Search Results

Search found 1045 results on 42 pages for 'petko xyz'.

Page 36/42 | < Previous Page | 32 33 34 35 36 37 38 39 40 41 42  | Next Page >

  • Is there an simple but good To Do Manager app for the Mac?

    - by Another Registered User
    Every morning I think about what I am going to do today. So I take a paper and start to write things like: [ ] Call Mr. XYZ [ ] Answer Support E-Mails [ ] Reduce website header height by 20 px [ ] Create new navigation bar icons And every time I'm done with something, I paint a checkmark in this square. On paper. It would be fun to have something like this as an application. But I don't want a heavy project management tool or integration with email. It should be like download, install, use without fat configuration and steep learning curve. usually I don't schedule my to do's, I just write down every day what I want to accomplish today. For my experience it doesn't make sense to plan what to do next week, because next week everything looks totally different. Would be cool if such a simple utility exists. At the moment I try just using textEdit and deleting rows which are done. With a nice interface, this would be much more fun.

    Read the article

  • Shell script to block proftp failled attempt

    - by Saif
    Hello, I want to filter and block failed attempt to access my proftp server. Here is an example line from the /var/log/secure file: Jan 2 18:38:25 server1 proftpd[17847]: spy1.XYZ.com (93.218.93.95[93.218.93.95]) - Maximum login attempts (3) exceeded There are several lines like this. I would like to block any attempts like this from any IP twice. Here's a script I'm trying to run to block those IPs. tail -1000 /var/log/secure | awk '/proftpd/ && /Maximum login/ { if (/attempts/) try[$7]++; else try[$11]++; } END { for (h in try) if (try[h] > 4) print h; }' | while read ip do /sbin/iptables -L -n | grep $ip > /dev/null if [ $? -eq 0 ] ; then # echo "already denied ip: [$ip]" ; true else logger -p authpriv.notice "*** Blocking ProFTPD attempt from: $ip" /sbin/iptables -I INPUT -s $ip -j DROP fi done how can I select the IP with "awk". with the current script it's selecting "(93.218.93.95[93.218.93.95])" this line completely. But i only want to select the IP.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Weird WLAN connection

    - by tuelsch
    I assembled my first computer on my own. As I realised it had no WLAN (AsRock Z77 Extreme 4m) I bought a WLAN stick (ZyXel NWD 2105), plugged it in, started the setup from the CD and it worked, until I restarted the PC. That's when the problems started. The stick is able to connect to the router (P-660HN-F1Z) and the connection is stable, but not the internet access. In estimately 1 minute intervals there might be a short connection timeframe and dropbox or windows update are able to download some data, but as soon as I try to open a website the internet access is away. Note that the connection to the router does not shut down and remains stable at around 80-90%. The problem is definetly located on my pc, because with my laptop and phone the connection is stable and fast. Because I was so pissed off, I bought a EW-7612PIn V2 (PCI-E WLAN adapter), same problem. Now the weird thing is, if I don't use the PC for about 2 days, start it up, there is internet access (happened with both the stick and the PCI-E card). A bit slow, but it does not get away just like that, until I shut it down. Then, no matter how many times I restart, it won't come back. I googled a lot but now I'm at the end with my latin. Has anyone had a similar problem and resolved it? Technical details: Motherboard: AsRock Z77 Extreme 4M OS: Windows 7 professional 64bit Stick: Zyxel wireless N adapter NWD2105 PCI-E card: Edimax EW-7612PIn V2 Router: ZyXel P-660HN-F1Z Windows-IP-Konfiguration Hostname . . . . . . . . . . . . : xyz Primäres DNS-Suffix . . . . . . . : Knotentyp . . . . . . . . . . . . : Hybrid IP-Routing aktiviert . . . . . . : Nein WINS-Proxy aktiviert . . . . . . : Nein Drahtlos-LAN-Adapter Drahtlosnetzwerkverbindung 5: Medienstatus. . . . . . . . . . . : Medium getrennt Verbindungsspezifisches DNS-Suffix: Beschreibung. . . . . . . . . . . : Microsoft Virtual WiFi Miniport Adapter # 3 Physikalische Adresse . . . . . . : 80-1F-02-61-C0-A6 DHCP aktiviert. . . . . . . . . . : Ja Autokonfiguration aktiviert . . . : Ja Drahtlos-LAN-Adapter Drahtlosnetzwerkverbindung 4: Verbindungsspezifisches DNS-Suffix: Beschreibung. . . . . . . . . . . : Edimax 802.11n Wireless Adapter Physikalische Adresse . . . . . . : 80-1F-02-61-C0-A6 DHCP aktiviert. . . . . . . . . . : Ja Autokonfiguration aktiviert . . . : Ja Verbindungslokale IPv6-Adresse . : fe80::38d2:f489:726d:1fb5%17(Bevorzugt) IPv4-Adresse . . . . . . . . . . : 192.168.1.41(Bevorzugt) Subnetzmaske . . . . . . . . . . : 255.255.255.0 Lease erhalten. . . . . . . . . . : Donnerstag, 15. November 2012 10:51:05 Lease läuft ab. . . . . . . . . . : Sonntag, 18. November 2012 10:51:18 Standardgateway . . . . . . . . . : 192.168.1.1 DHCP-Server . . . . . . . . . . . : 192.168.1.1 DHCPv6-IAID . . . . . . . . . . . : 578821890 DHCPv6-Client-DUID. . . . . . . . : 00-01-00-01-17-FF-D5-FE-BC-5F-F4-48-FC-4B DNS-Server . . . . . . . . . . . : 91.233.182.2 194.230.1.39 NetBIOS über TCP/IP . . . . . . . : Aktiviert Tunneladapter isatap.{263BEB98-344B-435C-888F-1B15B97C3AC1}: Medienstatus. . . . . . . . . . . : Medium getrennt Verbindungsspezifisches DNS-Suffix: Beschreibung. . . . . . . . . . . : Microsoft-ISATAP-Adapter Physikalische Adresse . . . . . . : 00-00-00-00-00-00-00-E0 DHCP aktiviert. . . . . . . . . . : Nein Autokonfiguration aktiviert . . . : Ja Tunneladapter Teredo Tunneling Pseudo-Interface: Verbindungsspezifisches DNS-Suffix: Beschreibung. . . . . . . . . . . : Teredo Tunneling Pseudo-Interface Physikalische Adresse . . . . . . : 00-00-00-00-00-00-00-E0 DHCP aktiviert. . . . . . . . . . : Nein Autokonfiguration aktiviert . . . : Ja IPv6-Adresse. . . . . . . . . . . : 2001:0:9d38:6ab8:209c:2944:3f57:fed6(Bevo rzugt) Verbindungslokale IPv6-Adresse . : fe80::209c:2944:3f57:fed6%11(Bevorzugt) Standardgateway . . . . . . . . . : :: NetBIOS über TCP/IP . . . . . . . : Deaktiviert C:\Users\xyz>ping 192.168.1.1 Ping wird ausgeführt für 192.168.1.1 mit 32 Bytes Daten: Antwort von 192.168.1.1: Bytes=32 Zeit=2ms TTL=254 Antwort von 192.168.1.1: Bytes=32 Zeit=2ms TTL=254 Antwort von 192.168.1.1: Bytes=32 Zeit=2ms TTL=254 Antwort von 192.168.1.1: Bytes=32 Zeit=2ms TTL=254 Ping-Statistik für 192.168.1.1: Pakete: Gesendet = 4, Empfangen = 4, Verloren = 0 (0% Verlust), Ca. Zeitangaben in Millisek.: Minimum = 2ms, Maximum = 2ms, Mittelwert = 2ms

    Read the article

  • Hue, saturation, brightness, contrast effect in hlsl

    - by Vibhore Tanwer
    I am new to pixel shader, and I am trying to write a simple brightness, contrast, hue, saturation effect. I have written a shader for it but I doubt that my shader is not providing me correct result, Brightness, contrast, saturation is working fine, problem is with hue. if I apply hue between -1 to 1, it seems to be working fine, but to make things more sharp, I need to apply hue value between -180 and 180, like we can apply hue in Paint.NET. Here is my code. // Amount to shift the Hue, range 0 to 6 float Hue; float Brightness; float Contrast; float Saturation; float Alpha; sampler Samp : register(S0); // Converts the rgb value to hsv, where H's range is -1 to 5 float3 rgb_to_hsv(float3 RGB) { float r = RGB.x; float g = RGB.y; float b = RGB.z; float minChannel = min(r, min(g, b)); float maxChannel = max(r, max(g, b)); float h = 0; float s = 0; float v = maxChannel; float delta = maxChannel - minChannel; if (delta != 0) { s = delta / v; if (r == v) h = (g - b) / delta; else if (g == v) h = 2 + (b - r) / delta; else if (b == v) h = 4 + (r - g) / delta; } return float3(h, s, v); } float3 hsv_to_rgb(float3 HSV) { float3 RGB = HSV.z; float h = HSV.x; float s = HSV.y; float v = HSV.z; float i = floor(h); float f = h - i; float p = (1.0 - s); float q = (1.0 - s * f); float t = (1.0 - s * (1 - f)); if (i == 0) { RGB = float3(1, t, p); } else if (i == 1) { RGB = float3(q, 1, p); } else if (i == 2) { RGB = float3(p, 1, t); } else if (i == 3) { RGB = float3(p, q, 1); } else if (i == 4) { RGB = float3(t, p, 1); } else /* i == -1 */ { RGB = float3(1, p, q); } RGB *= v; return RGB; } float4 mainPS(float2 uv : TEXCOORD) : COLOR { float4 col = tex2D(Samp, uv); float3 hsv = rgb_to_hsv(col.xyz); hsv.x += Hue; // Put the hue back to the -1 to 5 range //if (hsv.x > 5) { hsv.x -= 6.0; } hsv = hsv_to_rgb(hsv); float4 newColor = float4(hsv,col.w); float4 colorWithBrightnessAndContrast = newColor; colorWithBrightnessAndContrast.rgb /= colorWithBrightnessAndContrast.a; colorWithBrightnessAndContrast.rgb = colorWithBrightnessAndContrast.rgb + Brightness; colorWithBrightnessAndContrast.rgb = ((colorWithBrightnessAndContrast.rgb - 0.5f) * max(Contrast + 1.0, 0)) + 0.5f; colorWithBrightnessAndContrast.rgb *= colorWithBrightnessAndContrast.a; float greyscale = dot(colorWithBrightnessAndContrast.rgb, float3(0.3, 0.59, 0.11)); colorWithBrightnessAndContrast.rgb = lerp(greyscale, colorWithBrightnessAndContrast.rgb, col.a * (Saturation + 1.0)); return colorWithBrightnessAndContrast; } technique TransformTexture { pass p0 { PixelShader = compile ps_2_0 mainPS(); } } Please If anyone can help me learning what am I doing wrong or any suggestions? Any help will be of great value. EDIT: Images of the effect at hue 180: On the left hand side, the effect I got with @teodron answer. On the right hand side, The effect Paint.NET gives and I'm trying to reproduce.

    Read the article

  • Ambient occlusion shader just shows models as all white

    - by dvds414
    Okay so I have this shader for ambient occlusion. It loads to world correctly, but it just shows all the models as being white. I do not know why. I am just running the shader while the model is rendering, is that correct? or do I need to make a render target or something? If so then how? I'm using C++. Here is my shader: float sampleRadius; float distanceScale; float4x4 xProjection; float4x4 xView; float4x4 xWorld; float3 cornerFustrum; struct VS_OUTPUT { float4 pos : POSITION; float2 TexCoord : TEXCOORD0; float3 viewDirection : TEXCOORD1; }; VS_OUTPUT VertexShaderFunction( float4 Position : POSITION, float2 TexCoord : TEXCOORD0) { VS_OUTPUT Out = (VS_OUTPUT)0; float4 WorldPosition = mul(Position, xWorld); float4 ViewPosition = mul(WorldPosition, xView); Out.pos = mul(ViewPosition, xProjection); Position.xy = sign(Position.xy); Out.TexCoord = (float2(Position.x, -Position.y) + float2( 1.0f, 1.0f ) ) * 0.5f; float3 corner = float3(-cornerFustrum.x * Position.x, cornerFustrum.y * Position.y, cornerFustrum.z); Out.viewDirection = corner; return Out; } texture depthTexture; texture randomTexture; sampler2D depthSampler = sampler_state { Texture = <depthTexture>; ADDRESSU = CLAMP; ADDRESSV = CLAMP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; sampler2D RandNormal = sampler_state { Texture = <randomTexture>; ADDRESSU = WRAP; ADDRESSV = WRAP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; float4 PixelShaderFunction(VS_OUTPUT IN) : COLOR0 { float4 samples[16] = { float4(0.355512, -0.709318, -0.102371, 0.0 ), float4(0.534186, 0.71511, -0.115167, 0.0 ), float4(-0.87866, 0.157139, -0.115167, 0.0 ), float4(0.140679, -0.475516, -0.0639818, 0.0 ), float4(-0.0796121, 0.158842, -0.677075, 0.0 ), float4(-0.0759516, -0.101676, -0.483625, 0.0 ), float4(0.12493, -0.0223423, -0.483625, 0.0 ), float4(-0.0720074, 0.243395, -0.967251, 0.0 ), float4(-0.207641, 0.414286, 0.187755, 0.0 ), float4(-0.277332, -0.371262, 0.187755, 0.0 ), float4(0.63864, -0.114214, 0.262857, 0.0 ), float4(-0.184051, 0.622119, 0.262857, 0.0 ), float4(0.110007, -0.219486, 0.435574, 0.0 ), float4(0.235085, 0.314707, 0.696918, 0.0 ), float4(-0.290012, 0.0518654, 0.522688, 0.0 ), float4(0.0975089, -0.329594, 0.609803, 0.0 ) }; IN.TexCoord.x += 1.0/1600.0; IN.TexCoord.y += 1.0/1200.0; normalize (IN.viewDirection); float depth = tex2D(depthSampler, IN.TexCoord).a; float3 se = depth * IN.viewDirection; float3 randNormal = tex2D( RandNormal, IN.TexCoord * 200.0 ).rgb; float3 normal = tex2D(depthSampler, IN.TexCoord).rgb; float finalColor = 0.0f; for (int i = 0; i < 16; i++) { float3 ray = reflect(samples[i].xyz,randNormal) * sampleRadius; //if (dot(ray, normal) < 0) // ray += normal * sampleRadius; float4 sample = float4(se + ray, 1.0f); float4 ss = mul(sample, xProjection); float2 sampleTexCoord = 0.5f * ss.xy/ss.w + float2(0.5f, 0.5f); sampleTexCoord.x += 1.0/1600.0; sampleTexCoord.y += 1.0/1200.0; float sampleDepth = tex2D(depthSampler, sampleTexCoord).a; if (sampleDepth == 1.0) { finalColor ++; } else { float occlusion = distanceScale* max(sampleDepth - depth, 0.0f); finalColor += 1.0f / (1.0f + occlusion * occlusion * 0.1); } } return float4(finalColor/16, finalColor/16, finalColor/16, 1.0f); } technique SSAO { pass P0 { VertexShader = compile vs_3_0 VertexShaderFunction(); PixelShader = compile ps_3_0 PixelShaderFunction(); } }

    Read the article

  • How can we improve overall Programmer Education & Training?

    - by crosenblum
    Last week, I was just viewing this amazing interview by Kevin Rose of Phillip Rosedale, of Second Life. And they had an amazing discussion about how to find, hire and identify good programmer's, and how hard it is to find good ones. Which has lead me to really think about the way we programmer's learn, are taught. For a majority of us, myself included, we are self-taught. Which is great about being a programmer, anyone can learn and develop skills. But this also means, that there is no real standards of what a good programmer is/are, and what kind of environment's encourage the growth of programming skills. This isn't so much a question, but just a desire in me, to see how we can change the culture of programming, and the manager's of programming, so that education and self-improvement is encouraged. There are a lot of avenue's for continued education, youtube videos, books, conferences, but because of the experiental nature of what we do, it isn't always clear what's important to learn and to master. Let's look at the The Joel 12 Steps. The Joel Test Do you use source control? Can you make a build in one step? Do you make daily builds? Do you have a bug database? Do you fix bugs before writing new code? Do you have an up-to-date schedule? Do you have a spec? Do programmers have quiet working conditions? Do you use the best tools money can buy? Do you have testers? Do new candidates write code during their interview? Do you do hallway usability testing? I think all of these have important value, but because of something I call the Experiential Gap, if a programmer or manager has never experienced any of the negative consequences for not having done items on the list, they will never see the need to do any of them. The Experiental Gap, is my basic theory, that each of us has different jobs and different experiences. So for some of us, that have always worked with dozens of programmer's, source control is a must have. But for people who have always been the only programmer, they can not imagine the need for source control. And it's because of this major flaw in how we learn, that we evaluate people by what best practices they do or not do, and the reason for either can start a flame war. We always evaluate people in our field by what they do, and think "Oh if this guy/gal isn't doing xyz best practice, he/she can't be a good programmer, so let's not waste time or energy talking to them." This is exactly why we have so many programming flame wars, that it becomes, because of the Experiental Gap, we can't imagine people not having made the decisions that we have had to made. So this has lead me to think, that we totally need to rethink how we train, educate and manage programmer's. For example, what percentage of you have had encouragement by your manager's to go to conferences, and even have them pay for it? For me, and a lot of people, this is extremely rare, a lot of us would love to go to conferences, to learn more, but the money ain't there to do that. So the point of this question is really to spark a lot of how can we train, learn and manage better? How can we create a new culture of learning that doesn't insult people for not having the same job experiences. Yes we all have jobs and work to do, but our ability to do our jobs well, depends on our desire, interest and support in improving our mastery of our skills. Right now, I see our culture being rather disorganized, we support the elite, but those tons of us that want to get better, just don't have enough support to learn and improve ourselves. I mean, do we as an industry, want to be perceived as just replaceable cogs? Thank you...

    Read the article

  • Skewed: a rotating camera in a simple CPU-based voxel raycaster/raytracer

    - by voxelizr
    TL;DR -- in my first simple software voxel raycaster, I cannot get camera rotations to work, seemingly correct matrices notwithstanding. The result is skewed: like a flat rendering, correctly rotated, however distorted and without depth. (While axis-aligned ie. unrotated, depth and parallax are as expected.) I'm trying to write a simple voxel raycaster as a learning exercise. This is purely CPU based for now until I figure out how things work exactly -- fow now, OpenGL is just (ab)used to blit the generated bitmap to the screen as often as possible. Now I have gotten to the point where a perspective-projection camera can move through the world and I can render (mostly, minus some artifacts that need investigation) perspective-correct 3-dimensional views of the "world", which is basically empty but contains a voxel cube of the Stanford Bunny. So I have a camera that I can move up and down, strafe left and right and "walk forward/backward" -- all axis-aligned so far, no camera rotations. Herein lies my problem. Screenshot #1: correct depth when the camera is still strictly axis-aligned, ie. un-rotated. Now I have for a few days been trying to get rotation to work. The basic logic and theory behind matrices and 3D rotations, in theory, is very clear to me. Yet I have only ever achieved a "2.5 rendering" when the camera rotates... fish-eyey, bit like in Google Streetview: even though I have a volumetric world representation, it seems --no matter what I try-- like I would first create a rendering from the "front view", then rotate that flat rendering according to camera rotation. Needless to say, I'm by now aware that rotating rays is not particularly necessary and error-prone. Still, in my most recent setup, with the most simplified raycast ray-position-and-direction algorithm possible, my rotation still produces the same fish-eyey flat-render-rotated style looks: Screenshot #2: camera "rotated to the right by 39 degrees" -- note how the blue-shaded left-hand side of the cube from screen #2 is not visible in this rotation, yet by now "it really should"! Now of course I'm aware of this: in a simple axis-aligned-no-rotation-setup like I had in the beginning, the ray simply traverses in small steps the positive z-direction, diverging to the left or right and top or bottom only depending on pixel position and projection matrix. As I "rotate the camera to the right or left" -- ie I rotate it around the Y-axis -- those very steps should be simply transformed by the proper rotation matrix, right? So for forward-traversal the Z-step gets a bit smaller the more the cam rotates, offset by an "increase" in the X-step. Yet for the pixel-position-based horizontal+vertical-divergence, increasing fractions of the x-step need to be "added" to the z-step. Somehow, none of my many matrices that I experimented with, nor my experiments with matrix-less hardcoded verbose sin/cos calculations really get this part right. Here's my basic per-ray pre-traversal algorithm -- syntax in Go, but take it as pseudocode: fx and fy: pixel positions x and y rayPos: vec3 for the ray starting position in world-space (calculated as below) rayDir: vec3 for the xyz-steps to be added to rayPos in each step during ray traversal rayStep: a temporary vec3 camPos: vec3 for the camera position in world space camRad: vec3 for camera rotation in radians pmat: typical perspective projection matrix The algorithm / pseudocode: // 1: rayPos is for now "this pixel, as a vector on the view plane in 3d, at The Origin" rayPos.X, rayPos.Y, rayPos.Z = ((fx / width) - 0.5), ((fy / height) - 0.5), 0 // 2: rotate around Y axis depending on cam rotation. No prob since view plane still at Origin 0,0,0 rayPos.MultMat(num.NewDmat4RotationY(camRad.Y)) // 3: a temp vec3. planeDist is -0.15 or some such -- fov-based dist of view plane from eye and also the non-normalized, "in axis-aligned world" traversal step size "forward into the screen" rayStep.X, rayStep.Y, rayStep.Z = 0, 0, planeDist // 4: rotate this too -- 0,zstep should become some meaningful xzstep,xzstep rayStep.MultMat(num.NewDmat4RotationY(CamRad.Y)) // set up direction vector from still-origin-based-ray-position-off-rotated-view-plane plus rotated-zstep-vector rayDir.X, rayDir.Y, rayDir.Z = -rayPos.X - me.rayStep.X, -rayPos.Y, rayPos.Z + rayStep.Z // perspective projection rayDir.Normalize() rayDir.MultMat(pmat) // before traversal, the ray starting position has to be transformed from origin-relative to campos-relative rayPos.Add(camPos) I'm skipping the traversal and sampling parts -- as per screens #1 through #3, those are "basically mostly correct" (though not pretty) -- when axis-aligned / unrotated.

    Read the article

  • First-Time GLSL Shadow Mapping Problems

    - by Locke
    I'm working on building out a 2.5D engine and having massive problems getting my shadows working. I'm at a point where I'm VERY close. So, let's see a picture to see what I have: As you can see above, the image has lighting -- but the shadow map is displaying incorrectly. The shadow map is shown in the bottom left hand side of the screen as a normal 2D texture, so we can see what it looks like at any given time. If you notice, it appears that the shadows are generating backwards in the wrong direction -- I think. But the problem is a little more deep -- I'm just plotting the shadow onto the screen, which I know is wrong -- I'm ignoring the actual test to see if we NEED to show a shadow. The incoming parameters all appear to be correct -- so there has to be something wrong with my shader code somewhere. Here's what my code looks like: VERTEX: uniform mat4 LightModelViewProjectionMatrix; varying vec3 Normal; // The eye-space normal of the current vertex. varying vec4 LightCoordinate; // The texture coordinate of the light of the current vertex. varying vec3 LightDirection; // The eye-space direction of the light. void main() { Normal = normalize(gl_NormalMatrix * gl_Normal); LightDirection = normalize(gl_NormalMatrix * gl_LightSource[0].position.xyz); LightCoordinate = LightModelViewProjectionMatrix * gl_Vertex; LightCoordinate.xy = ( LightCoordinate.xy * 0.5 ) + 0.5; gl_Position = ftransform(); gl_TexCoord[0] = gl_MultiTexCoord0; } FRAGMENT: uniform sampler2D DiffuseMap; uniform sampler2D ShadowMap; varying vec3 Normal; // The eye-space normal of the current vertex. varying vec4 LightCoordinate; // The texture coordinate of the light of the current vertex. varying vec3 LightDirection; // The eye-space direction of the light. void main() { vec4 Texel = texture2D(DiffuseMap, vec2(gl_TexCoord[0])); // Directional lighting //Build ambient lighting vec4 AmbientElement = gl_LightSource[0].ambient; //Build diffuse lighting float Lambert = max(dot(Normal, LightDirection), 0.0); //max(abs(dot(Normal, LightDirection)), 0.0); vec4 DiffuseElement = ( gl_LightSource[0].diffuse * Lambert ); vec4 LightingColor = ( DiffuseElement + AmbientElement ); LightingColor.r = min(LightingColor.r, 1.0); LightingColor.g = min(LightingColor.g, 1.0); LightingColor.b = min(LightingColor.b, 1.0); LightingColor.a = min(LightingColor.a, 1.0); LightingColor *= Texel; //Everything up to this point is PERFECT // Shadow mapping // ------------------------------ vec4 ShadowCoordinate = LightCoordinate / LightCoordinate.w; float DistanceFromLight = texture2D( ShadowMap, ShadowCoordinate.st ).z; float DepthBias = 0.001; float ShadowFactor = 1.0; if( LightCoordinate.w > 0.0 ) { ShadowFactor = DistanceFromLight < ( ShadowCoordinate.z + DepthBias ) ? 0.5 : 1.0; } LightingColor.rgb *= ShadowFactor; //gl_FragColor = LightingColor; //Yes, I know this is wrong, but the line above (gl_FragColor = LightingColor;) produces the wrong effect gl_FragColor = LightingColor * texture2D( ShadowMap, ShadowCoordinate.st ); } I wanted to make sure the coordinates were correct for the shadow map -- so that's why you see it applied to the image as it is below. But the depth for each point seems to be wrong -- the shadows SHOULD be opposite (look at how the image is -- the shaded areas from normal lighting are facing the opposite direction of the shadows). Maybe my matrices are bad or something going in? They're isolated and appear to be correct -- nothing else is going in unusual. When I view from the light's view and get the MVP matrices for it, they're correct. EDIT: Added an image so you can see what happens when I do the correct command at the end of the GLSL: That's the image when the last line is just glFragColor = LightingColor; Maybe someone has some idea of what I screwed up?

    Read the article

  • How can I best manage making open source code releases from my company's confidential research code?

    - by DeveloperDon
    My company (let's call them Acme Technology) has a library of approximately one thousand source files that originally came from its Acme Labs research group, incubated in a development group for a couple years, and has more recently been provided to a handful of customers under non-disclosure. Acme is getting ready to release perhaps 75% of the code to the open source community. The other 25% would be released later, but for now, is either not ready for customer use or contains code related to future innovations they need to keep out of the hands of competitors. The code is presently formatted with #ifdefs that permit the same code base to work with the pre-production platforms that will be available to university researchers and a much wider range of commercial customers once it goes to open source, while at the same time being available for experimentation and prototyping and forward compatibility testing with the future platform. Keeping a single code base is considered essential for the economics (and sanity) of my group who would have a tough time maintaining two copies in parallel. Files in our current base look something like this: > // Copyright 2012 (C) Acme Technology, All Rights Reserved. > // Very large, often varied and restrictive copyright license in English and French, > // sometimes also embedded in make files and shell scripts with varied > // comment styles. > > > ... Usual header stuff... > > void initTechnologyLibrary() { > nuiInterface(on); > #ifdef UNDER_RESEARCH > holographicVisualization(on); > #endif > } And we would like to convert them to something like: > // GPL Copyright (C) Acme Technology Labs 2012, Some rights reserved. > // Acme appreciates your interest in its technology, please contact [email protected] > // for technical support, and www.acme.com/emergingTech for updates and RSS feed. > > ... Usual header stuff... > > void initTechnologyLibrary() { > nuiInterface(on); > } Is there a tool, parse library, or popular script that can replace the copyright and strip out not just #ifdefs, but variations like #if defined(UNDER_RESEARCH), etc.? The code is presently in Git and would likely be hosted somewhere that uses Git. Would there be a way to safely link repositories together so we can efficiently reintegrate our improvements with the open source versions? Advice about other pitfalls is welcome.

    Read the article

  • A developer&rsquo;s WBS &ndash; 3 factors of 5

    - by johndoucette
    As a development manager, I have requested work breakdown structures (WBS) many times from the dev leads. Everyone has their own approach and why it takes sometimes days to get this simple list is often frustrating. Here is a simple way to get that elusive WBS done in 30 minutes and have 125 items in your list – well, 126. The WBS is made up of parent-child entities representing the overall outcome of the project. At the bottom of the hierarchical list should be the task item that a developer would perform in support of the branch in the list or WBS. Because I work with different dev leads on every project, I always ask the “what time value would you like to see at the lowest task in order to assign it to a developer and ensure it gets done within the timeframe”. I am particular to a task being 8 hours. Some like 8 to 24 hours. Stay away from tasks defaulting to 1 week. The task becomes way to vague and hard to manage completeness, especially on short budgets. As a developer, your focus is identifying the tasks you to accomplish in order to deliver the product. As a project manager, you will take the developer's WBS and add all the “other stuff” like quality testing, meetings, documentation, transition to maintenance, etc… Start your exercise with the name of the product you are delivering as a result of the project. You should be able to represent what you are building and deploying with one to three words. Example; XYZ Public Website Middleware BizTalk Application The reason you start with that single identifier is to always see the list as the product. It helps during each of the next three passes. Now, choose 5 tasks which in their entirety represent the product you will be delivering and add them to list under the product name you created earlier; Public Website     Security     Sites     Infrastructure     Publishing     Creative Continue this concept of seeing the list as the complete picture and decompose it one more level. You should have 25 items. Public Website     Security         Authentication         Login Control         Administration         DRM         Workflow     Sites         Masterpages         Page Layouts         Web Parts (RIA, Multimedia)         Content Types         Structures     Infrastructure         ...     Publishing         ...     Creative         ... And one more time for a total of 125 items. The top item makes the list 126. Public Website     Security         Authentication             Install (AD/ADAM/LDAP/SQL)             Configuration             Management             Web App Configuration             Implement Provider         Login Control             Login Form             Login/Logoff             pw change             pw recover/forgot             email verification         Administration             ...         DRM             ...         Workflow             ...     Sites         Masterpages         Page Layouts         Web Parts (RIA, Multimedia)         Content Types         Structures     Infrastructure         ...     Publishing         ...     Creative         ... The next step is to make sure the task at the bottom of every branch represents the “time value” you planned for the project. You can add more to the WBS and of course if you can’t find 5 items, 4 is fine. If a task can be done in a fraction of the time value you determined for the project, try to roll it up into a larger task. In the task actions (later when the iteration is being planned), decompose the details back to the simple tasks. Now, go estimate!

    Read the article

  • WiX, MSDeploy and an appealing configuration/deployment paradigm

    - by alexhildyard
    I do a lot of application and server configuration; I've done this for many years and have tended to view the complexity of this strictly in terms of the complexity of the ultimate configuration to be deployed. For example, specific APIs aside, I would tend to regard installing a server certificate as a more complex activity than, say, copying a file or adding a Registry entry.My prejudice revolved around the idea of a sequential deployment script that not only had the explicit prescription to apply a specific server configuration, but also made the implicit presumption that the server in question was in a good known state. Scripts like this fail for hundreds of reasons -- the Default Website didn't exist; the application had already been deployed; the application had already been partially deployed and failed to rollback fully, and so on. And so the problem is that the more complex the configuration activity, the more scope for error in any individual part of that activity, and therefore the greater the chance the server in question will not end up at exactly the desired configuration level.Recently I was introduced to a completely different mindset, which, for want of a better turn of phrase, I will call the "make it so" mindset. It's extremely simple both to explain and to implement. In place of the head-down, imperative script you used to use, you substitute a set of checks -- much like exception handlers -- around each configuration activity, starting with a check of the current system state. Thus the configuration logic becomes: "IF these services aren't started then start them, and IF XYZ website doesn't exist then create it, and IF these shares don't exist then create them, and IF these shares aren't permissioned in some particular way, then permission them so." This works. Really well, in my experience. Scenario 1: You want to get a system into a good known state; it's already in a good known state; you quickly realise there is nothing to do.Scenario 2: You want to get the system into a good known state; your script is flawed or the system is bust; it cannot be put into that state. You know exactly where (at least part of) the problem is and why.Scenario 3: You want to get the system into a good known state; people are fiddling around with the system just now. That's fine. You do what you can, and later you come back and try it againScenario 4: No one wants to deploy anything; they want you to prove that the previous deployment was successful. So you re-run the deployment script with the "-WhatIf" flag. It reports that there was nothing to change. There's your proof.I mentioned two technologies in the title -- MSI and MSDeploy. I am thinking specifically of the conversation that took place here. Having worked with both technologies, I think Rob Mensching's response is appropriately nuanced, and in essence the difference is this: sometimes your target is either to achieve a specific new server state, or to rollback to a known good one. Then again, your target may be to configure what you can, and to understand what you can't. Implicitly MSDeploy's "rollback" is simply to redeploy the previous version, whereas a well-crafted MSI will actively put your system into that state without further intervention. Either way, if all goes well it will leave you with a system in one of two states, whereas MSDeploy could leave your system in one of many states. The key is that MSDeploy and MSI are complementary technologies; which suits you best depends as much on Operational guidance as your Configuration remit.What I wanted to say was that I have always been for atomic, transactional-based configuration, but having worked with the "make it so" paradigm, I have been favourably impressed by the actual results. I'm tempted to put a more technical post up on this in due course.

    Read the article

  • Projective texture and deferred lighting

    - by Vodácek
    In my previous question, I asked whether it is possible to do projective texturing with deferred lighting. Now (more than half a year later) I have a problem with my implementation of the same thing. I am trying to apply this technique in light pass. (my projector doesn't affect albedo). I have this projector View a Projection matrix: Matrix projection = Matrix.CreateOrthographicOffCenter(-halfWidth * Scale, halfWidth * Scale, -halfHeight * Scale, halfHeight * Scale, 1, 100000); Matrix view = Matrix.CreateLookAt(Position, Target, Vector3.Up); Where halfWidth and halfHeight is are half of the texture's width and height, Position is the Projector's position and target is the projector's target. This seems to be ok. I am drawing full screen quad with this shader: float4x4 InvViewProjection; texture2D DepthTexture; texture2D NormalTexture; texture2D ProjectorTexture; float4x4 ProjectorViewProjection; sampler2D depthSampler = sampler_state { texture = <DepthTexture>; minfilter = point; magfilter = point; mipfilter = point; }; sampler2D normalSampler = sampler_state { texture = <NormalTexture>; minfilter = point; magfilter = point; mipfilter = point; }; sampler2D projectorSampler = sampler_state { texture = <ProjectorTexture>; AddressU = Clamp; AddressV = Clamp; }; float viewportWidth; float viewportHeight; // Calculate the 2D screen position of a 3D position float2 postProjToScreen(float4 position) { float2 screenPos = position.xy / position.w; return 0.5f * (float2(screenPos.x, -screenPos.y) + 1); } // Calculate the size of one half of a pixel, to convert // between texels and pixels float2 halfPixel() { return 0.5f / float2(viewportWidth, viewportHeight); } struct VertexShaderInput { float4 Position : POSITION0; }; struct VertexShaderOutput { float4 Position :POSITION0; float4 PositionCopy : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; output.Position = input.Position; output.PositionCopy=output.Position; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { float2 texCoord =postProjToScreen(input.PositionCopy) + halfPixel(); // Extract the depth for this pixel from the depth map float4 depth = tex2D(depthSampler, texCoord); //return float4(depth.r,0,0,1); // Recreate the position with the UV coordinates and depth value float4 position; position.x = texCoord.x * 2 - 1; position.y = (1 - texCoord.y) * 2 - 1; position.z = depth.r; position.w = 1.0f; // Transform position from screen space to world space position = mul(position, InvViewProjection); position.xyz /= position.w; //compute projection float3 projection=tex2D(projectorSampler,postProjToScreen(mul(position,ProjectorViewProjection)) + halfPixel()); return float4(projection,1); } In first part of pixel shader is recovered position from G-buffer (this code I am using in other shaders without any problem) and then is tranformed to projector viewprojection space. Problem is that projection doesn't appear. Here is an image of my situation: The green lines are the rendered projector frustum. Where is my mistake hidden? I am using XNA 4. Thanks for advice and sorry for my English. EDIT: Shader above is working but projection was too small. When I changed the Scale property to a large value (e.g. 100), the projection appears. But when the camera moves toward the projection, the projection expands, as can bee seen on this YouTube video.

    Read the article

  • HLSL Shader not working right?

    - by dvds414
    Okay so I have this shader for ambient occlusion. It loads to world correctly, but it just shows all the models as being white. I do not know why. I am just running the shader while the model is rendering, is that correct? or do I need to make a render target or something? if so then how? I'm using C++. Here is my shader. float sampleRadius; float distanceScale; float4x4 xProjection; float4x4 xView; float4x4 xWorld; float3 cornerFustrum; struct VS_OUTPUT { float4 pos : POSITION; float2 TexCoord : TEXCOORD0; float3 viewDirection : TEXCOORD1; }; VS_OUTPUT VertexShaderFunction( float4 Position : POSITION, float2 TexCoord : TEXCOORD0) { VS_OUTPUT Out = (VS_OUTPUT)0; float4 WorldPosition = mul(Position, xWorld); float4 ViewPosition = mul(WorldPosition, xView); Out.pos = mul(ViewPosition, xProjection); Position.xy = sign(Position.xy); Out.TexCoord = (float2(Position.x, -Position.y) + float2( 1.0f, 1.0f ) ) * 0.5f; float3 corner = float3(-cornerFustrum.x * Position.x, cornerFustrum.y * Position.y, cornerFustrum.z); Out.viewDirection = corner; return Out; } texture depthTexture; texture randomTexture; sampler2D depthSampler = sampler_state { Texture = <depthTexture>; ADDRESSU = CLAMP; ADDRESSV = CLAMP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; sampler2D RandNormal = sampler_state { Texture = <randomTexture>; ADDRESSU = WRAP; ADDRESSV = WRAP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; float4 PixelShaderFunction(VS_OUTPUT IN) : COLOR0 { float4 samples[16] = { float4(0.355512, -0.709318, -0.102371, 0.0 ), float4(0.534186, 0.71511, -0.115167, 0.0 ), float4(-0.87866, 0.157139, -0.115167, 0.0 ), float4(0.140679, -0.475516, -0.0639818, 0.0 ), float4(-0.0796121, 0.158842, -0.677075, 0.0 ), float4(-0.0759516, -0.101676, -0.483625, 0.0 ), float4(0.12493, -0.0223423, -0.483625, 0.0 ), float4(-0.0720074, 0.243395, -0.967251, 0.0 ), float4(-0.207641, 0.414286, 0.187755, 0.0 ), float4(-0.277332, -0.371262, 0.187755, 0.0 ), float4(0.63864, -0.114214, 0.262857, 0.0 ), float4(-0.184051, 0.622119, 0.262857, 0.0 ), float4(0.110007, -0.219486, 0.435574, 0.0 ), float4(0.235085, 0.314707, 0.696918, 0.0 ), float4(-0.290012, 0.0518654, 0.522688, 0.0 ), float4(0.0975089, -0.329594, 0.609803, 0.0 ) }; IN.TexCoord.x += 1.0/1600.0; IN.TexCoord.y += 1.0/1200.0; normalize (IN.viewDirection); float depth = tex2D(depthSampler, IN.TexCoord).a; float3 se = depth * IN.viewDirection; float3 randNormal = tex2D( RandNormal, IN.TexCoord * 200.0 ).rgb; float3 normal = tex2D(depthSampler, IN.TexCoord).rgb; float finalColor = 0.0f; for (int i = 0; i < 16; i++) { float3 ray = reflect(samples[i].xyz,randNormal) * sampleRadius; //if (dot(ray, normal) < 0) // ray += normal * sampleRadius; float4 sample = float4(se + ray, 1.0f); float4 ss = mul(sample, xProjection); float2 sampleTexCoord = 0.5f * ss.xy/ss.w + float2(0.5f, 0.5f); sampleTexCoord.x += 1.0/1600.0; sampleTexCoord.y += 1.0/1200.0; float sampleDepth = tex2D(depthSampler, sampleTexCoord).a; if (sampleDepth == 1.0) { finalColor ++; } else { float occlusion = distanceScale* max(sampleDepth - depth, 0.0f); finalColor += 1.0f / (1.0f + occlusion * occlusion * 0.1); } } return float4(finalColor/16, finalColor/16, finalColor/16, 1.0f); } technique SSAO { pass P0 { VertexShader = compile vs_3_0 VertexShaderFunction(); PixelShader = compile ps_3_0 PixelShaderFunction(); } }

    Read the article

  • Manual (Dynamic) LINQ subquery using IN clause

    - by immortalali-msn-com
    Hi Everyone, I want to query the DB through LINQ writing manual SQL, my linq method is: var q = db.TableView.Where(sqlAfterWhere); returnValue = q.Count(); this method queries well if the value passed to variable "sqlAfterWhere" is: (this variable is String type) it.Name = 'xyz' but what if i want to use IN clause, using a sub query. (i need to use 'it' before every column name in the above query to work), i cant use 'it' before the sub query columns as its a separate query, so what should i do, if i dont use any thing, and use column names directly it gives error saying " could not be resolved" where is my column names with out 'it' at the begining. So the query not working is: (this is a string passed to the variable above): it.Name IN (SELECT Name FROM TableName WHERE Address LIKE '%SomeAddress%') the errors come out as: Name could not be resolved Address could not be resolved The exact error is: "'Name' could not be resolved in the current scope or context. Make sure that all referenced variables are in scope, that required schemas are loaded, and that namespaces are referenced correctly., near simple identifier, line 6, column 25." Same error for "Address as well if i use 'it.' before these columns it gives error as: "The element type 'Edm.Int32' and the CollectionType 'Transient.collection[Transient.rowtype(GroupID,Edm.Int32(Nullable=True,DefaultValue=))]' are not compatible. The IN expression only supports entity, primitive, and reference types. , near WHERE predicate, line 6, column 14." Thanks for the help

    Read the article

  • Calculating File size before download - Downloading NSURLConnection Slider timing

    - by sagar
    Ok ! Coming to the point directly. What I want to do is explained as follows. I have an url of MP3 file. ( for example Sound File ) Now, When user starts application. Download should start & for that I have implemented following methods. -(void)viewDidLoad { [super viewDidLoad]; NSURL *url=[NSURL URLWithString:@"http://xyz.pqr.com/abc.mp3"]; NSURLRequest *req=[NSURLRequest requestWithURL:url cachePolicy:NSURLCacheStorageNotAllowed timeoutInterval:120]; NSURLConnection *con=[[NSURLConnection alloc] initWithRequest:req delegate:self startImmediately:YES]; if(con){ myWebData=[[NSMutableData data] retain]; } else { // [MainHandler performSelector:@selector(targetSelector:) withObject:nil]; } } -(void)connection:(NSURLConnection *)connection didReceiveResponse:(NSURLResponse *)response { NSLog(@"%@",@"connection established"); [myWebData setLength: 0]; } -(void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data { NSLog(@"%@",@"connection receiving data"); [myWebData appendData:data]; } -(void)connection:(NSURLConnection *)connection didFailWithError:(NSError *)error { NSLog(@"%@",@"connection failed"); [connection release]; // [AlertViewHandler showAlertWithErrorMessage:@"Sorry, there is no network connection. Please check your network and try again."]; // [self parserDidEndDocument:nil]; } -(void)connectionDidFinishLoading:(NSURLConnection *)connection { [connection release]; } Now, Above methods work perfectly for downloading. But missing points are as follows. I can not get the exact size which is going to be downloaded. ( means I want to know what is the size of file - which is going to be download )

    Read the article

  • Compile time Meta-programming, with string literals.

    - by Hassan Syed
    I'm writing some code which could really do with some simple compile time metaprogramming. It is common practise to use empty-struct tags as compile time symbols. I need to decorate the tags with some run-time config elements. static variables seem the only way to go (to enable meta-programming), however static variables require global declarations. to side step this Scott Myers suggestion (from the third edition of Effective C++), about sequencing the initialization of static variables by declaring them inside a function instead of as class variables, came to mind. So I came up with the following code, my hypothesis is that it will let me have a compile-time symbols with string literals use-able at runtime. I'm not missing anything I hope. template<class Instance> class TheBestThing { public: void set_name(const char * name_in) { get_name() = std::string(name_in); } void set_fs_location(const char * fs_location_in) { get_fs_location() = std::string(fs_location_in); } std::string & get_fs_location() { static std::string fs_location; return fs_location; } std::string & get_name() { static std::string name; return name; } }; struct tag {}; int main() { TheBestThing<tag> x; x.set_name("xyz"); x.set_fs_location("/etc/lala"); ImportantObject<x> SinceSlicedBread; }

    Read the article

  • Problems requesting the LDAP: The server is unwilling to process the request.

    - by Flo
    We have written an authentication provider for a SharePoint web application which can requests multiple LDAP directories. One of the LDAP server have to be requested via SSL. So we imported the CA certificate which was used to sign the LDAP server's certificate into the certificate store of the SharePoint server. The following code snippet shows how we authenticate an user. The passed credentials (account, password) belong to the user we want to authenticate. var entry = new DirectoryEntry("LDAP://<ldap-server-address>", "cn=account,ou=sub,o=xyz,c=de", "password", AuthenticationTypes.SecureSocketsLayer); var searcher = new DirectorySearcher(entry); var found = searcher.FindOne(); When the code is processed, the call to searcher.FindOne() throws following exception. System.Runtime.InteropServices.COMException (0x80072035): The server is unwilling to process the request What circumstance can lead to this error? UPDATE: I found some information about the error message. There the problem seems to be the certificate store, as the user has only stored the certificate in the in the user's store and not in the computer's store. Unfortunately we've already stored it there. So could this be still a certificate issue? UPDATE/SOLUTION: Actually the problem is solved. It seems as if the root CA certificate was imported correctly but the error messages the LDAP server responded was caused by an expired user account our customer gave us for testing.

    Read the article

  • HTML inside webView

    - by Samuh
    I am posting some data to a server using DefaultHttpClient class and in the response stream I am getting a HTML file. I save the stream as a string and pass it onto another activity which contains a WebView to render this HTML on the screen: response = httpClient.execute(get); InputStream is = response.getEntity().getContent(); BufferedReader br = new BufferedReader(new InputStreamReader(is,"utf-8")); StringBuffer sb = new StringBuffer(); String line; while((line=br.readLine())!=null){ sb.append(line); sb.append("\n"); } is.close(); Intent intent = new Intent(this,Trial.class); intent.putExtra("trial",sb.toString()); startActivity(intent); Log.i("SB",sb.toString()); In Second Activity, the code to load the WebView reads: WebView browser = ((WebView)findViewById(R.id.trial_web)); browser.getSettings().setJavaScriptEnabled(true); browser.loadData(html,"text/html", "utf-8"); When I run this code, the WebView is not able to render the HTML content properly. It actually shows the HTML string in URL encoded format on the screen. Interestingly, If I copy the Loggers output to HTML file and then load this HTML in my WebView(using webview.loadurl(file:///assets/xyz.html)) everything works fine. I suspect some problem with character encoding. What is going wrong here? Please help. Thanks.

    Read the article

  • Where exactly should i add crossdomain.xml file?

    - by SpikETidE
    Hi everyone... i am trying to create a internet radio.... I use icecast2 for streaming..... edcast plugin with winamp to send the music to icecast... and the xspf web music player (http://musicplayer.sourceforge.net/) to connect the user to the icecast server and play the music.... The setup works great and i can broadcast and receive on the local network i use to test the radio.. using xampp... Now the icecast broadcasts online from a windows server with the ip address say xx.xx.xxx.xxx The webpage in which the flash player is embedded is uploaded to www.xyz.com/images/radio This domain has the same ip address from where the icecast server runs. Now when i run the webpage to connect to the radio with the flash player, i get the error in firebug as "xx.xx.xxx.xxx:8000/crossdomain.xml 404 NOT FOUND" But i have created a crossdomain.xml file in the root of the xx.xx.xxx.xxx server... Still it doesn't recognize the file... Can anyone tell me where exactly i should create the file for my setting...??? Thanks a lot in advance.....

    Read the article

  • Gridview and Modal popup not updating

    - by rs
    I have page with following controls <asp:UpdatePanel ID="up1" runat="server" UpdateMode="Conditional"> <ContentTemplate> <uc2:CountryControl ID="Country1" runat="server" /> <br class = "br_e" /> <br class = "br_e" /> <asp:UpdatePanel ID="upCountry2" runat="server" UpdateMode="Conditional"> <ContentTemplate> <asp:Panel runat="server" ID="pnCountry" Width="400px" Visible="false"> <asp:GridView ID="gvCountry" runat="server" AllowSorting="true" DataKeyNames="countryid" DataSourceID="data_country1" AutoGenerateColumns="false"> <Columns> <asp:CommandField ButtonType="Link" ShowDeleteButton="true" /> <asp:BoundField HeaderText="Country" DataField="CountryName" SortExpression="CountryName" /> </Columns> </asp:GridView> <asp:SqlDataSource ID="data_country1" runat="server" ConnectionString="<%$ zyx %>" SelectCommand="xyz" SelectCommandType="StoredProcedure"> <SelectParameters> <asp:SessionParameter Name="country" DefaultValue="" ConvertEmptyStringToNull="true" SessionField="CountryID" Type="String" /> </SelectParameters> </asp:SqlDataSource> </asp:Panel> </ContentTemplate> </asp:UpdatePanel> </ContentTemplate> </asp:UpdatePanel> My user control is a modal popup to select country and add selected ids to a session variable. And in main page bind data using ids in session variable.Gridview - on deleting event i'm deleting that id from session and on deleted event updating both user control using a refresh method (Country1.Refresh()) and gridview panel. But updatepanel is not getting updated and even modalpopup is also not getting refreshed. What could be wrong here? Even though update and refresh events are fired and executed, why is page not getting updated?

    Read the article

  • How to parse the "<media:group>" using feedparser?

    - by Wayle.C
    The rss file is shown as below, i want to get the content in section media:group . I check the document of feedparser, but it seems not mention this. How to do it? Any help is appreciated. XYZ InfoX: Special hello http://www1.XYZInfoX.com/learninghello/home hello en Wed, 17 Mar 2010 08:50:06 GMT 2010-03-17T08:50:06Z en Voice of America http://www1.XYZInfoX.com/learninghello http://media.XYZInfoX.com/designimages/XYZRSSIcon.gif <item> <title>Who Were the Deadliest Gunmen of the Wild West?</title> <link>http://www1.XYZInfoX.com/learninghello/home/Deadliest-Gunmen-of-the-Wild-West-87826807.html</link> <description> The story of two of them: "Killin'" Jim Miller was an outlaw, "Texas" John Slaughter was a lawman | EXPLORATIONS </description> <pubDate>Wed, 17 Mar 2010 00:38:48 GMT</pubDate> <guid isPermaLink="false">87826807</guid> <dc:creator></dc:creator> <dc:date>2010-03-17T00:38:48Z</dc:date> *<media:group> <media:content url="http://media.XYZInfoX.com/images/archives_peace_comm_480_16mar_se.jpg" medium="image" isDefault="true" height="300" width="480" /> <media:content url="http://media.XYZInfoX.com/images/archives_peace_comm_230_16mar_se_edited-1.jpg" medium="image" isDefault="false" height="230" width="230" /> <media:content url="http://media.XYZInfoX.com/images/tex_trans_lawmans_230_16mar10_se.jpg" medium="image" isDefault="false" height="230" width="230" /> <media:content url="http://www.XYZInfoX.com/MediaAssets2/learninghello/dalet/se-exp-outlaws-part2-17mar2010.Mp3" type="audio/mpeg" medium="audio" isDefault="false" /> </media:group>* </item>

    Read the article

  • Linq to NHibernate wrapper issue using where statement

    - by Jacob
    I'am using wrapper to get some data from table users IQueryable<StarGuestWrapper> WhereQuery = session.Linq<User>().Where(u => u.HomeClub.Id == clubId && u.IsActive).Select( u => new StarGuestWrapper() { FullName = u.Name + " " + u.LastName, LoginTime = DateTime.Now, MonthsAsMember = 2, StarRating = 1, UserPicture = u.Photo.PhotoData, InstructorFullName = "Someone Xyz", TalkInteractionDuringSession = true, GoalInteractionDuringSession = false }); I use this without a problem as a IQueryable so I can do useful things before actually running the query. Like : WhereQuery.Skip(startRowIndex).Take(maximumRows).ToList(); and so on. The problem occurs using 'where' statement on query. For example: WhereQuery.Where(s => s.StarRating == 1) will throw an exception in runtime that 'StarRating' doesn't exist in User table - of course it doesn't it's a wrappers property. I will work if I materialize query by WhereQuery.AsEnumerable().Where(s => s.StarRating == 1) but then it loses all the sens of using IQueryable and I don't want to do this. What is strange and interesting that not all properties from wrapper throw error, all the bool values can be used in where statement. Example : WhereQuery.Where(s => s.TalkInteractionDuringSession) It works in EntityFramework , why do I get this error in NHibernate and how to get it working the way I want it to ?

    Read the article

  • Update element values using xml.dom.minidom

    - by amnesia-55
    Hello, I have an XML structure which looks similar to: <Store> <foo> <book> <isbn>123456</isbn> </book> <title>XYZ</title> <checkout>no</checkout> </foo> <bar> <book> <isbn>7890</isbn> </book> <title>XYZ2</title> <checkout>yes</checkout> </bar> </Store> Using xml.dom.minidom only (restrictions) i would like to 1)traverse through the XML file 2)Search/Get for particular element, depending on its parent Example: checkout element for author1, isbn for author2 3)Change/Set that element's value 4)Write the new XML structure to a file Can anyone help here? Thank you! UPDATE: This is what i have done till now import xml.dom.minidom checkout = "yes" def getLoneChild(node, tagname): assert ((node is not None) and (tagname is not None)) elem = node.getElementsByTagName(tagname) if ((elem is None) or (len(elem) != 1)): return None return elem def getLoneLeaf(node, tagname): assert ((node is not None) and (tagname is not None)) elem = node.getElementsByTagName(tagname) if ((elem is None) or (len(elem) != 1)): return None leaf = elem[0].firstChild if (leaf is None): return None return leaf.data def setcheckout(node, tagname): assert ((node is not None) and (tagname is not None)) child = getLoneChild(node, 'foo') Check = getLoneLeaf(child[0],'checkout') Check = tagname return Check doc = xml.dom.minidom.parse('test.xml') root = doc.getElementsByTagName('Store')[0] output = setcheckout(root, checkout) tmp_config = '/tmp/tmp_config.xml' fw = open(tmp_config, 'w') fw.write(doc.toxml()) fw.close()

    Read the article

  • Oracle T4CPreparedStatement memory leaks?

    - by Jay
    A little background on the application that I am gonna talk about in the next few lines: XYZ is a data masking workbench eclipse RCP application: You give it a source table column, and a target table column, it would apply a trasformation (encryption/shuffling/etc) and copy the row data from source table to target table. Now, when I mask n tables at a time, n threads are launched by this app. Here is the issue: I have run into a production issue on first roll out of the above said app. Unfortunately, I don't have any logs to get to the root. However, I tried to run this app in test region and do a stress test. When I collected .hprof files and ran 'em through an analyzer (yourKit), I noticed that objects of oracle.jdbc.driver.T4CPreparedStatement was retaining heap. The analysis also tells me that one of my classes is holding a reference to this preparedstatement object and thereby, n threads have n such objects. T4CPreparedStatement seemed to have character arrays: lastBoundChars and bindChars each of size char[300000]. So, I researched a bit (google!), obtained ojdbc6.jar and tried decompiling T4CPreparedStatement. I see that T4CPreparedStatement extends OraclePreparedStatement, which dynamically manages array size of lastBoundChars and bindChars. So, my questions here are: Have you ever run into an issue like this? Do you know the significance of lastBoundChars / bindChars? I am new to profiling, so do you think I am not doing it correct? (I also ran the hprofs through MAT - and this was the main identified issue - so, I don't really think I could be wrong?) I have found something similar on the web here: http://forums.oracle.com/forums/thread.jspa?messageID=2860681 Appreciate your suggestions / advice.

    Read the article

< Previous Page | 32 33 34 35 36 37 38 39 40 41 42  | Next Page >