Search Results

Search found 4941 results on 198 pages for 'struts2 namespace'.

Page 36/198 | < Previous Page | 32 33 34 35 36 37 38 39 40 41 42 43  | Next Page >

  • Hierarchy flattening of interfaces in WCF

    - by nmarun
    Alright, so say I have my service contract interface as below: 1: [ServiceContract] 2: public interface ILearnWcfService 3: { 4: [OperationContract(Name = "AddInt")] 5: int Add(int arg1, int arg2); 6: } Say I decided to add another interface with a similar add “feature”. 1: [ServiceContract] 2: public interface ILearnWcfServiceExtend : ILearnWcfService 3: { 4: [OperationContract(Name = "AddDouble")] 5: double Add(double arg1, double arg2); 6: } My class implementing the ILearnWcfServiceExtend ends up as: 1: public class LearnWcfService : ILearnWcfServiceExtend 2: { 3: public int Add(int arg1, int arg2) 4: { 5: return arg1 + arg2; 6: } 7:  8: public double Add(double arg1, double arg2) 9: { 10: return arg1 + arg2; 11: } 12: } Now when I consume this service and look at the proxy that gets generated, here’s what I see: 1: public interface ILearnWcfServiceExtend 2: { 3: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfService/AddInt", ReplyAction="http://tempuri.org/ILearnWcfService/AddIntResponse")] 4: int AddInt(int arg1, int arg2); 5: 6: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfServiceExtend/AddDouble", ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/AddDoubleResponse")] 7: double AddDouble(double arg1, double arg2); 8: } Only the ILearnWcfServiceExtend gets ‘listed’ in the proxy class and not the (base interface) ILearnWcfService interface. But then to uniquely identify the operations that the service exposes, the Action and ReplyAction properties are set. So in the above example, the AddInt operation has the Action property set to ‘http://tempuri.org/ILearnWcfService/AddInt’ and the AddDouble operation has the Action property of ‘http://tempuri.org/ILearnWcfServiceExtend/AddDouble’. Similarly the ReplyAction properties are set corresponding to the namespace that they’re declared in. The ‘http://tempuri.org’ is chosen as the default namespace, since the Namespace property on the ServiceContract is not defined. The other thing is the service contract itself – the Add() method. You’ll see that in both interfaces, the method names are the same. As you might know, this is not allowed in WSDL-based environments, even though the arguments are of different types. This is allowed only if the Name attribute of the ServiceContract is set (as done above). This causes a change in the name of the service contract itself in the proxy class. See that their names are changed to AddInt / AddDouble respectively. Lesson learned: The interface hierarchy gets ‘flattened’ when the WCF service proxy class gets generated.

    Read the article

  • wpf exit thread automatically when application closes

    - by toni
    Hi, I have a main wpf window and one of its controls is a user control that I have created. this user control is an analog clock and contains a thread that update hour, minute and second hands. Initially it wasn't a thread, it was a timer event that updated the hour, minutes and seconds but I have changed it to a thread because the application do some hard work when the user press a start button and then the clock don't update so I changed it to a thread. COde snippet of wpf window: <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:GParts" xmlns:Microsoft_Windows_Themes="clr-namespace:Microsoft.Windows.Themes assembly=PresentationFramework.Aero" xmlns:UC="clr-namespace:GParts.UserControls" x:Class="GParts.WinMain" Title="GParts" WindowState="Maximized" Closing="Window_Closing" Icon="/Resources/Calendar-clock.png" x:Name="WMain" > <...> <!-- this is my user control --> <UC:AnalogClock Grid.Row="1" x:Name="AnalogClock" Background="Transparent" Margin="0" Height="Auto" Width="Auto"/> <...> </Window> My problem is when the user exits the application then the thread seems to continue executing. I would like the thread finishes automatically when main windows closes. code snippet of user control constructor: namespace GParts.UserControls { /// <summary> /// Lógica de interacción para AnalogClock.xaml /// </summary> public partial class AnalogClock : UserControl { System.Timers.Timer timer = new System.Timers.Timer(1000); public AnalogClock() { InitializeComponent(); MDCalendar mdCalendar = new MDCalendar(); DateTime date = DateTime.Now; TimeZone time = TimeZone.CurrentTimeZone; TimeSpan difference = time.GetUtcOffset(date); uint currentTime = mdCalendar.Time() + (uint)difference.TotalSeconds; christianityCalendar.Content = mdCalendar.Date("d/e/Z", currentTime, false); // this was before implementing thread //timer.Elapsed += new System.Timers.ElapsedEventHandler(timer_Elapsed); //timer.Enabled = true; // The Work to perform ThreadStart start = delegate() { // With this condition the thread exits when main window closes but // despite of this it seems like the thread continues executing after // exiting application because in task manager cpu is very busy // while ((this.IsInitialized) && (this.Dispatcher.HasShutdownFinished== false)) { this.Dispatcher.Invoke(DispatcherPriority.Normal, (Action)(() => { DateTime hora = DateTime.Now; secondHand.Angle = hora.Second * 6; minuteHand.Angle = hora.Minute * 6; hourHand.Angle = (hora.Hour * 30) + (hora.Minute * 0.5); DigitalClock.CurrentTime = hora; })); } Console.Write("Quit ok"); }; // Create the thread and kick it started! new Thread(start).Start(); } // this was before implementing thread void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e) { this.Dispatcher.Invoke(DispatcherPriority.Normal, (Action)(() => { DateTime hora = DateTime.Now; secondHand.Angle = hora.Second * 6; minuteHand.Angle = hora.Minute * 6; hourHand.Angle = (hora.Hour * 30) + (hora.Minute * 0.5); DigitalClock.CurrentTime = hora; })); } } // end class } // end namespace How can I exit correctly from thread automatically when main window closes and then application exits? Thanks very much!

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 2: Anonymous full-trust .NET consumer

    - by Elton Stoneman
    This is the second in the IPASBR series, see also: Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service Part 2 is nice and easy. From Part 1 we exposed our service over the Azure Service Bus Relay using the netTcpRelayBinding and verified we could set up our network to listen for relayed messages. Assuming we want to consume that service in .NET from an environment which is fairly unrestricted for us, but quite restricted for attackers, we can use netTcpRelay and shared secret authentication. Pattern applicability This is a good fit for scenarios where: the consumer can run .NET in full trust the environment does not restrict use of external DLLs the runtime environment is secure enough to keep shared secrets the service does not need to know who is consuming it the service does not need to know who the end-user is So for example, the consumer is an ASP.NET website sitting in a cloud VM or Azure worker role, where we can keep the shared secret in web.config and we don't need to flow any identity through to the on-premise service. The service doesn't care who the consumer or end-user is - say it's a reference data service that provides a list of vehicle manufacturers. Provided you can authenticate with ACS and have access to Service Bus endpoint, you can use the service and it doesn't care who you are. In this post, we’ll consume the service from Part 1 in ASP.NET using netTcpRelay. The code for Part 2 (+ Part 1) is on GitHub here: IPASBR Part 2 Authenticating and authorizing with ACS In this scenario the consumer is a server in a controlled environment, so we can use a shared secret to authenticate with ACS, assuming that there is governance around the environment and the codebase which will prevent the identity being compromised. From the provider's side, we will create a dedicated service identity for this consumer, so we can lock down their permissions. The provider controls the identity, so the consumer's rights can be revoked. We'll add a new service identity for the namespace in ACS , just as we did for the serviceProvider identity in Part 1. I've named the identity fullTrustConsumer. We then need to add a rule to map the incoming identity claim to an outgoing authorization claim that allows the identity to send messages to Service Bus (see Part 1 for a walkthrough creating Service Idenitities): Issuer: Access Control Service Input claim type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier Input claim value: fullTrustConsumer Output claim type: net.windows.servicebus.action Output claim value: Send This sets up a service identity which can send messages into Service Bus, but cannot register itself as a listener, or manage the namespace. Adding a Service Reference The Part 2 sample client code is ready to go, but if you want to replicate the steps, you’re going to add a WSDL reference, add a reference to Microsoft.ServiceBus and sort out the ServiceModel config. In Part 1 we exposed metadata for our service, so we can browse to the WSDL locally at: http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc?wsdl If you add a Service Reference to that in a new project you'll get a confused config section with a customBinding, and a set of unrecognized policy assertions in the namespace http://schemas.microsoft.com/netservices/2009/05/servicebus/connect. If you NuGet the ASB package (“windowsazure.servicebus”) first and add the service reference - you'll get the same messy config. Either way, the WSDL should have downloaded and you should have the proxy code generated. You can delete the customBinding entries and copy your config from the service's web.config (this is already done in the sample project in Sixeyed.Ipasbr.NetTcpClient), specifying details for the client:     <client>       <endpoint address="sb://sixeyed-ipasbr.servicebus.windows.net/net"                 behaviorConfiguration="SharedSecret"                 binding="netTcpRelayBinding"                 contract="FormatService.IFormatService" />     </client>     <behaviors>       <endpointBehaviors>         <behavior name="SharedSecret">           <transportClientEndpointBehavior credentialType="SharedSecret">             <clientCredentials>               <sharedSecret issuerName="fullTrustConsumer"                             issuerSecret="E3feJSMuyGGXksJi2g2bRY5/Bpd2ll5Eb+1FgQrXIqo="/>             </clientCredentials>           </transportClientEndpointBehavior>         </behavior>       </endpointBehaviors>     </behaviors>   The proxy is straight WCF territory, and the same client can run against Azure Service Bus through any relay binding, or directly to the local network service using any WCF binding - the contract is exactly the same. The code is simple, standard WCF stuff: using (var client = new FormatService.FormatServiceClient()) { outputString = client.ReverseString(inputString); } Running the sample First, update Solution Items\AzureConnectionDetails.xml with your service bus namespace, and your service identity credentials for the netTcpClient and the provider:   <!-- ACS credentials for the full trust consumer (Part2): -->   <netTcpClient identityName="fullTrustConsumer"                 symmetricKey="E3feJSMuyGGXksJi2g2bRY5/Bpd2ll5Eb+1FgQrXIqo="/> Then rebuild the solution and verify the unit tests work. If they’re green, your service is listening through Azure. Check out the client by navigating to http://localhost:53835/Sixeyed.Ipasbr.NetTcpClient. Enter a string and hit Go! - your string will be reversed by your on-premise service, routed through Azure: Using shared secret client credentials in this way means ACS is the identity provider for your service, and the claim which allows Send access to Service Bus is consumed by Service Bus. None of the authentication details make it through to your service, so your service is not aware who the consumer is (MSDN calls this "anonymous authentication").

    Read the article

  • Sort Data in Windows Phone using Collection View Source

    - by psheriff
    When you write a Windows Phone application you will most likely consume data from a web service somewhere. If that service returns data to you in a sort order that you do not want, you have an easy alternative to sort the data without writing any C# or VB code. You use the built-in CollectionViewSource object in XAML to perform the sorting for you. This assumes that you can get the data into a collection that implements the IEnumerable or IList interfaces.For this example, I will be using a simple Product class with two properties, and a list of Product objects using the Generic List class. Try this out by creating a Product class as shown in the following code:public class Product {  public Product(int id, string name)   {    ProductId = id;    ProductName = name;  }  public int ProductId { get; set; }  public string ProductName { get; set; }}Create a collection class that initializes a property called DataCollection with some sample data as shown in the code below:public class Products : List<Product>{  public Products()  {    InitCollection();  }  public List<Product> DataCollection { get; set; }  List<Product> InitCollection()  {    DataCollection = new List<Product>();    DataCollection.Add(new Product(3,        "PDSA .NET Productivity Framework"));    DataCollection.Add(new Product(1,        "Haystack Code Generator for .NET"));    DataCollection.Add(new Product(2,        "Fundamentals of .NET eBook"));    return DataCollection;  }}Notice that the data added to the collection is not in any particular order. Create a Windows Phone page and add two XML namespaces to the Page.xmlns:scm="clr-namespace:System.ComponentModel;assembly=System.Windows"xmlns:local="clr-namespace:WPSortData"The 'local' namespace is an alias to the name of the project that you created (in this case WPSortData). The 'scm' namespace references the System.Windows.dll and is needed for the SortDescription class that you will use for sorting the data. Create a phone:PhoneApplicationPage.Resources section in your Windows Phone page that looks like the following:<phone:PhoneApplicationPage.Resources>  <local:Products x:Key="products" />  <CollectionViewSource x:Key="prodCollection"      Source="{Binding Source={StaticResource products},                       Path=DataCollection}">    <CollectionViewSource.SortDescriptions>      <scm:SortDescription PropertyName="ProductName"                           Direction="Ascending" />    </CollectionViewSource.SortDescriptions>  </CollectionViewSource></phone:PhoneApplicationPage.Resources>The first line of code in the resources section creates an instance of your Products class. The constructor of the Products class calls the InitCollection method which creates three Product objects and adds them to the DataCollection property of the Products class. Once the Products object is instantiated you now add a CollectionViewSource object in XAML using the Products object as the source of the data to this collection. A CollectionViewSource has a SortDescriptions collection that allows you to specify a set of SortDescription objects. Each object can set a PropertyName and a Direction property. As you see in the above code you set the PropertyName equal to the ProductName property of the Product object and tell it to sort in an Ascending direction.All you have to do now is to create a ListBox control and set its ItemsSource property to the CollectionViewSource object. The ListBox displays the data in sorted order by ProductName and you did not have to write any LINQ queries or write other code to sort the data!<ListBox    ItemsSource="{Binding Source={StaticResource prodCollection}}"   DisplayMemberPath="ProductName" />SummaryIn this blog post you learned that you can sort any data without having to change the source code of where the data comes from. Simply feed the data into a CollectionViewSource in XAML and set some sort descriptions in XAML and the rest is done for you! This comes in very handy when you are consuming data from a source where the data is given to you and you do not have control over the sorting.NOTE: You can download this article and many samples like the one shown in this blog entry at my website. http://www.pdsa.com/downloads. Select “Tips and Tricks”, then “Sort Data in Windows Phone using Collection View Source” from the drop down list.Good Luck with your Coding,Paul Sheriff** SPECIAL OFFER FOR MY BLOG READERS **We frequently offer a FREE gift for readers of my blog. Visit http://www.pdsa.com/Event/Blog for your FREE gift!

    Read the article

  • WCF DataContractSerializer Behavior

    - by sbanwart
    I'm seeing some unusual behavior when using the DataContractSerializer. I have defined a message contract like so: namespace MyNamespace.DataContracts { [MessageContract(WrapperName = "order", WrapperNamespace = @"http://example.com/v1/order")] public class MyOrder { [MessageBodyMember(Namespace = @"http://http://example.com/v1/order", Order = 1)] public MyStore store; [MessageBodyMember(Namespace = @"http://http://example.com/v1/order", Order = 2)] public MyOrderHeader orderHeader; [MessageBodyMember(Namespace = @"http://example.com/v1/order", Order = 3)] public List<MyPayment> payments; [MessageBodyMember(Namespace = @"http://example.com/v1/order", Order = 4)] public List<MyShipment> shipments; } . . I'm sending it an XML message that looks like this: <?xml version="1.0" encoding="utf-8"?> <order xmlns="http://example.com/v1/order> <store> ... </store> <orderHeader> ... </orderHeader> <payments> <payment> ... </payment> </payments> <shipments> <shipment> ... </shipment> </shipments> </order> My service deserializes this XML as expected. Inside my service, I'm using the DataContractSerializer to create an XML string and that's where things get weird. I'm using the serializer like this: DataContractSerializer serializer = new DataContractSerializer(typeof(MyOrder)); using (MemoryStream ms = new MemoryStream()) { serializer.WriteObject(ms, order); ms.Position = 0; StreamReader sr = new StreamReader(ms); string outputMessage = sr.ReadToEnd(); } Once this finishes, the outputMessage contains the following XML: <?xml version="1.0" encoding="utf-8"?> <MyOrder xmlns="http://example.com/v1/order" xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <order> <store> ... </store> <orderHeader> ... </orderHeader> <payments> <payment> ... </payment> </payments> <shipments> <shipment> ... </shipment> </shipments> </order> </MyOrder> Needless to say, anything expecting to receive the original XML message will fail to parse this. So I guess I have two questions: Why is the DataContractSerializer adding the extra outer node to my XML output? Is there a way to stop it from doing this? Thanks.

    Read the article

  • Is MongoDB a good choice or not for my application?

    - by shubham
    I have a Reporting application which stores the reports in xml format as recieved from source (XML schema is not defined, it can be any format) and those reports contain some keys and values. Like jobid, setid be keys for 1 type of report and userid, groupId for another type of report etc. The type of keys that can be referred from the document is determined by the namespaces used in the xml doc. These keys are stored on the basis of namespace used in the xml document. For e.g. If a tag in xml fragment uses namespace= "myspace1", then I have keys A and B for myspace1 stored in another table. It will fetch those keys from that table for this namespace, look for their values in xml doc and store it in another table along with the pointer to this xml document (Id of a record storing complete xml document in a cell). Use cases: When the user comes and queries for that key and value, I return the document or a set of documents that are having those key/value pairs. When the user comes and queries for a certain key and provide a name for xslt (pre stored), I fetch the set of documents fulfilling that criteria and convert that xml to html with the specified xslt. When the user comes and asks for a particular fragment of a doc then it can fetch a subset from a particular document also. When the user comes and queries for top x values of a certain key, I return the set of documents that are having top 10 values of that key. I am using DB2 database for its support of xml along with relational capabilities. That makes easier for me to run xpath expressions and fetch values of keys and also aggregate a set of documents fullfilling a criteria, all on the database side. Problems: DB2 stores XML doc of upto 2GB in size. Retrieval is very slow. If some thing involves many documents, then it takes significant time for things to show up in browser, and the user has to wait. Can MongoDb help in this case, as it is document oriented? can I do xml related xpath queries and document transformations on db side? Or is it ok to use both in such a case?

    Read the article

  • conflict with php zend libs and c++ libs(ctime) to build extension for php [migrated]

    - by user69800
    Im going to build an extension for PHP 5.3.x everything is OK when I build without vc++ lib. error C2039: 'clock_t' : is not a member of '`global namespace'' error C2873: 'clock_t' : symbol cannot be used in a using-declaration error C2039: 'asctime' : is not a member of '`global namespace'' error C2873: 'asctime' : symbol cannot be used in a using-declaration and... I include just and got this error. I know this problem is from my include header file in properties that required from PHP zend engine, But I do not know how solve this problem. thanks

    Read the article

  • Is SOAP Http POST more complicated than I thought

    - by Pete Petersen
    I'm currently writing a bit of code to send some xml data to a web service via HTTP POST. I thought this would be really simple and have written the following example code (C#) Console.WriteLine("Press enter to send data..."); while (Console.ReadLine() != "q") { HttpWebRequest httpWReq = (HttpWebRequest)WebRequest.Create(@"http://localhost:8888/"); Foo fooItem = new Foo { Member1 = "05", Member2 = "74455604", Member3 = "15101051", Member4 = 1, Member5 = "fsf", Member6 = 6.52, }; ASCIIEncoding encoding = new ASCIIEncoding(); string postData = fooItem.ToXml(); byte[] data = encoding.GetBytes(postData); httpWReq.Method = "POST"; httpWReq.ContentType = "application/xml"; httpWReq.ContentLength = data.Length; using (Stream stream = httpWReq.GetRequestStream()) { stream.Write(data, 0, data.Length); } HttpWebResponse response = (HttpWebResponse)httpWReq.GetResponse(); string responseString = new StreamReader(response.GetResponseStream()).ReadToEnd(); Console.WriteLine("Received " + responseString); Console.WriteLine("Press enter to send data..."); } This is all I thought would be necessary, however I have now been given the details for the web service. This included some information which is unfarmiliar to me and I'm unsure whether I need to include it. The information I was sent was <url>http://sometext/soap/rpc</url> <namespace>http://sometext/a.services</namespace> <method>receiveInfo</method> <parm-id>xmldata</parm-id> (Input data) (Actual XML data as string) <parm-id>status</parm-id> (Output data) <userid>user</userid> <password>pass</password> <secure>false</secure> I guess this means I need to include a username and password somehow, but I'm not sure what the namespace or method fields are used for. Could anyone give me a hint? Sorry I've never used webservices before.

    Read the article

  • Another Custom Property Locator: a Library of Books

    - by Cindy McMullen
    Introduction The previous post gave an introduction to custom property locators and showed how create one using JDeveloper.  This post continues on the custom locator theme, with a slightly more complex locator: a library of books.  It demonstrates using the DAO pattern to delegate data access from the Locator, which is likely how many actual backing stores will integrate with the Locator.  You can imagine, rather than a library of books, the data store might be a user database of sorts.  The same sort of pattern would apply. This post uses the BookLocator example originally shown in the WebCenter documentation, but has: updated the source code to reflect the final Property APIs includes the steps for generating the namespace and property definition files via JDeveloper detailed usage of the PropertyService APIs Getting Started If you're new to JDeveloper, you might want to check out this tutorial.  There is also the "Jump-Start to using Personalization" blog post that you might find useful.  Otherwise, if you're already familiar with both, you can skip those tutorials and jump right in to using JDeveloper. Download the BookLocator.zip file (which has been updated from the original post) and unzip it to a new directory.  Start JDeveloper, navigate to the BookLocator.jws file, and open it.   It should look something like this: The Properties Namespace file contains the property definitions and property set definitions you define.  It is explained more in detail in the Namespace documentation.  Although this example doesn't show it, the property set definitions have the ability to reference multiple locators per property.   This can be done by right-clicking on the 'Locator Info' box.  Configure the contents of the Locator Map  by editing locators and mapping them to available property names in the property set definition. Compiling, deploying, and running your locator The rest of the steps in this tutorial basically follow those in the previous blog on custom locators, and won't be repeated here.   A scenario to invoke your locator is included with the sample app: see BookProperties.scenarios_diagram above.  Summary This post demonstrates a simple library of books accessed by the BookPropertyLocator via the DAO layer.  This is a useful pattern for more realistic property retrievals, such as a backing user store.  It also points out the possibility of retrieving properties from multiple locators, which would be quite handy to retrieve user attributes from multiple sources.

    Read the article

  • LuaJit FFI and hiding C implementation details

    - by wirrbel
    I would like to extend an application using LuaJit FFI. Having seen http://luajit.org/ext_ffi_tutorial.html this is surprisingly easy when comparing this to the Lua C API. So far so good. However I do not plainly want to wrap C functions but provide a higher level API to users writing scripts for the application. Especially I do not want users to be able to access "primitives", i.e. the ffi.* namespace. Is this possible or will that ffi namespace be available to user's Lua scripts? On the issue of Sandboxing Lua I found http://lua-users.org/wiki/SandBoxes which is not talking about FFI though. Furthermore, the plan I have described above is assuming that the introduction of abstraction layers happens on the lua side of code. Is this an advisable approach or would you rather abstract functionality on the statically compiled code (on the C-side)?

    Read the article

  • How to generate SPMetal for a specific list (OOTB: like tasks or contacts) with custom columns

    - by KunaalKapoor
    SPMetal is used to make use of LINQ on a list in SharePoint 2010. By default when you generate SPMetal on a site you will get a code generated file for most of the lists and probably more. Here is a MSDN link for some info on SPMetal.http://msdn.microsoft.com/en-us/library/ee538255(office.14).aspxBut what if you want only to generate the code for one list?Well it is quite simple once you figure it out. You need to add an xml file to override the default settings of SPMetal and specify it in the /parameters option. I will show you how to do this.First create a Folder that will contain two files (GenerateSPMetalCode.bat and SPMetal.xml).Below is the content of the files:GenerateSPMetalCode.bat "C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\BIN\SPMetal" /web:http://YourServer /code:OutPutFileName.cs /language:csharp /parameters:SPMetal.xml pause SPMetal.xml <?xml version="1.0" encoding="utf-8"?> <Web AccessModifier="Internal" xmlns="http://schemas.microsoft.com/SharePoint/2009/spmetal"> <List Name="ListName"> <ContentType Name="ContentTypeName" Class="GeneratedClassName" /> </List> <ExcludeOtherLists></ExcludeOtherLists> </Web> You will have to change some of the text in the files so that it will be specific to your SharePoint Server Setup. In the bat file you will have to change http://YourServer to the url of the web where your list is. In the SPMetal.xml file you need to change ListName to the name of your list and the ContentTypeName to the name of the content type you want to extract. The GeneratedClassName can be anything but perhaps you should rename it to something more sensible.Adding the following line: '<List Name="ListName"><ContentType Name="ContentTypeName" Class="GeneratedClassName" /> </List>'  makes sure that any custom columns added to an OOTB list like contacts or tasks are also generated, which are missed out in a regular generation.So now when you run it the SPMetal command will read the SPMetal.xml list and override its commands. ExcludeOtherLists element makes it so that only the code for the lists you specify will be generated. For some reason I got an error if I had this element above the List element.You sould now have a code file called OutPutFileName.cs that has been generated. You can now put this in your SharePoint project for use with your LINQ queries against that list.I will soon write a LINQ example that uses the generated class. UPDATE: Add the /namespace parameter to add a namespace to the generated code. "C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\BIN\SPMetal" /web:http://YourServer /namespace:MySPMetalNameSpace /code:OutPutFileName.cs /language:csharp /parameters:SPMetal.xml

    Read the article

  • How to remove unused usings from class file ?

    - by Samir R. Bhogayta
    When we create a .cs file means code file class is automatically create. That .cs file means class has default usings for namespace. using System;using System.Collections.Generic;using System.Linq;using System.Web;using System.Web.UI;using System.Web.UI.WebControls; We don't use all namespaces  in that class so we have to remove unused namespaces from file. We can remove  namespace manually but it takes time and need full knowledge of class library so we can use Visual Studio . Step 1:  Right Click in .cs File. Step 2:  Move on Organize usings. Step 3: Click on Remove Unused Usings. After that we have only those namespaces in the file these are using.  

    Read the article

  • Disable mobile page redirection for SharePoint 2013

    - by Sahil Malik
    SharePoint, WCF and Azure Trainings: more information SharePoint 2013 (foundation too), detects requests from mobile devices and automatically changes the uRL of the requested non mobile page to its mobile substitute. This logic is now built into SPRequestModule. The mobile view is pretty damned amazing. Even though the set of pages for mobile access is completely different, SharePoint has an entirely separate set of controls for the mobile pages. These are in the Microsoft.SharePoint.MobileControls namespace which inherit from Microsoft ASP.NET controls in the System.Web.UI.MobileControls namespace. These Mobile pages can even use mobile Web Part adapters to mimic the behavior of webparts on mobile webpart pages. Read full article ....

    Read the article

  • How do I use Content.Load() with raw XML files?

    - by xnanewb
    I'm using the Content.Load() mechanism to load core game definitions from XML files. It works fine, though some definitions should be editable/moddable by the players. Since the content pipeline compiles everything into xnb files, that doesn't work for now. I've seen that the inbuild XNA Song content processor does create 2 files. 1 xnb file which contains meta data for the song and 1 wma file which contains the actual data. I've tried to rebuild that mechanism (so that the second file is the actual xml file), but for some reason I can't use the namespace which contains the IntermediateSerializer class to load the xml (obviously the namespace is only available in a content project?). How can I deploy raw, editable xml files and load them with Content.Load()?

    Read the article

  • One to many in nhibernate mapping problem

    - by chobo2
    Hi I have this using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Demo.Framework.Domain { public class UserEntity { public virtual Guid UserId { get; protected set; } } } using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace TDemo.Framework.Domain { public class Users : UserEntity { public virtual string OpenIdIdentifier { get; set; } public virtual string Email { get; set; } public virtual IList<Movie> Movies { get; set; } } } using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Demo.Framework.Domain { public class Movie { public virtual int MovieId { get; set; } public virtual Guid UserId { get; set; } // not sure if I should inherit UserEntity public virtual string Title { get; set; } public virtual DateTime ReleaseDate { get; set; } // in my ms sql 2008 database I want this to be just a Date type. Not sure how to do that. public virtual int Upc { get; set; } } } <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="Demo.Framework" namespace="Demo.Framework.Domain"> <class name="Users"> <id name="UserId"> <generator class="guid.comb" /> </id> <property name="OpenIdIdentifier" not-null="true" /> <property name="Email" not-null="true" /> </class> <subclass name="Movie"> <list name="Movies" cascade="all-delete-orphan"> <key column="MovieId" /> <index column="MovieIndex" /> // not sure what index column is really. <one-to-many class="Movie"/> </list> </subclass> </hibernate-mapping> <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="Demo.Framework" namespace="Demo.Framework.Domain"> <class name="Movie"> <id name="MovieId"> <generator class="native" /> </id> <property name="Title" not-null="true" /> <property name="ReleaseDate" not-null="true" type="Date" /> <property name="Upc" not-null="true" /> <property name="UserId" not-null="true" type="Guid"/> </class> </hibernate-mapping> I get this error 'extends' attribute is not found or is empty. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: NHibernate.MappingException: 'extends' attribute is not found or is empty. Source Error: Line 17: { Line 18: Line 19: var nhConfig = new Configuration().Configure(); Line 20: var sessionFactory = nhConfig.BuildSessionFactory(); Line 21:

    Read the article

  • From 20,663 issues to 1 issue&ndash;style-copping C5.Tests

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2014/05/28/from-20663-issues-to-1-issuendashstyle-copping-c5.tests.aspxI recently became interested in the potential of the C5 Collections solution from http://www.itu.dk/research/c5/, however I was dismayed at the state of the code in the unit test project, so I set about fixing the 20,663 issues detected by StyleCop. The tools I used were the latest versions of: My 64-bit development PC running Windows 8 Update with 8Gb RAM Visual Studio 2013 Ultimate with SP2 ReSharper GhostDoc Pro My first attempt had to be abandoned due to collision of class names which broke one of the unit tests. So being aware of this duplication of class names, I started again and planned to prepend the class names with the namespace name. In some cases I additionally prepended the item of the C5 collection that was being tested. So what was the condition of code at the start? Besides the sprawl of C# code not written to style cop standard, there was: 1) Placing of many classes within one physical file. 2) Namespace within name space that did not follow the project structure. 3) As already mentioned, duplication of class names across namespaces. 4) A copyright notice that spawled but had to be preserved. 5) Project sub-folders were all lower case instead of initial letter capitalised. The first step was to add a stylecop heading plus the original heading contained within a region, to every file. The next step was to run GhostDoc Pro using its “Document File” option on every file but not letting it replace the headers, I had added. This brought the number of issues down to 18,192. I then went through each file collapsing each class and prepending names as appropriate. At each step, I saved the changes to my local Git. The step was to move each class to its own file and to style-cop each file. ReSharper provides a very useful feature for doing this which also fixes missing “this.” and moves using statements inside the namespace. Some classes required minimal work whereas others required extensive work to reach the stylecop standard. The unit tests were run at each split and when each class was completed. When all was done, one issue remained which I will need to submit to stylecop team for their advice (and possibly a fix to stylecop). The updated solution has been made available at https://c5stylecopped.codeplex.com/releases/view/122785.

    Read the article

  • email output of powershell script

    - by Gordon Carlisle
    I found this wonderful script that outputs the status of the current DFS backlog to the powershell console. This works great, but I need the script to email me so I can schedule it to run nightly. I have tried using the Send-MailMessage command, but can't get it to work. Mainly because my powershell skills are very weak. I believe most of the issue revolve around the script using the Write-Host command. While the coloring is nice I would much rather have it email me the results. I also need the solution to be able to specify a mail server since the dfs servers don't have email capability. Any help or tips are welcome and appreciated. Here is the code. $RGroups = Get-WmiObject -Namespace "root\MicrosoftDFS" -Query "SELECT * FROM DfsrReplicationGroupConfig" $ComputerName=$env:ComputerName $Succ=0 $Warn=0 $Err=0 foreach ($Group in $RGroups) { $RGFoldersWMIQ = "SELECT * FROM DfsrReplicatedFolderConfig WHERE ReplicationGroupGUID='" + $Group.ReplicationGroupGUID + "'" $RGFolders = Get-WmiObject -Namespace "root\MicrosoftDFS" -Query $RGFoldersWMIQ $RGConnectionsWMIQ = "SELECT * FROM DfsrConnectionConfig WHERE ReplicationGroupGUID='"+ $Group.ReplicationGroupGUID + "'" $RGConnections = Get-WmiObject -Namespace "root\MicrosoftDFS" -Query $RGConnectionsWMIQ foreach ($Connection in $RGConnections) { $ConnectionName = $Connection.PartnerName.Trim() if ($Connection.Enabled -eq $True) { if (((New-Object System.Net.NetworkInformation.ping).send("$ConnectionName")).Status -eq "Success") { foreach ($Folder in $RGFolders) { $RGName = $Group.ReplicationGroupName $RFName = $Folder.ReplicatedFolderName if ($Connection.Inbound -eq $True) { $SendingMember = $ConnectionName $ReceivingMember = $ComputerName $Direction="inbound" } else { $SendingMember = $ComputerName $ReceivingMember = $ConnectionName $Direction="outbound" } $BLCommand = "dfsrdiag Backlog /RGName:'" + $RGName + "' /RFName:'" + $RFName + "' /SendingMember:" + $SendingMember + " /ReceivingMember:" + $ReceivingMember $Backlog = Invoke-Expression -Command $BLCommand $BackLogFilecount = 0 foreach ($item in $Backlog) { if ($item -ilike "*Backlog File count*") { $BacklogFileCount = [int]$Item.Split(":")[1].Trim() } } if ($BacklogFileCount -eq 0) { $Color="white" $Succ=$Succ+1 } elseif ($BacklogFilecount -lt 10) { $Color="yellow" $Warn=$Warn+1 } else { $Color="red" $Err=$Err+1 } Write-Host "$BacklogFileCount files in backlog $SendingMember->$ReceivingMember for $RGName" -fore $Color } # Closing iterate through all folders } # Closing If replies to ping } # Closing If Connection enabled } # Closing iteration through all connections } # Closing iteration through all groups Write-Host "$Succ successful, $Warn warnings and $Err errors from $($Succ+$Warn+$Err) replications." Thanks, Gordon

    Read the article

  • eclipse helios tomcat error

    - by itsraja
    Hi, I just created a struts application in eclipse Helios. when I run as server I get an alert like this. My browser is online only. This document cannot be displayed while offline. To go online, uncheck Work Offline from the File menu. and this is error displayed. Dec 23, 2010 7:20:37 PM org.apache.catalina.core.AprLifecycleListener init SEVERE: An incompatible version 1.1.15 of the APR based Apache Tomcat Native library is installed, while Tomcat requires version 1.1.17 Dec 23, 2010 7:20:37 PM org.apache.tomcat.util.digester.SetPropertiesRule begin WARNING: [SetPropertiesRule]{Server/Service/Engine/Host/Context} Setting property 'source' to 'org.eclipse.jst.jee.server:StrutsHelloWorld' did not find a matching property. Dec 23, 2010 7:20:37 PM org.apache.coyote.http11.Http11Protocol init INFO: Initializing Coyote HTTP/1.1 on http-8080 Dec 23, 2010 7:20:37 PM org.apache.catalina.startup.Catalina load INFO: Initialization processed in 1081 ms Dec 23, 2010 7:20:37 PM org.apache.catalina.core.StandardService start INFO: Starting service Catalina Dec 23, 2010 7:20:37 PM org.apache.catalina.core.StandardEngine start INFO: Starting Servlet Engine: Apache Tomcat/6.0.29 Dec 23, 2010 7:20:38 PM org.apache.catalina.core.StandardContext filterStart SEVERE: Exception starting filter struts2 java.lang.ClassNotFoundException: org.apache.struts2.dispatcher.FileDispatcher at org.apache.catalina.loader.WebappClassLoader.loadClass(WebappClassLoader.java:1645) at org.apache.catalina.loader.WebappClassLoader.loadClass(WebappClassLoader.java:1491) at org.apache.catalina.core.ApplicationFilterConfig.getFilter(ApplicationFilterConfig.java:269) at org.apache.catalina.core.ApplicationFilterConfig.setFilterDef(ApplicationFilterConfig.java:422) at org.apache.catalina.core.ApplicationFilterConfig.(ApplicationFilterConfig.java:115) at org.apache.catalina.core.StandardContext.filterStart(StandardContext.java:4001) at org.apache.catalina.core.StandardContext.start(StandardContext.java:4651) at org.apache.catalina.core.ContainerBase.start(ContainerBase.java:1045) at org.apache.catalina.core.StandardHost.start(StandardHost.java:785) at org.apache.catalina.core.ContainerBase.start(ContainerBase.java:1045) at org.apache.catalina.core.StandardEngine.start(StandardEngine.java:445) at org.apache.catalina.core.StandardService.start(StandardService.java:519) at org.apache.catalina.core.StandardServer.start(StandardServer.java:710) at org.apache.catalina.startup.Catalina.start(Catalina.java:581) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.catalina.startup.Bootstrap.start(Bootstrap.java:289) at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:414) Dec 23, 2010 7:20:38 PM org.apache.catalina.core.StandardContext start SEVERE: Error filterStart Dec 23, 2010 7:20:38 PM org.apache.catalina.core.StandardContext start SEVERE: Context [/StrutsHelloWorld] startup failed due to previous errors Thanks.

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Card Shuffling in C#

    - by Jeff
    I am trying to write a code for a project that lists the contents of a deck of cards, asks how much times the person wants to shuffle the deck, and then shuffles them. It has to use a method to create two random integers using the System.Random class. These are my classes: Program.cs: using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication3 { class Program { static void Main(string[] args) { Deck mydeck = new Deck(); foreach (Card c in mydeck.Cards) { Console.WriteLine(c); } Console.WriteLine("How Many Times Do You Want To Shuffle?"); } } } Deck.cs: using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication3 { class Deck { Card[] cards = new Card[52]; string[] numbers = new string[] { "2", "3", "4", "5", "6", "7", "8", "9", "J", "Q", "K" }; public Deck() { int i = 0; foreach(string s in numbers) { cards[i] = new Card(Suits.Clubs, s); i++; } foreach (string s in numbers) { cards[i] = new Card(Suits.Spades, s); i++; } foreach (string s in numbers) { cards[i] = new Card(Suits.Hearts, s); i++; } foreach (string s in numbers) { cards[i] = new Card(Suits.Diamonds, s); i++; } } public Card[] Cards { get { return cards; } } } } classes.cs: using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication3 { enum Suits { Hearts, Diamonds, Spades, Clubs } } Card.cs: using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication3 { class Card { protected Suits suit; protected string cardvalue; public Card() { } public Card(Suits suit2, string cardvalue2) { suit = suit2; cardvalue = cardvalue2; } public override string ToString() { return string.Format("{0} of {1}", cardvalue, suit); } } } Please tell me how to make the cards shuffle as much as the person wants and then list the shuffled cards. Sorry about the formatting im new to this site.

    Read the article

< Previous Page | 32 33 34 35 36 37 38 39 40 41 42 43  | Next Page >