Search Results

Search found 3027 results on 122 pages for 'explicit cast'.

Page 36/122 | < Previous Page | 32 33 34 35 36 37 38 39 40 41 42 43  | Next Page >

  • Sync local directory with remote FTPS?

    - by A T
    How do I keep my local directory in sync with my remote FTPS directory? Note that I've tried WinSCP, but found that it only works a few times then I need to restart it to get it going again. Also I've tried all the utilities mentioned here but only a few supported the connection requirements (explicit SSL over FTP), and those that did didn't have "realtime" directory sync. Also note that a curl, rsync or wput command which I can put into "scheduled tasks" will suffice, if it can do directory sync.

    Read the article

  • Is there an emoticon to express irony?

    - by Dimitri C.
    I use irony rather often, but in written texts such as email I'm often afraid that it might be misinterpreted by the reader. Therefore I'd like to use an emoticon to make the irony explicit, but I'm not sure which one is most often used for this purpose. Which one would be most suited?

    Read the article

  • Moving default web site to another drive

    - by Chadworthington
    I set the default location from c:\inetpub\wwwroot to d:\inetpub\wwwroot but when I access my .NET 4.0 site get this error: Description: An error occurred during the processing of a configuration file required to service this request. Please review the specific error details below and modify your configuration file appropriately. Parser Error Message: Unrecognized attribute 'targetFramework'. Note that attribute names are case-sensitive. Source Error: Line 105: Set explicit="true" to force declaration of all variables. Line 106: --> Line 107: <compilation debug="true" strict="true" explicit="true" targetFramework="4.0"> Line 108: <assemblies> Line 109: <add assembly="System.Web.Extensions.Design, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> When I try to Manage the Basic Settings on the Site and click the "Test Settings" button, I see that I have a problem under "authorization:" The server is configured to use pass-through authentication with a built-in account to access the specified physical path. However, IIS Manager cannot verify whether the built-in account has access. Make sure that the application pool identity has Read access to the physical path. If this server is joined to a domain, and the application pool identity is NetworkService or LocalSystem, verify that <domain>\<computer_name>$ has Read access to the physical path. Then test these settings again. 1) Do I need to grant rights to IIS to the new folder? Which user? I thought it was something like IIS_USER or something similar but I cannot determine the correct name of the user. 2) Also, do I need to set the default version of the framework somewhere at the Default Site level or at the Virtual folder level? How is this done in IIS6, I am used to IIS5 or whatever came with XP Pro. 3) My original site had a subfolder under wwwroot called "aspnet_client." How was this cleated? I manually copied it to the corresponding new location. My app was using seperate ASP specific databases for storing session state and role info, if that is relevant. Thanks

    Read the article

  • What exactly interpret #!/bin/bash line?

    - by vava
    Many scripts in different languages have a #!/bin/bash header with a path to interpreter, so they can be executed without explicit call to interpreter from command line. But what exactly reads this line and run the interpreter, is it shell or kernel?

    Read the article

  • Attack from anonymous proxy

    - by mmgn
    We got attacked by some very-bored teenagers registering in our forums and posting very explicit material using anonymous proxy websites, like http://proxify.com/ Is there a way to check the registration IP against a black list database? Has anyone experienced this and had success?

    Read the article

  • How to best configure IIS7 logging to capture "HTTP_X_FORWARDED_FOR" header

    - by zeroasterisk
    We have IIS7 servers sitting behind an nginx reverse proxy. The reverse proxy is sending the standard "HTTP_X_FORWARDED_FOR" header with the visitor IP address, but IIS7 logging is only logging the IP address of the nginx server (which makes sense, but it's not what I want). How can I tell IIS7 to instead log the "HTTP_X_FORWARDED_FOR" header (or additionally log it)? (note: I'm a linux admin, not a windows one, so explicit instructions & links are sincerely appreciated)

    Read the article

  • What is archive mode in rsync?

    - by user38334
    I know you can use -a or --archive to activate archive mode when using rsync. Unfortunately, I have no idea what archive mode is supposed to do, and the man page is not at all explicit about what this is: equals -rlptgoD (no -H,-A,-X) Wow. That reminds me of this http://www.homestarrunner.com/sbemail204.html

    Read the article

  • When using autoproxy, how can you see the proxy configuration?

    - by zr
    I set the global settings of the machine to use an autoproxy configuration script. e.g. http://autoproxy.mycompanydomain.exe:8080, but still there are some network apps that require an explicit proxy setting. I assume that this is because those apps don't know how to access the global proxy settings. How can i see the global proxy settings that were configured automatically so i can copy them to the settings of these troublesome apps?

    Read the article

  • C#/.NET Little Wonders: Fun With Enum Methods

    - by James Michael Hare
    Once again lets dive into the Little Wonders of .NET, those small things in the .NET languages and BCL classes that make development easier by increasing readability, maintainability, and/or performance. So probably every one of us has used an enumerated type at one time or another in a C# program.  The enumerated types we create are a great way to represent that a value can be one of a set of discrete values (or a combination of those values in the case of bit flags). But the power of enum types go far beyond simple assignment and comparison, there are many methods in the Enum class (that all enum types “inherit” from) that can give you even more power when dealing with them. IsDefined() – check if a given value exists in the enum Are you reading a value for an enum from a data source, but are unsure if it is actually a valid value or not?  Casting won’t tell you this, and Parse() isn’t guaranteed to balk either if you give it an int or a combination of flags.  So what can we do? Let’s assume we have a small enum like this for result codes we want to return back from our business logic layer: 1: public enum ResultCode 2: { 3: Success, 4: Warning, 5: Error 6: } In this enum, Success will be zero (unless given another value explicitly), Warning will be one, and Error will be two. So what happens if we have code like this where perhaps we’re getting the result code from another data source (could be database, could be web service, etc)? 1: public ResultCode PerformAction() 2: { 3: // set up and call some method that returns an int. 4: int result = ResultCodeFromDataSource(); 5:  6: // this will suceed even if result is < 0 or > 2. 7: return (ResultCode) result; 8: } So what happens if result is –1 or 4?  Well, the cast does not fail, so what we end up with would be an instance of a ResultCode that would have a value that’s outside of the bounds of the enum constants we defined. This means if you had a block of code like: 1: switch (result) 2: { 3: case ResultType.Success: 4: // do success stuff 5: break; 6:  7: case ResultType.Warning: 8: // do warning stuff 9: break; 10:  11: case ResultType.Error: 12: // do error stuff 13: break; 14: } That you would hit none of these blocks (which is a good argument for always having a default in a switch by the way). So what can you do?  Well, there is a handy static method called IsDefined() on the Enum class which will tell you if an enum value is defined.  1: public ResultCode PerformAction() 2: { 3: int result = ResultCodeFromDataSource(); 4:  5: if (!Enum.IsDefined(typeof(ResultCode), result)) 6: { 7: throw new InvalidOperationException("Enum out of range."); 8: } 9:  10: return (ResultCode) result; 11: } In fact, this is often recommended after you Parse() or cast a value to an enum as there are ways for values to get past these methods that may not be defined. If you don’t like the syntax of passing in the type of the enum, you could clean it up a bit by creating an extension method instead that would allow you to call IsDefined() off any isntance of the enum: 1: public static class EnumExtensions 2: { 3: // helper method that tells you if an enum value is defined for it's enumeration 4: public static bool IsDefined(this Enum value) 5: { 6: return Enum.IsDefined(value.GetType(), value); 7: } 8: }   HasFlag() – an easier way to see if a bit (or bits) are set Most of us who came from the land of C programming have had to deal extensively with bit flags many times in our lives.  As such, using bit flags may be almost second nature (for a quick refresher on bit flags in enum types see one of my old posts here). However, in higher-level languages like C#, the need to manipulate individual bit flags is somewhat diminished, and the code to check for bit flag enum values may be obvious to an advanced developer but cryptic to a novice developer. For example, let’s say you have an enum for a messaging platform that contains bit flags: 1: // usually, we pluralize flags enum type names 2: [Flags] 3: public enum MessagingOptions 4: { 5: None = 0, 6: Buffered = 0x01, 7: Persistent = 0x02, 8: Durable = 0x04, 9: Broadcast = 0x08 10: } We can combine these bit flags using the bitwise OR operator (the ‘|’ pipe character): 1: // combine bit flags using 2: var myMessenger = new Messenger(MessagingOptions.Buffered | MessagingOptions.Broadcast); Now, if we wanted to check the flags, we’d have to test then using the bit-wise AND operator (the ‘&’ character): 1: if ((options & MessagingOptions.Buffered) == MessagingOptions.Buffered) 2: { 3: // do code to set up buffering... 4: // ... 5: } While the ‘|’ for combining flags is easy enough to read for advanced developers, the ‘&’ test tends to be easy for novice developers to get wrong.  First of all you have to AND the flag combination with the value, and then typically you should test against the flag combination itself (and not just for a non-zero)!  This is because the flag combination you are testing with may combine multiple bits, in which case if only one bit is set, the result will be non-zero but not necessarily all desired bits! Thanks goodness in .NET 4.0 they gave us the HasFlag() method.  This method can be called from an enum instance to test to see if a flag is set, and best of all you can avoid writing the bit wise logic yourself.  Not to mention it will be more readable to a novice developer as well: 1: if (options.HasFlag(MessagingOptions.Buffered)) 2: { 3: // do code to set up buffering... 4: // ... 5: } It is much more concise and unambiguous, thus increasing your maintainability and readability. It would be nice to have a corresponding SetFlag() method, but unfortunately generic types don’t allow you to specialize on Enum, which makes it a bit more difficult.  It can be done but you have to do some conversions to numeric and then back to the enum which makes it less of a payoff than having the HasFlag() method.  But if you want to create it for symmetry, it would look something like this: 1: public static T SetFlag<T>(this Enum value, T flags) 2: { 3: if (!value.GetType().IsEquivalentTo(typeof(T))) 4: { 5: throw new ArgumentException("Enum value and flags types don't match."); 6: } 7:  8: // yes this is ugly, but unfortunately we need to use an intermediate boxing cast 9: return (T)Enum.ToObject(typeof (T), Convert.ToUInt64(value) | Convert.ToUInt64(flags)); 10: } Note that since the enum types are value types, we need to assign the result to something (much like string.Trim()).  Also, you could chain several SetFlag() operations together or create one that takes a variable arg list if desired. Parse() and ToString() – transitioning from string to enum and back Sometimes, you may want to be able to parse an enum from a string or convert it to a string - Enum has methods built in to let you do this.  Now, many may already know this, but may not appreciate how much power are in these two methods. For example, if you want to parse a string as an enum, it’s easy and works just like you’d expect from the numeric types: 1: string optionsString = "Persistent"; 2:  3: // can use Enum.Parse, which throws if finds something it doesn't like... 4: var result = (MessagingOptions)Enum.Parse(typeof (MessagingOptions), optionsString); 5:  6: if (result == MessagingOptions.Persistent) 7: { 8: Console.WriteLine("It worked!"); 9: } Note that Enum.Parse() will throw if it finds a value it doesn’t like.  But the values it likes are fairly flexible!  You can pass in a single value, or a comma separated list of values for flags and it will parse them all and set all bits: 1: // for string values, can have one, or comma separated. 2: string optionsString = "Persistent, Buffered"; 3:  4: var result = (MessagingOptions)Enum.Parse(typeof (MessagingOptions), optionsString); 5:  6: if (result.HasFlag(MessagingOptions.Persistent) && result.HasFlag(MessagingOptions.Buffered)) 7: { 8: Console.WriteLine("It worked!"); 9: } Or you can parse in a string containing a number that represents a single value or combination of values to set: 1: // 3 is the combination of Buffered (0x01) and Persistent (0x02) 2: var optionsString = "3"; 3:  4: var result = (MessagingOptions) Enum.Parse(typeof (MessagingOptions), optionsString); 5:  6: if (result.HasFlag(MessagingOptions.Persistent) && result.HasFlag(MessagingOptions.Buffered)) 7: { 8: Console.WriteLine("It worked again!"); 9: } And, if you really aren’t sure if the parse will work, and don’t want to handle an exception, you can use TryParse() instead: 1: string optionsString = "Persistent, Buffered"; 2: MessagingOptions result; 3:  4: // try parse returns true if successful, and takes an out parm for the result 5: if (Enum.TryParse(optionsString, out result)) 6: { 7: if (result.HasFlag(MessagingOptions.Persistent) && result.HasFlag(MessagingOptions.Buffered)) 8: { 9: Console.WriteLine("It worked!"); 10: } 11: } So we covered parsing a string to an enum, what about reversing that and converting an enum to a string?  The ToString() method is the obvious and most basic choice for most of us, but did you know you can pass a format string for enum types that dictate how they are written as a string?: 1: MessagingOptions value = MessagingOptions.Buffered | MessagingOptions.Persistent; 2:  3: // general format, which is the default, 4: Console.WriteLine("Default : " + value); 5: Console.WriteLine("G (default): " + value.ToString("G")); 6:  7: // Flags format, even if type does not have Flags attribute. 8: Console.WriteLine("F (flags) : " + value.ToString("F")); 9:  10: // integer format, value as number. 11: Console.WriteLine("D (num) : " + value.ToString("D")); 12:  13: // hex format, value as hex 14: Console.WriteLine("X (hex) : " + value.ToString("X")); Which displays: 1: Default : Buffered, Persistent 2: G (default): Buffered, Persistent 3: F (flags) : Buffered, Persistent 4: D (num) : 3 5: X (hex) : 00000003 Now, you may not really see a difference here between G and F because I used a [Flags] enum, the difference is that the “F” option treats the enum as if it were flags even if the [Flags] attribute is not present.  Let’s take a non-flags enum like the ResultCode used earlier: 1: // yes, we can do this even if it is not [Flags] enum. 2: ResultCode value = ResultCode.Warning | ResultCode.Error; And if we run that through the same formats again we get: 1: Default : 3 2: G (default): 3 3: F (flags) : Warning, Error 4: D (num) : 3 5: X (hex) : 00000003 Notice that since we had multiple values combined, but it was not a [Flags] marked enum, the G and default format gave us a number instead of a value name.  This is because the value was not a valid single-value constant of the enum.  However, using the F flags format string, it broke out the value into its component flags even though it wasn’t marked [Flags]. So, if you want to get an enum to display appropriately for whether or not it has the [Flags] attribute, use G which is the default.  If you always want it to attempt to break down the flags, use F.  For numeric output, obviously D or  X are the best choice depending on whether you want decimal or hex. Summary Hopefully, you learned a couple of new tricks with using the Enum class today!  I’ll add more little wonders as I think of them and thanks for all the invaluable input!   Technorati Tags: C#,.NET,Little Wonders,Enum,BlackRabbitCoder

    Read the article

  • .NET 4.0 Dynamic object used statically?

    - by Kevin Won
    I've gotten quite sick of XML configuration files in .NET and want to replace them with a format that is more sane. Therefore, I'm writing a config file parser for C# applications that will take a custom config file format, parse it, and create a Python source string that I can then execute in C# and use as a static object (yes that's right--I want a static (not the static type dyanamic) object in the end). Here's an example of what my config file looks like: // my custom config file format GlobalName: ExampleApp Properties { ExternalServiceTimeout: "120" } Python { // this allows for straight python code to be added to handle custom config def MyCustomPython: return "cool" } Using ANTLR I've created a Lexer/Parser that will convert this format to a Python script. So assume I have that all right and can take the .config above and run my Lexer/Parser on it to get a Python script out the back (this has the added benefit of giving me a validation tool for my config). By running the resultant script in C# // simplified example of getting the dynamic python object in C# // (not how I really do it) ScriptRuntime py = Python.CreateRuntime(); dynamic conf = py.UseFile("conftest.py"); dynamic t = conf.GetConfTest("test"); I can get a dynamic object that has my configuration settings. I can now get my config file settings in C# by invoking a dynamic method on that object: //C# calling a method on the dynamic python object var timeout = t.GetProperty("ExternalServiceTimeout"); //the config also allows for straight Python scripting (via the Python block) var special = t.MyCustonPython(); of course, I have no type safety here and no intellisense support. I have a dynamic representation of my config file, but I want a static one. I know what my Python object's type is--it is actually newing up in instance of a C# class. But since it's happening in python, it's type is not the C# type, but dynamic instead. What I want to do is then cast the object back to the C# type that I know the object is: // doesn't work--can't cast a dynamic to a static type (nulls out) IConfigSettings staticTypeConfig = t as IConfigSettings Is there any way to figure out how to cast the object to the static type? I'm rather doubtful that there is... so doubtful that I took another approach of which I'm not entirely sure about. I'm wondering if someone has a better way... So here's my current tactic: since I know the type of the python object, I am creating a C# wrapper class: public class ConfigSettings : IConfigSettings that takes in a dynamic object in the ctor: public ConfigSettings(dynamic settings) { this.DynamicProxy = settings; } public dynamic DynamicProxy { get; private set; } Now I have a reference to the Python dynamic object of which I know the type. So I can then just put wrappers around the Python methods that I know are there: // wrapper access to the underlying dynamic object // this makes my dynamic object appear 'static' public string GetSetting(string key) { return this.DynamicProxy.GetProperty(key).ToString(); } Now the dynamic object is accessed through this static proxy and thus can obviously be passed around in the static C# world via interface, etc: // dependency inject the dynamic object around IBusinessLogic logic = new BusinessLogic(IConfigSettings config); This solution has the benefits of all the static typing stuff we know and love while at the same time giving me the option of 'bailing out' to dynamic too: // the DynamicProxy property give direct access to the dynamic object var result = config.DynamicProxy.MyCustomPython(); but, man, this seems rather convoluted way of getting to an object that is a static type in the first place! Since the whole dynamic/static interaction world is new to me, I'm really questioning if my solution is optimal or if I'm missing something (i.e. some way of casting that dynamic object to a known static type) about how to bridge the chasm between these two universes.

    Read the article

  • Performance surprise with "as" and nullable types

    - by Jon Skeet
    I'm just revising chapter 4 of C# in Depth which deals with nullable types, and I'm adding a section about using the "as" operator, which allows you to write: object o = ...; int? x = o as int?; if (x.HasValue) { ... // Use x.Value in here } I thought this was really neat, and that it could improve performance over the C# 1 equivalent, using "is" followed by a cast - after all, this way we only need to ask for dynamic type checking once, and then a simple value check. This appears not to be the case, however. I've included a sample test app below, which basically sums all the integers within an object array - but the array contains a lot of null references and string references as well as boxed integers. The benchmark measures the code you'd have to use in C# 1, the code using the "as" operator, and just for kicks a LINQ solution. To my astonishment, the C# 1 code is 20 times faster in this case - and even the LINQ code (which I'd have expected to be slower, given the iterators involved) beats the "as" code. Is the .NET implementation of isinst for nullable types just really slow? Is it the additional unbox.any that causes the problem? Is there another explanation for this? At the moment it feels like I'm going to have to include a warning against using this in performance sensitive situations... Results: Cast: 10000000 : 121 As: 10000000 : 2211 LINQ: 10000000 : 2143 Code: using System; using System.Diagnostics; using System.Linq; class Test { const int Size = 30000000; static void Main() { object[] values = new object[Size]; for (int i = 0; i < Size - 2; i += 3) { values[i] = null; values[i+1] = ""; values[i+2] = 1; } FindSumWithCast(values); FindSumWithAs(values); FindSumWithLinq(values); } static void FindSumWithCast(object[] values) { Stopwatch sw = Stopwatch.StartNew(); int sum = 0; foreach (object o in values) { if (o is int) { int x = (int) o; sum += x; } } sw.Stop(); Console.WriteLine("Cast: {0} : {1}", sum, (long) sw.ElapsedMilliseconds); } static void FindSumWithAs(object[] values) { Stopwatch sw = Stopwatch.StartNew(); int sum = 0; foreach (object o in values) { int? x = o as int?; if (x.HasValue) { sum += x.Value; } } sw.Stop(); Console.WriteLine("As: {0} : {1}", sum, (long) sw.ElapsedMilliseconds); } static void FindSumWithLinq(object[] values) { Stopwatch sw = Stopwatch.StartNew(); int sum = values.OfType<int>().Sum(); sw.Stop(); Console.WriteLine("LINQ: {0} : {1}", sum, (long) sw.ElapsedMilliseconds); } }

    Read the article

  • Approaches for generic, compile-time safe lazy-load methods

    - by Aaronaught
    Suppose I have created a wrapper class like the following: public class Foo : IFoo { private readonly IFoo innerFoo; public Foo(IFoo innerFoo) { this.innerFoo = innerFoo; } public int? Bar { get; set; } public int? Baz { get; set; } } The idea here is that the innerFoo might wrap data-access methods or something similarly expensive, and I only want its GetBar and GetBaz methods to be invoked once. So I want to create another wrapper around it, which will save the values obtained on the first run. It's simple enough to do this, of course: int IFoo.GetBar() { if ((Bar == null) && (innerFoo != null)) Bar = innerFoo.GetBar(); return Bar ?? 0; } int IFoo.GetBaz() { if ((Baz == null) && (innerFoo != null)) Baz = innerFoo.GetBaz(); return Baz ?? 0; } But it gets pretty repetitive if I'm doing this with 10 different properties and 30 different wrappers. So I figured, hey, let's make this generic: T LazyLoad<T>(ref T prop, Func<IFoo, T> loader) { if ((prop == null) && (innerFoo != null)) prop = loader(innerFoo); return prop; } Which almost gets me where I want, but not quite, because you can't ref an auto-property (or any property at all). In other words, I can't write this: int IFoo.GetBar() { return LazyLoad(ref Bar, f => f.GetBar()); // <--- Won't compile } Instead, I'd have to change Bar to have an explicit backing field and write explicit getters and setters. Which is fine, except for the fact that I end up writing even more redundant code than I was writing in the first place. Then I considered the possibility of using expression trees: T LazyLoad<T>(Expression<Func<T>> propExpr, Func<IFoo, T> loader) { var memberExpression = propExpr.Body as MemberExpression; if (memberExpression != null) { // Use Reflection to inspect/set the property } } This plays nice with refactoring - it'll work great if I do this: return LazyLoad(f => f.Bar, f => f.GetBar()); But it's not actually safe, because someone less clever (i.e. myself in 3 days from now when I inevitably forget how this is implemented internally) could decide to write this instead: return LazyLoad(f => 3, f => f.GetBar()); Which is either going to crash or result in unexpected/undefined behaviour, depending on how defensively I write the LazyLoad method. So I don't really like this approach either, because it leads to the possibility of runtime errors which would have been prevented in the first attempt. It also relies on Reflection, which feels a little dirty here, even though this code is admittedly not performance-sensitive. Now I could also decide to go all-out and use DynamicProxy to do method interception and not have to write any code, and in fact I already do this in some applications. But this code is residing in a core library which many other assemblies depend on, and it seems horribly wrong to be introducing this kind of complexity at such a low level. Separating the interceptor-based implementation from the IFoo interface by putting it into its own assembly doesn't really help; the fact is that this very class is still going to be used all over the place, must be used, so this isn't one of those problems that could be trivially solved with a little DI magic. The last option I've already thought of would be to have a method like: T LazyLoad<T>(Func<T> getter, Action<T> setter, Func<IFoo, T> loader) { ... } This option is very "meh" as well - it avoids Reflection but is still error-prone, and it doesn't really reduce the repetition that much. It's almost as bad as having to write explicit getters and setters for each property. Maybe I'm just being incredibly nit-picky, but this application is still in its early stages, and it's going to grow substantially over time, and I really want to keep the code squeaky-clean. Bottom line: I'm at an impasse, looking for other ideas. Question: Is there any way to clean up the lazy-loading code at the top, such that the implementation will: Guarantee compile-time safety, like the ref version; Actually reduce the amount of code repetition, like the Expression version; and Not take on any significant additional dependencies? In other words, is there a way to do this just using regular C# language features and possibly a few small helper classes? Or am I just going to have to accept that there's a trade-off here and strike one of the above requirements from the list?

    Read the article

  • sql perfomance on new server

    - by Rapunzo
    My database is running on a pc (AMD Phenom x6, intel ssd disk, 8GB DDR3 RAM and windows 7 OS + sql server 2008 R2 sp3 ) and it started working hard, timeout problems and up to 30 seconds long queries after 200 mb of database And I also have an old server pc (IBM x-series 266: 72*3 15k rpm scsi discs with raid5, 4 gb ram and windows server 2003 + sql server 2008 R2 sp3 ) and same query start to give results in 100 seconds.. I tried query analyser tool for tuning my indexed. but not so much improvements. its a big dissapointment for me. because I thought even its an old server pc it should be more powerfull with 15k rpm discs with raid5. what should I do. do I need $10.000 new server to get a good performance for my sql server? cant I use that IBM server? Extra information: there is 50 sql users and its an ERP program. There is my query ALTER FUNCTION [dbo].[fnDispoTerbiye] ( ) RETURNS TABLE AS RETURN ( SELECT MD.dispoNo, SV.sevkNo, M1.musteriAdi AS musteri, SD.tipTurId, TT.tipTur, SD.tipNo, SD.desenNo, SD.varyantNo, SUM(T.topMetre) AS toplamSevkMetre, MD.dispoMetresi, DT.gelisMetresi, ISNULL(DT.fire, 0) AS fire, SV.sevkTarihi, DT.gelisTarihi, SP.mamulTermin, SD.miktar AS siparisMiktari, M.musteriAdi AS boyahane, MD.akisNotu AS islemler, --dbo.fnAkisIslemleri(MD.dispoNo) DT.partiNo, DT.iplikBoyaId, B.tanimAd AS BoyaTuru, MAX(HD.hamEn) AS hamEn, MAX(HD.hamGramaj) AS hamGramaj, TS.mamulEn, TS.mamulGramaj, DT.atkiCekmesi, DT.cozguCekmesi, DT.fiyat, DV.dovizCins, DT.dovizId, (SELECT CASE WHEN DT.dovizId = 2 THEN CAST(round(SUM(T .topMetre) * DT.fiyat * (SELECT TOP 1 satis FROM tblKur WHERE dovizId = 2 ORDER BY tarih DESC), 2) AS numeric(18, 2)) WHEN DT.dovizId = 3 THEN CAST(round(SUM(T .topMetre) * DT.fiyat * (SELECT TOP 1 satis FROM tblKur WHERE dovizId = 3 ORDER BY tarih DESC), 2) AS numeric(18, 2)) WHEN DT.dovizId = 1 THEN CAST(round(SUM(T .topMetre) * DT.fiyat * (SELECT TOP 1 satis FROM tblKur WHERE dovizId = 1 ORDER BY tarih DESC), 2) AS numeric(18, 2)) END AS Expr1) AS ToplamTLfiyat, DT.aciklama, MD.dispoNotu, SD.siparisId, SD.siparisDetayId, DT.sqlUserName, DT.kayitTarihi, O.orguAd, 'Çözgü=(' + (SELECT dbo.fnTipIplikler(SD.tipTurId, SD.tipNo, SD.desenNo, SD.varyantNo, 1) AS Expr1) + ')' + ' Atki=(' + (SELECT dbo.fnTipIplikler(SD.tipTurId, SD.tipNo, SD.desenNo, SD.varyantNo, 2) AS Expr1) + ')' AS iplikAciklama, DT.prosesOk, dbo.[fnYikamaTalimat](SP.siparisId) yikamaTalimati FROM tblDoviz AS DV WITH(NOLOCK) INNER JOIN tblDispoTerbiye AS DT WITH(NOLOCK) INNER JOIN tblTanimlar AS B WITH(NOLOCK) ON DT.iplikBoyaId = B.tanimId AND B.tanimTurId = 2 ON DV.id = DT.dovizId RIGHT OUTER JOIN tblMusteri AS M1 WITH(NOLOCK) INNER JOIN tblSiparisDetay AS SD WITH(NOLOCK) INNER JOIN tblDispo AS MD WITH(NOLOCK) ON SD.siparisDetayId = MD.siparisDetayId INNER JOIN tblTipTur AS TT WITH(NOLOCK) ON SD.tipTurId = TT.tipTurId INNER JOIN tblSiparis AS SP WITH(NOLOCK) ON SD.siparisId = SP.siparisId ON M1.musteriNo = SP.musteriNo INNER JOIN tblTip AS TP WITH(NOLOCK) ON SD.tipTurId = TP.tipTurId AND SD.tipNo = TP.tipNo AND SD.desenNo = TP.desen AND SD.varyantNo = TP.varyant INNER JOIN tblOrgu AS O WITH(NOLOCK) ON TP.orguId = O.orguId INNER JOIN tblMusteri AS M WITH(NOLOCK) INNER JOIN tblSevkiyat AS SV WITH(NOLOCK) ON M.musteriNo = SV.musteriNo INNER JOIN tblSevkDetay AS SVD WITH(NOLOCK) ON SV.sevkNo = SVD.sevkNo ON MD.mamulDispoHamSevkno = SV.sevkNo LEFT OUTER JOIN tblTop AS T WITH(NOLOCK) INNER JOIN tblDispo AS HD WITH(NOLOCK) ON T.dispoNo = HD.dispoNo AND T.dispoTuruId = HD.dispoTuruId ON SVD.dispoTuruId = T.dispoTuruId AND SVD.dispoNo = T.dispoNo AND SVD.topNo = T.topNo AND MD.siparisDetayId = HD.siparisDetayId ON DT.dispoTuruId = MD.dispoTuruId AND DT.dispoNo = MD.dispoNo LEFT OUTER JOIN tblDispoTerbiyeTest AS TS WITH(NOLOCK) ON DT.dispoTuruId = TS.dispoTuruId AND DT.dispoNo = TS.dispoNo --WHERE DT.gelisTarihi IS NULL -- OR DT.gelisTarihi > GETDATE()-30 GROUP BY MD.dispoNo, DT.partiNo, DT.iplikBoyaId, TS.mamulEn, TS.mamulGramaj, DT.gelisMetresi, DT.gelisTarihi, DT.atkiCekmesi, DT.cozguCekmesi, DT.fire, DT.fiyat, DT.aciklama, DT.sqlUserName, DT.kayitTarihi, SD.tipTurId, TT.tipTur, SD.tipNo, SD.desenNo, SD.varyantNo, SD.siparisId, SD.siparisDetayId, B.tanimAd, M.musteriAdi, M.musteriAdi, M1.musteriAdi, O.orguAd, TP.iplikAciklama, SD.miktar, MD.dispoNotu, SP.mamulTermin, DT.dovizId, DV.dovizCins, MD.dispoMetresi, MD.akisNotu, SV.sevkNo, SV.sevkTarihi, DT.prosesOk,SP.siparisId )

    Read the article

  • How to programatically read native DLL imports in C#?

    - by Eric
    The large hunk of C# code below is intended to print the imports of a native DLL. I copied it from from this link and modified it very slightly, just to use LoadLibraryEx as Mike Woodring does here. I find that when I call the Foo.Test method with the original example's target, MSCOREE.DLL, it prints all the imports fine. But when I use other dlls like GDI32.DLL or WSOCK32.DLL the imports do not get printed. What's missing from this code that would let it print all the imports as, for example, DUMPBIN.EXE does? (Is there a hint I'm not grokking in the original comment that says, "using mscoree.dll as an example as it doesnt export any thing"?) Here's the extract that just shows how it's being invoked: public static void Test() { // WORKS: var path = @"c:\windows\system32\mscoree.dll"; // NO ERRORS, BUT NO IMPORTS PRINTED EITHER: //var path = @"c:\windows\system32\gdi32.dll"; //var path = @"c:\windows\system32\wsock32.dll"; var hLib = LoadLibraryEx(path, 0, DONT_RESOLVE_DLL_REFERENCES | LOAD_IGNORE_CODE_AUTHZ_LEVEL); TestImports(hLib, true); } And here is the whole code example: namespace PETest2 { [StructLayout(LayoutKind.Explicit)] public unsafe struct IMAGE_IMPORT_BY_NAME { [FieldOffset(0)] public ushort Hint; [FieldOffset(2)] public fixed char Name[1]; } [StructLayout(LayoutKind.Explicit)] public struct IMAGE_IMPORT_DESCRIPTOR { #region union /// <summary> /// CSharp doesnt really support unions, but they can be emulated by a field offset 0 /// </summary> [FieldOffset(0)] public uint Characteristics; // 0 for terminating null import descriptor [FieldOffset(0)] public uint OriginalFirstThunk; // RVA to original unbound IAT (PIMAGE_THUNK_DATA) #endregion [FieldOffset(4)] public uint TimeDateStamp; [FieldOffset(8)] public uint ForwarderChain; [FieldOffset(12)] public uint Name; [FieldOffset(16)] public uint FirstThunk; } [StructLayout(LayoutKind.Explicit)] public struct THUNK_DATA { [FieldOffset(0)] public uint ForwarderString; // PBYTE [FieldOffset(4)] public uint Function; // PDWORD [FieldOffset(8)] public uint Ordinal; [FieldOffset(12)] public uint AddressOfData; // PIMAGE_IMPORT_BY_NAME } public unsafe class Interop { #region Public Constants public static readonly ushort IMAGE_DIRECTORY_ENTRY_IMPORT = 1; #endregion #region Private Constants #region CallingConvention CALLING_CONVENTION /// <summary> /// Specifies the calling convention. /// </summary> /// <remarks> /// Specifies <see cref="CallingConvention.Winapi" /> for Windows to /// indicate that the default should be used. /// </remarks> private const CallingConvention CALLING_CONVENTION = CallingConvention.Winapi; #endregion CallingConvention CALLING_CONVENTION #region IMPORT DLL FUNCTIONS private const string KERNEL_DLL = "kernel32"; private const string DBGHELP_DLL = "Dbghelp"; #endregion #endregion Private Constants [DllImport(KERNEL_DLL, CallingConvention = CALLING_CONVENTION, EntryPoint = "GetModuleHandleA"), SuppressUnmanagedCodeSecurity] public static extern void* GetModuleHandleA(/*IN*/ char* lpModuleName); [DllImport(KERNEL_DLL, CallingConvention = CALLING_CONVENTION, EntryPoint = "GetModuleHandleW"), SuppressUnmanagedCodeSecurity] public static extern void* GetModuleHandleW(/*IN*/ char* lpModuleName); [DllImport(KERNEL_DLL, CallingConvention = CALLING_CONVENTION, EntryPoint = "IsBadReadPtr"), SuppressUnmanagedCodeSecurity] public static extern bool IsBadReadPtr(void* lpBase, uint ucb); [DllImport(DBGHELP_DLL, CallingConvention = CALLING_CONVENTION, EntryPoint = "ImageDirectoryEntryToData"), SuppressUnmanagedCodeSecurity] public static extern void* ImageDirectoryEntryToData(void* Base, bool MappedAsImage, ushort DirectoryEntry, out uint Size); } static class Foo { // From winbase.h in the Win32 platform SDK. // const uint DONT_RESOLVE_DLL_REFERENCES = 0x00000001; const uint LOAD_IGNORE_CODE_AUTHZ_LEVEL = 0x00000010; [DllImport("kernel32.dll"), SuppressUnmanagedCodeSecurity] static extern uint LoadLibraryEx(string fileName, uint notUsedMustBeZero, uint flags); public static void Test() { //var path = @"c:\windows\system32\mscoree.dll"; //var path = @"c:\windows\system32\gdi32.dll"; var path = @"c:\windows\system32\wsock32.dll"; var hLib = LoadLibraryEx(path, 0, DONT_RESOLVE_DLL_REFERENCES | LOAD_IGNORE_CODE_AUTHZ_LEVEL); TestImports(hLib, true); } // using mscoree.dll as an example as it doesnt export any thing // so nothing shows up if you use your own module. // and the only none delayload in mscoree.dll is the Kernel32.dll private static void TestImports( uint hLib, bool mappedAsImage ) { unsafe { //fixed (char* pszModule = "mscoree.dll") { //void* hMod = Interop.GetModuleHandleW(pszModule); void* hMod = (void*)hLib; uint size = 0; uint BaseAddress = (uint)hMod; if (hMod != null) { Console.WriteLine("Got handle"); IMAGE_IMPORT_DESCRIPTOR* pIID = (IMAGE_IMPORT_DESCRIPTOR*)Interop.ImageDirectoryEntryToData((void*)hMod, mappedAsImage, Interop.IMAGE_DIRECTORY_ENTRY_IMPORT, out size); if (pIID != null) { Console.WriteLine("Got Image Import Descriptor"); while (!Interop.IsBadReadPtr((void*)pIID->OriginalFirstThunk, (uint)size)) { try { char* szName = (char*)(BaseAddress + pIID->Name); string name = Marshal.PtrToStringAnsi((IntPtr)szName); Console.WriteLine("pIID->Name = {0} BaseAddress - {1}", name, (uint)BaseAddress); THUNK_DATA* pThunkOrg = (THUNK_DATA*)(BaseAddress + pIID->OriginalFirstThunk); while (!Interop.IsBadReadPtr((void*)pThunkOrg->AddressOfData, 4U)) { char* szImportName; uint Ord; if ((pThunkOrg->Ordinal & 0x80000000) > 0) { Ord = pThunkOrg->Ordinal & 0xffff; Console.WriteLine("imports ({0}).Ordinal{1} - Address: {2}", name, Ord, pThunkOrg->Function); } else { IMAGE_IMPORT_BY_NAME* pIBN = (IMAGE_IMPORT_BY_NAME*)(BaseAddress + pThunkOrg->AddressOfData); if (!Interop.IsBadReadPtr((void*)pIBN, (uint)sizeof(IMAGE_IMPORT_BY_NAME))) { Ord = pIBN->Hint; szImportName = (char*)pIBN->Name; string sImportName = Marshal.PtrToStringAnsi((IntPtr)szImportName); // yes i know i am a lazy ass Console.WriteLine("imports ({0}).{1}@{2} - Address: {3}", name, sImportName, Ord, pThunkOrg->Function); } else { Console.WriteLine("Bad ReadPtr Detected or EOF on Imports"); break; } } pThunkOrg++; } } catch (AccessViolationException e) { Console.WriteLine("An Access violation occured\n" + "this seems to suggest the end of the imports section\n"); Console.WriteLine(e); } pIID++; } } } } } Console.WriteLine("Press Any Key To Continue......"); Console.ReadKey(); } }

    Read the article

  • Dynamic Type to do away with Reflection

    The dynamic type in C# 4.0 is a welcome addition to the language. One thing Ive been doing a lot with it is to remove explicit Reflection code thats often necessary when you dynamically need to walk and object hierarchy. In the past Ive had a number of ReflectionUtils that used string based expressions to walk an object hierarchy. With the introduction of dynamic much of the ReflectionUtils code can be removed for cleaner code that runs considerably faster to boot. The old Way - Reflection Heres...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • ASP.NET MVC 3 Release Candidate 2 Released

    - by shiju
    Microsoft has shipped Release Candidate version 2 for ASP.NET MVC 3. You can download the  ASP.NET MVC 3 Release Candidate 2 from here . If you have installed Visual Studio Service Pack 1 Beta, you must install ASP.NET MVC 3 RC 2. Otherwise it will break the IntelliSense feature in the Razor views of ASP.NET MVC 3 RC1. The following are the some of the new changes in ASP.NET MVC 3 RC 2. Added Html.Raw Method Renamed "Controller.ViewModel" Property and the "View" Property To "ViewBag" Renamed "ControllerSessionStateAttribute" Class to "SessionStateAttribute" Fixed "RenderAction" Method to Give Explicit Values Precedence During Model Binding You can read more details from ScottGu’s blog post Announcing ASP.NET MVC 3 (Release Candidate 2)

    Read the article

  • Finding the problem on a partially succeeded build

    - by Martin Hinshelwood
    Now that I have the Build failing because of a genuine bug and not just because of a test framework failure, lets see if we can trace through to finding why the first test in our new application failed. Lets look at the build and see if we can see why there is a red cross on it. First, lets open that build list. On Team Explorer Expand your Team Project Collection | Team Project and then Builds. Double click the offending build. Figure: Opening the Build list is a key way to see what the current state of your software is.   Figure: A test is failing, but we can now view the Test Results to find the problem      Figure: You can quite clearly see that the test has failed with “The device is not ready”. To me the “The Device is not ready” smacks of a System.IO exception, but it passed on my local computer, so why not on the build server? Its a FaultException so it is most likely coming from the Service and not the client, so lets take a look at the client method that the test is calling: bool IProfileService.SaveDefaultProjectFile(string strComputerName) { ProjectFile file = new ProjectFile() { ProjectFileName = strComputerName + "_" + System.DateTime.Now.ToString("yyyyMMddhhmmsss") + ".xml", ConnectionString = "persist security info=False; pooling=False; data source=(local); application name=SSW.SQLDeploy.vshost.exe; integrated security=SSPI; initial catalog=SSWSQLDeployNorthwindSample", DateCreated = System.DateTime.Now, DateUpdated = System.DateTime.Now, FolderPath = @"C:\Program Files\SSW SQL Deploy\SampleData\", IsComplete=false, Version = "1.3", NewDatabase = true, TimeOut = 5, TurnOnMSDE = false, Mode="AutomaticMode" }; string strFolderPath = "D:\\"; //LocalSettings.ProjectFileBasePath; string strFileName = strFolderPath + file.ProjectFileName; try { using (FileStream fs = new FileStream(strFileName, FileMode.Create)) { DataContractSerializer serializer = new DataContractSerializer(typeof(ProjectFile)); using (XmlDictionaryWriter writer = XmlDictionaryWriter.CreateTextWriter(fs)) { serializer.WriteObject(writer, file); } } } catch (Exception ex) { //TODO: Log the exception throw ex; return false; } return true; } Figure: You can see on lines 9 and 18 that there are calls being made to specific folders and disks. What is wrong with this code? What assumptions mistakes could the developer have made to make this look OK: That every install would be to “C:\Program Files\SSW SQL Deploy” That every computer would have a “D:\\” That checking in code at 6pm because the had to go home was a good idea. lets solve each of these problems: We are in a web service… lets store data within the web root. So we can call “Server.MapPath(“~/App_Data/SSW SQL Deploy\SampleData”) instead. Never reference an explicit path. If you need some storage for your application use IsolatedStorage. Shelve your code instead. What else could have been done? Code review before check-in – The developer should have shelved their code and asked another dev to look at it. Use Defensive programming – Make sure that any code that has the possibility of failing has checks. Any more options? Let me know and I will add them. What do we do? The correct things to do is to add a Bug to the backlog, but as this is probably going to be fixed in sprint, I will add it directly to the sprint backlog. Right click on the failing test Select “Create Work Item | Bug” Figure: Create an associated bug to add to the backlog. Set the values for the Bug making sure that it goes into the right sprint and Area. Make your steps to reproduce as explicit as possible, but “See test” is valid under these circumstances.   Figure: Add it to the correct Area and set the Iteration to the Area name or the Sprint if you think it will be fixed in Sprint and make sure you bring it up at the next Scrum Meeting. Note: make sure you leave the “Assigned To” field blank as in Scrum team members sign up for work, you do not give it to them. The developer who broke the test will most likely either sign up for the bug, or say that they are stuck and need help. Note: Visual Studio has taken care of associating the failing test with the Bug. Save… Technorati Tags: WCF,MSTest,MSBuild,Team Build 2010,Team Test 2010,Team Build,Team Test

    Read the article

  • What is the best database design and/or software to model a thesaurus?

    - by Miles O'Keefe
    I would like to design a web app that functions as a simple thesaurus : a long list of words with attributes, all of which are linked to each other. Wikipedia defines it as: In Information Science, Library Science, and Information Technology, specialized thesauri are designed for information retrieval. They are a type of controlled vocabulary, for indexing or tagging purposes. Such a thesaurus can be used as the basis of an index for online material. The Art and Architecture Thesaurus, for example, is used to index the Canadian Information retrieval thesauri are formally organized so that existing relationships between concepts are made explicit. What database software, design or model would best fit this? Are PHP and MySQL good technologies to handle it?

    Read the article

  • Look for Oracle at the 2010 ISM San Diego Conference

    - by [email protected]
    Oracle is sponsoring and exhibiting at ISM's 95th Annual International Supply Management Conference and Educational Exhibit on April 25th through 28th.   Be sure to catch our presentation with Hackett that explores how procurement can use payables to boost an organization's balance and income statements. Pierre Mitchell from Hackett will be sharing groundbreaking new research that identifies explicit links between a strategic approach to supplier payments and world-class performance.   If your organization can benefit from increased margin, improved working capital, greater efficiency, and reduced risk, then you can't afford to miss this session. We'll be presenting on Monday at 5:00pm in Exhibit  Hall D.       Some of Oracle's top talent will be available to answer your questions in booth number 527. It is a great opportunity to learn about Oracle's innovations for supplier management, spend classification, invoice automation, and On Demand delivery of procurement applications.  

    Read the article

  • C# 4.0: COM Interop Improvements

    - by Paulo Morgado
    Dynamic resolution as well as named and optional arguments greatly improve the experience of interoperating with COM APIs such as Office Automation Primary Interop Assemblies (PIAs). But, in order to alleviate even more COM Interop development, a few COM-specific features were also added to C# 4.0. Ommiting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. These parameters are typically not meant to mutate a passed-in argument, but are simply another way of passing value parameters. Specifically for COM methods, the compiler allows to declare the method call passing the arguments by value and will automatically generate the necessary temporary variables to hold the values in order to pass them by reference and will discard their values after the call returns. From the point of view of the programmer, the arguments are being passed by value. This method call: object fileName = "Test.docx"; object missing = Missing.Value; document.SaveAs(ref fileName, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing); can now be written like this: document.SaveAs("Test.docx", Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value); And because all parameters that are receiving the Missing.Value value have that value as its default value, the declaration of the method call can even be reduced to this: document.SaveAs("Test.docx"); Dynamic Import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object form the context of the call, but has to explicitly perform a cast on the returned values to make use of that knowledge. These casts are so common that they constitute a major nuisance. To make the developer’s life easier, it is now possible to import the COM APIs in such a way that variants are instead represented using the type dynamic which means that COM signatures have now occurrences of dynamic instead of object. This means that members of a returned object can now be easily accessed or assigned into a strongly typed variable without having to cast. Instead of this code: ((Excel.Range)(excel.Cells[1, 1])).Value2 = "Hello World!"; this code can now be used: excel.Cells[1, 1] = "Hello World!"; And instead of this: Excel.Range range = (Excel.Range)(excel.Cells[1, 1]); this can be used: Excel.Range range = excel.Cells[1, 1]; Indexed And Default Properties A few COM interface features are still not available in C#. On the top of the list are indexed properties and default properties. As mentioned above, these will be possible if the COM interface is accessed dynamically, but will not be recognized by statically typed C# code. No PIAs – Type Equivalence And Type Embedding For assemblies indentified with PrimaryInteropAssemblyAttribute, the compiler will create equivalent types (interfaces, structs, enumerations and delegates) and embed them in the generated assembly. To reduce the final size of the generated assembly, only the used types and their used members will be generated and embedded. Although this makes development and deployment of applications using the COM components easier because there’s no need to deploy the PIAs, COM component developers are still required to build the PIAs.

    Read the article

  • Monitoring the Application alongside SQL Server

    - by Tony Davis
    Sometimes, on Simple-Talk, it takes a while to spot strange and unexpected patterns of user activity, or small bugs. For example, one morning we spotted that an article’s comment count had leapt to 1485, but that only four were displayed. With some rooting around in Google Analytics, and the endlessly annoying Community Server admin-interface, we were able to work out that a few days previously the article had been subject to a spam attack and that the comment count was for some reason including both accepted and unaccepted comments (which in turn uncovered a bug in the SQL). This sort of incident made us a lot keener on monitoring Simple-talk website usage more effectively. However, the metrics we wanted are troublesome, because they are far too specific for Google Analytics to measure, and the SQL Server backend doesn’t keep sufficient information to enable us to plot trends. The latter could provide, for example, the total number of comments made on, or votes cast for, articles, over all time, but not the number that occur by hour over a set time. We lacked a baseline, in other words. We couldn’t alter the database, as it is a bought-in package. We had neither the resources nor inclination to build-in dedicated application monitoring. Possibly, we could investigate a third-party tool to do the job; but then it occurred to us that we were already using a monitoring tool (SQL Monitor) to keep an eye on the database. It stored data, made graphs and sent alerts. Could we get it to monitor some aspects of the application as well? Of course, SQL Monitor’s single purpose is to check and monitor SQL Server, over time, rather than to monitor applications that use SQL Server. However, how different is the business of gathering and plotting SQL Server Wait Stats, from gathering and plotting various aspects of user activity on the site? Not a lot, it turns out. The latest version allows us to write our own custom monitoring scripts, meaning that we could now monitor any metric in the application that returns an integer. It took little time to write a simple SQL Query that collects basic metrics of the total number of subscribers, votes cast, comments made, or views of articles, over time. The SQL Monitor database polls Simple-Talk every second or so in order to get the latest totals, and can then store and plot this information, or even correlate SQL Server usage to application usage. You can see the live data by visiting monitor.red-gate.com. Click the "Analysis" tab, and select one of the "Simple-talk:" entries in the "Show" box and an appropriate data range (e.g. last 30 days). It’s nascent, and we’re still working on it, but it’s already given us more confidence that we’ll spot quickly trends, bugs, or bursts of ‘abnormal’ activity. If there is a sudden rise in comments, we get an alert, and if it’s due to a spam attack, we can moderate or ban the perpetrator very quickly. We’ve often argued that a tool should perform a single job well rather than turn into a Swiss-army knife, but ironically we’ve rather appreciated being able to make best use of what’s there anyway for a slightly different purpose. Is this a good or common practice? What do you think? Cheers, Tony.

    Read the article

  • Do Not Optimize Without Measuring

    - by Alois Kraus
    Recently I had to do some performance work which included reading a lot of code. It is fascinating with what ideas people come up to solve a problem. Especially when there is no problem. When you look at other peoples code you will not be able to tell if it is well performing or not by reading it. You need to execute it with some sort of tracing or even better under a profiler. The first rule of the performance club is not to think and then to optimize but to measure, think and then optimize. The second rule is to do this do this in a loop to prevent slipping in bad things for too long into your code base. If you skip for some reason the measure step and optimize directly it is like changing the wave function in quantum mechanics. This has no observable effect in our world since it does represent only a probability distribution of all possible values. In quantum mechanics you need to let the wave function collapse to a single value. A collapsed wave function has therefore not many but one distinct value. This is what we physicists call a measurement. If you optimize your application without measuring it you are just changing the probability distribution of your potential performance values. Which performance your application actually has is still unknown. You only know that it will be within a specific range with a certain probability. As usual there are unlikely values within your distribution like a startup time of 20 minutes which should only happen once in 100 000 years. 100 000 years are a very short time when the first customer tries your heavily distributed networking application to run over a slow WIFI network… What is the point of this? Every programmer/architect has a mental performance model in his head. A model has always a set of explicit preconditions and a lot more implicit assumptions baked into it. When the model is good it will help you to think of good designs but it can also be the source of problems. In real world systems not all assumptions of your performance model (implicit or explicit) hold true any longer. The only way to connect your performance model and the real world is to measure it. In the WIFI example the model did assume a low latency high bandwidth LAN connection. If this assumption becomes wrong the system did have a drastic change in startup time. Lets look at a example. Lets assume we want to cache some expensive UI resource like fonts objects. For this undertaking we do create a Cache class with the UI themes we want to support. Since Fonts are expensive objects we do create it on demand the first time the theme is requested. A simple example of a Theme cache might look like this: using System; using System.Collections.Generic; using System.Drawing; struct Theme { public Color Color; public Font Font; } static class ThemeCache { static Dictionary<string, Theme> _Cache = new Dictionary<string, Theme> { {"Default", new Theme { Color = Color.AliceBlue }}, {"Theme12", new Theme { Color = Color.Aqua }}, }; public static Theme Get(string theme) { Theme cached = _Cache[theme]; if (cached.Font == null) { Console.WriteLine("Creating new font"); cached.Font = new Font("Arial", 8); } return cached; } } class Program { static void Main(string[] args) { Theme item = ThemeCache.Get("Theme12"); item = ThemeCache.Get("Theme12"); } } This cache does create font objects only once since on first retrieve of the Theme object the font is added to the Theme object. When we let the application run it should print “Creating new font” only once. Right? Wrong! The vigilant readers have spotted the issue already. The creator of this cache class wanted to get maximum performance. So he decided that the Theme object should be a value type (struct) to not put too much pressure on the garbage collector. The code Theme cached = _Cache[theme]; if (cached.Font == null) { Console.WriteLine("Creating new font"); cached.Font = new Font("Arial", 8); } does work with a copy of the value stored in the dictionary. This means we do mutate a copy of the Theme object and return it to our caller. But the original Theme object in the dictionary will have always null for the Font field! The solution is to change the declaration of struct Theme to class Theme or to update the theme object in the dictionary. Our cache as it is currently is actually a non caching cache. The funny thing was that I found out with a profiler by looking at which objects where finalized. I found way too many font objects to be finalized. After a bit debugging I found the allocation source for Font objects was this cache. Since this cache was there for years it means that the cache was never needed since I found no perf issue due to the creation of font objects. the cache was never profiled if it did bring any performance gain. to make the cache beneficial it needs to be accessed much more often. That was the story of the non caching cache. Next time I will write something something about measuring.

    Read the article

  • Save Points

    - by raghu.yadav
    Explicit save point : Requires an end user action before a bounded or unbounded task flow creates a save point. For example, an end user clicks a button that invokes a method call activity that, in turn, creates a save point Implicit save point : can only originate from a bounded task flow if 1) A session times out due to end user inactivity 2) An end user logs out without saving the data 3) An end user closes the only browser window, thus logging out of the application 4) An end user navigates away from the current application using control flow rules (for example, uses a goLink component to go to an external URL) and having unsaved data. good usecases and examples given by frank/biemond and on implicit save points http://www.oracle.com/technology/products/jdev/tips/fnimphius/cancelForm/cancelForm_wsp.html?_template=/ocom/print http://biemond.blogspot.com/2008/04/automatically-save-transactions-with.html

    Read the article

  • What's the difference between Scala and Red Hat's Ceylon language?

    - by John Bryant
    Red Hat's Ceylon language has some interesting improvements over Java: The overall vision: learn from Java's mistakes, keep the good, ditch the bad The focus on readability and ease of learning/use Static Typing (find errors at compile time, not run time) No “special” types, everything is an object Named and Optional parameters (C# 4.0) Nullable types (C# 2.0) No need for explicit getter/setters until you are ready for them (C# 3.0) Type inference via the "local" keyword (C# 3.0 "var") Sequences (arrays) and their accompanying syntactic sugariness (C# 3.0) Straight-forward implementation of higher-order functions I don't know Scala but have heard it offers some similar advantages over Java. How would Scala compare to Ceylon in this respect?

    Read the article

  • Project Coin: JSR 334 has a Proposed Final Draft

    - by darcy
    Reaching nearly the last phase of the JCP process, JSR 334 now has a proposed final draft. There have been only a few refinements to the specification since public review: Incorporated language changes into JLS proper. Forbid combining diamond and explicit type arguments to a generic constructor. Removed unusual protocol around Throwable.addSuppressed(null) and added a new constructor to Throwable to allow suppression to be disabled. Added disclaimers that OutOfMemoryError, NullPointerException, and ArithmeticException objects created by the JVM may have suppression disabled. Added thread safely requirements to Throwable.addSuppressed and Throwable.getSuppressed. Next up is the final approval ballot; almost there!

    Read the article

< Previous Page | 32 33 34 35 36 37 38 39 40 41 42 43  | Next Page >