Search Results

Search found 1524 results on 61 pages for 'stimulating pixels'.

Page 36/61 | < Previous Page | 32 33 34 35 36 37 38 39 40 41 42 43  | Next Page >

  • Trouble using Ray.Intersect method on bounding boxes in a 2D XNA game

    - by getsauce
    I am trying to use a ray and bounding box to determine if a box is between the player and the mouse pointer in 2D space. When I try testing the code, the collision will return true when pointed at the box but it also returns true under other circumstances where it shouldn't. For instance. If I have a player on the left and a box directly to the right, I can put the mouse pointer a few hundred pixels above the box or a few hundred below and it will still return true. Also, I can put my mouse pointer to the left of the player and in a certain area it will still return true. Does anyone have any idea what might cause this? I have left out definitions for some of my members and properties just to make this code sample easier to read. The position property is just a Vector2 for where each object is located. ray = new Ray(new Vector3(player.Position, 0), new Vector3(mouse.Position, 0); box = new BoundingBox(new Vector3(box.Position, 0), new Vector3( new Vector2(box.Position + box.Width, box.Position + box.Height), 0); if (ray.Intersects(box) != null) collision = true; else collision = false;

    Read the article

  • GPU based procedual terrain borders?

    - by OnePie
    I'm working on a game that preferibly should feature a combination of designed and procedually generated terrain where the designer specifies in somewhat detailed terms what type of terrain a given area will have (grasslands, forest etc...) and then a precedual algorithm takes care of the rest. I'm not talking about minecraft style biomoes, but rather the game map for a strategy game. Each 'area' will not take up that much of the screen, and thus be more akin to a tile whose texture is procedually generated. While procedually generating terrain textures on the GPU are not that difficult, the hard part is making the borders between them look good. Currently, the 'tiles' are large enough to be visible (due to memory constraints mainly, we are talking planetary sized textures for a game taking place in space and on a continental ground view with seamless transitions between them) and creating good borders between them with an algorithm that is fast enough to be useful has proven difficult. Sampling the n-surrounding pixels and using the combiened result did not yield very good borders and was fairly slow on the GPU to boot (ca 12ms for me, that is without any lighning or shading and with very simple terrain texture shaders). So are there any practical known methods to solve this problem?

    Read the article

  • How can I improve the "smoothness" of a 2D side-scrolling iPhone game?

    - by MrDatabase
    I'm working on a relatively simple 2D side-scrolling iPhone game. The controls are tilt-based. I use OpenGL ES 1.1 for the graphics. The game state is updated at a rate of 30 Hz... And the drawing is updated at a rate of 30 fps (via NSTimer). The smoothness of the drawing is ok... But not quite as smooth as a game like iFighter. What can I do to improve the smoothness of the game? Here are the potential issues I've briefly considered: I'm varying the opacity of up to 15 "small" (20x20 pixels) textures at a time... Apparently varying the opacity in this manner can degrade drawing performance I'm rendering at only 30 fps (via NSTimer)... Perhaps 2D games like iFighter are rendered at a higher frame rate? Perhaps the game state could be updated at a faster rate? Note the acceleration vales are updated at 100 Hz... So I could potentially update part of the game state at 100 hz All of my textures are PNG24... Perhaps PNG8 would help (due to smaller size etc)

    Read the article

  • How can I replicate the look and limitations of the Super NES?

    - by Mikalichov
    I am looking to produce graphics with the same limitations / look that in the Super Nes era. I am specifically looking for graphics similar to Chrono Trigger / FF6. It would be a lot easier to do if I had an idea of the resolution / dpi I am supposed to use. I found that the technical specs for the SNES are: Progressive: 256 × 224, 512 × 224, 256 × 239, 512 × 239 Interlaced: 512 × 448, 512 × 478 But even by using these resolutions, it is pointless if I set it at 72dpi, as I will still have possibly very detailed graphics (that is the main thing, I don't want detailed graphics, I want to go pixelated). I figured it might be related to the sprite size limit, i.e.: Sprites can be 8 × 8, 16 × 16, 32 × 32, or 64 × 64 pixels, each using one of eight 16-color palettes and tiles from one of two blocks of 256 in VRAM. Up to 32 sprites and 34 8 × 8 sprite tiles may appear on any one line. This would work for sprites (characters, objects), but what about maps? Are they built entirely from 8x8 tiles? And then, at what resolution is the end result displayed? It might seem like I am giving the question and answers at the same time, but all of these are suppositions I am making, so could someone confirm or correct them?

    Read the article

  • Improving the efficiency of my bloom/glow shader

    - by user1157885
    I'm making a neon style game where everything is glowing but the glow I have is kinda small and I want to know if there's an efficient way to increase the size of it other than increasing the pixel sample iterations. Right now I have something like this: float4 glowColor = tex2D(glowSampler, uvPixel); //Makes the inital lines brighter/closer to white if (glowColor.r != 0 || glowColor.g != 0 || glowColor.b != 0) { glowColor += 0.5; } //Loops over the weights and offsets and samples from the pixels based on those numbers for (int i = 0; i < 20; i++) { glowColor += tex2D(glowSampler, uvPixel + glowOffsets[i] + 0.0018) * glowWeights[i]; } finalColor += glowColor; for the offsets it moves up, down, left and right (5 times each so it loops over 20 times) and the weights just lower the glow amount the further away it gets. The method I was using before to increase it was to increase the number of iterations from 20 to 40 and to increase the size of the offset/weight array but my computer started to have FPS drops when I was doing this so I was wondering how can I make the glow bigger/more vibrant without making it so CPU/Gcard intensive?

    Read the article

  • Black or White Border/Shadow around PNGs in SDL/OPENGL

    - by Dylan
    having the same issue as this: Why do my sprites have a dark shadow/line/frame surrounding the texture? however, when I do the fix suggested there (changing GL_SRC_ALPHA to GL_ONE) it just replaces the black border with a white border on the images, and messes with my background color and some polygons I'm drawing (not all of them weirdly) by making them much lighter... any ideas? heres some of my relevant code. init: glMatrixMode(GL_PROJECTION); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glEnable(GL_DEPTH_TEST); glEnable(GL_MULTISAMPLE); glEnable(GL_TEXTURE_2D); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glAlphaFunc(GL_GREATER, 0.01); glEnable(GL_ALPHA_TEST); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); when each texture is loaded: glGenTextures(1, &textureID); glBindTexture(GL_TEXTURE_2D, textureID); gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGBA, surface->w, surface->h, GL_BGRA, GL_UNSIGNED_BYTE, surface->pixels); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

    Read the article

  • A simple example of movement prediction

    - by Daniel
    I've seen lots of examples of theory about the reason for client-side prediction, but I'm having a hard time converting it into code. I was wondering if someone knows of some specific examples that share some of the code, or can share their knowledge to shed some light into my situation. I'm trying to run some tests to get a the movement going (smoothly) between multiple clients. I'm using mouse input to initiate movement. I'm using AS3 and C# on a local Player.IO server. Right now I'm trying to get the Client side working, as I'm only forwarding position info with the client. I have 2 timers, one is an onEnterFrame and the other is a 100ms Timer, and one on mouseClick listener. When I click anywhere with a mouse, I update my player class to give it a destination point On every enterFrame Event for the player, it moves towards the destination point At every 100ms it sends a message to the server with the position of where it should be in a 100ms. The distance traveled is calculated by taking the distance (in Pixels) that the player can travel in one second, and dividing it by the framerate for the onEnterFrame handler, and by the update frequency (1/0.100s) for the server update. For the other Players, the location is interpolated and animated on every frame based on the new location. Is this the right way of doing it?

    Read the article

  • How to handle the different frame rate on different devices?

    - by Fenwick
    I am not quite sure how frame per second works on a web page. I have a Canvas game that involves in moving an image from point A to B, and measuring the time elapsed. The code can be as simple as: var timeStamp = Date.now(); function update(){ obj.y += obj.speed; text = "Time: "+ (Date.now() - timeStamp) + "ms"; } The function update() is called every frame. The problem is that the time elapsed is different from device to device. It is pretty short on my PC, but get longer on my iPad, and is much longer on my cell phone. I thought it is because the FPS is smaller on mobile devices, so instead of calling update() every frame, I call it every 1ms by using a setInterval. But this does not solve the problem. In my understanding, the function for setInterval is invoked based on the increment in system time, other than frame rate, so it should fix the problem. Am I missing anything here? If the setInterval function is called based on FPS, is there any way to get around with the FPS difference across devices? On a side note, I have sort of a "water simulator" on the same canvas. It involves in redrawing about 60 objects which can be 600x600 pixels for every frame, so it could be a frame rate killer. I am using Phaser.js but not really using much of its functionalities, if that helps.

    Read the article

  • Help w/ iPad 1 performance for tile-based DOM Javascript game

    - by butr0s
    I've made a 2D tile-based game with DOM/Javascript. For each level, the map data is loaded and parsed, then lots of tiles ( elements) are drawn onto a larger "map" element. The map is inside of a container that hides overflow, so I can move the map element around by positioning it absolutely. Works a treat on desktop browsers, and my iPad 2. My problem is that performance is really bad on iPad 1. The performance hit is directly related to all the tile elements in my map, because when I remove or reduce the number of tiles drawn, performance improves. Optimizing my collision detection loop has no effect. My first thought was to batch groups of tiles into containers, then hide/show them based on proximity to the player, however this still causes a huge hiccup when the player moves and a new group of tiles is displayed (offscreen). Actually removing the out-of-sight elements from the DOM, then re-adding them as necessary is no faster. Anyone know of any tips that might speed up DOM performance here? My map is 1920 x 1920 pixels, so as far as I know should be within the WebKit texture limit on iOS 5/iPad. The map is being moved with CSS3 transforms, and I've picked all the other obvious low-hanging fruit.

    Read the article

  • 2D Tile Collision free movement

    - by andrepcg
    I'm coding a 3D game for a project using OpenGL and I'm trying to do tile collision on a surface. The surface plane is split into a grid of 64x64 pixels and I can simply check if the (x,y) tile is empty or not. Besides having a grid for collision, there's still free movement inside a tile. For each entity, in the end of the update function I simply increase the position by the velocity: pos.x += v.x; pos.y += v.y; I already have a collision grid created but my collide function is not great, i'm not sure how to handle it. I can check if the collision occurs but the way I handle is terrible. int leftTile = repelBox.x / grid->cellSize; int topTile = repelBox.y / grid->cellSize; int rightTile = (repelBox.x + repelBox.w) / grid->cellSize; int bottomTile = (repelBox.y + repelBox.h) / grid->cellSize; for (int y = topTile; y <= bottomTile; ++y) { for (int x = leftTile; x <= rightTile; ++x) { if (grid->getCell(x, y) == BLOCKED){ Rect colBox = grid->getCellRectXY(x, y); Rect xAxis = Rect(pos.x - 20 / 2.0f, pos.y - 20 / 4.0f, 20, 10); Rect yAxis = Rect(pos.x - 20 / 4.0f, pos.y - 20 / 2.0f, 10, 20); if (colBox.Intersects(xAxis)) v.x *= -1; if (colBox.Intersects(yAxis)) v.y *= -1; } } } If instead of reversing the direction I set it to false then when the entity tries to get away from the wall it's still intersecting the tile and gets stuck on that position. EDIT: I've worked with Flashpunk and it has a great function for movement and collision called moveBy. Are there any simplified implementations out there so I can check them out?

    Read the article

  • Is embedded programming closer to electrical engineering or software development?

    - by Jeremy Heiler
    I am being approached with a job for writing embedded C on micro controllers. At first I would have thought that embedding programming is to low on the software stack for me, but maybe I am thinking about it wrong. Normally I would have shrugged off an opportunity to write embedded code, as I don't consider myself an electrical engineer. Is this a bad assumption? Am I able to write interesting and useful software for embedded systems, or will I kick myself for dropping too low on the software stack? I went to school for computer science and really enjoyed writing a compiler, managing concurrent algorithms, designing data structures, and developing frameworks. However, I am currently employed as a Flex developer, which doesn't scream the interesting things I just described. (I currently deal with issues like: "this check box needs to be 4 pixels to the left" and "this date is formatted wrong".) I appreciate everyone's input. I know I have to make the decision for myself, I just would like some clarification on what it means to be a embedded programmer, and if it fits what I find to be interesting.

    Read the article

  • Summary of usage policies for website integration of various social media networks?

    - by Dallas
    To cut to the chase... I look at Twitter's usage policy and see limitations on what can and can't be done with their logo. I also see examples of websites that use icons that have been integrated with the look and feel of their own site. Given Twitter's policy, for example, it would appear that legal conversations/agreements would need to take place to do this, especially on a commercial site. I believe it is perfectly acceptable to have a plain text button that simply has the word "Tweet" on it, that has the same functionality. My question is if anyone can provide online (or other) references that attempt to summarize what can and can't be done when integrating various social networks into your own work? The answer I will mark as the correct one will be the one which provides the best resource(s) giving the best summaries of what can and can't be done with specific logos/icons, with a secondary factor being that a variety of social networking sites are addressed in your answer. Before people point to specific questions, I am looking for a well-rounded approach that considers a breadth of networks and considerations. Background: I would like to incorporate social media icons and functionality, but would like to consider what type of modifications can be done without needing to involve lawyers. For example, can I bring in a standard Facebook logo, but incorporate my site color into the logo? Would the answer differ if I maintained their color, but add in a few pixels of another color to transition? I am not saying I want to do this, but rather using it as an example.

    Read the article

  • monitor height differences & the mouse going off screen

    - by fastmultiplication
    In ubuntu 10.10 I have a dual monitor setup. I have an nVidia graphics card and am using twinview. One of the monitors is 1024 pixels high and the other is 900. In the monitor configuration screen & in real life, I have them set up side by side, 1024 on the left. The result of this is that when I am on the bottom of the left monitor and move the mouse to the right, it goes into the hidden area below the right monitor's visible area. It seems like it would make a lot more sense for it to be bumped up to the bottom of the right monitor - since one almost never wants to move the mouse into an area of the screen that doesn't show up. And, systems I have used before have been set up that way. How can I set this up? I am not interested in lists of window managers for ubuntu; I would like to know the identity of a particular WM or set of steps I can take to solves the particular problem I have outlined above. Thanks! EDIT: I changed to use two seperate X window monitors, and set them up relatively positioned so that just the corner touches and the mouse can cross there, so the difference in heights doesn't matter.

    Read the article

  • What problem does double or triple buffering solve in modern games?

    - by krokvskrok
    I want to check if my understanding of the causes for using double (or triple) buffering is correct: A monitor with 60Hz refresh's the monitor-display 60 times per second. If the monitor refresh the monitor-display, he updates pixel for pixel and line for line. The monitor requests the color values for the pixels from the video memory. If I run now a game, then this game is constantly manipulating this video memory. If this game don't use a buffer strategy (double buffering etc.) then the following problem can happen: The monitor is now refreshing his monitor-display. At this moment the monitor had refreshed the first half monitor-display already. At the same time, the game had manipulated the video memory with new data. Now the monitor accesses for the second half monitor-display this new manipulated data from the video memory. The problems can be tearing or flickering. Is my understanding of cases of using buffer strategy correct? Are there other reasons?

    Read the article

  • Grid collision - finding the location of an entity in each box

    - by Gregg1989
    I am trying to implement grid-based collision in a 2d game with moving circles. The canvas is 400x400 pixels. Below you can see the code for my Grid class. What I want it to do is check inside which box the entities are located and then run a collision check if there are 2 or more entities in the same box. Right now I do not know how to find the position of an entity in a specific box. I know there are many tutorials online, but I haven't been able to find an answer to my question, because they are either written in C/C++ or use the 2d array approach. Code snippets and other help is greatly appreciated. Thanks. public class Grid { ArrayList<ArrayList<Entity>> boxes = new ArrayList<>(); double boxSize = 40; double boxesAmount = 10; ... ... public void checkBoxLocation(ArrayList<Entity> entities) { for (int i = 0; i < entities.size(); i++) { // Get top left coordinates of each entity double entityLeft = entities.get(i).getLayoutX() - entities.get(i).getRadius(); double entityTop = entities.get(i).getLayoutY() + entities.get(i).getRadius(); // Divide coordinate by box size to find the approximate location of the entity for (int j = 0; j < boxesAmount; j++) { //Select each box if ((entityLeft / boxSize <= j + 0.7) && (entityLeft / boxSize >= j)) { if ((entityTop / boxSize <= j + 0.7) && (entityTop / boxSize >= j)) { holdingBoxes.get(j).add(entities.get(i)); System.out.println("Entity " + entities.get(i) + " added to box " + j); } } } } } }

    Read the article

  • How can you easily determine the textureRect for tiled maps in SFML 2.0?

    - by ThePlan
    I'm working on creating a 2d map prototype, and I've come across the rendering bit of it. I have a tilesheet with tiles, each tile is 30x30 pixels, and there's a 1px border to delimitate them. In SFML the usual method of drawing a part of a tilesheet is declaring an IntRect with the rectangle coordinates then calling the setTextureRectangle() method to a sprite. In a small game it would work, but I have well over 45 tiles and adding more every day, I can't declare 45 intRects for every material, the map is not optimized yet, it would get even worse if I would have to call the setTextureRect() method, aside from declaring 45 rectangleInts. How could I simplify this task? All I need is a very simple and flexible solution for extracting a region of the tilesheet. Basically I have a Tile class. I create multiple instances of tiles (vectors) and each tile has a position and a material. I parse a map file and as I parse it I set the materials of the map according to the parsed map file, and all I need to do is render. Basically I need to do something like this: switch(tile.getMaterial()) { case GRASS: material_sprite.setTextureRect(something); window.draw(material_sprite); break; case WATER: material_sprite.setTextureRect(something); window.draw(material_sprite); break; // handle more cases }

    Read the article

  • Tile sizes in 2D games

    - by Ephismen
    While developing a small game using tile-mapping method a question came to my mind: I would develop the game on Windows but wouldn't exclude adapting it to another platform. What size(in pixels) would you recommend using for creating the tiles of a tile-mapped game(ie: RPG) with the following requirements? Have an acceptable level of detail without having too many tiles. Having a decent map size. Allow adaptation of the game on a handheld(ie: PSP), smartphone or a computer without too much loss of detail or slowdowns. Allow more or less important zoom-in / zoom-out. Have a resolution of tile that permits either pixel-perfect collision or block-collision. Anything from a good explanation to a game example is useful as long as it can fit the requirements. This question may seem a bit simplistic, but I noticed that many Indies game developer were using inappropriate scales scenery. Also sorry for the poor syntax and the lack of vocabulary of my question, being a non-native English speaker doesn't help when talking about computers programming.

    Read the article

  • A* PathFinding Not Consistent

    - by RedShft
    I just started trying to implement a basic A* algorithm in my 2D tile based game. All of the nodes are tiles on the map, represented by a struct. I believe I understand A* on paper, as I've gone through some pseudo code, but I'm running into problems with the actual implementation. I've double and tripled checked my node graph, and it is correct, so I believe the issue to be with my algorithm. This issue is, that with the enemy still, and the player moving around, the path finding function will write "No Path" an astounding amount of times and only every so often write "Path Found". Which seems like its inconsistent. This is the node struct for reference: struct Node { bool walkable; //Whether this node is blocked or open vect2 position; //The tile's position on the map in pixels int xIndex, yIndex; //The index values of the tile in the array Node*[4] connections; //An array of pointers to nodes this current node connects to Node* parent; int gScore; int hScore; int fScore; } Here is the rest: http://pastebin.com/cCHfqKTY This is my first attempt at A* so any help would be greatly appreciated.

    Read the article

  • What is the standard way of using Q15 values?

    - by Alex
    To process 8-bit pixels, to do things like gamma correction without losing information, we normally upsample the values, work in 16 bits or whatever, and then downsample them to 8 bits. Now, this is a somewhat new area for me, so please excuse incorrect terminology etc. For my needs I have chosen to work in "non-standard" Q15, where I only use the upper half of the range (0.0-1.0), and 0x8000 represents 1.0 instead of -1.0. This makes it much easier to calculate things in C. But I ran into a problem with SSSE3. It has the PMULHRSW instruction which multiplies Q15 numbers, but it uses the "standard" range of Q15 is [-1,1-2?¹5], so multplying (my) 0x8000 (1.0) by 0x4000 (0.5) gives 0xC000 (-0.5), because it thinks 0x8000 is -1. This is quite annoying. What am I doing wrong? Should I keep my pixel values in the 0000-7FFF range? This kind of defeats the purpose of it being a fixed-point format. Is there a way around this? Maybe some trick? Is there some kind of definitive treatise on Q15 which discusses all this?

    Read the article

  • Android Bitmap: Collision Detecting

    - by Aekasitt Guruvanich
    I am writing an Android game right now and I would need some help in the collision of the Pawns on screen. I figured I could run a for loop on the Player class with all Pawn objects on the screen checking whether or not Width*Height intersects with each other, but is there a more efficient way to do this? And if you do it this way, many of the transparent pixel inside the rectangular area will also be considered as collision as well. Is there a way to check for collision between Bitmap on a Canvas that disregard transparent pixels? The class for player is below and the Pawn class uses the same method of display. Class Player { private Resources res; // Used for referencing Bitmap from predefined location private Bounds bounds; // Class that holds the boundary of the screen private Bitmap image; private float x, y; private Matrix position; private int width, height; private float velocity_x, velocity_y; public Player (Resources resources, Bounds boundary) { res = resources; bounds = boundary; image = BitmapFactory.decodeResource(res, R.drawable.player); width = image.getWidth(); height = image.getHeight(); position = new Matrix(); x = bounds.xMax / 2; // Initially puts the Player in the middle of screen y = bounds.yMax / 2; position.preTranslate(x,y); } public void draw(Canvas canvas) { canvas.drawBitmap(image, position, null); } }

    Read the article

  • How to load chunks of 2d map segments when player reaches a certain point?

    - by 2kan
    In my 2d platformer (made with Java and Slick2d), random maps are made by combining different segments together and displaying them one after the other. My problem is that I can't load too many segments or the game will run out of memory, so I want to load n number of segments at a time in chunks, then load the next chunk when the player comes near the end of one. I've attempted to do this for a couple of hours now, but I just can't get it to work at all. This is my chunk generation function where chunkLoad is the number of segments to load and BLOCK_WIDTH is the number of blocks/tiles each segment is across. Chunk1 and map are arrays of segments. Random r = new Random(); for(int i=0; i<chunkLoad; i++) { int id = r.nextInt(4)+2; chunk1[i] = new BlockMap("res/window/map"+id+".tmx", i*BLOCK_WIDTH); } map = chunk1; chunksLoaded++; The map is then drawn on the screen like this. tmap is a TiledMap object and each block/tile is 16 pixels wide for(int i=0; i<chunkLoad; i++) { map[i].tmap.render((i * BLOCK_WIDTH * 16) + (cameraX), 0); } I can successfully load new chunks, but I can't display them in the correct position, nor the hitboxes. Any suggestions? Thanks.

    Read the article

  • Jumping Physics

    - by CogWheelz
    With simplicity, how can I make a basic jump without the weird bouncing? It jumps like 2 pixels and back Here's what I use y += velY x += velX then keypresses MAX_SPEED = 180; falling = true; if(Gdx.input.isKeyPressed(Keys.W)) {//&& !jumped && !p.falling) { p.y += 20; } if(!Gdx.input.isKeyPressed(Keys.W)) p.velY = 0; if(Gdx.input.isKeyPressed(Keys.D)) p.velX = 5; if(!Gdx.input.isKeyPressed(Keys.D) && !(Gdx.input.isKeyPressed(Keys.A))) p.velX = 0; if(Gdx.input.isKeyPressed(Keys.A)) p.velX = -5; if(!Gdx.input.isKeyPressed(Keys.A) && !(Gdx.input.isKeyPressed(Keys.D))) p.velX = 0; if(p.falling == true || p.jumping == true) { p.velY -= 2; } if(p.velY > MAX_SPEED) p.velY = MAX_SPEED; if(p.velX > MAX_SPEED) p.velX = MAX_SPEED;

    Read the article

  • Metro: Introduction to CSS 3 Grid Layout

    - by Stephen.Walther
    The purpose of this blog post is to provide you with a quick introduction to the new W3C CSS 3 Grid Layout standard. You can use CSS Grid Layout in Metro style applications written with JavaScript to lay out the content of an HTML page. CSS Grid Layout provides you with all of the benefits of using HTML tables for layout without requiring you to actually use any HTML table elements. Doing Page Layouts without Tables Back in the 1990’s, if you wanted to create a fancy website, then you would use HTML tables for layout. For example, if you wanted to create a standard three-column page layout then you would create an HTML table with three columns like this: <table height="100%"> <tr> <td valign="top" width="300px" bgcolor="red"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </td> <td valign="top" bgcolor="green"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </td> <td valign="top" width="300px" bgcolor="blue"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </td> </tr> </table> When the table above gets rendered out to a browser, you end up with the following three-column layout: The width of the left and right columns is fixed – the width of the middle column expands or contracts depending on the width of the browser. Sometime around the year 2005, everyone decided that using tables for layout was a bad idea. Instead of using tables for layout — it was collectively decided by the spirit of the Web — you should use Cascading Style Sheets instead. Why is using HTML tables for layout bad? Using tables for layout breaks the semantics of the TABLE element. A TABLE element should be used only for displaying tabular information such as train schedules or moon phases. Using tables for layout is bad for accessibility (The Web Content Accessibility Guidelines 1.0 is explicit about this) and using tables for layout is bad for separating content from layout (see http://CSSZenGarden.com). Post 2005, anyone who used HTML tables for layout were encouraged to hold their heads down in shame. That’s all well and good, but the problem with using CSS for layout is that it can be more difficult to work with CSS than HTML tables. For example, to achieve a standard three-column layout, you either need to use absolute positioning or floats. Here’s a three-column layout with floats: <style type="text/css"> #container { min-width: 800px; } #leftColumn { float: left; width: 300px; height: 100%; background-color:red; } #middleColumn { background-color:green; height: 100%; } #rightColumn { float: right; width: 300px; height: 100%; background-color:blue; } </style> <div id="container"> <div id="rightColumn"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </div> <div id="leftColumn"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </div> <div id="middleColumn"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </div> </div> The page above contains four DIV elements: a container DIV which contains a leftColumn, middleColumn, and rightColumn DIV. The leftColumn DIV element is floated to the left and the rightColumn DIV element is floated to the right. Notice that the rightColumn DIV appears in the page before the middleColumn DIV – this unintuitive ordering is necessary to get the floats to work correctly (see http://stackoverflow.com/questions/533607/css-three-column-layout-problem). The page above (almost) works with the most recent versions of most browsers. For example, you get the correct three-column layout in both Firefox and Chrome: And the layout mostly works with Internet Explorer 9 except for the fact that for some strange reason the min-width doesn’t work so when you shrink the width of your browser, you can get the following unwanted layout: Notice how the middle column (the green column) bleeds to the left and right. People have solved these issues with more complicated CSS. For example, see: http://matthewjamestaylor.com/blog/holy-grail-no-quirks-mode.htm But, at this point, no one could argue that using CSS is easier or more intuitive than tables. It takes work to get a layout with CSS and we know that we could achieve the same layout more easily using HTML tables. Using CSS Grid Layout CSS Grid Layout is a new W3C standard which provides you with all of the benefits of using HTML tables for layout without the disadvantage of using an HTML TABLE element. In other words, CSS Grid Layout enables you to perform table layouts using pure Cascading Style Sheets. The CSS Grid Layout standard is still in a “Working Draft” state (it is not finalized) and it is located here: http://www.w3.org/TR/css3-grid-layout/ The CSS Grid Layout standard is only supported by Internet Explorer 10 and there are no signs that any browser other than Internet Explorer will support this standard in the near future. This means that it is only practical to take advantage of CSS Grid Layout when building Metro style applications with JavaScript. Here’s how you can create a standard three-column layout using a CSS Grid Layout: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, #container { height: 100%; padding: 0px; margin: 0px; } #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100%; } #leftColumn { -ms-grid-column: 1; background-color:red; } #middleColumn { -ms-grid-column: 2; background-color:green; } #rightColumn { -ms-grid-column: 3; background-color:blue; } </style> </head> <body> <div id="container"> <div id="leftColumn"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </div> <div id="middleColumn"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </div> <div id="rightColumn"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </div> </div> </body> </html> When the page above is rendered in Internet Explorer 10, you get a standard three-column layout: The page above contains four DIV elements: a container DIV which contains a leftColumn DIV, middleColumn DIV, and rightColumn DIV. The container DIV is set to Grid display mode with the following CSS rule: #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100%; } The display property is set to the value “-ms-grid”. This property causes the container DIV to lay out its child elements in a grid. (Notice that you use “-ms-grid” instead of “grid”. The “-ms-“ prefix is used because the CSS Grid Layout standard is still preliminary. This implementation only works with IE10 and it might change before the final release.) The grid columns and rows are defined with the “-ms-grid-columns” and “-ms-grid-rows” properties. The style rule above creates a grid with three columns and one row. The left and right columns are fixed sized at 300 pixels. The middle column sizes automatically depending on the remaining space available. The leftColumn, middleColumn, and rightColumn DIVs are positioned within the container grid element with the following CSS rules: #leftColumn { -ms-grid-column: 1; background-color:red; } #middleColumn { -ms-grid-column: 2; background-color:green; } #rightColumn { -ms-grid-column: 3; background-color:blue; } The “-ms-grid-column” property is used to specify the column associated with the element selected by the style sheet selector. The leftColumn DIV is positioned in the first grid column, the middleColumn DIV is positioned in the second grid column, and the rightColumn DIV is positioned in the third grid column. I find using CSS Grid Layout to be just as intuitive as using an HTML table for layout. You define your columns and rows and then you position different elements within these columns and rows. Very straightforward. Creating Multiple Columns and Rows In the previous section, we created a super simple three-column layout. This layout contained only a single row. In this section, let’s create a slightly more complicated layout which contains more than one row: The following page contains a header row, a content row, and a footer row. The content row contains three columns: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, #container { height: 100%; padding: 0px; margin: 0px; } #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100px 1fr 100px; } #header { -ms-grid-column: 1; -ms-grid-column-span: 3; -ms-grid-row: 1; background-color: yellow; } #leftColumn { -ms-grid-column: 1; -ms-grid-row: 2; background-color:red; } #middleColumn { -ms-grid-column: 2; -ms-grid-row: 2; background-color:green; } #rightColumn { -ms-grid-column: 3; -ms-grid-row: 2; background-color:blue; } #footer { -ms-grid-column: 1; -ms-grid-column-span: 3; -ms-grid-row: 3; background-color: orange; } </style> </head> <body> <div id="container"> <div id="header"> Header, Header, Header </div> <div id="leftColumn"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </div> <div id="middleColumn"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </div> <div id="rightColumn"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </div> <div id="footer"> Footer, Footer, Footer </div> </div> </body> </html> In the page above, the grid layout is created with the following rule which creates a grid with three rows and three columns: #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100px 1fr 100px; } The header is created with the following rule: #header { -ms-grid-column: 1; -ms-grid-column-span: 3; -ms-grid-row: 1; background-color: yellow; } The header is positioned in column 1 and row 1. Furthermore, notice that the “-ms-grid-column-span” property is used to span the header across three columns. CSS Grid Layout and Fractional Units When you use CSS Grid Layout, you can take advantage of fractional units. Fractional units provide you with an easy way of dividing up remaining space in a page. Imagine, for example, that you want to create a three-column page layout. You want the size of the first column to be fixed at 200 pixels and you want to divide the remaining space among the remaining three columns. The width of the second column is equal to the combined width of the third and fourth columns. The following CSS rule creates four columns with the desired widths: #container { display: -ms-grid; -ms-grid-columns: 200px 2fr 1fr 1fr; -ms-grid-rows: 1fr; } The fr unit represents a fraction. The grid above contains four columns. The second column is two times the size (2fr) of the third (1fr) and fourth (1fr) columns. When you use the fractional unit, the remaining space is divided up using fractional amounts. Notice that the single row is set to a height of 1fr. The single grid row gobbles up the entire vertical space. Here’s the entire HTML page: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, #container { height: 100%; padding: 0px; margin: 0px; } #container { display: -ms-grid; -ms-grid-columns: 200px 2fr 1fr 1fr; -ms-grid-rows: 1fr; } #firstColumn { -ms-grid-column: 1; background-color:red; } #secondColumn { -ms-grid-column: 2; background-color:green; } #thirdColumn { -ms-grid-column: 3; background-color:blue; } #fourthColumn { -ms-grid-column: 4; background-color:orange; } </style> </head> <body> <div id="container"> <div id="firstColumn"> First Column, First Column, First Column </div> <div id="secondColumn"> Second Column, Second Column, Second Column </div> <div id="thirdColumn"> Third Column, Third Column, Third Column </div> <div id="fourthColumn"> Fourth Column, Fourth Column, Fourth Column </div> </div> </body> </html>   Summary There is more in the CSS 3 Grid Layout standard than discussed in this blog post. My goal was to describe the basics. If you want to learn more than you can read through the entire standard at http://www.w3.org/TR/css3-grid-layout/ In this blog post, I described some of the difficulties that you might encounter when attempting to replace HTML tables with Cascading Style Sheets when laying out a web page. I explained how you can take advantage of the CSS 3 Grid Layout standard to avoid these problems when building Metro style applications using JavaScript. CSS 3 Grid Layout provides you with all of the benefits of using HTML tables for laying out a page without requiring you to use HTML table elements.

    Read the article

  • Metro: Introduction to CSS 3 Grid Layout

    - by Stephen.Walther
    The purpose of this blog post is to provide you with a quick introduction to the new W3C CSS 3 Grid Layout standard. You can use CSS Grid Layout in Metro style applications written with JavaScript to lay out the content of an HTML page. CSS Grid Layout provides you with all of the benefits of using HTML tables for layout without requiring you to actually use any HTML table elements. Doing Page Layouts without Tables Back in the 1990’s, if you wanted to create a fancy website, then you would use HTML tables for layout. For example, if you wanted to create a standard three-column page layout then you would create an HTML table with three columns like this: <table height="100%"> <tr> <td valign="top" width="300px" bgcolor="red"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </td> <td valign="top" bgcolor="green"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </td> <td valign="top" width="300px" bgcolor="blue"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </td> </tr> </table> When the table above gets rendered out to a browser, you end up with the following three-column layout: The width of the left and right columns is fixed – the width of the middle column expands or contracts depending on the width of the browser. Sometime around the year 2005, everyone decided that using tables for layout was a bad idea. Instead of using tables for layout — it was collectively decided by the spirit of the Web — you should use Cascading Style Sheets instead. Why is using HTML tables for layout bad? Using tables for layout breaks the semantics of the TABLE element. A TABLE element should be used only for displaying tabular information such as train schedules or moon phases. Using tables for layout is bad for accessibility (The Web Content Accessibility Guidelines 1.0 is explicit about this) and using tables for layout is bad for separating content from layout (see http://CSSZenGarden.com). Post 2005, anyone who used HTML tables for layout were encouraged to hold their heads down in shame. That’s all well and good, but the problem with using CSS for layout is that it can be more difficult to work with CSS than HTML tables. For example, to achieve a standard three-column layout, you either need to use absolute positioning or floats. Here’s a three-column layout with floats: <style type="text/css"> #container { min-width: 800px; } #leftColumn { float: left; width: 300px; height: 100%; background-color:red; } #middleColumn { background-color:green; height: 100%; } #rightColumn { float: right; width: 300px; height: 100%; background-color:blue; } </style> <div id="container"> <div id="rightColumn"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </div> <div id="leftColumn"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </div> <div id="middleColumn"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </div> </div> The page above contains four DIV elements: a container DIV which contains a leftColumn, middleColumn, and rightColumn DIV. The leftColumn DIV element is floated to the left and the rightColumn DIV element is floated to the right. Notice that the rightColumn DIV appears in the page before the middleColumn DIV – this unintuitive ordering is necessary to get the floats to work correctly (see http://stackoverflow.com/questions/533607/css-three-column-layout-problem). The page above (almost) works with the most recent versions of most browsers. For example, you get the correct three-column layout in both Firefox and Chrome: And the layout mostly works with Internet Explorer 9 except for the fact that for some strange reason the min-width doesn’t work so when you shrink the width of your browser, you can get the following unwanted layout: Notice how the middle column (the green column) bleeds to the left and right. People have solved these issues with more complicated CSS. For example, see: http://matthewjamestaylor.com/blog/holy-grail-no-quirks-mode.htm But, at this point, no one could argue that using CSS is easier or more intuitive than tables. It takes work to get a layout with CSS and we know that we could achieve the same layout more easily using HTML tables. Using CSS Grid Layout CSS Grid Layout is a new W3C standard which provides you with all of the benefits of using HTML tables for layout without the disadvantage of using an HTML TABLE element. In other words, CSS Grid Layout enables you to perform table layouts using pure Cascading Style Sheets. The CSS Grid Layout standard is still in a “Working Draft” state (it is not finalized) and it is located here: http://www.w3.org/TR/css3-grid-layout/ The CSS Grid Layout standard is only supported by Internet Explorer 10 and there are no signs that any browser other than Internet Explorer will support this standard in the near future. This means that it is only practical to take advantage of CSS Grid Layout when building Metro style applications with JavaScript. Here’s how you can create a standard three-column layout using a CSS Grid Layout: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, #container { height: 100%; padding: 0px; margin: 0px; } #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100%; } #leftColumn { -ms-grid-column: 1; background-color:red; } #middleColumn { -ms-grid-column: 2; background-color:green; } #rightColumn { -ms-grid-column: 3; background-color:blue; } </style> </head> <body> <div id="container"> <div id="leftColumn"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </div> <div id="middleColumn"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </div> <div id="rightColumn"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </div> </div> </body> </html> When the page above is rendered in Internet Explorer 10, you get a standard three-column layout: The page above contains four DIV elements: a container DIV which contains a leftColumn DIV, middleColumn DIV, and rightColumn DIV. The container DIV is set to Grid display mode with the following CSS rule: #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100%; } The display property is set to the value “-ms-grid”. This property causes the container DIV to lay out its child elements in a grid. (Notice that you use “-ms-grid” instead of “grid”. The “-ms-“ prefix is used because the CSS Grid Layout standard is still preliminary. This implementation only works with IE10 and it might change before the final release.) The grid columns and rows are defined with the “-ms-grid-columns” and “-ms-grid-rows” properties. The style rule above creates a grid with three columns and one row. The left and right columns are fixed sized at 300 pixels. The middle column sizes automatically depending on the remaining space available. The leftColumn, middleColumn, and rightColumn DIVs are positioned within the container grid element with the following CSS rules: #leftColumn { -ms-grid-column: 1; background-color:red; } #middleColumn { -ms-grid-column: 2; background-color:green; } #rightColumn { -ms-grid-column: 3; background-color:blue; } The “-ms-grid-column” property is used to specify the column associated with the element selected by the style sheet selector. The leftColumn DIV is positioned in the first grid column, the middleColumn DIV is positioned in the second grid column, and the rightColumn DIV is positioned in the third grid column. I find using CSS Grid Layout to be just as intuitive as using an HTML table for layout. You define your columns and rows and then you position different elements within these columns and rows. Very straightforward. Creating Multiple Columns and Rows In the previous section, we created a super simple three-column layout. This layout contained only a single row. In this section, let’s create a slightly more complicated layout which contains more than one row: The following page contains a header row, a content row, and a footer row. The content row contains three columns: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, #container { height: 100%; padding: 0px; margin: 0px; } #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100px 1fr 100px; } #header { -ms-grid-column: 1; -ms-grid-column-span: 3; -ms-grid-row: 1; background-color: yellow; } #leftColumn { -ms-grid-column: 1; -ms-grid-row: 2; background-color:red; } #middleColumn { -ms-grid-column: 2; -ms-grid-row: 2; background-color:green; } #rightColumn { -ms-grid-column: 3; -ms-grid-row: 2; background-color:blue; } #footer { -ms-grid-column: 1; -ms-grid-column-span: 3; -ms-grid-row: 3; background-color: orange; } </style> </head> <body> <div id="container"> <div id="header"> Header, Header, Header </div> <div id="leftColumn"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </div> <div id="middleColumn"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </div> <div id="rightColumn"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </div> <div id="footer"> Footer, Footer, Footer </div> </div> </body> </html> In the page above, the grid layout is created with the following rule which creates a grid with three rows and three columns: #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100px 1fr 100px; } The header is created with the following rule: #header { -ms-grid-column: 1; -ms-grid-column-span: 3; -ms-grid-row: 1; background-color: yellow; } The header is positioned in column 1 and row 1. Furthermore, notice that the “-ms-grid-column-span” property is used to span the header across three columns. CSS Grid Layout and Fractional Units When you use CSS Grid Layout, you can take advantage of fractional units. Fractional units provide you with an easy way of dividing up remaining space in a page. Imagine, for example, that you want to create a three-column page layout. You want the size of the first column to be fixed at 200 pixels and you want to divide the remaining space among the remaining three columns. The width of the second column is equal to the combined width of the third and fourth columns. The following CSS rule creates four columns with the desired widths: #container { display: -ms-grid; -ms-grid-columns: 200px 2fr 1fr 1fr; -ms-grid-rows: 1fr; } The fr unit represents a fraction. The grid above contains four columns. The second column is two times the size (2fr) of the third (1fr) and fourth (1fr) columns. When you use the fractional unit, the remaining space is divided up using fractional amounts. Notice that the single row is set to a height of 1fr. The single grid row gobbles up the entire vertical space. Here’s the entire HTML page: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, #container { height: 100%; padding: 0px; margin: 0px; } #container { display: -ms-grid; -ms-grid-columns: 200px 2fr 1fr 1fr; -ms-grid-rows: 1fr; } #firstColumn { -ms-grid-column: 1; background-color:red; } #secondColumn { -ms-grid-column: 2; background-color:green; } #thirdColumn { -ms-grid-column: 3; background-color:blue; } #fourthColumn { -ms-grid-column: 4; background-color:orange; } </style> </head> <body> <div id="container"> <div id="firstColumn"> First Column, First Column, First Column </div> <div id="secondColumn"> Second Column, Second Column, Second Column </div> <div id="thirdColumn"> Third Column, Third Column, Third Column </div> <div id="fourthColumn"> Fourth Column, Fourth Column, Fourth Column </div> </div> </body> </html>   Summary There is more in the CSS 3 Grid Layout standard than discussed in this blog post. My goal was to describe the basics. If you want to learn more than you can read through the entire standard at http://www.w3.org/TR/css3-grid-layout/ In this blog post, I described some of the difficulties that you might encounter when attempting to replace HTML tables with Cascading Style Sheets when laying out a web page. I explained how you can take advantage of the CSS 3 Grid Layout standard to avoid these problems when building Metro style applications using JavaScript. CSS 3 Grid Layout provides you with all of the benefits of using HTML tables for laying out a page without requiring you to use HTML table elements.

    Read the article

  • What Makes a Good Design Critic? CHI 2010 Panel Review

    - by jatin.thaker
    Author: Daniel Schwartz, Senior Interaction Designer, Oracle Applications User Experience Oracle Applications UX Chief Evangelist Patanjali Venkatacharya organized and moderated an innovative and stimulating panel discussion titled "What Makes a Good Design Critic? Food Design vs. Product Design Criticism" at CHI 2010, the annual ACM Conference on Human Factors in Computing Systems. The panelists included Janice Rohn, VP of User Experience at Experian; Tami Hardeman, a food stylist; Ed Seiber, a restaurant architect and designer; John Kessler, a food critic and writer at the Atlanta Journal-Constitution; and Larry Powers, Chef de Cuisine at Shaun's restaurant in Atlanta, Georgia. Building off the momentum of his highly acclaimed panel at CHI 2009 on what interaction design can learn from food design (for which I was on the other side as a panelist), Venkatacharya brought together new people with different roles in the restaurant and software interaction design fields. The session was also quite delicious -- but more on that later. Criticism, as it applies to food and product or interaction design, was the tasty topic for this forum and showed that strong parallels exist between food and interaction design criticism. Figure 1. The panelists in discussion: (left to right) Janice Rohn, Ed Seiber, Tami Hardeman, and John Kessler. The panelists had great insights to share from their respective fields, and they enthusiastically discussed as if they were at a casual collegial dinner. John Kessler stated that he prefers to have one professional critic's opinion in general than a large sampling of customers, however, "Web sites like Yelp get users excited by the collective approach. People are attracted to things desired by so many." Janice Rohn added that this collective desire was especially true for users of consumer products. Ed Seiber remarked that while people looked to the popular view for their target tastes and product choices, "professional critics like John [Kessler] still hold a big weight on public opinion." Chef Powers indicated that chefs take in feedback from all sources, adding, "word of mouth is very powerful. We also look heavily at the sales of the dishes to see what's moving; what's selling and thus successful." Hearing this discussion validates our design work at Oracle in that we listen to our users (our diners) and industry feedback (our critics) to ensure an optimal user experience of our products. Rohn considers that restaurateur Danny Meyer's book, Setting the Table: The Transforming Power of Hospitality in Business, which is about creating successful restaurant experiences, has many applicable parallels to user experience design. Meyer actually argues that the customer is not always right, but that "they must always feel heard." Seiber agreed, but noted "customers are not designers," and while designers need to listen to customer feedback, it is the designer's job to synthesize it. Seiber feels it's the critic's job to point out when something is missing or not well-prioritized. In interaction design, our challenges are quite similar, if not parallel. Software tasks are like puzzles that are in search of a solution on how to be best completed. As a food stylist, Tami Hardeman has the demanding and challenging task of presenting food to be as delectable as can be. To present food in its best light requires a lot of creativity and insight into consumer tastes. It's no doubt then that this former fashion stylist came up with the ultimate catch phrase to capture the emotion that clients want to draw from their users: "craveability." The phrase was a hit with the audience and panelists alike. Sometime later in the discussion, Seiber remarked, "designers strive to apply craveability to products, and I do so for restaurants in my case." Craveabilty is also very applicable to interaction design. Creating straightforward and smooth workflows for users of Oracle Applications is a primary goal for my colleagues. We want our users to really enjoy working with our products where it makes them more efficient and better at their jobs. That's our "craveability." Patanjali Venkatacharya asked the panel, "if a design's "craveability" appeals to some cultures but not to others, then what is the impact to the food or product design process?" Rohn stated that "taste is part nature and part nurture" and that the design must take the full context of a product's usage into consideration. Kessler added, "good design is about understanding the context" that the experience necessitates. Seiber remarked how important seat comfort is for diners and how the quality of seating will add so much to the complete dining experience. Sometimes if these non-food factors are not well executed, they can also take away from an otherwise pleasant dining experience. Kessler recounted a time when he was dining at a restaurant that actually had very good food, but the photographs hanging on all the walls did not fit in with the overall décor and created a negative overall dining experience. While the tastiness of the food is critical to a restaurant's success, it is a captivating complete user experience, as in interaction design, which will keep customers coming back and ultimately making the restaurant a hit. Figure 2. Patanjali Venkatacharya enjoyed the Sardinian flatbread salad. As a surprise Chef Powers brought out a signature dish from Shaun's restaurant for all the panelists to sample and critique. The Sardinian flatbread dish showcased Atlanta's taste for fresh and local produce and cheese at its finest as a salad served on a crispy flavorful flat bread. Hardeman said it could be photographed from any angle, a high compliment coming from a food stylist. Seiber really enjoyed the colors that the dish brought together and thought it would be served very well in a casual restaurant on a summer's day. The panel really appreciated the taste and quality of the different components and how the rosemary brought all the flavors together. Seiber remarked that "a lot of effort goes into the appearance of simplicity." Rohn indicated that the same notion holds true with software user interface design. A tremendous amount of work goes into crafting straightforward interfaces, including user research, prototyping, design iterations, and usability studies. Design criticism for food and software interfaces clearly share many similarities. Both areas value expert opinions and user feedback. Both areas understand the importance of great design needing to work well in its context. Last but not least, both food and interaction design criticism value "craveability" and how having users excited about experiencing and enjoying the designs is an important goal. Now if we can just improve the taste of software user interfaces, people may choose to dine on their enterprise applications over a fresh organic salad.

    Read the article

< Previous Page | 32 33 34 35 36 37 38 39 40 41 42 43  | Next Page >