Search Results

Search found 1898 results on 76 pages for 'structures'.

Page 35/76 | < Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >

  • Upgrade 10.04LTS to 10.10 problem

    - by Gopal
    Checking for a new ubuntu release Done Upgrade tool signature Done Upgrade tools Done downloading extracting 'maverick.tar.gz' authenticate 'maverick.tar.gz' against 'maverick.tar.gz.gpg' tar: Removing leading `/' from member names Reading cache Checking package manager Reading package lists... Done Building dependency tree Reading state information... Done Building data structures... Done Reading package lists... Done Building dependency tree Reading state information... Done Building data structures... Done Updating repository information WARNING: Failed to read mirror file A fatal error occurred Please report this as a bug and include the files /var/log/dist-upgrade/main.log and /var/log/dist-upgrade/apt.log in your report. The upgrade has aborted. Your original sources.list was saved in /etc/apt/sources.list.distUpgrade. Traceback (most recent call last): File "/tmp/tmpe_xVWd/maverick", line 7, in <module> sys.exit(main()) File "/tmp/tmpe_xVWd/DistUpgradeMain.py", line 158, in main if app.run(): File "/tmp/tmpe_xVWd/DistUpgradeController.py", line 1616, in run return self.fullUpgrade() File "/tmp/tmpe_xVWd/DistUpgradeController.py", line 1534, in fullUpgrade if not self.updateSourcesList(): File "/tmp/tmpe_xVWd/DistUpgradeController.py", line 664, in updateSourcesList if not self.rewriteSourcesList(mirror_check=True): File "/tmp/tmpe_xVWd/DistUpgradeController.py", line 486, in rewriteSourcesList distro.get_sources(self.sources) File "/tmp/tmpe_xVWd/distro.py", line 103, in get_sources source.template.official == True and AttributeError: 'Template' object has no attribute 'official' This is what i got when i tried to upgrade the desktop edition:sudo do-release-upgrade. One more info: I have kde installed.

    Read the article

  • What the Hekaton?

    - by Tony Davis
    Hekaton, the power behind SQL Server 2014′s In-Memory OLTP technology, is intended to make data operations run orders of magnitude faster on SQL Server. This works its magic partly by serving database workloads entirely from main memory, using memory-optimized table structures. It replaces the relational engine’s standard locking model with an optimistic concurrency model based on time-stamped row versions. Deeper down the Hekaton engine uses new, ‘latch free’ data structures. So far, so good, but performance improvements on this scale require a compromise, and the compromise is that these aren’t tables as we understand them. For the database developer, these differences are painful because they involve sacrificing some very important bits of the relational model. Most importantly, Hekaton tables don’t currently support FOREIGN KEY constraints or CHECK constraints, and you can’t put the checks in triggers because there aren’t any DML triggers either. Constraints allow a relational designer to enforce relational integrity and data integrity. Without them, of course, ‘bad data’ can get into our Hekaton tables. There is no easy way of preventing it. For several classes of database and data, this is a show-stopper. One may regard all these restrictions regretfully, seeing limited opportunity to try out Hekaton with current databases, but perhaps there is also a sudden glow of recognition. Isn’t this how we all originally imagined table variables were going to be, back in SQL 2005? And they have much the same restrictions. Maybe, instead of pretending that a currently-designed database can be ‘Hekatonized’ with a few mouse clicks, we should redesign databases for SQL 2014 to replace table variables with Hekaton tables, exploiting this technology for fast intermediate processing, and for the most part forget, for now, the idea of trying to convert our base relational tables into Hekaton tables. Few database developers would be averse to having their working tables running an order of magnitude faster, as long as it didn’t compromise the integrity of the data in the base tables.

    Read the article

  • "unresolvable problem" error when upgrading from 12.04 to 14.04

    - by flyingfisch
    So I have solved this issue, but now I have another problem: An unresolvable problem occurred while calculating the upgrade. This can be caused by: * Upgrading to a pre-release version of Ubuntu * Running the current pre-release version of Ubuntu * Unofficial software packages not provided by Ubuntu If none of this applies, then please report this bug using the command 'ubuntu-bug ubuntu-release-upgrader-core' in a terminal. I am not upgrading to a pre-release version of Ubuntu and I am not running a pre-release either. I have unchecked all my 3rd-party packages using Ubuntu Software Manager, EditSoftware Sources... What else might be wrong? UPDATE After doing sudo update-manager -d and sudo apt-get update;sudo apt-get dist-upgrade as per JimB's post, and then running sudo do-release-upgrade, here what I get: Err http://extras.ubuntu.com trusty/main Translation-en Err http://extras.ubuntu.com trusty/main Translation-en_US Err http://extras.ubuntu.com trusty/main Translation-en Ign http://extras.ubuntu.com trusty/main Translation-en_US Ign http://extras.ubuntu.com trusty/main Translation-en Fetched 0 B in 0s (0 B/s) Checking package manager Reading package lists... Done Building dependency tree Reading state information... Done Building data structures... Done Calculating the changes Calculating the changes Could not calculate the upgrade An unresolvable problem occurred while calculating the upgrade. This can be caused by: * Upgrading to a pre-release version of Ubuntu * Running the current pre-release version of Ubuntu * Unofficial software packages not provided by Ubuntu If none of this applies, then please report this bug using the command 'ubuntu-bug ubuntu-release-upgrader-core' in a terminal. Restoring original system state Aborting Reading package lists... Done Building dependency tree Reading state information... Done Building data structures... Done === Command detached from window (Mon Aug 18 23:53:10 2014) === === Command terminated with exit status 1 (Mon Aug 18 23:53:10 2014) ===

    Read the article

  • What is an effective way to convert a shared memory-mapped system to another data access model?

    - by Rob Jones
    I have a code base that is designed around shared memory. Each process that needs to access the memory maps it into its own address space. The data structures in the shared memory are directly accessed, that is, there is no API. For example: Assume the following: typedef struct { int x; int y; struct { int a; int b; } z; } myStruct; myStruct s; Then a process might access this structure as: myStruct *s = mapGlobalMem(); And use it as: int tmpX = s->x; The majority of the information in the global structure is configuration information that is set once and read many times. I would like to store this information in a database and develop an API to access the database. The problem is, these references are sprinkled throughout the code. I need a way to parse the code and identify global structure references that will need to be refactored. I've looked into using ANTLR to create a parser that will identify references to a small set of structures and enter them into a custom symbol table. I could then use this symbol table to identify which source files need to be refactored. It looks like a promising approach. What other approaches are there? Of course, I'm looking for a programmatic approach. There are far too many source files to examine each one visually. This is all ordinary ANSI C. Nothing else.

    Read the article

  • Advice and resources on collaborative environments

    - by Tjaart
    I need some advice on collaborative software environments. More specifically, I am looking for books and reference materials that can aid me in understanding team and code structures and the interactions thereof. In other words books, blogs or white papers explaining: Different strategies for structuring teams that share common code between each other but have distinct individual functions? To summarise my question I would like to know what would be a good source of knowledge if I were to set up teams in an organisation that shared code but each unit still remained autonomous. I have done some research on this subject and explored: code review tools, distributed VCS, continuous integration tools, Unit testing automation. The tough part about implementing these tools are to determine where a good place would be to start, which tools are low hanging fruit, which tools or methods provide higher success rates. If someone asks me about code quality reference I point them to Code Complete. I am looking for an equivalent guide on software team structures and tools to make this equation work better. I realise that this question is quite vague but it arose as "we need to share code between teams without breaking each others stuff and causing management headaches and reams of red tape" The answer is definitely not simple and requires changes on many levels, hence the question. If the question is too vague please vote to close or delete. I would accept any good starting point as an answer.

    Read the article

  • How can I malloc an array of struct to do the following using file operation?

    - by RHN
    How can malloc an array of struct to do the following using file operation? the file is .txt input in the file is like: 10 22 3.3 33 4.4 I want to read the first line from the file and then I want to malloc an array of input structures equal to the number of lines to be read in from the file. Then I want to read in the data from the file and into the array of structures malloc. Later on I want to store the size of the array into the input variable size. return an array.After this I want to create another function that print out the data in the input variable in the same form like input file and suppose a function call clean_data will free the malloc memory at the end. I have tried somthing like: struct input { int a; float b,c; } struct input* readData(char *filename,int *size); int main() { return 0; } struct input* readData(char *filename,int *size) { char filename[] = "input.txt"; FILE *fp = fopen(filename, "r"); int num; while(!feof(fp)) { fscanf(fp,"%f", &num); struct input *arr = (struct input*)malloc(sizeof(struct input)); } }

    Read the article

  • Discrete Math and Computing Course

    - by ShrimpCrackers
    I was recently admitted into a Computing and Software Systems program (basically software engineering) and one of the first courses I'll be taking is called Mathematical Principles of Computing. The course description: "Integrating mathematical principles with detailed instruction in computer programming. Explores mathematical reasoning and discrete structures through object-oriented programming. Includes algorithm analysis, basic abstract data types, and data structures." I'm not a fan of math, but I've been doing well in all my math classes mostly A's and B's ever since I started two years ago, and I've been doing math every quarter - never took a quarter without math - so I've been doing it all in sequence without gaps. However, I'm worried about this class. I've read briefly on what discrete math is and from what my advisor told me, its connection with computer science is that it has alot to do with proving algorithms. One thing that my instructors briefly touched on and never went into detail was proving algorithms, and when I tried, I just wasn't very good at mathematical induction. It's one of the things that I ignored every time it showed up in a homework problem (usually in Calculus III which I'm finishing up right now). Questions: 1. What can I expect from this class? 2. How can I prepare myself for this class? 3. Other tips? Thank you.

    Read the article

  • When and how does one become a good programmer these days? [closed]

    - by YoungMoney
    I mean, good enough to make software people want and get paid for it. Maybe even good enough to launch a company or something. I'm also concerned that I'm not applying the finer points of my algorithms/data structures/software design knowledge. Background: I'm 20 and have been struggling with programming for about two years now, trying to become a software engineer. I started with a few university courses that I did quite poorly in. I learned how to make websites with HTML/JavaScript and PHP/MySQL, but feel like I know very relevant theory for making good databases - how does something like Facebook serve hundreds of millions of people? What would be smart ways to store data? I don't know. Now I'm doing some android application development, but again I have no idea about good Java design theory (I use static variables like they're going out of fashion) and feel more like I'm gluing stuff together and letting Eclipse slowly autocomplete my project. In short, I'm not sure if I'm becoming a legitimate software developer or just "doing what's cool". At least I've taken some data structures and Algorithms courses and plan to take more in the next years. But I'm having a really tough time applying this stuff to my fun little apps that I'm building. Every language higher level than C++ seems to have its own quicksort function already built-in, for example. Similarly, I can't remember ever needing to implement a linked-list, heap, binary tree, or or worry about pointers and memory management. But maybe this is a good thing so that I focus on other things? I'm not too sure what those other things are though. Hopefully something more than building another photo sharing app. Anyways that's it for me, I look forward to your responses!

    Read the article

  • Knockoutjs - stringify to handling observables and custom events

    - by Renso
    Goal: Once you viewmodel has been built and populated with data, at some point it goal of it all is to persist the data to the database (or some other media). Regardless of where you want to save it, your client-side viewmodel needs to be converted to a JSON string and sent back to the server. Environment considerations: jQuery 1.4.3+ Knockoutjs version 1.1.2   How to: So let’s set the stage, you are using Knockoutjs and you have a viewmodel with some Knockout dependencies. You want to make sure it is in the proper JSON format and via ajax post it to the server for persistence.   First order of business is to deal with the viewmodel (JSON) object. To most the JSON stringifier sounds familiar. The JSON stringifier converts JavaScript data structures into JSON text. JSON does not support cyclic data structures, so be careful to not give cyclical structures to the JSON stringifier. You may ask, is this the best way to do it? What about those observables and other Knockout properties that I don’t want to persist or want their actual value persisted and not their function, etc. Not sure if you were aware, but KO already has a method; ko.utils.stringifyJson() - it's mostly just a wrapper around JSON.stringify. (which is native in some browsers, and can be made available by referencing json2.js in others). What does it do that the regular stringify does not is that it automatically converts observable, dependentObservable, or observableArray to their underlying value to JSON. Hold on! There is a new feature in this version of Knockout, the ko.toJSON. It is part of the core library and it will clone the view model’s object graph, so you don’t mess it up after you have stringified  it and unwrap all its observables. It's smart enough to avoid reference cycles. Since you are using the MVVM pattern it would assume you are not trying to reference DOM nodes from your view. Wait a minute. I can already see this info on the http://knockoutjs.com/examples/contactsEditor.html website, why mention it all here? First of this is a much nicer blog, no orange ? At this time, you may want to have a look at the blog and see what I am talking about. See the save event, how they stringify the view model’s contacts only? That’s cool but what if your view model is a representation of your object you want to persist, meaning it has no property that represents the json object you want to persist, it is the view model itself. The example in http://knockoutjs.com/examples/contactsEditor.html assumes you have a list of contacts you may want to persist. In the example here, you want to persist the view model itself. The viewmodel here looks something like this:     var myViewmodel = {         accountName: ko.observable(""),         accountType: ko.observable("Active")     };     myViewmodel.isItActive = ko.dependentObservable(function () {         return myViewmodel.accountType() == "Active";     });     myViewmodel.clickToSaveMe = function() {         SaveTheAccount();     }; Here is the function in charge of saving the account: Function SaveTheAccount() {     $.ajax({         data: ko.toJSON(viewmodel),         url: $('#ajaxSaveAccountUrl').val(),         type: "POST",         dataType: "json",         async: false,         success: function (result) {             if (result && result.Success == true) {                 $('#accountMessage').html('<span class="fadeMyContainerSlowly">The account has been saved</span>').show();                 FadeContainerAwaySlowly();             }         },         error: function (xmlHttpRequest, textStatus, errorThrown) {             alert('An error occurred: ' + errorThrown);         }     }); //ajax }; Try run this and your browser will eventually freeze up or crash. Firebug will tell you that you have a repetitive call to the first function call in your model that keeps firing infinitely.  What is happening is that Knockout serializes the view model to a JSON string by traversing the object graph and firing off the functions, again-and-again. Not sure why it does that, but it does. So what is the work around: Nullify your function calls and then post it:         var lightweightModel = viewmodel.clickToSaveMe = null;         data: ko.toJSON(lightweightModel), So then I traced the JSON string on the server and found it having issues with primitive types. C#, by the way. So I changed ko.toJSON(model) to ko.toJS(model), and that solved my problem. Of course you could just create a property on the viewmodel for the account itself, so you only have to serialize the property and not the entire viewmodel. If that is an option then that would be the way to go. If your view model contains other properties in the view model that you also want to post then that would not be an option and then you’ll know what to watch out for. Hope this helps.

    Read the article

  • F# for the C# Programmer

    - by mbcrump
    Are you a C# Programmer and can’t make it past a day without seeing or hearing someone mention F#?  Today, I’m going to walk you through your first F# application and give you a brief introduction to the language. Sit back this will only take about 20 minutes. Introduction Microsoft's F# programming language is a functional language for the .NET framework that was originally developed at Microsoft Research Cambridge by Don Syme. In October 2007, the senior vice president of the developer division at Microsoft announced that F# was being officially productized to become a fully supported .NET language and professional developers were hired to create a team of around ten people to build the product version. In September 2008, Microsoft released the first Community Technology Preview (CTP), an official beta release, of the F# distribution . In December 2008, Microsoft announced that the success of this CTP had encouraged them to escalate F# and it is now will now be shipped as one of the core languages in Visual Studio 2010 , alongside C++, C# 4.0 and VB. The F# programming language incorporates many state-of-the-art features from programming language research and ossifies them in an industrial strength implementation that promises to revolutionize interactive, parallel and concurrent programming. Advantages of F# F# is the world's first language to combine all of the following features: Type inference: types are inferred by the compiler and generic definitions are created automatically. Algebraic data types: a succinct way to represent trees. Pattern matching: a comprehensible and efficient way to dissect data structures. Active patterns: pattern matching over foreign data structures. Interactive sessions: as easy to use as Python and Mathematica. High performance JIT compilation to native code: as fast as C#. Rich data structures: lists and arrays built into the language with syntactic support. Functional programming: first-class functions and tail calls. Expressive static type system: finds bugs during compilation and provides machine-verified documentation. Sequence expressions: interrogate huge data sets efficiently. Asynchronous workflows: syntactic support for monadic style concurrent programming with cancellations. Industrial-strength IDE support: multithreaded debugging, and graphical throwback of inferred types and documentation. Commerce friendly design and a viable commercial market. Lets try a short program in C# then F# to understand the differences. Using C#: Create a variable and output the value to the console window: Sample Program. using System;   namespace ConsoleApplication9 {     class Program     {         static void Main(string[] args)         {             var a = 2;             Console.WriteLine(a);             Console.ReadLine();         }     } } A breeze right? 14 Lines of code. We could have condensed it a bit by removing the “using” statment and tossing the namespace. But this is the typical C# program. Using F#: Create a variable and output the value to the console window: To start, open Visual Studio 2010 or Visual Studio 2008. Note: If using VS2008, then please download the SDK first before getting started. If you are using VS2010 then you are already setup and ready to go. So, click File-> New Project –> Other Languages –> Visual F# –> Windows –> F# Application. You will get the screen below. Go ahead and enter a name and click OK. Now, you will notice that the Solution Explorer contains the following: Double click the Program.fs and enter the following information. Hit F5 and it should run successfully. Sample Program. open System let a = 2        Console.WriteLine a As Shown below: Hmm, what? F# did the same thing in 3 lines of code. Show me the interactive evaluation that I keep hearing about. The F# development environment for Visual Studio 2010 provides two different modes of execution for F# code: Batch compilation to a .NET executable or DLL. (This was accomplished above). Interactive evaluation. (Demo is below) The interactive session provides a > prompt, requires a double semicolon ;; identifier at the end of a code snippet to force evaluation, and returns the names (if any) and types of resulting definitions and values. To access the F# prompt, in VS2010 Goto View –> Other Window then F# Interactive. Once you have the interactive window type in the following expression: 2+3;; as shown in the screenshot below: I hope this guide helps you get started with the language, please check out the following books for further information. F# Books for further reading   Foundations of F# Author: Robert Pickering An introduction to functional programming with F#. Including many samples, this book walks through the features of the F# language and libraries, and covers many of the .NET Framework features which can be leveraged with F#.       Functional Programming for the Real World: With Examples in F# and C# Authors: Tomas Petricek and Jon Skeet An introduction to functional programming for existing C# developers written by Tomas Petricek and Jon Skeet. This book explains the core principles using both C# and F#, shows how to use functional ideas when designing .NET applications and presents practical examples such as design of domain specific language, development of multi-core applications and programming of reactive applications.

    Read the article

  • What Counts For a DBA: Simplicity

    - by Louis Davidson
    Too many computer processes do an apparently simple task in a bizarrely complex way. They remind me of this strip by one of my favorite artists: Rube Goldberg. In order to keep the boss from knowing one was late, a process is devised whereby the cuckoo clock kisses a live cuckoo bird, who then pulls a string, which triggers a hat flinging, which in turn lands on a rod that removes a typewriter cover…and so on. We rely on creating automated processes to keep on top of tasks. DBAs have a lot of tasks to perform: backups, performance tuning, data movement, system monitoring, and of course, avoiding being noticed.  Every day, there are many steps to perform to maintain the database infrastructure, including: checking physical structures, re-indexing tables where needed, backing up the databases, checking those backups, running the ETL, and preparing the daily reports and yes, all of these processes have to complete before you can call it a day, and probably before many others have started that same day. Some of these tasks are just naturally complicated on their own. Other tasks become complicated because the database architecture is excessively rigid, and we often discover during “production testing” that certain processes need to be changed because the written requirements barely resembled the actual customer requirements.   Then, with no time to change that rigid structure, we are forced to heap layer upon layer of code onto the problematic processes. Instead of a slight table change and a new index, we end up with 4 new ETL processes, 20 temp tables, 30 extra queries, and 1000 lines of SQL code.  Report writers then need to build reports and make magical numbers appear from those toxic data structures that are overly complex and probably filled with inconsistent data. What starts out as a collection of fairly simple tasks turns into a Goldbergian nightmare of daily processes that are likely to cause your dinner to be interrupted by the smartphone doing the vibration dance that signifies trouble at the mill. So what to do? Well, if it is at all possible, simplify the problem by either going into the code and refactoring the complex code to simple, or taking all of the processes and simplifying them into small, independent, easily-tested steps.  The former approach usually requires an agreement on changing underlying structures that requires countless mind-numbing meetings; while the latter can generally be done to any complex process without the same frustration or anger, though it will still leave you with lots of steps to complete, the ability to test each step independently will definitely increase the quality of the overall process (and with each step reporting status back, finding an actual problem within the process will be definitely less unpleasant.) We all know the principle behind simplifying a sequence of processes because we learned it in math classes in our early years of attending school, starting with elementary school. In my 4 years (ok, 9 years) of undergraduate work, I remember pretty much one thing from my many math classes that I apply daily to my career as a data architect, data programmer, and as an occasional indentured DBA: “show your work”. This process of showing your work was my first lesson in simplification. Each step in the process was in fact, far simpler than the entire process.  When you were working an equation that took both sides of 4 sheets of paper, showing your work was important because the teacher could see every step, judge it, and mark it accordingly.  So often I would make an error in the first few lines of a problem which meant that the rest of the work was actually moving me closer to a very wrong answer, no matter how correct the math was in the subsequent steps. Yet, when I got my grade back, I would sometimes be pleasantly surprised. I passed, yet missed every problem on the test. But why? While I got the fact that 1+1=2 wrong in every problem, the teacher could see that I was using the right process. In a computer process, the process is very similar. We take complex processes, show our work by storing intermediate values, and test each step independently. When a process has 100 steps, each step becomes a simple step that is tested and verified, such that there will be 100 places where data is stored, validated, and can be checked off as complete. If you get step 1 of 100 wrong, you can fix it and be confident (that if you did your job of testing the other steps better than the one you had to repair,) that the rest of the process works. If you have 100 steps, and store the state of the process exactly once, the resulting testable chunk of code will be far more complex and finding the error will require checking all 100 steps as one, and usually it would be easier to find a specific needle in a stack of similarly shaped needles.  The goal is to strive for simplicity either in the solution, or at least by simplifying every process down to as many, independent, testable, simple tasks as possible.  For the tasks that really can’t be done completely independently, minimally take those tasks and break them down into simpler steps that can be tested independently.  Like working out division problems longhand, have each step of the larger problem verified and tested.

    Read the article

  • Columnstore Case Study #2: Columnstore faster than SSAS Cube at DevCon Security

    - by aspiringgeek
    Preamble This is the second in a series of posts documenting big wins encountered using columnstore indexes in SQL Server 2012 & 2014.  Many of these can be found in my big deck along with details such as internals, best practices, caveats, etc.  The purpose of sharing the case studies in this context is to provide an easy-to-consume quick-reference alternative. See also Columnstore Case Study #1: MSIT SONAR Aggregations Why Columnstore? As stated previously, If we’re looking for a subset of columns from one or a few rows, given the right indexes, SQL Server can do a superlative job of providing an answer. If we’re asking a question which by design needs to hit lots of rows—DW, reporting, aggregations, grouping, scans, etc., SQL Server has never had a good mechanism—until columnstore. Columnstore indexes were introduced in SQL Server 2012. However, they're still largely unknown. Some adoption blockers existed; yet columnstore was nonetheless a game changer for many apps.  In SQL Server 2014, potential blockers have been largely removed & they're going to profoundly change the way we interact with our data.  The purpose of this series is to share the performance benefits of columnstore & documenting columnstore is a compelling reason to upgrade to SQL Server 2014. The Customer DevCon Security provides home & business security services & has been in business for 135 years. I met DevCon personnel while speaking to the Utah County SQL User Group on 20 February 2012. (Thanks to TJ Belt (b|@tjaybelt) & Ben Miller (b|@DBADuck) for the invitation which serendipitously coincided with the height of ski season.) The App: DevCon Security Reporting: Optimized & Ad Hoc Queries DevCon users interrogate a SQL Server 2012 Analysis Services cube via SSRS. In addition, the SQL Server 2012 relational back end is the target of ad hoc queries; this DW back end is refreshed nightly during a brief maintenance window via conventional table partition switching. SSRS, SSAS, & MDX Conventional relational structures were unable to provide adequate performance for user interaction for the SSRS reports. An SSAS solution was implemented requiring personnel to ramp up technically, including learning enough MDX to satisfy requirements. Ad Hoc Queries Even though the fact table is relatively small—only 22 million rows & 33GB—the table was a typical DW table in terms of its width: 137 columns, any of which could be the target of ad hoc interrogation. As is common in DW reporting scenarios such as this, it is often nearly to optimize for such queries using conventional indexing. DevCon DBAs & developers attended PASS 2012 & were introduced to the marvels of columnstore in a session presented by Klaus Aschenbrenner (b|@Aschenbrenner) The Details Classic vs. columnstore before-&-after metrics are impressive. Scenario Conventional Structures Columnstore ? SSRS via SSAS 10 - 12 seconds 1 second >10x Ad Hoc 5-7 minutes (300 - 420 seconds) 1 - 2 seconds >100x Here are two charts characterizing this data graphically.  The first is a linear representation of Report Duration (in seconds) for Conventional Structures vs. Columnstore Indexes.  As is so often the case when we chart such significant deltas, the linear scale doesn’t expose some the dramatically improved values corresponding to the columnstore metrics.  Just to make it fair here’s the same data represented logarithmically; yet even here the values corresponding to 1 –2 seconds aren’t visible.  The Wins Performance: Even prior to columnstore implementation, at 10 - 12 seconds canned report performance against the SSAS cube was tolerable. Yet the 1 second performance afterward is clearly better. As significant as that is, imagine the user experience re: ad hoc interrogation. The difference between several minutes vs. one or two seconds is a game changer, literally changing the way users interact with their data—no mental context switching, no wondering when the results will appear, no preoccupation with the spinning mind-numbing hurry-up-&-wait indicators.  As we’ve commonly found elsewhere, columnstore indexes here provided performance improvements of one, two, or more orders of magnitude. Simplified Infrastructure: Because in this case a nonclustered columnstore index on a conventional DW table was faster than an Analysis Services cube, the entire SSAS infrastructure was rendered superfluous & was retired. PASS Rocks: Once again, the value of attending PASS is proven out. The trip to Charlotte combined with eager & enquiring minds let directly to this success story. Find out more about the next PASS Summit here, hosted this year in Seattle on November 4 - 7, 2014. DevCon BI Team Lead Nathan Allan provided this unsolicited feedback: “What we found was pretty awesome. It has been a game changer for us in terms of the flexibility we can offer people that would like to get to the data in different ways.” Summary For DW, reports, & other BI workloads, columnstore often provides significant performance enhancements relative to conventional indexing.  I have documented here, the second in a series of reports on columnstore implementations, results from DevCon Security, a live customer production app for which performance increased by factors of from 10x to 100x for all report queries, including canned queries as well as reducing time for results for ad hoc queries from 5 - 7 minutes to 1 - 2 seconds. As a result of columnstore performance, the customer retired their SSAS infrastructure. I invite you to consider leveraging columnstore in your own environment. Let me know if you have any questions.

    Read the article

  • Best way to store a large amount of game objects and update the ones onscreen

    - by user3002473
    Good afternoon guys! I'm a young beginner game developer working on my first large scale game project and I've run into a situation where I'm not quite sure what the best solution may be (if there is a lone solution). The question may be vague (if anyone can think of a better title after having read the question, please edit it) or broad but I'm not quite sure what to do and I thought it would help just to discuss the problem with people more educated in the field. Before we get started, here are some of the questions I've looked at for help in the past: Best way to keep track of game objects Elegant way to simulate large amounts of entities within a game world What is the most efficient container to store dynamic game objects in? I've also read articles about different data structures commonly used in games to store game objects such as this one about slot maps, but none of them are really what I'm looking for. Also, if it helps at all I'm using Python 3 to design the game. It has to be Python 3, if I could I would use C++ or Unityscript or something else, but I'm restricted to having to use Python 3. My game will be a form of side scroller shooter game. In said game the player will traverse large rooms with large amounts of enemies and other game objects to update (think some of the larger areas in Cave Story or Iji). The player obviously can't see the entire room all at once, so there is a viewport that follows the player around and renders only a selection of the room and the game objects that it contains. This is not a foreign concept. The part that's getting me confused has to do with how certain game objects are updated. Some of them are to be updated constantly, regardless of whether or not they can be seen. Other objects however are only to be updated when they are onscreen (for example, an enemy would only be updated to react to the player when it is onscreen or when it is in a certain range of the screen). Another problem is that game objects have to be easily referable by other game objects; something that happens in the player's update() method may affect another object in the world. Collision detection in games is always a serious problem. I need a way of containing the game objects such that it minimizes the number of cases when testing for collisions against one another. The final problem is that of creating and destroying game objects. I think this problem is pretty self explanatory. To store the game objects then I've considered a number of different methods. The original method I had was to simply store all the objects in a hash table by an id. This method was simple, and decently fast as it allows all the objects to be looked up in O(1) complexity, and also allows them to be deleted fairly easily. Hash collisions would not be a major problem; I wasn't originally planning on using computer generated ids to store the game objects I was going to rely on them all using ids given to them by the game designer (such names would be strings like 'Player' or 'EnemyWeapon4'), and even if I did use computer generated ids, if I used a decent hashing algorithm then the chances of collisions would be around 1 in 4 billion. The problem with using a hash table however is that it is inefficient in checking to see what objects are in range of the viewport. Considering the fact that certain game objects move (as well as the viewport itself), the only solution I could think of in order to only update objects that are in the viewport would be to iterate through every object in the hash table and check if it is in the viewport or not, updating only the ones that are in the valid area. This would be incredibly slow in scenarios where the amount of game objects exceeds 500, or even 200. The second solution was to store everything in a 2-d list. The world is partitioned up into cells (a tilemap essentially), where each cell or tile is the same size and is square. Each cell would contain a list of the game objects that are currently occupying it (each game object would be inserted into a cell depending on the center of the object's collision mask). A 2-d list would allow me to take the top-left and bottom-right corners of the viewport and easily grab a rectangular area of the grid containing only the cells containing entities that are in valid range to be updated. This method also solves the problem of collision detection; when I take an entity I can find the cell that it is currently in, then check only against entities in it's cell and the 8 cells around it. One problem with this system however is that it prohibits easy lookup of game objects. One solution I had would be to simultaneously keep a hash table that would contain all the positions of the objects in the 2-d list indexed by the id of said object. The major problem with a 2-d list is that it would need to be rebuilt every single game frame (along with the hash table of object positions), which may be a serious detriment to game speed. Both systems have ups and downs and seem to solve some of each other's problems, however using them both together doesn't seem like the best solution either. If anyone has any thoughts, ideas, suggestions, comments, opinions or solutions on new data structures or better implementations of the existing data structures I have in mind, please post, any and all criticism and help is welcome. Thanks in advance! EDIT: Please don't close the question because it has a bad title, I'm just bad with names!

    Read the article

  • Career guidance/advice for Junior-level Software Engineer [closed]

    - by John Do
    I have quite a few questions on my mind, so please bare with me. Please don't feel obligated to answer all of them, any as you choose will do. I'd appreciate if you could share some insight on any of these. Before I begin, some context: I currently have almost two years of professional experience as a Software Engineer, mainly developing software in Java. At this point, I feel that I have reached the peak in my career growth at the current company I am at and therefore I am looking for a new job, ideally again, as a Software Engineer. I have been interviewing for the past few months casually but have not had luck with companies I have a passion for. So, in no particular order - 1) In general, what are your thoughts on having graduate degrees in CS / Software Engineering. How much does it influence a salary increase, and do you think it's beneficial when working on real-world problems? I get the sense that a graduate degree in the field is trivial unless you really have a passion for research. 2) In general, in professional practice, how often had you have to write your own data structures and "complex" algorithms from scratch? In my own work, I have found myself relying mainly on third-party frameworks and the Java standard library to implement solutions as per business requirements. What are your thoughts on this? 3) In terms of resume, I feel the most ambivalent here. I want to be able to "blemish" my resume to a certain extent so that it stands out from others', but at the same time I do not want to over-exagerate my abilities. How do you strike a balance here? For example: I say that I am proficient in Java with data structures and algorithms. This is obviously a subjective and relative statement. I've taken the classes in my undergrad, and I've applied it in my work experience. What I feel as "prociency" can be seen as junior-level to others. How do you know what to say? Most of the time, recruiters (with no technical background) will be looking for keywords that stand out. This leads me to my next question (4). 4) Just from interviewing for the past few months (and getting plenty of rejections), I've come to realize that I may not be as proficient in data structures and algorithms as I thought I was. Do you think it's a good idea to remove the "proficient in java/data structure and algorithms"? I feel that being too hoenst on the resume will impede me from scoring opportunities to even have an interview with top-notch companies. What are your thoughts? 5) What is the absolute "must-have" knowledge going into a technical interview? I've been practicing several algorithmic and data sturcture problems now, and I feel that my abilities to solve arbitrary problems efficiently has not gotten significantly better. Do you think these abilities are something innate - it's either you have in you, or you don't? How can you teach yourself to learn, if you will? 6) How easy is it to go from industry/function to the next? I work mainly with backend technologies and I'm now interested in working with the frontend, i.e javascript,jquery,php or even mobile development. In your own experience, how did you not get pidgeon holed in your career? I feel that the choices you make now ultimately decide your future. As cliche as it sounds, I think it may be true. Here's what I mean: you've worked mainly as a backend engineer, people are interested in you doing the same thing since you've already accumulated experience in that function. How do get experience in a new function if people won't accept you because you don't already have it? It's a catch 22, you see... Are side projects the only real way to help you move from one function to another that you're truly interested in? For example: I could start writing my own mobile applications, even though I've worked mainly on the backend. Thanks so much for the long read. As a relatively new engineer to the real world, I am very humble and would like those who are experienced to shed some light. Thank you so much.

    Read the article

  • List of freely available programming books

    - by Karan Bhangui
    I'm trying to amass a list of programming books with opensource licenses, like Creative Commons, GPL, etc. The books can be about a particular programming language or about computers in general. Hoping you guys could help: Languages BASH Advanced Bash-Scripting Guide (An in-depth exploration of the art of shell scripting) C The C book C++ Thinking in C++ C++ Annotations How to Think Like a Computer Scientist C# .NET Book Zero: What the C or C++ Programmer Needs to Know About C# and the .NET Framework Illustrated C# 2008 (Dead Link) Data Structures and Algorithms with Object-Oriented Design Patterns in C# Threading in C# Common Lisp Practical Common Lisp On Lisp Java Thinking in Java How to Think Like a Computer Scientist Java Thin-Client Programming JavaScript Eloquent JavaScript Haskell Real world Haskell Learn You a Haskell for Great Good! Objective-C The Objective-C Programming Language Perl Extreme Perl (license not specified - home page is saying "freely available") The Mason Book (Open Publication License) Practical mod_perl (CreativeCommons Attribution Share-Alike License) Higher-Order Perl Learning Perl the Hard Way PHP Practical PHP Programming Zend Framework: Survive the Deep End PowerShell Mastering PowerShell Prolog Building Expert Systems in Prolog Adventure in Prolog Prolog Programming A First Course Logic, Programming and Prolog (2ed) Introduction to Prolog for Mathematicians Learn Prolog Now! Natural Language Processing Techniques in Prolog Python Dive Into Python Dive Into Python 3 How to Think Like a Computer Scientist A Byte of Python Python for Fun Invent Your Own Computer Games With Python Ruby Why's (Poignant) Guide to Ruby Programming Ruby - The Pragmatic Programmer's Guide Mr. Neighborly's Humble Little Ruby Book SQL Practical PostgreSQL x86 assembly Paul Carter's tutorial Lua Programming In Lua (for v5 but still largely relevant) Algorithms and Data Structures Algorithms Data Structures and Algorithms with Object-Oriented Design Patterns in Java Planning Algorithms Frameworks/Projects The Django Book The Pylons Book Introduction to Design Patterns in C++ with Qt 4 (Open Publication License) Version control The SVN Book Mercurial: The Definitive Guide Pro Git UNIX / Linux The Art of Unix Programming Linux Device Drivers, Third Edition Others Structure and Interpretation of Computer Programs The Little Book of Semaphores Mathematical Logic - an Introduction An Introduction to the Theory of Computation Developers Developers Developers Developers Linkers and loaders Beej's Guide to Network Programming Maven: The Definitive Guide I will expand on this list as I get comments or when I think of more :D Related: Programming texts and reference material for my Kindle What are some good free programming books? Can anyone recommend a free software engineering book? Edit: Oh I didn't notice the community wiki feature. Feel free to edit your suggestions right in!

    Read the article

  • Eclispe RCP SWT menus for Windows and Mac OS

    - by Raven
    Hi, how do I configure an Eclipse RCP command style menu to match the different menu structures on Windows and on Mac OS? Mac OS X menu example http://images.apple.com/macosx/refinements/images/services_menu_20090902.jpg Windows menu example http://www.flamingpear.com/images/psp8menu.gif In the example you see, the differences in the menu structures. For example has the Mac in its application menu the preference command, the about command and the exit command. These are under Windows usally in the file menu and the about command is found in the help menu. Is there a "standard" way of doing it with RCP programs? It should somehow be possible because Eclipse itself does it. But I can not figure out how.

    Read the article

  • can you help me with 8068 project for Delphi .net please

    - by Lex Dean
    To find an Assembly programmer is very hard to help me I'm a established Delphi programmer that has an old copy of Delphi that is not .net And I have a *.dll that I'm converting into Delphi code for .net I'm on a big learning curve hear as i know little of .net yet. I've just got a computer with .net today!!!!!! I've run the *.dll through a dissembler and started putting jump links in as writing in Delphi assembly you do not do any addressing, just reference links. The file has fixed string structures (i think C++) ASCII & ANSI strings 1/ I do not know how to identify how the code references these structures 2/ and I do not know were the functions begin and what shape they look like The code is free for any one to look at their is not many functions in it. but I have to email it as stack over flow will not allow me to display it. Can you tech me or can you refer me to a friend you may know please to tech me lexdeanair at hotmail.com Best regards, Lex Dean from New Zealand I do not wish to pester any one

    Read the article

  • WSDL: What do I do with it? Add service Reference? Noobie question

    - by Johnny
    Hey guys! I have been given a WSDL with all the method requests and responses, and all the objects I'll need to use for creating a few webmethods. The thing is, I don't know what to do with it. I've added the WSDL as a Service Reference. I can see the methods and structures, I can instantiate them, it's all there, but the project doesn't build as soon as I add the WSDL. "Error 2 The type name 'ServiceReference1' does not exist in the type 'WSPELab.WSPELab' C:\Users\JJ\Documents\Visual Studio 2008\Projects\WSPELab\WSPELab\Service References\ServiceReference1\Reference.cs 21 111 WSPELabSLN Is it a stupid namespace error on my part? EDIT : Forgot to add this. With the WSDL added, can I used the structures it contains directly? Or are they just "listings" for me to implement? Thanks!

    Read the article

  • Idiomatic way to do list/dict in Cython?

    - by ramanujan
    My problem: I've found that processing large data sets with raw C++ using the STL map and vector can often be considerably faster (and with lower memory footprint) than using Cython. I figure that part of this speed penalty is due to using Python lists and dicts, and that there might be some tricks to use less encumbered data structures in Cython. For example, this page (http://wiki.cython.org/tutorials/numpy) shows how to make numpy arrays very fast in Cython by predefining the size and types of the ND array. Question: Is there any way to do something similar with lists/dicts, e.g. by stating roughly how many elements or (key,value) pairs you expect to have in them? That is, is there an idiomatic way to convert lists/dicts to (fast) data structures in Cython? If not I guess I'll just have to write it in C++ and wrap in a Cython import.

    Read the article

  • How to use IObservable/IObserver with ConcurrentQueue or ConcurrentStack

    - by James Black
    I realized that when I am trying to process items in a concurrent queue using multiple threads while multiple threads can be putting items into it, the ideal solution would be to use the Reactive Extensions with the Concurrent data structures. My original question is at: http://stackoverflow.com/questions/2997797/while-using-concurrentqueue-trying-to-dequeue-while-looping-through-in-parallel/ So I am curious if there is any way to have a LINQ (or PLINQ) query that will continuously be dequeueing as items are put into it. I am trying to get this to work in a way where I can have n number of producers pushing into the queue and a limited number of threads to process, so I don't overload the database. If I could use Rx framework then I expect that I could just start it, and if 100 items are placed in within 100ms, then the 20 threads that are part of the PLINQ query would just process through the queue. There are three technologies I am trying to work together: Rx Framework (Reactive LINQ) PLING System.Collections.Concurrent structures

    Read the article

  • Win32 call order

    - by DD
    Hi all, I have two windows that I send scripted input to. The procedure goes as this BringWindowToTop( window1 ); i = Build input structures( window1 ); SendInput(i); BringWindowToTop( window2 ); i = Build input structures( window2 ); SendInput(i); I was having trouble with inputs not being sent and the correct time. I put delays after each call and saw that input from the first SendInput() was processed after window2 is brought to top. Same thing at the end of the loop as well. Are SendInput calls buffered? If so, how can I make sure of a serial execution of this code? Thanks

    Read the article

  • Modeling software for network serialization protocol design

    - by Aurélien Vallée
    Hello, I am currently designing a low level network serialization protocol (in fact, a refinement of an existing protocol). As the work progress, pen and paper documents start to show their limits: i have tons of papers, new and outdated merged together, etc... And i can't show anything to anyone since i describe the protocol using my own notation (a mix of flow chart & C structures). I need a software that would help me to design a network protocol. I should be able to create structures, fields, their sizes, their layout, etc... and the software would generate some nice UMLish diagrams.

    Read the article

  • Accelerated C++, problem 5-6 (copying values from inside a vector to the front)

    - by Darel
    Hello, I'm working through the exercises in Accelerated C++ and I'm stuck on question 5-6. Here's the problem description: (somewhat abbreviated, I've removed extraneous info.) 5-6. Write the extract_fails function so that it copies the records for the passing students to the beginning of students, and then uses the resize function to remove the extra elements from the end of students. (students is a vector of student structures. student structures contain an individual student's name and grades.) More specifically, I'm having trouble getting the vector.insert function to properly copy the passing student structures to the start of the vector students. Here's the extract_fails function as I have it so far (note it doesn't resize the vector yet, as directed by the problem description; that should be trivial once I get past my current issue.) // Extract the students who failed from the "students" vector. void extract_fails(vector<Student_info>& students) { typedef vector<Student_info>::size_type str_sz; typedef vector<Student_info>::iterator iter; iter it = students.begin(); str_sz i = 0, count = 0; while (it != students.end()) { // fgrade tests wether or not the student failed if (!fgrade(*it)) { // if student passed, copy to front of vector students.insert(students.begin(), it, it); // tracks of the number of passing students(so we can properly resize the array) count++; } cout << it->name << endl; // output to verify that each student is iterated to it++; } } The code compiles and runs, but the students vector isn't adding any student structures to its front. My program's output displays that the students vector is unchanged. Here's my complete source code, followed by a sample input file (I redirect input from the console by typing " < grades" after the compiled program name at the command prompt.) #include <iostream> #include <string> #include <algorithm> // to get the declaration of `sort' #include <stdexcept> // to get the declaration of `domain_error' #include <vector> // to get the declaration of `vector' //driver program for grade partitioning examples using std::cin; using std::cout; using std::endl; using std::string; using std::domain_error; using std::sort; using std::vector; using std::max; using std::istream; struct Student_info { std::string name; double midterm, final; std::vector<double> homework; }; bool compare(const Student_info&, const Student_info&); std::istream& read(std::istream&, Student_info&); std::istream& read_hw(std::istream&, std::vector<double>&); double median(std::vector<double>); double grade(double, double, double); double grade(double, double, const std::vector<double>&); double grade(const Student_info&); bool fgrade(const Student_info&); void extract_fails(vector<Student_info>& v); int main() { vector<Student_info> vs; Student_info s; string::size_type maxlen = 0; while (read(cin, s)) { maxlen = max(maxlen, s.name.size()); vs.push_back(s); } sort(vs.begin(), vs.end(), compare); extract_fails(vs); // display the new, modified vector - it should be larger than // the input vector, due to some student structures being // added to the front of the vector. cout << "count: " << vs.size() << endl << endl; vector<Student_info>::iterator it = vs.begin(); while (it != vs.end()) cout << it++->name << endl; return 0; } // Extract the students who failed from the "students" vector. void extract_fails(vector<Student_info>& students) { typedef vector<Student_info>::size_type str_sz; typedef vector<Student_info>::iterator iter; iter it = students.begin(); str_sz i = 0, count = 0; while (it != students.end()) { // fgrade tests wether or not the student failed if (!fgrade(*it)) { // if student passed, copy to front of vector students.insert(students.begin(), it, it); // tracks of the number of passing students(so we can properly resize the array) count++; } cout << it->name << endl; // output to verify that each student is iterated to it++; } } bool compare(const Student_info& x, const Student_info& y) { return x.name < y.name; } istream& read(istream& is, Student_info& s) { // read and store the student's name and midterm and final exam grades is >> s.name >> s.midterm >> s.final; read_hw(is, s.homework); // read and store all the student's homework grades return is; } // read homework grades from an input stream into a `vector<double>' istream& read_hw(istream& in, vector<double>& hw) { if (in) { // get rid of previous contents hw.clear(); // read homework grades double x; while (in >> x) hw.push_back(x); // clear the stream so that input will work for the next student in.clear(); } return in; } // compute the median of a `vector<double>' // note that calling this function copies the entire argument `vector' double median(vector<double> vec) { typedef vector<double>::size_type vec_sz; vec_sz size = vec.size(); if (size == 0) throw domain_error("median of an empty vector"); sort(vec.begin(), vec.end()); vec_sz mid = size/2; return size % 2 == 0 ? (vec[mid] + vec[mid-1]) / 2 : vec[mid]; } // compute a student's overall grade from midterm and final exam grades and homework grade double grade(double midterm, double final, double homework) { return 0.2 * midterm + 0.4 * final + 0.4 * homework; } // compute a student's overall grade from midterm and final exam grades // and vector of homework grades. // this function does not copy its argument, because `median' does so for us. double grade(double midterm, double final, const vector<double>& hw) { if (hw.size() == 0) throw domain_error("student has done no homework"); return grade(midterm, final, median(hw)); } double grade(const Student_info& s) { return grade(s.midterm, s.final, s.homework); } // predicate to determine whether a student failed bool fgrade(const Student_info& s) { return grade(s) < 60; } Sample input file: Moo 100 100 100 100 100 100 100 100 Fail1 45 55 65 80 90 70 65 60 Moore 75 85 77 59 0 85 75 89 Norman 57 78 73 66 78 70 88 89 Olson 89 86 70 90 55 73 80 84 Peerson 47 70 82 73 50 87 73 71 Baker 67 72 73 40 0 78 55 70 Davis 77 70 82 65 70 77 83 81 Edwards 77 72 73 80 90 93 75 90 Fail2 55 55 65 50 55 60 65 60 Thanks to anyone who takes the time to look at this!

    Read the article

  • Hiding members in a C struct

    - by Marlon
    I've been reading about OOP in C but I never liked how you can't have private data members like you can in C++. But then it came to my mind that you could create 2 structures. One is defined in the header file and the other is defined in the source file. // ========================================= // in somestruct.h typedef struct { int _public_member; } SomeStruct; // ========================================= // in somestruct.cpp #include "somestruct.h" typedef struct { int _public_member; int _private_member; } SomeStructSource; SomeStruct *SomeStruct_Create() { SomeStructSource *p = (SomeStructSource *)malloc(sizeof(SomeStructSource)); p->_private_member = 0xWHATEVER; return (SomeStruct *)p; } From here you can just cast one structure to the other. Is this considered bad practice? Or is it done often? (I think this is done with a lot of the structures when using the Win32 API, but you guys are the experts let me know!)

    Read the article

  • Reading and writing C++ vector to a file

    - by JB
    For some graphics work I need to read in a large amount of data as quickly as possible and would ideally like to directly read and write the data structures to disk. Basically I have a load of 3d models in various file formats which take too long to load so I want to write them out in their "prepared" format as a cache that will load much faster on subsequent runs of the program. Is it safe to do it like this? My worries are around directly reading into the data of the vector? I've removed error checking, hard coded 4 as the size of the int and so on so that i can give a short working example, I know it's bad code, my question really is if it is safe in c++ to read a whole array of structures directly into a vector like this? I believe it to be so, but c++ has so many traps and undefined behavour when you start going low level and dealing directly with raw memory like this. I realise that number formats and sizes may change across platforms and compilers but this will only even be read and written by the same compiler program to cache data that may be needed on a later run of the same program. #include <fstream> #include <vector> using namespace std; struct Vertex { float x, y, z; }; typedef vector<Vertex> VertexList; int main() { // Create a list for testing VertexList list; Vertex v1 = {1.0f, 2.0f, 3.0f}; list.push_back(v1); Vertex v2 = {2.0f, 100.0f, 3.0f}; list.push_back(v2); Vertex v3 = {3.0f, 200.0f, 3.0f}; list.push_back(v3); Vertex v4 = {4.0f, 300.0f, 3.0f}; list.push_back(v4); // Write out a list to a disk file ofstream os ("data.dat", ios::binary); int size1 = list.size(); os.write((const char*)&size1, 4); os.write((const char*)&list[0], size1 * sizeof(Vertex)); os.close(); // Read it back in VertexList list2; ifstream is("data.dat", ios::binary); int size2; is.read((char*)&size2, 4); list2.resize(size2); // Is it safe to read a whole array of structures directly into the vector? is.read((char*)&list2[0], size2 * sizeof(Vertex)); }

    Read the article

< Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >