Search Results

Search found 24232 results on 970 pages for 'net4 client profile'.

Page 37/970 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • C# 5.0 Async/Await Demo Code

    - by Paulo Morgado
    I’ve published the sample code I use to demonstrate the use of async/await in C# 5.0. You can find it here. Projects PauloMorgado.AyncDemo.WebServer This project is a simple web server implemented as a console application using Microsoft ASP.NET Web API self hosting and serves an image (with a delay) that is accessed by the other projects. This project has a dependency on Json.NET due to the fact the the Microsoft ASP.NET Web API hosting has a dependency on Json.NET. The application must be run on a command prompt with administrative privileges or a urlacl must be added to allow the use of the following command: netsh http add urlacl url=http://+:9090/ user=machine\username To remove the urlacl, just use the following command: netsh http delete urlacl url=http://+:9090/ PauloMorgado.AsyncDemo.WindowsForms This Windows Forms project contains three regions that must be uncommented one at a time: Sync with WebClient This code retrieves the image through a synchronous call using the WebClient class. Async with WebClient This code retrieves the image through an asynchronous call using the WebClient class. Async with HttpClient with cancelation This code retrieves the image through an asynchronous call with cancelation using the HttpClient class. PauloMorgado.AsyncDemo.Wpf This WPF project contains three regions that must be uncommented one at a time: Sync with WebClient This code retrieves the image through a synchronous call using the WebClient class. Async with WebClient This code retrieves the image through an asynchronous call using the WebClient class. Async with HttpClient with cancelation This code retrieves the image through an asynchronous call with cancelation using the HttpClient class.

    Read the article

  • C# 4.0: Alternative To Optional Arguments

    - by Paulo Morgado
    Like I mentioned in my last post, exposing publicly methods with optional arguments is a bad practice (that’s why C# has resisted to having it, until now). You might argument that your method or constructor has to many variants and having ten or more overloads is a maintenance nightmare, and you’re right. But the solution has been there for ages: have an arguments class. The arguments class pattern is used in the .NET Framework is used by several classes, like XmlReader and XmlWriter that use such pattern in their Create methods, since version 2.0: XmlReaderSettings settings = new XmlReaderSettings(); settings.ValidationType = ValidationType.Auto; XmlReader.Create("file.xml", settings); With this pattern, you don’t have to maintain a long list of overloads and any default values for properties of XmlReaderSettings (or XmlWriterSettings for XmlWriter.Create) can be changed or new properties added in future implementations that won’t break existing compiled code. You might now argue that it’s too much code to write, but, with object initializers added in C# 3.0, the same code can be written like this: XmlReader.Create("file.xml", new XmlReaderSettings { ValidationType = ValidationType.Auto }); Looks almost like named and optional arguments, doesn’t it? And, who knows, in a future version of C#, it might even look like this: XmlReader.Create("file.xml", new { ValidationType = ValidationType.Auto });

    Read the article

  • C# 4.0: COM Interop Improvements

    - by Paulo Morgado
    Dynamic resolution as well as named and optional arguments greatly improve the experience of interoperating with COM APIs such as Office Automation Primary Interop Assemblies (PIAs). But, in order to alleviate even more COM Interop development, a few COM-specific features were also added to C# 4.0. Ommiting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. These parameters are typically not meant to mutate a passed-in argument, but are simply another way of passing value parameters. Specifically for COM methods, the compiler allows to declare the method call passing the arguments by value and will automatically generate the necessary temporary variables to hold the values in order to pass them by reference and will discard their values after the call returns. From the point of view of the programmer, the arguments are being passed by value. This method call: object fileName = "Test.docx"; object missing = Missing.Value; document.SaveAs(ref fileName, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing); can now be written like this: document.SaveAs("Test.docx", Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value, Missing.Value); And because all parameters that are receiving the Missing.Value value have that value as its default value, the declaration of the method call can even be reduced to this: document.SaveAs("Test.docx"); Dynamic Import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object form the context of the call, but has to explicitly perform a cast on the returned values to make use of that knowledge. These casts are so common that they constitute a major nuisance. To make the developer’s life easier, it is now possible to import the COM APIs in such a way that variants are instead represented using the type dynamic which means that COM signatures have now occurrences of dynamic instead of object. This means that members of a returned object can now be easily accessed or assigned into a strongly typed variable without having to cast. Instead of this code: ((Excel.Range)(excel.Cells[1, 1])).Value2 = "Hello World!"; this code can now be used: excel.Cells[1, 1] = "Hello World!"; And instead of this: Excel.Range range = (Excel.Range)(excel.Cells[1, 1]); this can be used: Excel.Range range = excel.Cells[1, 1]; Indexed And Default Properties A few COM interface features are still not available in C#. On the top of the list are indexed properties and default properties. As mentioned above, these will be possible if the COM interface is accessed dynamically, but will not be recognized by statically typed C# code. No PIAs – Type Equivalence And Type Embedding For assemblies indentified with PrimaryInteropAssemblyAttribute, the compiler will create equivalent types (interfaces, structs, enumerations and delegates) and embed them in the generated assembly. To reduce the final size of the generated assembly, only the used types and their used members will be generated and embedded. Although this makes development and deployment of applications using the COM components easier because there’s no need to deploy the PIAs, COM component developers are still required to build the PIAs.

    Read the article

  • The Evolution Of C#

    - by Paulo Morgado
    The first release of C# (C# 1.0) was all about building a new language for managed code that appealed, mostly, to C++ and Java programmers. The second release (C# 2.0) was mostly about adding what wasn’t time to built into the 1.0 release. The main feature for this release was Generics. The third release (C# 3.0) was all about reducing the impedance mismatch between general purpose programming languages and databases. To achieve this goal, several functional programming features were added to the language and LINQ was born. Going forward, new trends are showing up in the industry and modern programming languages need to be more: Declarative With imperative languages, although having the eye on the what, programs need to focus on the how. This leads to over specification of the solution to the problem in hand, making next to impossible to the execution engine to be smart about the execution of the program and optimize it to run it more efficiently (given the hardware available, for example). Declarative languages, on the other hand, focus only on the what and leave the how to the execution engine. LINQ made C# more declarative by using higher level constructs like orderby and group by that give the execution engine a much better chance of optimizing the execution (by parallelizing it, for example). Concurrent Concurrency is hard and needs to be thought about and it’s very hard to shoehorn it into a programming language. Parallel.For (from the parallel extensions) looks like a parallel for because enough expressiveness has been built into C# 3.0 to allow this without having to commit to specific language syntax. Dynamic There was been lots of debate on which ones are the better programming languages: static or dynamic. The fact is that both have good qualities and users of both types of languages want to have it all. All these trends require a paradigm switch. C# is, in many ways, already a multi-paradigm language. It’s still very object oriented (class oriented as some might say) but it can be argued that C# 3.0 has become a functional programming language because it has all the cornerstones of what a functional programming language needs. Moving forward, will have even more. Besides the influence of these trends, there was a decision of co-evolution of the C# and Visual Basic programming languages. Since its inception, there was been some effort to position C# and Visual Basic against each other and to try to explain what should be done with each language or what kind of programmers use one or the other. Each language should be chosen based on the past experience and familiarity of the developer/team/project/company and not by particular features. In the past, every time a feature was added to one language, the users of the other wanted that feature too. Going forward, when a feature is added to one language, the other will work hard to add the same feature. This doesn’t mean that XML literals will be added to C# (because almost the same can be achieved with LINQ To XML), but Visual Basic will have auto-implemented properties. Most of these features require or are built on top of features of the .NET Framework and, the focus for C# 4.0 was on dynamic programming. Not just dynamic types but being able to talk with anything that isn’t a .NET class. Also introduced in C# 4.0 is co-variance and contra-variance for generic interfaces and delegates. Stay tuned for more on the new C# 4.0 features.

    Read the article

  • C# 4.0: Covariance And Contravariance In Generics Made Easy

    - by Paulo Morgado
    In my last post, I went through what is variance in .NET 4.0 and C# 4.0 in a rather theoretical way. Now, I’m going to try to make it a bit more down to earth. Given: class Base { } class Derived : Base { } Such that: Trace.Assert(typeof(Base).IsClass && typeof(Derived).IsClass && typeof(Base).IsGreaterOrEqualTo(typeof(Derived))); Covariance interface ICovariantIn<out T> { } Trace.Assert(typeof(ICovariantIn<Base>).IsGreaterOrEqualTo(typeof(ICovariantIn<Derived>))); Contravariance interface ICovariantIn<out T> { } Trace.Assert(typeof(IContravariantIn<Derived>).IsGreaterOrEqualTo(typeof(IContravariantIn<Base>))); Invariance interface IInvariantIn<T> { } Trace.Assert(!typeof(IInvariantIn<Base>).IsGreaterOrEqualTo(typeof(IInvariantIn<Derived>)) && !typeof(IInvariantIn<Derived>).IsGreaterOrEqualTo(typeof(IInvariantIn<Base>))); Where: public static class TypeExtensions { public static bool IsGreaterOrEqualTo(this Type self, Type other) { return self.IsAssignableFrom(other); } }

    Read the article

  • C# 4.0: Covariance And Contravariance In Generics

    - by Paulo Morgado
    C# 4.0 (and .NET 4.0) introduced covariance and contravariance to generic interfaces and delegates. But what is this variance thing? According to Wikipedia, in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometrical or physical entities changes when passing from one coordinate system to another.(*) But what does this have to do with C# or .NET? In type theory, a the type T is greater (>) than type S if S is a subtype (derives from) T, which means that there is a quantitative description for types in a type hierarchy. So, how does covariance and contravariance apply to C# (and .NET) generic types? In C# (and .NET), variance applies to generic type parameters and not to the resulting generic type. A generic type parameter is: covariant if the ordering of the generic types follows the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. contravariant if the ordering of the generic types is reversed from the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. invariant if neither of the above apply. If this definition is applied to arrays, we can see that arrays have always been covariant because this is valid code: object[] objectArray = new string[] { "string 1", "string 2" }; objectArray[0] = "string 3"; objectArray[1] = new object(); However, when we try to run this code, the second assignment will throw an ArrayTypeMismatchException. Although the compiler was fooled into thinking this was valid code because an object is being assigned to an element of an array of object, at run time, there is always a type check to guarantee that the runtime type of the definition of the elements of the array is greater or equal to the instance being assigned to the element. In the above example, because the runtime type of the array is array of string, the first assignment of array elements is valid because string = string and the second is invalid because string = object. This leads to the conclusion that, although arrays have always been covariant, they are not safely covariant – code that compiles is not guaranteed to run without errors. In C#, the way to define that a generic type parameter as covariant is using the out generic modifier: public interface IEnumerable<out T> { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> { T Current { get; } bool MoveNext(); } Notice the convenient use the pre-existing out keyword. Besides the benefit of not having to remember a new hypothetic covariant keyword, out is easier to remember because it defines that the generic type parameter can only appear in output positions — read-only properties and method return values. In a similar way, the way to define a type parameter as contravariant is using the in generic modifier: public interface IComparer<in T> { int Compare(T x, T y); } Once again, the use of the pre-existing in keyword makes it easier to remember that the generic type parameter can only be used in input positions — write-only properties and method non ref and non out parameters. Because covariance and contravariance apply only to the generic type parameters, a generic type definition can have both covariant and contravariant generic type parameters in its definition: public delegate TResult Func<in T, out TResult>(T arg); A generic type parameter that is not marked covariant (out) or contravariant (in) is invariant. All the types in the .NET Framework where variance could be applied to its generic type parameters have been modified to take advantage of this new feature. In summary, the rules for variance in C# (and .NET) are: Variance in type parameters are restricted to generic interface and generic delegate types. A generic interface or generic delegate type can have both covariant and contravariant type parameters. Variance applies only to reference types; if you specify a value type for a variant type parameter, that type parameter is invariant for the resulting constructed type. Variance does not apply to delegate combination. That is, given two delegates of types Action<Derived> and Action<Base>, you cannot combine the second delegate with the first although the result would be type safe. Variance allows the second delegate to be assigned to a variable of type Action<Derived>, but delegates can combine only if their types match exactly. If you want to learn more about variance in C# (and .NET), you can always read: Covariance and Contravariance in Generics — MSDN Library Exact rules for variance validity — Eric Lippert Events get a little overhaul in C# 4, Afterward: Effective Events — Chris Burrows Note: Because variance is a feature of .NET 4.0 and not only of C# 4.0, all this also applies to Visual Basic 10.

    Read the article

  • LINQ: Enhancing Distinct With The PredicateEqualityComparer

    - by Paulo Morgado
    Today I was writing a LINQ query and I needed to select distinct values based on a comparison criteria. Fortunately, LINQ’s Distinct method allows an equality comparer to be supplied, but, unfortunately, sometimes, this means having to write custom equality comparer. Because I was going to need more than one equality comparer for this set of tools I was building, I decided to build a generic equality comparer that would just take a custom predicate. Something like this: public class PredicateEqualityComparer<T> : EqualityComparer<T> { private Func<T, T, bool> predicate; public PredicateEqualityComparer(Func<T, T, bool> predicate) : base() { this.predicate = predicate; } public override bool Equals(T x, T y) { if (x != null) { return ((y != null) && this.predicate(x, y)); } if (y != null) { return false; } return true; } public override int GetHashCode(T obj) { if (obj == null) { return 0; } return obj.GetHashCode(); } } Now I can write code like this: .Distinct(new PredicateEqualityComparer<Item>((x, y) => x.Field == y.Field)) But I felt that I’d lost all conciseness and expressiveness of LINQ and it doesn’t support anonymous types. So I came up with another Distinct extension method: public static IEnumerable<TSource> Distinct<TSource>(this IEnumerable<TSource> source, Func<TSource, TSource, bool> predicate) { return source.Distinct(new PredicateEqualityComparer<TSource>(predicate)); } And the query is now written like this: .Distinct((x, y) => x.Field == y.Field) Looks a lot better, doesn’t it?

    Read the article

  • TechDays 2010: What’s New On C# 4.0

    - by Paulo Morgado
    I would like to thank those that attended my session at TechDays 2010 and I hope that I was able to pass the message of what’s new on C#. For those that didn’t attend (or did and want to review it), the presentation can be downloaded from here. Code samples can be downlaoded from here. Here’s a list of resources mentioned on the session: The evolution of C# The Evolution Of C# Covariance and contravariance  C# 4.0: Covariance And Contravariance In Generics Covariance And Contravariance In Generics Made Easy Covarince and Contravariance in Generics Exact rules for variance validity Events get a little overhaul in C# 4, Afterward: Effective Events Named and optional arguments  Named And Optional Arguments Alternative To Optional Arguments Named and Optional Arguments (C# Programming Guide) Dynamic programming  Dynamic Programming C# Proposal: Compile Time Static Checking Of Dynamic Objects Using Type dynamic (C# Programming Guide) Dynamic Language Runtime Overview COM Interop Improvements COM Interop Improvements Type Equivalence and Embedded Interop Types Conclusion Visual C# Developer Center Visual C# 2010 Samples C# Language Specification 4.0 .NET Reflector LINQPad

    Read the article

  • Executing a Batch file from remote Ax client on an AOS server

    - by Anisha
    Is it possible to execute a batch file on an AOS server from a remote AX client? Answer is yes, provided you have necessary permission for this execution on the server. Please create a batch file on your AOS server. Some thing as below for creating a directory on the server.    Insert a command something like this in a .BAT file (batch file) and place any were on the server.   Mkdir “c:\test”      Copy the following code into your server static method of your class and call this piece of code from a button click on Ax form. Please execute this button click from a remote AX client and see the result . This should execute the batch file on the server and should create a directory called ‘test’ on the root directoryof the server.     server static void AOS_batch_file_create() { boolean b; System.Diagnostics.Process process; System.Diagnostics.ProcessStartInfo processStartInfo; ; b = Global::isRunningOnServer(); infolog.add(0, int2str(b)); new InteropPermission(InteropKind::ClrInterop).assert(); process = new System.Diagnostics.Process(); processStartInfo = new System.Diagnostics.ProcessStartInfo(); processStartInfo.set_FileName("C:\\create_dir.bat"); // batch file path on the AOS server process.set_StartInfo(processStartInfo); process.Start(); //process.Refresh(); //process.Close(); //process.WaitForExit(); info("Finished"); }

    Read the article

  • LINQ: Single vs. SingleOrDefault

    - by Paulo Morgado
    Like all other LINQ API methods that extract a scalar value from a sequence, Single has a companion SingleOrDefault. The documentation of SingleOrDefault states that it returns a single, specific element of a sequence of values, or a default value if no such element is found, although, in my opinion, it should state that it returns a single, specific element of a sequence of values, or a default value if no such element is found. Nevertheless, what this method does is return the default value of the source type if the sequence is empty or, like Single, throws an exception if the sequence has more than one element. I received several comments to my last post saying that SingleOrDefault could be used to avoid an exception. Well, it only “solves” half of the “problem”. If the sequence has more than one element, an exception will be thrown anyway. In the end, it all comes down to semantics and intent. If it is expected that the sequence may have none or one element, than SingleOrDefault should be used. If it’s not expect that the sequence is empty and the sequence is empty, than it’s an exceptional situation and an exception should be thrown right there. And, in that case, why not use Single instead? In my opinion, when a failure occurs, it’s best to fail fast and early than slow and late. Other methods in the LINQ API that use the same companion pattern are: ElementAt/ElementAtOrDefault, First/FirstOrDefault and Last/LastOrDefault.

    Read the article

  • Creating Property Set Expression Trees In A Developer Friendly Way

    - by Paulo Morgado
    In a previous post I showed how to create expression trees to set properties on an object. The way I did it was not very developer friendly. It involved explicitly creating the necessary expressions because the compiler won’t generate expression trees with property or field set expressions. Recently someone contacted me the help develop some kind of command pattern framework that used developer friendly lambdas to generate property set expression trees. Simply putting, given this entity class: public class Person { public string Name { get; set; } } The person in question wanted to write code like this: var et = Set((Person p) => p.Name = "me"); Where et is the expression tree that represents the property assignment. So, if we can’t do this, let’s try the next best thing that is splitting retrieving the property information from the retrieving the value to assign o the property: var et = Set((Person p) => p.Name, () => "me"); And this is something that the compiler can handle. The implementation of Set receives an expression to retrieve the property information from and another expression the retrieve the value to assign to the property: public static Expression<Action<TEntity>> Set<TEntity, TValue>( Expression<Func<TEntity, TValue>> propertyGetExpression, Expression<Func<TValue>> valueExpression) The implementation of this method gets the property information form the body of the property get expression (propertyGetExpression) and the value expression (valueExpression) to build an assign expression and builds a lambda expression using the same parameter of the property get expression as its parameter: public static Expression<Action<TEntity>> Set<TEntity, TValue>( Expression<Func<TEntity, TValue>> propertyGetExpression, Expression<Func<TValue>> valueExpression) { var entityParameterExpression = (ParameterExpression)(((MemberExpression)(propertyGetExpression.Body)).Expression); return Expression.Lambda<Action<TEntity>>( Expression.Assign(propertyGetExpression.Body, valueExpression.Body), entityParameterExpression); } And now we can use the expression to translate to another context or just compile and use it: var et = Set((Person p) => p.Name, () => name); Console.WriteLine(person.Name); // Prints: p => (p.Name = “me”) var d = et.Compile(); d(person); Console.WriteLine(person.Name); // Prints: me It can even support closures: var et = Set((Person p) => p.Name, () => name); Console.WriteLine(person.Name); // Prints: p => (p.Name = value(<>c__DisplayClass0).name) var d = et.Compile(); name = "me"; d(person); Console.WriteLine(person.Name); // Prints: me name = "you"; d(person); Console.WriteLine(person.Name); // Prints: you Not so useful in the intended scenario (but still possible) is building an expression tree that receives the value to assign to the property as a parameter: public static Expression<Action<TEntity, TValue>> Set<TEntity, TValue>(Expression<Func<TEntity, TValue>> propertyGetExpression) { var entityParameterExpression = (ParameterExpression)(((MemberExpression)(propertyGetExpression.Body)).Expression); var valueParameterExpression = Expression.Parameter(typeof(TValue)); return Expression.Lambda<Action<TEntity, TValue>>( Expression.Assign(propertyGetExpression.Body, valueParameterExpression), entityParameterExpression, valueParameterExpression); } This new expression can be used like this: var et = Set((Person p) => p.Name); Console.WriteLine(person.Name); // Prints: (p, Param_0) => (p.Name = Param_0) var d = et.Compile(); d(person, "me"); Console.WriteLine(person.Name); // Prints: me d(person, "you"); Console.WriteLine(person.Name); // Prints: you The only caveat is that we need to be able to write code to read the property in order to write to it.

    Read the article

  • LINQ: Enhancing Distinct With The SelectorEqualityComparer

    - by Paulo Morgado
    On my last post, I introduced the PredicateEqualityComparer and a Distinct extension method that receives a predicate to internally create a PredicateEqualityComparer to filter elements. Using the predicate, greatly improves readability, conciseness and expressiveness of the queries, but it can be even better. Most of the times, we don’t want to provide a comparison method but just to extract the comaprison key for the elements. So, I developed a SelectorEqualityComparer that takes a method that extracts the key value for each element. Something like this: public class SelectorEqualityComparer<TSource, Tkey> : EqualityComparer<TSource> where Tkey : IEquatable<Tkey> { private Func<TSource, Tkey> selector; public SelectorEqualityComparer(Func<TSource, Tkey> selector) : base() { this.selector = selector; } public override bool Equals(TSource x, TSource y) { Tkey xKey = this.GetKey(x); Tkey yKey = this.GetKey(y); if (xKey != null) { return ((yKey != null) && xKey.Equals(yKey)); } return (yKey == null); } public override int GetHashCode(TSource obj) { Tkey key = this.GetKey(obj); return (key == null) ? 0 : key.GetHashCode(); } public override bool Equals(object obj) { SelectorEqualityComparer<TSource, Tkey> comparer = obj as SelectorEqualityComparer<TSource, Tkey>; return (comparer != null); } public override int GetHashCode() { return base.GetType().Name.GetHashCode(); } private Tkey GetKey(TSource obj) { return (obj == null) ? (Tkey)(object)null : this.selector(obj); } } Now I can write code like this: .Distinct(new SelectorEqualityComparer<Source, Key>(x => x.Field)) And, for improved readability, conciseness and expressiveness and support for anonymous types the corresponding Distinct extension method: public static IEnumerable<TSource> Distinct<TSource, TKey>(this IEnumerable<TSource> source, Func<TSource, TKey> selector) where TKey : IEquatable<TKey> { return source.Distinct(new SelectorEqualityComparer<TSource, TKey>(selector)); } And the query is now written like this: .Distinct(x => x.Field) For most usages, it’s simpler than using a predicate.

    Read the article

  • Error installing Copy.com client

    - by jimirings
    I'm trying to install copy.com's client on Ubuntu 13.10 but when I do, I get the following error message: Gtk-Message: Failed to load module "canberra-gtk-module" (CopyAgent:4430): LIBDBUSMENU-GTK-CRITICAL **: watch_submenu: assertion 'GTK_IS_MENU_SHELL(menu)' failed From there, it initially appears that the Copy client installs correctly. I am prompted to login and their icon shows up in the task bar. However, sync does not work properly. Items placed in my Copy folder on other devices (or through the web interface) sometimes download to this machine, and sometimes don't. I have investigated the first error message and found this solution, that I should insall the libcanberra-gtk-module. But when trying to install it, it is already installed. Just to be sure, I reinstalled it but it seems to have had no effect. I attempted to investigate the second error message and found that lots of different programs give similar error messages, but all of the solutions I could find seemed to be specific to the program that was under discussion on that particular thread. Any thoughts on how I could solve this? Or at least what I can try next?

    Read the article

  • Should a programmer "think" for the client?

    - by P.Brian.Mackey
    I have gotten to the point where I hate requirements gathering. Customer's are too vague for their own good. In an agile environment, where we can show the client a piece of work to completion it's not too bad as we can make small regular corrections/updates to functionality. In a "waterfall" type in environment (requirements first, nearly complete product next) things can get ugly. This kind of environment has led me to constantly question requirements. E.G. Customer wants "automatically convert input to the number 1" (referring to a Qty in an order). But what they don't think about is that "input" could be a simple type-o. An "x" in a textbox could be a "woops" not I want 1 of those "toothpaste" products. But, there's so much in the air with requirements that I could stand and correct for hours on end smashing out what they want. This just isn't healthy. Working for a corporation, I could try to adjust the culture to fit the agile model that would help us (no small job, above my pay grade). Or, sweep ugly details under the rug and hope for the best. Maybe my customer is trying to get too close to the code? How does one handle the problem of "thinking for the client" without pissing them off with too many questions?

    Read the article

  • User Acceptance Testing Defect Classification when developing for an outside client

    - by DannyC
    I am involved in a large development project in which we (a very small start up) are developing for an outside client (a very large company). We recently received their first output from UAT testing of a fairly small iteration, which listed 12 'defects', triaged into three categories : Low, Medium and High. The issue we have is around whether everything in this list should be recorded as a 'defect' - some of the issues they found would be better described as refinements, or even 'nice-to-haves', and some we think are not defects at all. They client's QA lead says that it is standard for them to label every issues they identify as a defect, however, we are a bit uncomfortable about this. Whilst the relationship is good, we don't see a huge problem with this, but we are concerned that, if the relationship suffers in the future, these lists of 'defects' could prove costly for us. We don't want to come across as being difficult, or taking things too personally here, and we are happy to make all of the changes identified, however we are a bit concerned especially as there is a uneven power balance at play in our relationship. Are we being paranoid here? Or could we be setting ourselves up for problems down the line by agreeing to this classification?

    Read the article

  • Server-side Architecture for Online Game

    - by Draiken
    Hi, basically I have a game client that has communicate with a server for almost every action it takes, the game is in Java (using LWJGL) and right now I will start making the server. The base of the game is normally one client communicating with the server alone, but I will require later on for several clients to work together for some functionalities. I've already read how authentication server should be sepparated and I intend on doing it. The problem is I am completely inexperienced in this kind of server-side programming, all I've ever programmed were JSF web applications. I imagine I'll do socket connections for pretty much every game communication since HTML is very slow, but I still don't really know where to start on my server. I would appreciate reading material or guidelines on where to start, what architecture should the game server have and maybe some suggestions on frameworks that could help me getting the client-server communication. I've looked into JNAG but I have no experience with this kind of thing, so I can't really tell if it is a solid and good messaging layer. Any help is appreciated... Thanks !

    Read the article

  • Ubuntu 13.04 client cannot connect to Raspbian samba share

    - by envoyweb
    I have a client Ubuntu 13.04 machine trying to connect to a server running Raspbian with samba and samba-common-bin installed on the server I can see my share and when I try to login I get this error: Unable to access location: Failed to write windows share Cannot allocate memory. I have installed ntfs-3g for the usb hard drive that already auto mounts on the server so I never had to create a directory or edit fstab. Testparm on the server states the following: [global] workgroup = ENVOYWEB server string = %h server map to guest = Bad User obey pam restrictions = Yes pam password change = Yes passwd program = /usr/bin/passwd %u passwd chat = *Enter\snew\s*\spassword:* %n\n *Retype\snew\s*\spassword:* %n\n *password\supdated\ssuccessfully* . unix password sync = Yes syslog = 0 log file = /var/log/samba/log.%m max log size = 1000 dns proxy = No usershare allow guests = Yes panic action = /usr/share/samba/panic-action %d idmap config * : backend = tdb [homes] comment = Home Directories valid users = %S create mask = 0700 directory mask = 0700 browseable = No [printers] comment = All Printers path = /var/spool/samba create mask = 0700 printable = Yes print ok = Yes browseable = No [print$] comment = Printer Drivers path = /var/lib/samba/printers [BigDude] comment = Sharing BigDude's Files path = /media/BigDude/ valid users = @users read only = No create mask = 0755 testparm on the client which is running ubuntu is as follows [global] workgroup = ENVOYWEB server string = %h server (Samba, Ubuntu) map to guest = Bad User obey pam restrictions = Yes pam password change = Yes passwd program = /usr/bin/passwd %u passwd chat = *Enter\snew\s*\spassword:* %n\n *Retype\snew\s*\spassword:* %n\n *password\supdated\ssuccessfully* . unix password sync = Yes syslog = 0 log file = /var/log/samba/log.%m max log size = 1000 dns proxy = No usershare allow guests = Yes panic action = /usr/share/samba/panic-action %d idmap config * : backend = tdb [printers] comment = All Printers path = /var/spool/samba create mask = 0700 printable = Yes print ok = Yes browseable = No [print$] comment = Printer Drivers path = /var/lib/samba/printers

    Read the article

  • Win 2 years free web hosting for your site!!!

    - by mcp111
    EggHeadCafe is giving away a free 2 year Personal Class Account to Arvixe ASP.NET Web Hosting! In fact, all members who enter the drawing below win a 20% discount off a Personal Class Account. The nice thing about Arvixe is that they also accept Google checkout and Paypal. http://www.eggheadcafe.com/tutorials/aspnet/828f2029-b7be-4d15-877c-0d9e9ab74fc5/review-of-arvixecom-web-site-hosting.aspx  Tweet

    Read the article

  • Use VS2010 to deploy your SQL Database

    - by mcp111
    Did you know? You can use VS2010 to deploy your SQL databases. To access the deployment tool in Visual Studio 2010 you must first navigate to the project's properties window and find the Package/Publish SQL tab, located just below the Package/Publish Web tab. Here you will find most everything you'll need for deploying SQL databases. http://rachelappel.com/deployment/database-deployment-with-the-vs-2010-package-publish-database-tool/  Tweet

    Read the article

  • Relation between developers and clients

    - by guiman
    Hi everyone, i've been facing a situation at work and i would like to share it with you and tell me: Did you had to do it to? Should a developer be in direct contact wit the client? Or there should be an "adapter" guy that translates client needs in pseudo formal requirements understandable to us? I'm currently working in a small company that its taking care of implementing lots of systems, most of them for goverment institutions, in witch it generally means taking software developted 20 years ago and refurbish them so fit up-to-date needs. The clients generally are very used to them and tend to discourage change (they are in their 50s 60s give or take, so not technologie-friendly in general). As you can imagine, dev-team in most cases starts taking care of relation with clients, generating the documentation needed in this cases (CU usually), assisting to weekly meets to see improvements with clients. As for experience, this is a gold mine for me, because gives a nice perspective on all the aspects of software development, but also some problems rise because, if developers come from mars then client are from venus. So there is a fine gap on the vocabulary/experience/capability-to-interpret-needs that generates an noice in the communication, and some times affecting the final product.

    Read the article

  • Windows 8 and Cisco AnyConnect client issue

    - by Enrique Lima
    As many of us are doing these days, I have fully moved to Windows 8 on my PCs (laptops and desktops).  And in my role as a consultant I work with many clients, many of them use different vpn technologies.  While pretty much every single vpn client I had installed needed a trick or two to work, well Cisco’s AnyConnect vpn client had some issues.  Installation went well, no problem there.  The problem appeared when I attempted to connect, as I received the following message: Pretty clear what the issue is, right? right??!!?? Doing a bit of research (Google knows!), I cam across the following fix: Using our new favorite shortcut:  Windows Key + X Then Run > regedit. We then Navigate to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\vpnva From the image you can tell there are additional characters in the DisplayName that interfere with the device being able to be correctly identified. This is what it looks like originally. We will remove those characters so it looks more like: Close all open windows and attempt your connection.

    Read the article

  • Is it possible to use 3G internet for a TCP/IP game server?

    - by Amit Ofer
    I'm working on a turned based multiplayer android game with a friend. I started working on the game server and client using socket programming. I found a few tutorials on how to implement a basic chat on android and I started extending that example to suit my needs. Basically the game is really simple and the communication only include sending a few string from the client to the server every turn and sending the calculated scores back to all the clients after each turn. the idea is that one of the players creates the game and thus initialize the server, and each player connects to this client using ip. I tried this solution and it seems to work great when all the players are using the same wifi connection or by using router port forwarding. The problem is when trying to use 3G internet for the server, I guess the problem is that 3G ip address isn't global and you can't use port forwarding there, correct me if I'm wrong here. Is there a way to overcome this issue? or the only solution is to limit my game to wifi only or think of a different solution than the standard socket programming solution? I.E web server etc. what do you think would be the best approach here? Thanks.

    Read the article

  • Clearing Windows file share "memory"

    - by Tom Shaw
    I'm currently upgrading a Samba file server (from 3.0.23d to 3.4.3). I have a problem on the Windows client side: if the client was accessing a UNC path or mapped drive from the Samba server before the upgrade, then after the upgrade those paths or drives are not accessible. However, I can consistently resolve the client side problem for good by rebooting the client and then re-mapping all of the mapped drives. The problem appears to be related to the client's "memory" of the pre-upgrade Samba server, which the reboot and re-map clears. I have the same issue and same fix on Windows XP SP3 and Windows Server 2003 SP2. This question is specifically: is it possible to reproduce the benefits of the Windows reboot without actually rebooting the client? I have tried restarting various Windows services, disabling and enabling the network, logging out and back in again, but nothing except a reboot appears to do the trick.

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >