC 8GBx1 installed in DimmA1 This power switch: Frozen CPU switch When I turn on the PSU, the motherboard tries to start itself before I even push the power switch. The following happens: The CPU fan rotates like once or twice, and then stops. After 1-2 seconds, the CPU fan tries to rotate again and stops after about one or two rotations. Finally, after another 1-2 seconds, it again starts and this time it rotates for about 3-4 seconds before stopping. If I pull out the Power switch, and turn on the PSU, again the MB turns on itself and the following happens: The CPU fan rotates like once or twice, and then stops. After 1-2 seconds, the CPU fan tries to rotate again and stops after about one or two rotations. Finally, after another 1-2 seconds, it again starts and the system boots properly I am sure there is nothing wrong with any of the components, because I have two sets of identical components (2 MBs, 2 CPUs, 2 PSUs, 2 switches and so on). And both of the systems show the same symptoms. Why is the MB booting up by itself? Why does it fail to boot when the Power Switch is installed? Is something wrong with the type of Power Switch I am using? PS: the power switch is installed correctly, I have double checked the MB manual to make sure its connecting the right pins.

    Read the article

  • Process Power to the People that Create Engagement

    - by Michael Snow
    Organizations often speak about their engagement problems as if the problem is the people they are trying to engage - employees,  partners, customers and citizens.  The reality of most engagement problems is that the processes put in place to engage are impersonal, inflexible, unintuitive, and often completely ignorant of the population they are trying to serve. Life, Liberty and the Pursuit of Delight? How appropriate during this short week of the US Independence Day Holiday that we're focusing on People, Process and Engagement. As we celebrate this holiday in the US and the historic independence we gained (sorry Brits!) - it's interesting to think back to 1776 to the creation of that pivotal document, the Declaration of Independence. What tremendous pressure to create an engaging document and founding experience they must have felt. "On June 11, 1776, in anticipation of the impending vote for independence from Great Britain, the Continental Congress appointed five men — Thomas Jefferson, John Adams, Benjamin Franklin, Roger Sherman, and Robert Livingston — to write a declaration that would make clear to people everywhere why this break from Great Britain was both necessary and inevitable. The committee then appointed Jefferson to draft a statement. Jefferson produced a "fair copy" of his draft declaration, which became the basic text of his "original Rough draught." The text was first submitted to Adams, then Franklin, and finally to the other two members of the committee. Before the committee submitted the declaration to Congress on June 28, they made forty-seven emendations to the document. During the ensuing congressional debates of July 1-4, 1776, Congress adopted thirty-nine further revisions to the committee draft. (http://www.constitution.org) If anything was an attempt for engaging the hearts and minds of the 13 Colonies at the time, this document certainly succeeded in its mission. ...Their tools at the time were pen and ink and parchment. Although the final document would later be typeset with lead type for a printing press to distribute to the colonies, all of the original drafts were hand written. And today's enterprise complains about using "Review and Track Changes" at times.  Can you imagine the manual revision control process? or lack thereof?  Collaborative process? Time delays? Would  implementing a better process have helped our founding fathers collaborate better? Declaration of Independence rough draft below. One of many during the creation process. Great comparison across multiple versions of the document here. (from http://www.ushistory.org/): While you may not be creating a new independent nation, getting your employees to engage is crucial to your success as a company in today's world. Oracle WebCenter provides the tools that power engagement. Employees that have better tools for communication, collaboration and getting their job done are more engaged employees. Better engaged employees create more engaged customers and partners. 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 -"/ /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif"; mso-fareast-font-family:"Times New Roman";}

    Read the article

  • Virtualized data centre&ndash;Part three: Architecture

    - by marc dekeyser
    Having the basics (like discussed in the previous articles) is all good and well, but how do we get started on this?! It can be quite daunting after all!   From my own point of view I can absolutely confirm your worries and concerns, but also tell you that it is not as hard as it seems! Deciding on what kind of motherboard to buy, processor and how much memory is an activity you will spend quite some time doing research on. And that is not even mentioning storage! All in all it comes down to setting you expectations and your budget. Probably adjusting your expectations according to your budget :). Processors As a rule of thumb you want VT-D (virtualization) technology built in to the processor allowing you to have 64 bit machines running on your host. Memory The more the better! If you are building a home lab don’t bother with ECC unless you are going to run machines that absolutely should be on all the time and your comfort depends on it! Motherboard Depends on what you are going to do with storage: If you are going the NAS way then the number of SATA port/RAID capabilities do not really matter. If you decide to have a single server with lots of dedicated storage it obviously matters how much SATA ports you will have, alternatively you could use a RAID controller (but these set you back a pretty penny if you want one. DELL 6i’s are usually available for a good bargain if you can find one!). Easiest is to get one with a built-in graphics card (on-board) as you are just adding more heat, power usage and possible points of failure. Networking Just like your choice of motherboard the networking side tends to depend on how you want to go. A single virtualization  host with local storage can usually get away with having a single network card, a cluster or server which uses iSCSI storage tends to have more than one teamed up :). Storage The dreaded beast from the dark! The horror which lives in the forest! The most difficult decision you are going to make in the building of your lab. Why you might ask? Simple my friend, having the right choice of storage can make or break your virtualization solution. The performance of you storage choice will have an important impact on the responsiveness of your virtual machines and the deployment of new machines. It also makes a run with your budget! If you decide to go the NAS route you will be dropping a lot more money than if you would be having just a bunch of disks sitting in a server and manually distributing the virtual machines over the disks. Platform I’m a Microsoftee so Hyper-V is a dead giveaway for me. If you are interested in using VMware I won’t stop you but the rest of my posts will be oriented on Server 2012 Hyper-V (aka 3.0)! What did I use? Before someone asks me this in the comments I’ll give you a quick run down of what I am using. - Intel 2.4 quad core processors (i something something) - 24 GB DDR3 Memory - Single disk in each server (might look at this as I move the servers to 2012) - Synology DS1812+ NAS - 3 network interfaces where possible - HP1800 procurve managed switch I decided to spring for the NAS as I will also be using it for backups and media storage (which is working out quite nicely with my Xbox 360 I must say). At the time of building my 2 boxes (over a year and a half ago) these set me back about 900 euros each so I can image you can build the same or better for a lower price. Next article will be diagramming what I want to achieve and starting a build on the Hyper V 3.0 cluster!

    Read the article

  • Pinterest and the Rising Power of Imagery

    - by Mike Stiles
    If images keep you glued to a screen, you’re hardly alone. Countless social users are letting their eyes do the walking, waiting for that special photo to grab their attention. And perhaps more than any other social network, Pinterest has been giving those eyes plenty of room to walk. Pinterest came along in 2010. Its play was that users could simply create topic boards and pin pictures to the appropriate boards for sharing. Yes there are some words, captions mostly, but not many. The speed of its growth raised eyebrows. Traffic quadrupled in the last quarter of 2011, with 7.51 million unique visitors in December alone. It now gets 1.9 billion monthly page views. And it was sticky. In the US, the average time a user spends strolling through boards and photos on Pinterest is 15 minutes, 50 seconds. Proving the concept of browsing a catalogue is not dead, it became a top 5 referrer for several apparel retailers like Land’s End, Nordstrom, and Bergdorfs. Now a survey of online shoppers by BizRate Insights says that Pinterest is responsible for more purchases online than Facebook. Over 70% of its users are going there specifically to keep up with trends and get shopping ideas. And when they buy, the average order value is $179. Pinterest is also scoring better in terms of user engagement. 66% of pinners regularly follow and repin retailers, whereas 17% of Facebook fans turn to that platform for purchase ideas. (Facebook still wins when it comes to reach and driving traffic to 3rd-party sites by the way). Social posting best practices have consistently shown that posts with photos are rewarded with higher engagement levels. You may be downright Shakespearean in your writing, but what makes images in the digital world so much more powerful than prose? 1. They transcend language barriers. 2. They’re fun and addictive to look at. 3. They can be consumed in fractions of a second, important considering how fast users move through their social content (admit it, you do too). 4. They’re efficient gateways. A good picture might get them to the headline. A good headline might then get them to the written content. 5. The audience for them surpasses demographic limitations. 6. They can effectively communicate and trigger an emotion. 7. With mobile use soaring, photos are created on those devices and easily consumed and shared on them. Pinterest’s iPad app hit #1 in the Apple store in 1 day. Even as far back as 2009, over 2.5 billion devices with cameras were on the streets generating in just 1 year, 10% of the number of photos taken…ever. But let’s say you’re not a retailer. What if you’re a B2B whose products or services aren’t visual? Should you worry about your presence on Pinterest? As with all things, you need a keen awareness of who your audience is, where they reside online, and what they want to do there. If it doesn’t make sense to put a tent stake in Pinterest, fine. But ignore the power of pictures at your own peril. If not visually, how are you going to attention-grab social users scrolling down their News Feeds at top speed? You’re competing with every other cool image out there from countless content sources. Bore us and we’ll fly right past you.

    Read the article

  • Computer turns on and off very quickly, then nothing, then works?

    - by hellohellosharp
    The strange nature of this problem is what is stumping me. I built my computer about 7 months ago using all new parts off of Newegg (not a kit or anything). One day, I wake up and turn on my computer. I press the power button and it turns on, but then back off after half a second. I press the power button again, this time nothing. I continue pressing the power button while at the same time turning the power supply on and off (to try and reset things). The power button still does nothing. But then, after about 5 minutes, WALLAH, it works just fine like nothing was ever wrong. It goes for an entire week working just fine. Then, one morning, the entire process starts again. I press the power button and it comes on and then right back off. I press the power button several times and nothing happens, and then it works again after a couple minutes of trying. What is going on with my computer?

    Read the article

  • ASP.NET WebAPI Security 2: Identity Architecture

    - by Your DisplayName here!
    Pedro has beaten me to the punch with a detailed post (and diagram) about the WebAPI hosting architecture. So go read his post first, then come back so we can have a closer look at what that means for security. The first important takeaway is that WebAPI is hosting independent-  currently it ships with two host integration implementations – one for ASP.NET (aka web host) and WCF (aka self host). Pedro nicely shows the integration into the web host. Self hosting is not done yet so we will mainly focus on the web hosting case and I will point out security related differences when they exist. The interesting part for security (amongst other things of course) is the HttpControllerHandler (see Pedro’s diagram) – this is where the host specific representation of an HTTP request gets converted to the WebAPI abstraction (called HttpRequestMessage). The ConvertRequest method does the following: Create a new HttpRequestMessage. Copy URI, method and headers from the HttpContext. Copies HttpContext.User to the Properties<string, object> dictionary on the HttpRequestMessage. The key used for that can be found on HttpPropertyKeys.UserPrincipalKey (which resolves to “MS_UserPrincipal”). So the consequence is that WebAPI receives whatever IPrincipal has been set by the ASP.NET pipeline (in the web hosting case). Common questions are: Are there situations where is property does not get set? Not in ASP.NET – the DefaultAuthenticationModule in the HTTP pipeline makes sure HttpContext.User (and Thread.CurrentPrincipal – more on that later) are always set. Either to some authenticated user – or to an anonymous principal. This may be different in other hosting environments (again more on that later). Why so generic? Keep in mind that WebAPI is hosting independent and may run on a host that materializes identity completely different compared to ASP.NET (or .NET in general). This gives them a way to evolve the system in the future. How does WebAPI code retrieve the current client identity? HttpRequestMessage has an extension method called GetUserPrincipal() which returns the property as an IPrincipal. A quick look at self hosting shows that the moral equivalent of HttpControllerHandler.ConvertRequest() is HttpSelfHostServer.ProcessRequestContext(). Here the principal property gets only set when the host is configured for Windows authentication (inconsisteny). Do I like that? Well – yes and no. Here are my thoughts: I like that it is very straightforward to let WebAPI inherit the client identity context of the host. This might not always be what you want – think of an ASP.NET app that consists of UI and APIs – the UI might use Forms authentication, the APIs token based authentication. So it would be good if the two parts would live in a separate security world. It makes total sense to have this generic hand off point for identity between the host and WebAPI. It also makes total sense for WebAPI plumbing code (especially handlers) to use the WebAPI specific identity abstraction. But – c’mon we are running on .NET. And the way .NET represents identity is via IPrincipal/IIdentity. That’s what every .NET developer on this planet is used to. So I would like to see a User property of type IPrincipal on ApiController. I don’t like the fact that Thread.CurrentPrincipal is not populated. T.CP is a well established pattern as a one stop shop to retrieve client identity on .NET.  That makes a lot of sense – even if the name is misleading at best. There might be existing library code you want to call from WebAPI that makes use of T.CP (e.g. PrincipalPermission, or a simple .Name or .IsInRole()). Having the client identity as an ambient property is useful for code that does not have access to the current HTTP request (for calling GetUserPrincipal()). I don’t like the fact that that the client identity conversion from host to WebAPI is inconsistent. This makes writing security plumbing code harder. I think the logic should always be: If the host has a client identity representation, copy it. If not, set an anonymous principal on the request message. Btw – please don’t annoy me with the “but T.CP is static, and static is bad for testing” chant. T.CP is a getter/setter and, in fact I find it beneficial to be able to set different security contexts in unit tests before calling in some logic. And, in case you have wondered – T.CP is indeed thread static (and the name comes from a time where a logical operation was bound to a thread – which is not true anymore). But all thread creation APIs in .NET actually copy T.CP to the new thread they create. This is the case since .NET 2.0 and is certainly an improvement compared to how Win32 does things. So to sum it up: The host plumbing copies the host client identity to WebAPI (this is not perfect yet, but will surely be improved). or in other words: The current WebAPI bits don’t ship with any authentication plumbing, but solely use whatever authentication (and thus client identity) is set up by the host. WebAPI developers can retrieve the client identity from the HttpRequestMessage. Hopefully my proposed changes around T.CP and the User property on ApiController will be added. In the next post, I will detail how to add WebAPI specific authentication support, e.g. for Basic Authentication and tokens. This includes integrating the notion of claims based identity. After that we will look at the built-in authorization bits and how to improve them as well. Stay tuned.

    Read the article

  • Trying to compile x264 and ffmpeg for iPhone - "missing required architecture arm in file"

    - by jtrim
    I'm trying to compile x264 for use in an iPhone application. I see there are instructions on how to compile ffmpeg for use on the platform here: http://lists.mplayerhq.hu/pipermail/ffmpeg-devel/2009-October/076618.html , but I can't seem to find anything this complete for compiling x264 on the iPhone. I've found this source tree: http://gitorious.org/x264-arm that seems to have support for the ARM platform. Here is my config line: ./configure --cross-prefix=/usr/bin/ --host=arm-apple-darwin10 --extra-cflags="-B /Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS3.2.sdk/usr/lib/ -I /Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS3.2.sdk/usr/lib/" ...and inside configure I'm using the gas-preprocessor script (first link above) as my assembler: gas-preprocessor.pl gcc When I start compiling, it chunks away for a little while, then it spits out these warnings and a huge list of undefined symbols: ld: warning: option -s is obsolete and being ignored ld: warning: -force_cpusubtype_ALL will become unsupported for ARM architectures ld: warning: in /usr/lib/crt1.o, missing required architecture arm in file ld: warning: in /usr/X11R6/lib/libX11.dylib, missing required architecture arm in file ld: warning: in /usr/lib/libm.dylib, missing required architecture arm in file ld: warning: in /usr/lib/libpthread.dylib, missing required architecture arm in file ld: warning: in /usr/lib/libgcc_s.1.dylib, missing required architecture arm in file ld: warning: in /usr/lib/libSystem.dylib, missing required architecture arm in file Undefined symbols: My guess would be that the problem has to do with the "missing required architecture arm in file" warning...any ideas?

    Read the article

  • Laptop shuts down upon waking from suspend

    - by Bryan Head
    The computer enters suspend either by closing lid, choosing suspend from the top-right drop down, or hitting the power button and pressing suspend. It doesn't matter. I then attempt to wake the computer either by opening the lid (if it was closed) or hitting the power button. Again, doesn't matter. The computer will then immediately shutdown about 50% of the time. It seems to be more likely to shut down the longer it has been on suspend. I took a snapshot of /var/log/pm-suspend.log after a successfully resume and a shutdown. The only difference (outside of timestamps of course) was that a successful resume, after reporting the success of various suspend hooks, writes: Thu Jul 5 21:36:45 PDT 2012: performing suspend Thu Jul 5 21:37:10 PDT 2012: Awake. Thu Jul 5 21:37:10 PDT 2012: Running hooks for resume and then reports successful resume hooks. When it shuts down, the log ends at "performing suspend". I diffed the two files so I know this is the only difference. Thus, it looks like it's not even trying to wake up. Would love some ideas on this one. I've scoured the web but can't seem to find anyone else running into the same issue (it seems more common that the computer shuts down upon entering suspend, or only on hitting the power button to wake, and haven't seen any that are random like mine). I'll update with any requested information.

    Read the article

  • BizTalk: History of one project architecture

    - by Leonid Ganeline
    "In the beginning God made heaven and earth. Then he started to integrate." At the very start was the requirement: integrate two working systems. Small digging up: It was one system. It was good but IT guys want to change it to the new one, much better, chipper, more flexible, and more progressive in technologies, more suitable for the future, for the faster world and hungry competitors. One thing. One small, little thing. We cannot turn off the old system (call it A, because it was the first), turn on the new one (call it B, because it is second but not the last one). The A has a hundreds users all across a country, they must study B. A still has a lot nice custom features, home-made features that cannot disappear. These features have to be moved to the B and it is a long process, months and months of redevelopment. So, the decision was simple. Let’s move not jump, let’s both systems working side-by-side several months. In this time we could teach the users and move all custom A’s special functionality to B. That automatically means both systems should work side-by-side all these months and use the same data. Data in A and B must be in sync. That’s how the integration projects get birth. Moreover, the specific of the user tasks requires the both systems must be in sync in real-time. Nightly synchronization is not working, absolutely.   First draft The first draft seems simple. Both systems keep data in SQL databases. When data changes, the Create, Update, Delete operations performed on the data, and the sync process could be started. The obvious decision is to use triggers on tables. When we are talking about data, we are talking about several entities. For example, Orders and Items [in Orders]. We decided to use the BizTalk Server to synchronize systems. Why it was chosen is another story. Second draft   Let’s take an example how it works in more details. 1.       User creates a new entity in the A system. This fires an insert trigger on the entity table. Trigger has to pass the message “Entity created”. This message includes all attributes of the new entity, but I focused on the Id of this entity in the A system. Notation for this message is id.A. System A sends id.A to the BizTalk Server. 2.       BizTalk transforms id.A to the format of the system B. This is easiest part and I will not focus on this kind of transformations in the following text. The message on the picture is still id.A but it is in slightly different format, that’s why it is changing in color. BizTalk sends id.A to the system B. 3.       The system B creates the entity on its side. But it uses different id-s for entities, these id-s are id.B. System B saves id.A+id.B. System B sends the message id.A+id.B back to the BizTalk. 4.       BizTalk sends the message id.A+id.B to the system A. 5.       System A saves id.A+id.B. Why both id-s should be saved on both systems? It was one of the next requirements. Users of both systems have to know the systems are in sync or not in sync. Users working with the entity on the system A can see the id.B and use it to switch to the system B and work there with the copy of the same entity. The decision was to store the pairs of entity id-s on both sides. If there is only one id, the entities are not in sync yet (for the Create operation). Third draft Next problem was the reliability of the synchronization. The synchronizing process can be interrupted on each step, when message goes through the wires. It can be communication problem, timeout, temporary shutdown one of the systems, the second system cannot be synchronized by some internal reason. There were several potential problems that prevented from enclosing the whole synchronization process in one transaction. Decision was to restart the whole sync process if it was not finished (in case of the error). For this purpose was created an additional service. Let’s call it the Resync service. We still keep the id pairs in both systems, but only for the fast access not for the synchronization process. For the synchronizing these id-s now are kept in one main place, in the Resync service database. The Resync service keeps record as: ·       Id.A ·       Id.B ·       Entity.Type ·       Operation (Create, Update, Delete) ·       IsSyncStarted (true/false) ·       IsSyncFinished (true/false0 The example now looks like: 1.       System A creates id.A. id.A is saved on the A. Id.A is sent to the BizTalk. 2.       BizTalk sends id.A to the Resync and to the B. id.A is saved on the Resync. 3.       System B creates id.B. id.A+id.B are saved on the B. id.A+id.B are sent to the BizTalk. 4.       BizTalk sends id.A+id.B to the Resync and to the A. id.A+id.B are saved on the Resync. 5.       id.A+id.B are saved on the B. Resync changes the IsSyncStarted and IsSyncFinished flags accordingly. The Resync service implements three main methods: ·       Save (id.A, Entity.Type, Operation) ·       Save (id.A, id.B, Entity.Type, Operation) ·       Resync () Two Save() are used to save id-s to the service storage. See in the above example, in 2 and 4 steps. What about the Resync()? It is the method that finishes the interrupted synchronization processes. If Save() is started by the trigger event, the Resync() is working as an independent process. It periodically scans the Resync storage to find out “unfinished” records. Then it restarts the synchronization processes. It tries to synchronize them several times then gives up.     One more thing, both systems A and B must tolerate duplicates of one synchronizing process. Say on the step 3 the system B was not able to send id.A+id.B back. The Resync service must restart the synchronization process that will send the id.A to B second time. In this case system B must just send back again also created id.A+id.B pair without errors. That means “tolerate duplicates”. Fourth draft Next draft was created only because of the aesthetics. As it always happens, aesthetics gave significant performance gain to the whole system. First was the stupid question. Why do we need this additional service with special database? Can we just master the BizTalk to do something like this Resync() does? So the Resync orchestration is doing the same thing as the Resync service. It is started by the Id.A and finished by the id.A+id.B message. The first works as a Start message, the second works as a Finish message.     Here is a diagram the whole process without errors. It is pretty straightforward. The Resync orchestration is waiting for the Finish message specific period of time then resubmits the Id.A message. It resubmits the Id.A message specific number of times then gives up and gets suspended. It can be resubmitted then it starts the whole process again: waiting [, resubmitting [, get suspended]], finishing. Tuning up The Resync orchestration resubmits the id.A message with special “Resubmitted” flag. The subscription filter on the Resync orchestration includes predicate as (Resubmit_Flag != “Resubmitted”). That means only the first Sync orchestration starts the Resync orchestration. Other Sync orchestration instantiated by the resubmitting can finish this Resync orchestration but cannot start another instance of the Resync   Here is a diagram where system B was inaccessible for some period of time. The Resync orchestration resubmitted the id.A two times. Then system B got the response the id.A+id.B and this finished the Resync service execution. What is interesting about this, there were submitted several identical id.A messages and only one id.A+id.B message. Because of this, the system B and the Resync must tolerate the duplicate messages. We also told about this requirement for the system B. Now the same requirement is for the Resunc. Let’s assume the system B was very slow in the first response and the Resync service had time to resubmit two id.A messages. System B responded not, as it was in previous case, with one id.A+id.B but with two id.A+id.B messages. First of them finished the Resync execution for the id.A. What about the second id.A+id.B? Where it goes? So, we have to add one more internal requirement. The whole solution must tolerate many identical id.A+id.B messages. It is easy task with the BizTalk. I added the “SinkExtraMessages” subscriber (orchestration with one receive shape), that just get these messages and do nothing. Real design Real architecture is much more complex and interesting. In reality each system can submit several id.A almost simultaneously and completely unordered. There are not only the “Create entity” operation but the Update and Delete operations. And these operations relate each other. Say the Update operation after Delete means not the same as Update after Create. In reality there are entities related each other. Say the Order and Order Items. Change on one of it could start the series of the operations on another. Moreover, the system internals are the “black boxes” and we cannot predict the exact content and order of the operation series. It worth to say, I had to spend a time to manage the zombie message problems. The zombies are still here, but this is not a problem now. And this is another story. What is interesting in the last design? One orchestration works to help another to be more reliable. Why two orchestration design is more reliable, isn’t it something strange? The Synch orchestration takes all the message exchange between systems, here is the area where most of the errors could happen. The Resync orchestration sends and receives messages only within the BizTalk server. Is there another design? Sure. All Resync functionality could be implemented inside the Sync orchestration. Hey guys, some other ideas?

    Read the article

  • 12.0.4.3 - Missing Battery Icon, auto Suspend not working, Keyboard shortcuts volume up/down no longer working

    - by Navraj
    Problems I am experiencing: Battery Icon not showing up unity bar (top right corner). Volume Up/Down/Mute not working. Bluetooth hot keys described above also not working.Brightness up/down keys on this keyboard no longer working (apple wireless keyboard) Laptop no longer suspends when lid is shut. I have to go to 'power' button on top right corner and click on 'Suspend' All was working flawlessly until I did the following: I have recently upgraded to Nvidia propriety driver version 319 {version recommended}. Installed Xscreensaver and then removed it and went back to default screensaver. Done a system update (1st since installing) and now currently running: Linux 3.8.0-32-generic #47~precise1-Ubuntu SMP Wed Oct 2 16:19:35 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux NOTE: Base system was ubuntu 12.04.3 installed from ISO however lsb_release reports "No LSB modules are available" 4.installed psensor. I have check power setting (via Settings) and power setting via dconf-editor and set to recommended settings as described in posts detailing solution to this problem. - I have disabled 1) Nvdia settings at startup and 2) psensor at startup but this does not help. I am using an HP DV7 with 2GB Nvidia card. Not using any fancy graphics features. Recommendations? Thanks.

    Read the article

  • How to store data on a machine whose power gets cut at random

    - by Sevas
    I have a virtual machine (Debian) running on a physical machine host. The virtual machine acts as a buffer for data that it frequently receives over the local network (the period for this data is 0.5s, so a fairly high throughput). Any data received is stored on the virtual machine and repeatedly forwarded to an external server over UDP. Once the external server acknowledges (over UDP) that it has received a data packet, the original data is deleted from the virtual machine and not sent to the external server again. The internet connection that connects the VM and the external server is unreliable, meaning it could be down for days at a time. The physical machine that hosts the VM gets its power cut several times per day at random. There is no way to tell when this is about to happen and it is not possible to add a UPS, a battery, or a similar solution to the system. Originally, the data was stored on a file-based HSQLDB database on the virtual machine. However, the frequent power cuts eventually cause the database script file to become corrupted (not at the file system level, i.e. it is readable, but HSQLDB can't make sense of it), which leads to my question: How should data be stored in an environment where power cuts can and do happen frequently? One option I can think of is using flat files, saving each packet of data as a file on the file system. This way if a file is corrupted due to loss of power, it can be ignored and the rest of the data remains intact. This poses a few issues however, mainly related to the amount of data likely being stored on the virtual machine. At 0.5s between each piece of data, 1,728,000 files will be generated in 10 days. This at least means using a file system with an increased number of inodes to store this data (the current file system setup ran out of inodes at ~250,000 messages and 30% disk space used). Also, it is hard (not impossible) to manage. Are there any other options? Are there database engines that run on Debian that would not get corrupted by power cuts? Also, what file system should be used for this? ext3 is what is used at the moment. The software that runs on the virtual machine is written using Java 6, so hopefully the solution would not be incompatible.

    Read the article

  • How to use the unit of work and repository patterns in a service oriented enviroment

    - by A. Karimi
    I've created an application framework using the unit of work and repository patterns for it's data layer. Data consumer layers such as presentation depend on the data layer design. For example a CRUD abstract form has a dependency to a repository (IRepository). This architecture works like a charm in client/server environments (Ex. a WPF application and a SQL Server). But I'm looking for a good pattern to change or reuse this architecture for a service oriented environment. Of course I have some ideas: Idea 1: The "Adapter" design pattern Keep the current architecture and create a new unit of work and repository implementation which can work with a service instead of the ORM. Data layer consumers are loosely coupled to the data layer so it's possible but the problem is about the unit of work; I have to create a context which tracks the objects state at the client side and sends the changes to the server side on calling the "Commit" (Something that I think the RIA has done for Silverlight). Here the diagram: ----------- CLIENT----------- | ------------------ SERVER ---------------------- [ UI ] -> [ UoW/Repository ] ---> [ Web Services ] -> [ UoW/Repository ] -> [DB] Idea 2: Add another layer Add another layer (let say "local services" or "data provider"), then put it between the data layer (unit of work and repository) and the data consumer layers (like UI). Then I have to rewrite the consumer classes (CRUD and other classes which are dependent to IRepository) to depend on another interface. And the diagram: ----------------- CLIENT ------------------ | ------------------- SERVER --------------------- [ UI ] -> [ Local Services/Data Provider ] ---> [ Web Services ] -> [ UoW/Repository ] -> [DB] Please note that I have the local services layer on the current architecture but it doesn't expose the data layer functionality. In another word the UI layer can communicate with both of the data and local services layers whereas the local services layer also uses the data layer. | | | | | | | | ---> | Local Services | ---> | | | UI | | | | Data | | | | | | | ----------------------------> | |

    Read the article

  • Diving into OpenStack Network Architecture - Part 2 - Basic Use Cases

    - by Ronen Kofman
      rkofman Normal rkofman 4 138 2014-06-05T03:38:00Z 2014-06-05T05:04:00Z 3 2735 15596 Oracle Corporation 129 36 18295 12.00 Clean Clean false false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} In the previous post we reviewed several network components including Open vSwitch, Network Namespaces, Linux Bridges and veth pairs. In this post we will take three simple use cases and see how those basic components come together to create a complete SDN solution in OpenStack. With those three use cases we will review almost the entire network setup and see how all the pieces work together. The use cases we will use are: 1.       Create network – what happens when we create network and how can we create multiple isolated networks 2.       Launch a VM – once we have networks we can launch VMs and connect them to networks. 3.       DHCP request from a VM – OpenStack can automatically assign IP addresses to VMs. This is done through local DHCP service controlled by OpenStack Neutron. We will see how this service runs and how does a DHCP request and response look like. In this post we will show connectivity, we will see how packets get from point A to point B. We first focus on how a configured deployment looks like and only later we will discuss how and when the configuration is created. Personally I found it very valuable to see the actual interfaces and how they connect to each other through examples and hands on experiments. After the end game is clear and we know how the connectivity works, in a later post, we will take a step back and explain how Neutron configures the components to be able to provide such connectivity.  We are going to get pretty technical shortly and I recommend trying these examples on your own deployment or using the Oracle OpenStack Tech Preview. Understanding these three use cases thoroughly and how to look at them will be very helpful when trying to debug a deployment in case something does not work. Use case #1: Create Network Create network is a simple operation it can be performed from the GUI or command line. When we create a network in OpenStack the network is only available to the tenant who created it or it could be defined as “shared” and then it can be used by all tenants. A network can have multiple subnets but for this demonstration purpose and for simplicity we will assume that each network has exactly one subnet. Creating a network from the command line will look like this: # neutron net-create net1 Created a new network: +---------------------------+--------------------------------------+ | Field                     | Value                                | +---------------------------+--------------------------------------+ | admin_state_up            | True                                 | | id                        | 5f833617-6179-4797-b7c0-7d420d84040c | | name                      | net1                                 | | provider:network_type     | vlan                                 | | provider:physical_network | default                              | | provider:segmentation_id  | 1000                                 | | shared                    | False                                | | status                    | ACTIVE                               | | subnets                   |                                      | | tenant_id                 | 9796e5145ee546508939cd49ad59d51f     | +---------------------------+--------------------------------------+ Creating a subnet for this network will look like this: # neutron subnet-create net1 10.10.10.0/24 Created a new subnet: +------------------+------------------------------------------------+ | Field            | Value                                          | +------------------+------------------------------------------------+ | allocation_pools | {"start": "10.10.10.2", "end": "10.10.10.254"} | | cidr             | 10.10.10.0/24                                  | | dns_nameservers  |                                                | | enable_dhcp      | True                                           | | gateway_ip       | 10.10.10.1                                     | | host_routes      |                                                | | id               | 2d7a0a58-0674-439a-ad23-d6471aaae9bc           | | ip_version       | 4                                              | | name             |                                                | | network_id       | 5f833617-6179-4797-b7c0-7d420d84040c           | | tenant_id        | 9796e5145ee546508939cd49ad59d51f               | +------------------+------------------------------------------------+ We now have a network and a subnet, on the network topology view this looks like this: Now let’s dive in and see what happened under the hood. Looking at the control node we will discover that a new namespace was created: # ip netns list qdhcp-5f833617-6179-4797-b7c0-7d420d84040c   The name of the namespace is qdhcp-<network id> (see above), let’s look into the namespace and see what’s in it: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00     inet 127.0.0.1/8 scope host lo     inet6 ::1/128 scope host        valid_lft forever preferred_lft forever 12: tap26c9b807-7c: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN     link/ether fa:16:3e:1d:5c:81 brd ff:ff:ff:ff:ff:ff     inet 10.10.10.3/24 brd 10.10.10.255 scope global tap26c9b807-7c     inet6 fe80::f816:3eff:fe1d:5c81/64 scope link        valid_lft forever preferred_lft forever   We see two interfaces in the namespace, one is the loopback and the other one is an interface called “tap26c9b807-7c”. This interface has the IP address of 10.10.10.3 and it will also serve dhcp requests in a way we will see later. Let’s trace the connectivity of the “tap26c9b807-7c” interface from the namespace.  First stop is OVS, we see that the interface connects to bridge  “br-int” on OVS: # ovs-vsctl show 8a069c7c-ea05-4375-93e2-b9fc9e4b3ca1     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-ex         Port br-ex             Interface br-ex                 type: internal     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port "tap26c9b807-7c"             tag: 1             Interface "tap26c9b807-7c"                 type: internal         Port br-int             Interface br-int                 type: internal     ovs_version: "1.11.0"   In the picture above we have a veth pair which has two ends called “int-br-eth2” and "phy-br-eth2", this veth pair is used to connect two bridge in OVS "br-eth2" and "br-int". In the previous post we explained how to check the veth connectivity using the ethtool command. It shows that the two are indeed a pair: # ethtool -S int-br-eth2 NIC statistics:      peer_ifindex: 10 . .   #ip link . . 10: phy-br-eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 . . Note that “phy-br-eth2” is connected to a bridge called "br-eth2" and one of this bridge's interfaces is the physical link eth2. This means that the network which we have just created has created a namespace which is connected to the physical interface eth2. eth2 is the “VM network” the physical interface where all the virtual machines connect to where all the VMs are connected. About network isolation: OpenStack supports creation of multiple isolated networks and can use several mechanisms to isolate the networks from one another. The isolation mechanism can be VLANs, VxLANs or GRE tunnels, this is configured as part of the initial setup in our deployment we use VLANs. When using VLAN tagging as an isolation mechanism a VLAN tag is allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly created network. By provisioning VLAN tags to the networks Neutron allows creation of multiple isolated networks on the same physical link.  The big difference between this and other platforms is that the user does not have to deal with allocating and managing VLANs to networks. The VLAN allocation and provisioning is handled by Neutron which keeps track of the VLAN tags, and responsible for allocating and reclaiming VLAN tags. In the example above net1 has the VLAN tag 1000, this means that whenever a VM is created and connected to this network the packets from that VM will have to be tagged with VLAN tag 1000 to go on this particular network. This is true for namespace as well, if we would like to connect a namespace to a particular network we have to make sure that the packets to and from the namespace are correctly tagged when they reach the VM network. In the example above we see that the namespace interface “tap26c9b807-7c” has vlan tag 1 assigned to it, if we examine OVS we see that it has flows which modify VLAN tag 1 to VLAN tag 1000 when a packet goes to the VM network on eth2 and vice versa. We can see this using the dump-flows command on OVS for packets going to the VM network we see the modification done on br-eth2: #  ovs-ofctl dump-flows br-eth2 NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18669.401s, table=0, n_packets=857, n_bytes=163350, idle_age=25, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:1000,NORMAL  cookie=0x0, duration=165108.226s, table=0, n_packets=14, n_bytes=1000, idle_age=5343, hard_age=65534, priority=2,in_port=2 actions=drop  cookie=0x0, duration=165109.813s, table=0, n_packets=1671, n_bytes=213304, idle_age=25, hard_age=65534, priority=1 actions=NORMAL   For packets coming from the interface to the namespace we see the following modification: #  ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18690.876s, table=0, n_packets=1610, n_bytes=210752, idle_age=1, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL  cookie=0x0, duration=165130.01s, table=0, n_packets=75, n_bytes=3686, idle_age=4212, hard_age=65534, priority=2,in_port=1 actions=drop  cookie=0x0, duration=165131.96s, table=0, n_packets=863, n_bytes=160727, idle_age=1, hard_age=65534, priority=1 actions=NORMAL   To summarize we can see that when a user creates a network Neutron creates a namespace and this namespace is connected through OVS to the “VM network”. OVS also takes care of tagging the packets from the namespace to the VM network with the correct VLAN tag and knows to modify the VLAN for packets coming from VM network to the namespace. Now let’s see what happens when a VM is launched and how it is connected to the “VM network”. Use case #2: Launch a VM Launching a VM can be done from Horizon or from the command line this is how we do it from Horizon: Attach the network: And Launch Once the virtual machine is up and running we can see the associated IP using the nova list command : # nova list +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | ID                                   | Name         | Status | Task State | Power State | Networks        | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | 3707ac87-4f5d-4349-b7ed-3a673f55e5e1 | Oracle Linux | ACTIVE | None       | Running     | net1=10.10.10.2 | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ The nova list command shows us that the VM is running and that the IP 10.10.10.2 is assigned to this VM. Let’s trace the connectivity from the VM to VM network on eth2 starting with the VM definition file. The configuration files of the VM including the virtual disk(s), in case of ephemeral storage, are stored on the compute node at/var/lib/nova/instances/<instance-id>/. Looking into the VM definition file ,libvirt.xml,  we see that the VM is connected to an interface called “tap53903a95-82” which is connected to a Linux bridge called “qbr53903a95-82”: <interface type="bridge">       <mac address="fa:16:3e:fe:c7:87"/>       <source bridge="qbr53903a95-82"/>       <target dev="tap53903a95-82"/>     </interface>   Looking at the bridge using the brctl show command we see this: # brctl show bridge name     bridge id               STP enabled     interfaces qbr53903a95-82          8000.7e7f3282b836       no              qvb53903a95-82                                                         tap53903a95-82    The bridge has two interfaces, one connected to the VM (“tap53903a95-82 “) and another one ( “qvb53903a95-82”) connected to “br-int” bridge on OVS: # ovs-vsctl show 83c42f80-77e9-46c8-8560-7697d76de51c     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-int         Port br-int             Interface br-int                 type: internal         Port "int-br-eth2"             Interface "int-br-eth2"         Port "qvo53903a95-82"             tag: 3             Interface "qvo53903a95-82"     ovs_version: "1.11.0"   As we showed earlier “br-int” is connected to “br-eth2” on OVS using the veth pair int-br-eth2,phy-br-eth2 and br-eth2 is connected to the physical interface eth2. The whole flow end to end looks like this: VM è tap53903a95-82 (virtual interface)è qbr53903a95-82 (Linux bridge) è qvb53903a95-82 (interface connected from Linux bridge to OVS bridge br-int) è int-br-eth2 (veth one end) è phy-br-eth2 (veth the other end) è eth2 physical interface. The purpose of the Linux Bridge connecting to the VM is to allow security group enforcement with iptables. Security groups are enforced at the edge point which are the interface of the VM, since iptables nnot be applied to OVS bridges we use Linux bridge to apply them. In the future we hope to see this Linux Bridge going away rules.  VLAN tags: As we discussed in the first use case net1 is using VLAN tag 1000, looking at OVS above we see that qvo41f1ebcf-7c is tagged with VLAN tag 3. The modification from VLAN tag 3 to 1000 as we go to the physical network is done by OVS  as part of the packet flow of br-eth2 in the same way we showed before. To summarize, when a VM is launched it is connected to the VM network through a chain of elements as described here. During the packet from VM to the network and back the VLAN tag is modified. Use case #3: Serving a DHCP request coming from the virtual machine In the previous use cases we have shown that both the namespace called dhcp-<some id> and the VM end up connecting to the physical interface eth2  on their respective nodes, both will tag their packets with VLAN tag 1000.We saw that the namespace has an interface with IP of 10.10.10.3. Since the VM and the namespace are connected to each other and have interfaces on the same subnet they can ping each other, in this picture we see a ping from the VM which was assigned 10.10.10.2 to the namespace: The fact that they are connected and can ping each other can become very handy when something doesn’t work right and we need to isolate the problem. In such case knowing that we should be able to ping from the VM to the namespace and back can be used to trace the disconnect using tcpdump or other monitoring tools. To serve DHCP requests coming from VMs on the network Neutron uses a Linux tool called “dnsmasq”,this is a lightweight DNS and DHCP service you can read more about it here. If we look at the dnsmasq on the control node with the ps command we see this: dnsmasq --no-hosts --no-resolv --strict-order --bind-interfaces --interface=tap26c9b807-7c --except-interface=lo --pid-file=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/pid --dhcp-hostsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host --dhcp-optsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/opts --leasefile-ro --dhcp-range=tag0,10.10.10.0,static,120s --dhcp-lease-max=256 --conf-file= --domain=openstacklocal The service connects to the tap interface in the namespace (“--interface=tap26c9b807-7c”), If we look at the hosts file we see this: # cat  /var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host fa:16:3e:fe:c7:87,host-10-10-10-2.openstacklocal,10.10.10.2   If you look at the console output above you can see the MAC address fa:16:3e:fe:c7:87 which is the VM MAC. This MAC address is mapped to IP 10.10.10.2 and so when a DHCP request comes with this MAC dnsmasq will return the 10.10.10.2.If we look into the namespace at the time we initiate a DHCP request from the VM (this can be done by simply restarting the network service in the VM) we see the following: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c tcpdump -n 19:27:12.191280 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from fa:16:3e:fe:c7:87, length 310 19:27:12.191666 IP 10.10.10.3.bootps > 10.10.10.2.bootpc: BOOTP/DHCP, Reply, length 325   To summarize, the DHCP service is handled by dnsmasq which is configured by Neutron to listen to the interface in the DHCP namespace. Neutron also configures dnsmasq with the combination of MAC and IP so when a DHCP request comes along it will receive the assigned IP. Summary In this post we relied on the components described in the previous post and saw how network connectivity is achieved using three simple use cases. These use cases gave a good view of the entire network stack and helped understand how an end to end connection is being made between a VM on a compute node and the DHCP namespace on the control node. One conclusion we can draw from what we saw here is that if we launch a VM and it is able to perform a DHCP request and receive a correct IP then there is reason to believe that the network is working as expected. We saw that a packet has to travel through a long list of components before reaching its destination and if it has done so successfully this means that many components are functioning properly. In the next post we will look at some more sophisticated services Neutron supports and see how they work. We will see that while there are some more components involved for the most part the concepts are the same. @RonenKofman

    Read the article

  • PASS Summit 2012: keynote and Mobile BI announcements #sqlpass

    - by Marco Russo (SQLBI)
    Today at PASS Summit 2012 there have been several announcements during the keynote. Moreover, other news have not been highlighted in the keynote but are equally if not more important for the BI community. Let’s start from the big news in the keynote (other details on SQL Server Blog): Hekaton: this is the codename for in-memory OLTP technology that will appear (I suppose) in the next release of the SQL Server relational engine. The improvement in performance and scalability is impressive and it enables new scenarios. I’m curious to see whether it can be used also to improve ETL performance and how it differs from using SSD technology. Updates on Columnstore: In the next major release of SQL Server the columnstore indexes will be updatable and it will be possible to create a clustered index with Columnstore index. This is really a great news for near real-time reporting needs! Polybase: in 2013 it will debut SQL Server 2012 Parallel Data Warehouse (PDW), which will include the Polybase technology. By using Polybase a single T-SQL query will run queries across relational data and Hadoop data. A single query language for both. Sounds really interesting for using BigData in a more integrated way with existing relational databases. And, of course, to load a data warehouse using BigData, which is the ultimate goal that we all BI Pro have, right? SQL Server 2012 SP1: the Service Pack 1 for SQL Server 2012 is available now and it enable the use of PowerPivot for SharePoint and Power View on a SharePoint 2013 installation with Excel 2013. Power View works with Multidimensional cube: the long-awaited feature of being able to use PowerPivot with Multidimensional cubes has been shown by Amir Netz in an amazing demonstration during the keynote. The interesting thing is that the data model behind was based on a many-to-many relationship (something that is not fully supported by Power View with Tabular models). Another interesting aspect is that it is Analysis Services 2012 that supports DAX queries run on a Multidimensional model, enabling the use of any future tool generating DAX queries on top of a Multidimensional model. There are still no info about availability by now, but this is *not* included in SQL Server 2012 SP1. So what about Mobile BI? Well, even if not announced during the keynote, there is a dedicated session on this topic and there are very important news in this area: iOS, Android and Microsoft mobile platforms: the commitment is to get data exploration and visualization capabilities working within June 2013. This should impact at least Power View and SharePoint/Excel Services. This is the type of UI experience we are all waiting for, in order to satisfy the requests coming from users and customers. The important news here is that native applications will be available for both iOS and Windows 8 so it seems that Android will be supported initially only through the web. Unfortunately we haven’t seen any demo, so it’s not clear what will be the offline navigation experience (and whether there will be one). But at least we know that Microsoft is working on native applications in this area. I’m not too surprised that HTML5 is not the magic bullet for all the platforms. The next PASS Business Analytics conference in 2013 seems a good place to see this in action, even if I hope we don’t have to wait other six months before seeing some demo of native BI applications on mobile platforms! Viewing Reporting Services reports on iPad is supported starting with SQL Server 2012 SP1, which has been released today. This is another good reason to install SP1 on SQL Server 2012. If you are at PASS Summit 2012, come and join me, Alberto Ferrari and Chris Webb at our book signing event tomorrow, Thursday 8 2012, at the bookstore between 12:00pm and 12:30pm, or follow one of our sessions!

    Read the article

  • Server socket programming in Android 1.5, most power efficient way?

    - by Antek
    Hello people, I am doing a project where I have too develop an application that listens for incoming events by a service. The device that has to listen too events is an Android phone with Android SDK 1.5 on it. Currently the services that call events only implement communication trough UDP or TCP sockets. I can solve my problem by setting up a ServerSocket, but i doubt that's the most power efficient way. This application will be running most of the time, with Wi-Fi on, and I'd like too reach an long battery duration. I've been looking for options on the internet for my question for a while but i couldn't get a real answer. I've got the following questions: What is the most efficient way too listen to incoming events? Should I make an ServerSocket? or what are my options? Are there any other implementations that are more power efficient? Ive been also thinking of implementing communication trough XMPP. Not sure if this is the best way. I'm not forced too an specific implementation. All suggestions are welcome! Thanks for the help, Antek

    Read the article

  • Windows 7 x64 RTM USB Port Has Power But Won't Recognize Mouse/Keyboard/Anything

    - by ben
    I have an odd error that doesn't seem to fit in with any of the other odd Windows 7 x64 USB errors that have been kicked up on Google. Here we go: Uninstalled Tortoise SVN and clicked restart computer. My machine had been up for around 28 days On reboot my mouse and keyboard failed to work anymore, couldn't log in. Tried every USB port I have on my Dell 390 and the ports on my Dell 19's, nothing worked. They had power but Windows would not respond when I manipulated the keyboard/mouse. Rebooted my computer and pressed F2 to get into bios, my keyboard is working fine in bios. Keyboard and mouse work fine on other computers when using USB. Found adapters for keyboard and mouse to convert from USB to PS/2 ports, works fine. I'm actually typing this question on the same keyboard, same computer, just using PS/2 ports for my mouse and keyboard. It appears to be a Windows 7 x64 issue. Other things I have tried: Multiple other mice and keyboards, iphone, all with no luck. Each one gets power, but Windows never tries to install drivers or sees that they are connected. Uninstall and reinstall all USB drivers. Drives uninstall and reinstall fine and report no errors in Control Panel. In Power Management I disallow Windows from turning off USB ports to save power Installed the latest nVidia drivers for my graphics card, no change. Anyplace else I can look/try? Thanks!

    Read the article

  • Windows 7 BSOD when changing power plan

    - by dd5
    i have a strange problem. When i want to change the power plan on my laptop from High performance to Balanced, Windows freezes and i get bsod. The power plan settings are all default. Laptop specs: - Intel Core i3 330M/350M - Intel® HM55 Express Chipset - DDR3 1066 MHz SDRAM 8GB - ATI Mobility™ Radeon HD5730 1GB DDR3 VRAM - Intel SSD330 128gb - Windows 7 Home premium I've searched the internets but couldnt find a similar issue. BSOD first started when i installed this SSD and stopped when i've updated the chipset controller driver then started again yesterday when i wanted to change the power settings plan.Minidump file here. Any help with this weird issue appriciated, thanks. Edit: - i've ran Memory diagnostic tool, - Intel SSD diagnostics - and updated the firmware to 3.2.1. Non of these steps worked or shown signs of errors - but still got BSOD when changing power plan settings. After analizing the dump file via osronline.com here a first few lines: CRITICAL_OBJECT_TERMINATION (f4) A process or thread crucial to system operation has unexpectedly exited or been terminated. Several processes and threads are necessary for the operation of the system; when they are terminated (for any reason), the system can no longer function. Arguments: Arg1: 0000000000000003, Process Arg2: fffffa8008661b30, Terminating object Arg3: fffffa8008661e10, Process image file name Arg4: fffff800033de270, Explanatory message (ascii) -- Solution -- Provided by Vinayak: After installing the Intel Rapid storage Technology from MajorGeeks, i didn't experience a BSOD since, thank you :)

    Read the article

< Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >