Search Results

Search found 5786 results on 232 pages for 'fast'.

Page 38/232 | < Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >

  • Most efficient Implementation a Tree in C++

    - by Topo
    I need to write a tree where each element may have any number of child elements, and because of this each branch of the tree may have any length. The tree is only going to receive elements at first and then it is going to use exclusively for iterating though it's branches in no specific order. The tree will have several million elements and must be fast but also memory efficient. My plan makes a node class to store the elements and the pointers to its children. When the tree is fully constructed, it would be transformed it to an array or something faster and if possible, loaded to the processor's cache. Construction and the search on the tree are two different problems. Can I focus on how to solve each problem on the best way individually? The construction of has to be as fast as possible but it can use memory as it pleases. Then the transformation into a format that give us speed when iterating the tree's branches. This should preferably be an array to avoid going back and forth from RAM to cache in each element of the tree. So the real question is which is the structure to implement a tree to maximize insert speed, how can I transform it to a structure that gives me the best speed and memory?

    Read the article

  • WIFI/LAN not working after Installing Ubuntu 13.10

    - by user183025
    I can't connect to my WIFI after installing Ubuntu 13.10. I tried re-installing it three times (thinking that I did something wrong during the installation) but I still can't connect to my WIFI. It just gives me the message that I'm offline and that I can't connect to my WIFI. I also tried connecting to the internet using LAN cable but with the same results. I tried google but it seems that there's no solution to this yet.... Anybody knows how to solve this? Thanks! FYI: H/W path Device Class Description ====================================================== system RC530/RC730 (To be filled by O.E.M.) /0 bus RC530/RC730 /0/0 memory 64KiB BIOS /0/4 processor Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz /0/4/5 memory 32KiB L1 cache /0/41 memory 4GiB System Memory /0/41/0 memory DIMM [empty] /0/41/1 memory 4GiB SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) /0/100 bridge 2nd Generation Core Processor Family DRAM Controller 02:00.0 Network controller: Intel Corporation Centrino Wireless-N 130 (rev 34) Subsystem: Intel Corporation Centrino Wireless-N 130 BGN Flags: bus master, fast devsel, latency 0, IRQ 44 Memory at f7200000 (64-bit, non-prefetchable) [size=8K] Capabilities: <access denied> Kernel driver in use: iwlwifi Kernel modules: iwlwifi 03:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller (rev 06) Subsystem: Samsung Electronics Co Ltd Device c0c1 Flags: bus master, fast devsel, latency 0, IRQ 41 I/O ports at b000 [size=256] Memory at f2104000 (64-bit, prefetchable) [size=4K] Memory at f2100000 (64-bit, prefetchable) [size=16K] Capabilities: <access denied> Kernel driver in use: r8169 Kernel modules: r8169

    Read the article

  • Blank screen during boot after clean Ubuntu 11.10 install (Intel N10 graphics)

    - by Coen
    After a clean install of Ubuntu 11.10 on my Asus eee PC 1005p, Ubuntu seems to boot correctly, except for initialization of the LCD screen. What I observe: I choose Ubuntu 11.10 in the GRUB 2 menu A blank screen with a blinking cursor in the top left of the screen, for 15-20 seconds. The ubuntu logo with 5 red dots in the center of the screen, for 1 second. The LCD screen is entirely blank The startup sound plays (Ubuntu is configured to auto-login) Still, the LCD screen is entirely blank. When I press Fn-F8 (the switch between LCD screen and external VGA), the LCD screen shows my desktop correctly and everything seems to work fine. Except for the adjust contrast buttons (Fn-F5 and Fn-F6), these seem to cycle through random brightness modes. Something like: 0% - 50% - 20% - 0% - 20% - 0% Any ideas what's causing this or how to solve this? coen@elpicu:~$ lspci -v 00:02.0 VGA compatible controller: Intel Corporation N10 Family Integrated Graphics Controller (prog-if 00 [VGA controller]) Subsystem: ASUSTeK Computer Inc. Device 83ac Flags: bus master, fast devsel, latency 0, IRQ 44 Memory at f7e00000 (32-bit, non-prefetchable) [size=512K] I/O ports at dc00 [size=8] Memory at d0000000 (32-bit, prefetchable) [size=256M] Memory at f7d00000 (32-bit, non-prefetchable) [size=1M] Expansion ROM at <unassigned> [disabled] Capabilities: <access denied> Kernel driver in use: i915 Kernel modules: i915 00:02.1 Display controller: Intel Corporation N10 Family Integrated Graphics Controller Subsystem: ASUSTeK Computer Inc. Device 83ac Flags: bus master, fast devsel, latency 0 Memory at f7e80000 (32-bit, non-prefetchable) [size=512K] Capabilities: <access denied>

    Read the article

  • SQL Server 2012 - AlwaysOn

    - by Claus Jandausch
    Ich war nicht nur irritiert, ich war sogar regelrecht schockiert - und für einen kurzen Moment sprachlos (was nur selten der Fall ist). Gerade eben hatte mich jemand gefragt "Wann Oracle denn etwas Vergleichbares wie AlwaysOn bieten würde - und ob überhaupt?" War ich hier im falschen Film gelandet? Ich konnte nicht anders, als meinen Unmut kundzutun und zu erklären, dass die Fragestellung normalerweise anders herum läuft. Zugegeben - es mag vielleicht strittige Punkte geben im Vergleich zwischen Oracle und SQL Server - bei denen nicht unbedingt immer Oracle die Nase vorn haben muss - aber das Thema Clustering für Hochverfügbarkeit (HA), Disaster Recovery (DR) und Skalierbarkeit gehört mit Sicherheit nicht dazu. Dieses Erlebnis hakte ich am Nachgang als Einzelfall ab, der so nie wieder vorkommen würde. Bis ich kurz darauf eines Besseren belehrt wurde und genau die selbe Frage erneut zu hören bekam. Diesmal sogar im Exadata-Umfeld und einem Oracle Stretch Cluster. Einmal ist keinmal, doch zweimal ist einmal zu viel... Getreu diesem alten Motto war mir klar, dass man das so nicht länger stehen lassen konnte. Ich habe keine Ahnung, wie die Microsoft Marketing Abteilung es geschafft hat, unter dem AlwaysOn Brading eine innovative Technologie vermuten zu lassen - aber sie hat ihren Job scheinbar gut gemacht. Doch abgesehen von einem guten Marketing, stellt sich natürlich die Frage, was wirklich dahinter steckt und wie sich das Ganze mit Oracle vergleichen lässt - und ob überhaupt? Damit wären wir wieder bei der ursprünglichen Frage angelangt.  So viel zum Hintergrund dieses Blogbeitrags - von meiner Antwort handelt der restliche Blog. "Windows was the God ..." Um den wahren Unterschied zwischen Oracle und Microsoft verstehen zu können, muss man zunächst das bedeutendste Microsoft Dogma kennen. Es lässt sich schlicht und einfach auf den Punkt bringen: "Alles muss auf Windows basieren." Die Überschrift dieses Absatzes ist kein von mir erfundener Ausspruch, sondern ein Zitat. Konkret stammt es aus einem längeren Artikel von Kurt Eichenwald in der Vanity Fair aus dem August 2012. Er lautet Microsoft's Lost Decade und sei jedem ans Herz gelegt, der die "Microsoft-Maschinerie" unter Steve Ballmer und einige ihrer Kuriositäten besser verstehen möchte. "YOU TALKING TO ME?" Microsoft C.E.O. Steve Ballmer bei seiner Keynote auf der 2012 International Consumer Electronics Show in Las Vegas am 9. Januar   Manche Dinge in diesem Artikel mögen überspitzt dargestellt erscheinen - sind sie aber nicht. Vieles davon kannte ich bereits aus eigener Erfahrung und kann es nur bestätigen. Anderes hat sich mir erst so richtig erschlossen. Insbesondere die folgenden Passagen führten zum Aha-Erlebnis: “Windows was the god—everything had to work with Windows,” said Stone... “Every little thing you want to write has to build off of Windows (or other existing roducts),” one software engineer said. “It can be very confusing, …” Ich habe immer schon darauf hingewiesen, dass in einem SQL Server Failover Cluster die Microsoft Datenbank eigentlich nichts Nenneswertes zum Geschehen beiträgt, sondern sich voll und ganz auf das Windows Betriebssystem verlässt. Deshalb muss man auch die Windows Server Enterprise Edition installieren, soll ein Failover Cluster für den SQL Server eingerichtet werden. Denn hier werden die Cluster Services geliefert - nicht mit dem SQL Server. Er ist nur lediglich ein weiteres Server Produkt, für das Windows in Ausfallszenarien genutzt werden kann - so wie Microsoft Exchange beispielsweise, oder Microsoft SharePoint, oder irgendein anderes Server Produkt das auf Windows gehostet wird. Auch Oracle kann damit genutzt werden. Das Stichwort lautet hier: Oracle Failsafe. Nur - warum sollte man das tun, wenn gleichzeitig eine überlegene Technologie wie die Oracle Real Application Clusters (RAC) zur Verfügung steht, die dann auch keine Windows Enterprise Edition voraussetzen, da Oracle die eigene Clusterware liefert. Welche darüber hinaus für kürzere Failover-Zeiten sorgt, da diese Cluster-Technologie Datenbank-integriert ist und sich nicht auf "Dritte" verlässt. Wenn man sich also schon keine technischen Vorteile mit einem SQL Server Failover Cluster erkauft, sondern zusätzlich noch versteckte Lizenzkosten durch die Lizenzierung der Windows Server Enterprise Edition einhandelt, warum hat Microsoft dann in den vergangenen Jahren seit SQL Server 2000 nicht ebenfalls an einer neuen und innovativen Lösung gearbeitet, die mit Oracle RAC mithalten kann? Entwickler hat Microsoft genügend? Am Geld kann es auch nicht liegen? Lesen Sie einfach noch einmal die beiden obenstehenden Zitate und sie werden den Grund verstehen. Anders lässt es sich ja auch gar nicht mehr erklären, dass AlwaysOn aus zwei unterschiedlichen Technologien besteht, die beide jedoch wiederum auf dem Windows Server Failover Clustering (WSFC) basieren. Denn daraus ergeben sich klare Nachteile - aber dazu später mehr. Um AlwaysOn zu verstehen, sollte man sich zunächst kurz in Erinnerung rufen, was Microsoft bisher an HA/DR (High Availability/Desaster Recovery) Lösungen für SQL Server zur Verfügung gestellt hat. Replikation Basiert auf logischer Replikation und Pubisher/Subscriber Architektur Transactional Replication Merge Replication Snapshot Replication Microsoft's Replikation ist vergleichbar mit Oracle GoldenGate. Oracle GoldenGate stellt jedoch die umfassendere Technologie dar und bietet High Performance. Log Shipping Microsoft's Log Shipping stellt eine einfache Technologie dar, die vergleichbar ist mit Oracle Managed Recovery in Oracle Version 7. Das Log Shipping besitzt folgende Merkmale: Transaction Log Backups werden von Primary nach Secondary/ies geschickt Einarbeitung (z.B. Restore) auf jedem Secondary individuell Optionale dritte Server Instanz (Monitor Server) für Überwachung und Alarm Log Restore Unterbrechung möglich für Read-Only Modus (Secondary) Keine Unterstützung von Automatic Failover Database Mirroring Microsoft's Database Mirroring wurde verfügbar mit SQL Server 2005, sah aus wie Oracle Data Guard in Oracle 9i, war funktional jedoch nicht so umfassend. Für ein HA/DR Paar besteht eine 1:1 Beziehung, um die produktive Datenbank (Principle DB) abzusichern. Auf der Standby Datenbank (Mirrored DB) werden alle Insert-, Update- und Delete-Operationen nachgezogen. Modi Synchron (High-Safety Modus) Asynchron (High-Performance Modus) Automatic Failover Unterstützt im High-Safety Modus (synchron) Witness Server vorausgesetzt     Zur Frage der Kontinuität Es stellt sich die Frage, wie es um diesen Technologien nun im Zusammenhang mit SQL Server 2012 bestellt ist. Unter Fanfaren seinerzeit eingeführt, war Database Mirroring das erklärte Mittel der Wahl. Ich bin kein Produkt Manager bei Microsoft und kann hierzu nur meine Meinung äußern, aber zieht man den SQL AlwaysOn Team Blog heran, so sieht es nicht gut aus für das Database Mirroring - zumindest nicht langfristig. "Does AlwaysOn Availability Group replace Database Mirroring going forward?” “The short answer is we recommend that you migrate from the mirroring configuration or even mirroring and log shipping configuration to using Availability Group. Database Mirroring will still be available in the Denali release but will be phased out over subsequent releases. Log Shipping will continue to be available in future releases.” Damit wären wir endlich beim eigentlichen Thema angelangt. Was ist eine sogenannte Availability Group und was genau hat es mit der vielversprechend klingenden Bezeichnung AlwaysOn auf sich?   SQL Server 2012 - AlwaysOn Zwei HA-Features verstekcne sich hinter dem “AlwaysOn”-Branding. Einmal das AlwaysOn Failover Clustering aka SQL Server Failover Cluster Instances (FCI) - zum Anderen die AlwaysOn Availability Groups. Failover Cluster Instances (FCI) Entspricht ungefähr dem Stretch Cluster Konzept von Oracle Setzt auf Windows Server Failover Clustering (WSFC) auf Bietet HA auf Instanz-Ebene AlwaysOn Availability Groups (Verfügbarkeitsgruppen) Ähnlich der Idee von Consistency Groups, wie in Storage-Level Replikations-Software von z.B. EMC SRDF Abhängigkeiten zu Windows Server Failover Clustering (WSFC) Bietet HA auf Datenbank-Ebene   Hinweis: Verwechseln Sie nicht eine SQL Server Datenbank mit einer Oracle Datenbank. Und auch nicht eine Oracle Instanz mit einer SQL Server Instanz. Die gleichen Begriffe haben hier eine andere Bedeutung - nicht selten ein Grund, weshalb Oracle- und Microsoft DBAs schnell aneinander vorbei reden. Denken Sie bei einer SQL Server Datenbank eher an ein Oracle Schema, das kommt der Sache näher. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema. Wenn Sie die genauen Unterschiede kennen möchten, finden Sie eine detaillierte Beschreibung in meinem Buch "Oracle10g Release 2 für Windows und .NET", erhältich bei Lehmanns, Amazon, etc.   Windows Server Failover Clustering (WSFC) Wie man sieht, basieren beide AlwaysOn Technologien wiederum auf dem Windows Server Failover Clustering (WSFC), um einerseits Hochverfügbarkeit auf Ebene der Instanz zu gewährleisten und andererseits auf der Datenbank-Ebene. Deshalb nun eine kurze Beschreibung der WSFC. Die WSFC sind ein mit dem Windows Betriebssystem geliefertes Infrastruktur-Feature, um HA für Server Anwendungen, wie Microsoft Exchange, SharePoint, SQL Server, etc. zu bieten. So wie jeder andere Cluster, besteht ein WSFC Cluster aus einer Gruppe unabhängiger Server, die zusammenarbeiten, um die Verfügbarkeit einer Applikation oder eines Service zu erhöhen. Falls ein Cluster-Knoten oder -Service ausfällt, kann der auf diesem Knoten bisher gehostete Service automatisch oder manuell auf einen anderen im Cluster verfügbaren Knoten transferriert werden - was allgemein als Failover bekannt ist. Unter SQL Server 2012 verwenden sowohl die AlwaysOn Avalability Groups, als auch die AlwaysOn Failover Cluster Instances die WSFC als Plattformtechnologie, um Komponenten als WSFC Cluster-Ressourcen zu registrieren. Verwandte Ressourcen werden in eine Ressource Group zusammengefasst, die in Abhängigkeit zu anderen WSFC Cluster-Ressourcen gebracht werden kann. Der WSFC Cluster Service kann jetzt die Notwendigkeit zum Neustart der SQL Server Instanz erfassen oder einen automatischen Failover zu einem anderen Server-Knoten im WSFC Cluster auslösen.   Failover Cluster Instances (FCI) Eine SQL Server Failover Cluster Instanz (FCI) ist eine einzelne SQL Server Instanz, die in einem Failover Cluster betrieben wird, der aus mehreren Windows Server Failover Clustering (WSFC) Knoten besteht und so HA (High Availability) auf Ebene der Instanz bietet. Unter Verwendung von Multi-Subnet FCI kann auch Remote DR (Disaster Recovery) unterstützt werden. Eine weitere Option für Remote DR besteht darin, eine unter FCI gehostete Datenbank in einer Availability Group zu betreiben. Hierzu später mehr. FCI und WSFC Basis FCI, das für lokale Hochverfügbarkeit der Instanzen genutzt wird, ähnelt der veralteten Architektur eines kalten Cluster (Aktiv-Passiv). Unter SQL Server 2008 wurde diese Technologie SQL Server 2008 Failover Clustering genannt. Sie nutzte den Windows Server Failover Cluster. In SQL Server 2012 hat Microsoft diese Basistechnologie unter der Bezeichnung AlwaysOn zusammengefasst. Es handelt sich aber nach wie vor um die klassische Aktiv-Passiv-Konfiguration. Der Ablauf im Failover-Fall ist wie folgt: Solange kein Hardware-oder System-Fehler auftritt, werden alle Dirty Pages im Buffer Cache auf Platte geschrieben Alle entsprechenden SQL Server Services (Dienste) in der Ressource Gruppe werden auf dem aktiven Knoten gestoppt Die Ownership der Ressource Gruppe wird auf einen anderen Knoten der FCI transferriert Der neue Owner (Besitzer) der Ressource Gruppe startet seine SQL Server Services (Dienste) Die Connection-Anforderungen einer Client-Applikation werden automatisch auf den neuen aktiven Knoten mit dem selben Virtuellen Network Namen (VNN) umgeleitet Abhängig vom Zeitpunkt des letzten Checkpoints, kann die Anzahl der Dirty Pages im Buffer Cache, die noch auf Platte geschrieben werden müssen, zu unvorhersehbar langen Failover-Zeiten führen. Um diese Anzahl zu drosseln, besitzt der SQL Server 2012 eine neue Fähigkeit, die Indirect Checkpoints genannt wird. Indirect Checkpoints ähnelt dem Fast-Start MTTR Target Feature der Oracle Datenbank, das bereits mit Oracle9i verfügbar war.   SQL Server Multi-Subnet Clustering Ein SQL Server Multi-Subnet Failover Cluster entspricht vom Konzept her einem Oracle RAC Stretch Cluster. Doch dies ist nur auf den ersten Blick der Fall. Im Gegensatz zu RAC ist in einem lokalen SQL Server Failover Cluster jeweils nur ein Knoten aktiv für eine Datenbank. Für die Datenreplikation zwischen geografisch entfernten Sites verlässt sich Microsoft auf 3rd Party Lösungen für das Storage Mirroring.     Die Verbesserung dieses Szenario mit einer SQL Server 2012 Implementierung besteht schlicht darin, dass eine VLAN-Konfiguration (Virtual Local Area Network) nun nicht mehr benötigt wird, so wie dies bisher der Fall war. Das folgende Diagramm stellt dar, wie der Ablauf mit SQL Server 2012 gehandhabt wird. In Site A und Site B wird HA jeweils durch einen lokalen Aktiv-Passiv-Cluster sichergestellt.     Besondere Aufmerksamkeit muss hier der Konfiguration und dem Tuning geschenkt werden, da ansonsten völlig inakzeptable Failover-Zeiten resultieren. Dies liegt darin begründet, weil die Downtime auf Client-Seite nun nicht mehr nur von der reinen Failover-Zeit abhängt, sondern zusätzlich von der Dauer der DNS Replikation zwischen den DNS Servern. (Rufen Sie sich in Erinnerung, dass wir gerade von Multi-Subnet Clustering sprechen). Außerdem ist zu berücksichtigen, wie schnell die Clients die aktualisierten DNS Informationen abfragen. Spezielle Konfigurationen für Node Heartbeat, HostRecordTTL (Host Record Time-to-Live) und Intersite Replication Frequeny für Active Directory Sites und Services werden notwendig. Default TTL für Windows Server 2008 R2: 20 Minuten Empfohlene Einstellung: 1 Minute DNS Update Replication Frequency in Windows Umgebung: 180 Minuten Empfohlene Einstellung: 15 Minuten (minimaler Wert)   Betrachtet man diese Werte, muss man feststellen, dass selbst eine optimale Konfiguration die rigiden SLAs (Service Level Agreements) heutiger geschäftskritischer Anwendungen für HA und DR nicht erfüllen kann. Denn dies impliziert eine auf der Client-Seite erlebte Failover-Zeit von insgesamt 16 Minuten. Hierzu ein Auszug aus der SQL Server 2012 Online Dokumentation: Cons: If a cross-subnet failover occurs, the client recovery time could be 15 minutes or longer, depending on your HostRecordTTL setting and the setting of your cross-site DNS/AD replication schedule.    Wir sind hier an einem Punkt unserer Überlegungen angelangt, an dem sich erklärt, weshalb ich zuvor das "Windows was the God ..." Zitat verwendet habe. Die unbedingte Abhängigkeit zu Windows wird zunehmend zum Problem, da sie die Komplexität einer Microsoft-basierenden Lösung erhöht, anstelle sie zu reduzieren. Und Komplexität ist das Letzte, was sich CIOs heutzutage wünschen.  Zur Ehrenrettung des SQL Server 2012 und AlwaysOn muss man sagen, dass derart lange Failover-Zeiten kein unbedingtes "Muss" darstellen, sondern ein "Kann". Doch auch ein "Kann" kann im unpassenden Moment unvorhersehbare und kostspielige Folgen haben. Die Unabsehbarkeit ist wiederum Ursache vieler an der Implementierung beteiligten Komponenten und deren Abhängigkeiten, wie beispielsweise drei Cluster-Lösungen (zwei von Microsoft, eine 3rd Party Lösung). Wie man die Sache auch dreht und wendet, kommt man an diesem Fakt also nicht vorbei - ganz unabhängig von der Dauer einer Downtime oder Failover-Zeiten. Im Gegensatz zu AlwaysOn und der hier vorgestellten Version eines Stretch-Clusters, vermeidet eine entsprechende Oracle Implementierung eine derartige Komplexität, hervorgerufen duch multiple Abhängigkeiten. Den Unterschied machen Datenbank-integrierte Mechanismen, wie Fast Application Notification (FAN) und Fast Connection Failover (FCF). Für Oracle MAA Konfigurationen (Maximum Availability Architecture) sind Inter-Site Failover-Zeiten im Bereich von Sekunden keine Seltenheit. Wenn Sie dem Link zur Oracle MAA folgen, finden Sie außerdem eine Reihe an Customer Case Studies. Auch dies ist ein wichtiges Unterscheidungsmerkmal zu AlwaysOn, denn die Oracle Technologie hat sich bereits zigfach in höchst kritischen Umgebungen bewährt.   Availability Groups (Verfügbarkeitsgruppen) Die sogenannten Availability Groups (Verfügbarkeitsgruppen) sind - neben FCI - der weitere Baustein von AlwaysOn.   Hinweis: Bevor wir uns näher damit beschäftigen, sollten Sie sich noch einmal ins Gedächtnis rufen, dass eine SQL Server Datenbank nicht die gleiche Bedeutung besitzt, wie eine Oracle Datenbank, sondern eher einem Oracle Schema entspricht. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema.   Eine Verfügbarkeitsgruppe setzt sich zusammen aus einem Set mehrerer Benutzer-Datenbanken, die im Falle eines Failover gemeinsam als Gruppe behandelt werden. Eine Verfügbarkeitsgruppe unterstützt ein Set an primären Datenbanken (primäres Replikat) und einem bis vier Sets von entsprechenden sekundären Datenbanken (sekundäre Replikate).       Es können jedoch nicht alle SQL Server Datenbanken einer AlwaysOn Verfügbarkeitsgruppe zugeordnet werden. Der SQL Server Spezialist Michael Otey zählt in seinem SQL Server Pro Artikel folgende Anforderungen auf: Verfügbarkeitsgruppen müssen mit Benutzer-Datenbanken erstellt werden. System-Datenbanken können nicht verwendet werden Die Datenbanken müssen sich im Read-Write Modus befinden. Read-Only Datenbanken werden nicht unterstützt Die Datenbanken in einer Verfügbarkeitsgruppe müssen Multiuser Datenbanken sein Sie dürfen nicht das AUTO_CLOSE Feature verwenden Sie müssen das Full Recovery Modell nutzen und es muss ein vollständiges Backup vorhanden sein Eine gegebene Datenbank kann sich nur in einer einzigen Verfügbarkeitsgruppe befinden und diese Datenbank düerfen nicht für Database Mirroring konfiguriert sein Microsoft empfiehl außerdem, dass der Verzeichnispfad einer Datenbank auf dem primären und sekundären Server identisch sein sollte Wie man sieht, eignen sich Verfügbarkeitsgruppen nicht, um HA und DR vollständig abzubilden. Die Unterscheidung zwischen der Instanzen-Ebene (FCI) und Datenbank-Ebene (Availability Groups) ist von hoher Bedeutung. Vor kurzem wurde mir gesagt, dass man mit den Verfügbarkeitsgruppen auf Shared Storage verzichten könne und dadurch Kosten spart. So weit so gut ... Man kann natürlich eine Installation rein mit Verfügbarkeitsgruppen und ohne FCI durchführen - aber man sollte sich dann darüber bewusst sein, was man dadurch alles nicht abgesichert hat - und dies wiederum für Desaster Recovery (DR) und SLAs (Service Level Agreements) bedeutet. Kurzum, um die Kombination aus beiden AlwaysOn Produkten und der damit verbundene Komplexität kommt man wohl in der Praxis nicht herum.    Availability Groups und WSFC AlwaysOn hängt von Windows Server Failover Clustering (WSFC) ab, um die aktuellen Rollen der Verfügbarkeitsreplikate einer Verfügbarkeitsgruppe zu überwachen und zu verwalten, und darüber zu entscheiden, wie ein Failover-Ereignis die Verfügbarkeitsreplikate betrifft. Das folgende Diagramm zeigt de Beziehung zwischen Verfügbarkeitsgruppen und WSFC:   Der Verfügbarkeitsmodus ist eine Eigenschaft jedes Verfügbarkeitsreplikats. Synychron und Asynchron können also gemischt werden: Availability Modus (Verfügbarkeitsmodus) Asynchroner Commit-Modus Primäres replikat schließt Transaktionen ohne Warten auf Sekundäres Synchroner Commit-Modus Primäres Replikat wartet auf Commit von sekundärem Replikat Failover Typen Automatic Manual Forced (mit möglichem Datenverlust) Synchroner Commit-Modus Geplanter, manueller Failover ohne Datenverlust Automatischer Failover ohne Datenverlust Asynchroner Commit-Modus Nur Forced, manueller Failover mit möglichem Datenverlust   Der SQL Server kennt keinen separaten Switchover Begriff wie in Oracle Data Guard. Für SQL Server werden alle Role Transitions als Failover bezeichnet. Tatsächlich unterstützt der SQL Server keinen Switchover für asynchrone Verbindungen. Es gibt nur die Form des Forced Failover mit möglichem Datenverlust. Eine ähnliche Fähigkeit wie der Switchover unter Oracle Data Guard ist so nicht gegeben.   SQL Sever FCI mit Availability Groups (Verfügbarkeitsgruppen) Neben den Verfügbarkeitsgruppen kann eine zweite Failover-Ebene eingerichtet werden, indem SQL Server FCI (auf Shared Storage) mit WSFC implementiert wird. Ein Verfügbarkeitesreplikat kann dann auf einer Standalone Instanz gehostet werden, oder einer FCI Instanz. Zum Verständnis: Die Verfügbarkeitsgruppen selbst benötigen kein Shared Storage. Diese Kombination kann verwendet werden für lokale HA auf Ebene der Instanz und DR auf Datenbank-Ebene durch Verfügbarkeitsgruppen. Das folgende Diagramm zeigt dieses Szenario:   Achtung! Hier handelt es sich nicht um ein Pendant zu Oracle RAC plus Data Guard, auch wenn das Bild diesen Eindruck vielleicht vermitteln mag - denn alle sekundären Knoten im FCI sind rein passiv. Es existiert außerdem eine weitere und ernsthafte Einschränkung: SQL Server Failover Cluster Instanzen (FCI) unterstützen nicht das automatische AlwaysOn Failover für Verfügbarkeitsgruppen. Jedes unter FCI gehostete Verfügbarkeitsreplikat kann nur für manuelles Failover konfiguriert werden.   Lesbare Sekundäre Replikate Ein oder mehrere Verfügbarkeitsreplikate in einer Verfügbarkeitsgruppe können für den lesenden Zugriff konfiguriert werden, wenn sie als sekundäres Replikat laufen. Dies ähnelt Oracle Active Data Guard, jedoch gibt es Einschränkungen. Alle Abfragen gegen die sekundäre Datenbank werden automatisch auf das Snapshot Isolation Level abgebildet. Es handelt sich dabei um eine Versionierung der Rows. Microsoft versuchte hiermit die Oracle MVRC (Multi Version Read Consistency) nachzustellen. Tatsächlich muss man die SQL Server Snapshot Isolation eher mit Oracle Flashback vergleichen. Bei der Implementierung des Snapshot Isolation Levels handelt sich um ein nachträglich aufgesetztes Feature und nicht um einen inhärenten Teil des Datenbank-Kernels, wie im Falle Oracle. (Ich werde hierzu in Kürze einen weiteren Blogbeitrag verfassen, wenn ich mich mit der neuen SQL Server 2012 Core Lizenzierung beschäftige.) Für die Praxis entstehen aus der Abbildung auf das Snapshot Isolation Level ernsthafte Restriktionen, derer man sich für den Betrieb in der Praxis bereits vorab bewusst sein sollte: Sollte auf der primären Datenbank eine aktive Transaktion zu dem Zeitpunkt existieren, wenn ein lesbares sekundäres Replikat in die Verfügbarkeitsgruppe aufgenommen wird, werden die Row-Versionen auf der korrespondierenden sekundären Datenbank nicht sofort vollständig verfügbar sein. Eine aktive Transaktion auf dem primären Replikat muss zuerst abgeschlossen (Commit oder Rollback) und dieser Transaktions-Record auf dem sekundären Replikat verarbeitet werden. Bis dahin ist das Isolation Level Mapping auf der sekundären Datenbank unvollständig und Abfragen sind temporär geblockt. Microsoft sagt dazu: "This is needed to guarantee that row versions are available on the secondary replica before executing the query under snapshot isolation as all isolation levels are implicitly mapped to snapshot isolation." (SQL Storage Engine Blog: AlwaysOn: I just enabled Readable Secondary but my query is blocked?)  Grundlegend bedeutet dies, dass ein aktives lesbares Replikat nicht in die Verfügbarkeitsgruppe aufgenommen werden kann, ohne das primäre Replikat vorübergehend stillzulegen. Da Leseoperationen auf das Snapshot Isolation Transaction Level abgebildet werden, kann die Bereinigung von Ghost Records auf dem primären Replikat durch Transaktionen auf einem oder mehreren sekundären Replikaten geblockt werden - z.B. durch eine lang laufende Abfrage auf dem sekundären Replikat. Diese Bereinigung wird auch blockiert, wenn die Verbindung zum sekundären Replikat abbricht oder der Datenaustausch unterbrochen wird. Auch die Log Truncation wird in diesem Zustant verhindert. Wenn dieser Zustand längere Zeit anhält, empfiehlt Microsoft das sekundäre Replikat aus der Verfügbarkeitsgruppe herauszunehmen - was ein ernsthaftes Downtime-Problem darstellt. Die Read-Only Workload auf den sekundären Replikaten kann eingehende DDL Änderungen blockieren. Obwohl die Leseoperationen aufgrund der Row-Versionierung keine Shared Locks halten, führen diese Operatioen zu Sch-S Locks (Schemastabilitätssperren). DDL-Änderungen durch Redo-Operationen können dadurch blockiert werden. Falls DDL aufgrund konkurrierender Lese-Workload blockiert wird und der Schwellenwert für 'Recovery Interval' (eine SQL Server Konfigurationsoption) überschritten wird, generiert der SQL Server das Ereignis sqlserver.lock_redo_blocked, welches Microsoft zum Kill der blockierenden Leser empfiehlt. Auf die Verfügbarkeit der Anwendung wird hierbei keinerlei Rücksicht genommen.   Keine dieser Einschränkungen existiert mit Oracle Active Data Guard.   Backups auf sekundären Replikaten  Über die sekundären Replikate können Backups (BACKUP DATABASE via Transact-SQL) nur als copy-only Backups einer vollständigen Datenbank, Dateien und Dateigruppen erstellt werden. Das Erstellen inkrementeller Backups ist nicht unterstützt, was ein ernsthafter Rückstand ist gegenüber der Backup-Unterstützung physikalischer Standbys unter Oracle Data Guard. Hinweis: Ein möglicher Workaround via Snapshots, bleibt ein Workaround. Eine weitere Einschränkung dieses Features gegenüber Oracle Data Guard besteht darin, dass das Backup eines sekundären Replikats nicht ausgeführt werden kann, wenn es nicht mit dem primären Replikat kommunizieren kann. Darüber hinaus muss das sekundäre Replikat synchronisiert sein oder sich in der Synchronisation befinden, um das Beackup auf dem sekundären Replikat erstellen zu können.   Vergleich von Microsoft AlwaysOn mit der Oracle MAA Ich komme wieder zurück auf die Eingangs erwähnte, mehrfach an mich gestellte Frage "Wann denn - und ob überhaupt - Oracle etwas Vergleichbares wie AlwaysOn bieten würde?" und meine damit verbundene (kurze) Irritation. Wenn Sie diesen Blogbeitrag bis hierher gelesen haben, dann kennen Sie jetzt meine darauf gegebene Antwort. Der eine oder andere Punkt traf dabei nicht immer auf Jeden zu, was auch nicht der tiefere Sinn und Zweck meiner Antwort war. Wenn beispielsweise kein Multi-Subnet mit im Spiel ist, sind alle diesbezüglichen Kritikpunkte zunächst obsolet. Was aber nicht bedeutet, dass sie nicht bereits morgen schon wieder zum Thema werden könnten (Sag niemals "Nie"). In manch anderes Fettnäpfchen tritt man wiederum nicht unbedingt in einer Testumgebung, sondern erst im laufenden Betrieb. Erst recht nicht dann, wenn man sich potenzieller Probleme nicht bewusst ist und keine dedizierten Tests startet. Und wer AlwaysOn erfolgreich positionieren möchte, wird auch gar kein Interesse daran haben, auf mögliche Schwachstellen und den besagten Teufel im Detail aufmerksam zu machen. Das ist keine Unterstellung - es ist nur menschlich. Außerdem ist es verständlich, dass man sich in erster Linie darauf konzentriert "was geht" und "was gut läuft", anstelle auf das "was zu Problemen führen kann" oder "nicht funktioniert". Wer will schon der Miesepeter sein? Für mich selbst gesprochen, kann ich nur sagen, dass ich lieber vorab von allen möglichen Einschränkungen wissen möchte, anstelle sie dann nach einer kurzen Zeit der heilen Welt schmerzhaft am eigenen Leib erfahren zu müssen. Ich bin davon überzeugt, dass es Ihnen nicht anders geht. Nachfolgend deshalb eine Zusammenfassung all jener Punkte, die ich im Vergleich zur Oracle MAA (Maximum Availability Architecture) als unbedingt Erwähnenswert betrachte, falls man eine Evaluierung von Microsoft AlwaysOn in Betracht zieht. 1. AlwaysOn ist eine komplexe Technologie Der SQL Server AlwaysOn Stack ist zusammengesetzt aus drei verschiedenen Technlogien: Windows Server Failover Clustering (WSFC) SQL Server Failover Cluster Instances (FCI) SQL Server Availability Groups (Verfügbarkeitsgruppen) Man kann eine derartige Lösung nicht als nahtlos bezeichnen, wofür auch die vielen von Microsoft dargestellten Einschränkungen sprechen. Während sich frühere SQL Server Versionen in Richtung eigener HA/DR Technologien entwickelten (wie Database Mirroring), empfiehlt Microsoft nun die Migration. Doch weshalb dieser Schwenk? Er führt nicht zu einem konsisten und robusten Angebot an HA/DR Technologie für geschäftskritische Umgebungen.  Liegt die Antwort in meiner These begründet, nach der "Windows was the God ..." noch immer gilt und man die Nachteile der allzu engen Kopplung mit Windows nicht sehen möchte? Entscheiden Sie selbst ... 2. Failover Cluster Instanzen - Kein RAC-Pendant Die SQL Server und Windows Server Clustering Technologie basiert noch immer auf dem veralteten Aktiv-Passiv Modell und führt zu einer Verschwendung von Systemressourcen. In einer Betrachtung von lediglich zwei Knoten erschließt sich auf Anhieb noch nicht der volle Mehrwert eines Aktiv-Aktiv Clusters (wie den Real Application Clusters), wie er von Oracle bereits vor zehn Jahren entwickelt wurde. Doch kennt man die Vorzüge der Skalierbarkeit durch einfaches Hinzufügen weiterer Cluster-Knoten, die dann alle gemeinsam als ein einziges logisches System zusammenarbeiten, versteht man was hinter dem Motto "Pay-as-you-Grow" steckt. In einem Aktiv-Aktiv Cluster geht es zwar auch um Hochverfügbarkeit - und ein Failover erfolgt zudem schneller, als in einem Aktiv-Passiv Modell - aber es geht eben nicht nur darum. An dieser Stelle sei darauf hingewiesen, dass die Oracle 11g Standard Edition bereits die Nutzung von Oracle RAC bis zu vier Sockets kostenfrei beinhaltet. Möchten Sie dazu Windows nutzen, benötigen Sie keine Windows Server Enterprise Edition, da Oracle 11g die eigene Clusterware liefert. Sie kommen in den Genuss von Hochverfügbarkeit und Skalierbarkeit und können dazu die günstigere Windows Server Standard Edition nutzen. 3. SQL Server Multi-Subnet Clustering - Abhängigkeit zu 3rd Party Storage Mirroring  Die SQL Server Multi-Subnet Clustering Architektur unterstützt den Aufbau eines Stretch Clusters, basiert dabei aber auf dem Aktiv-Passiv Modell. Das eigentlich Problematische ist jedoch, dass man sich zur Absicherung der Datenbank auf 3rd Party Storage Mirroring Technologie verlässt, ohne Integration zwischen dem Windows Server Failover Clustering (WSFC) und der darunterliegenden Mirroring Technologie. Wenn nun im Cluster ein Failover auf Instanzen-Ebene erfolgt, existiert keine Koordination mit einem möglichen Failover auf Ebene des Storage-Array. 4. Availability Groups (Verfügbarkeitsgruppen) - Vier, oder doch nur Zwei? Ein primäres Replikat erlaubt bis zu vier sekundäre Replikate innerhalb einer Verfügbarkeitsgruppe, jedoch nur zwei im Synchronen Commit Modus. Während dies zwar einen Vorteil gegenüber dem stringenten 1:1 Modell unter Database Mirroring darstellt, fällt der SQL Server 2012 damit immer noch weiter zurück hinter Oracle Data Guard mit bis zu 30 direkten Stanbdy Zielen - und vielen weiteren durch kaskadierende Ziele möglichen. Damit eignet sich Oracle Active Data Guard auch für die Bereitstellung einer Reader-Farm Skalierbarkeit für Internet-basierende Unternehmen. Mit AwaysOn Verfügbarkeitsgruppen ist dies nicht möglich. 5. Availability Groups (Verfügbarkeitsgruppen) - kein asynchrones Switchover  Die Technologie der Verfügbarkeitsgruppen wird auch als geeignetes Mittel für administrative Aufgaben positioniert - wie Upgrades oder Wartungsarbeiten. Man muss sich jedoch einem gravierendem Defizit bewusst sein: Im asynchronen Verfügbarkeitsmodus besteht die einzige Möglichkeit für Role Transition im Forced Failover mit Datenverlust! Um den Verlust von Daten durch geplante Wartungsarbeiten zu vermeiden, muss man den synchronen Verfügbarkeitsmodus konfigurieren, was jedoch ernstzunehmende Auswirkungen auf WAN Deployments nach sich zieht. Spinnt man diesen Gedanken zu Ende, kommt man zu dem Schluss, dass die Technologie der Verfügbarkeitsgruppen für geplante Wartungsarbeiten in einem derartigen Umfeld nicht effektiv genutzt werden kann. 6. Automatisches Failover - Nicht immer möglich Sowohl die SQL Server FCI, als auch Verfügbarkeitsgruppen unterstützen automatisches Failover. Möchte man diese jedoch kombinieren, wird das Ergebnis kein automatisches Failover sein. Denn ihr Zusammentreffen im Failover-Fall führt zu Race Conditions (Wettlaufsituationen), weshalb diese Konfiguration nicht länger das automatische Failover zu einem Replikat in einer Verfügbarkeitsgruppe erlaubt. Auch hier bestätigt sich wieder die tiefere Problematik von AlwaysOn, mit einer Zusammensetzung aus unterschiedlichen Technologien und der Abhängigkeit zu Windows. 7. Problematische RTO (Recovery Time Objective) Microsoft postioniert die SQL Server Multi-Subnet Clustering Architektur als brauchbare HA/DR Architektur. Bedenkt man jedoch die Problematik im Zusammenhang mit DNS Replikation und den möglichen langen Wartezeiten auf Client-Seite von bis zu 16 Minuten, sind strenge RTO Anforderungen (Recovery Time Objectives) nicht erfüllbar. Im Gegensatz zu Oracle besitzt der SQL Server keine Datenbank-integrierten Technologien, wie Oracle Fast Application Notification (FAN) oder Oracle Fast Connection Failover (FCF). 8. Problematische RPO (Recovery Point Objective) SQL Server ermöglicht Forced Failover (erzwungenes Failover), bietet jedoch keine Möglichkeit zur automatischen Übertragung der letzten Datenbits von einem alten zu einem neuen primären Replikat, wenn der Verfügbarkeitsmodus asynchron war. Oracle Data Guard hingegen bietet diese Unterstützung durch das Flush Redo Feature. Dies sichert "Zero Data Loss" und beste RPO auch in erzwungenen Failover-Situationen. 9. Lesbare Sekundäre Replikate mit Einschränkungen Aufgrund des Snapshot Isolation Transaction Level für lesbare sekundäre Replikate, besitzen diese Einschränkungen mit Auswirkung auf die primäre Datenbank. Die Bereinigung von Ghost Records auf der primären Datenbank, wird beeinflusst von lang laufenden Abfragen auf der lesabaren sekundären Datenbank. Die lesbare sekundäre Datenbank kann nicht in die Verfügbarkeitsgruppe aufgenommen werden, wenn es aktive Transaktionen auf der primären Datenbank gibt. Zusätzlich können DLL Änderungen auf der primären Datenbank durch Abfragen auf der sekundären blockiert werden. Und imkrementelle Backups werden hier nicht unterstützt.   Keine dieser Restriktionen existiert unter Oracle Data Guard.

    Read the article

  • NET Math Libraries

    - by JoshReuben
    NET Mathematical Libraries   .NET Builder for Matlab The MathWorks Inc. - http://www.mathworks.com/products/netbuilder/ MATLAB Builder NE generates MATLAB based .NET and COM components royalty-free deployment creates the components by encrypting MATLAB functions and generating either a .NET or COM wrapper around them. .NET/Link for Mathematica www.wolfram.com a product that 2-way integrates Mathematica and Microsoft's .NET platform call .NET from Mathematica - use arbitrary .NET types directly from the Mathematica language. use and control the Mathematica kernel from a .NET program. turns Mathematica into a scripting shell to leverage the computational services of Mathematica. write custom front ends for Mathematica or use Mathematica as a computational engine for another program comes with full source code. Leverages MathLink - a Wolfram Research's protocol for sending data and commands back and forth between Mathematica and other programs. .NET/Link abstracts the low-level details of the MathLink C API. Extreme Optimization http://www.extremeoptimization.com/ a collection of general-purpose mathematical and statistical classes built for the.NET framework. It combines a math library, a vector and matrix library, and a statistics library in one package. download the trial of version 4.0 to try it out. Multi-core ready - Full support for Task Parallel Library features including cancellation. Broad base of algorithms covering a wide range of numerical techniques, including: linear algebra (BLAS and LAPACK routines), numerical analysis (integration and differentiation), equation solvers. Mathematics leverages parallelism using .NET 4.0's Task Parallel Library. Basic math: Complex numbers, 'special functions' like Gamma and Bessel functions, numerical differentiation. Solving equations: Solve equations in one variable, or solve systems of linear or nonlinear equations. Curve fitting: Linear and nonlinear curve fitting, cubic splines, polynomials, orthogonal polynomials. Optimization: find the minimum or maximum of a function in one or more variables, linear programming and mixed integer programming. Numerical integration: Compute integrals over finite or infinite intervals, over 2D and higher dimensional regions. Integrate systems of ordinary differential equations (ODE's). Fast Fourier Transforms: 1D and 2D FFT's using managed or fast native code (32 and 64 bit) BigInteger, BigRational, and BigFloat: Perform operations with arbitrary precision. Vector and Matrix Library Real and complex vectors and matrices. Single and double precision for elements. Structured matrix types: including triangular, symmetrical and band matrices. Sparse matrices. Matrix factorizations: LU decomposition, QR decomposition, singular value decomposition, Cholesky decomposition, eigenvalue decomposition. Portability and performance: Calculations can be done in 100% managed code, or in hand-optimized processor-specific native code (32 and 64 bit). Statistics Data manipulation: Sort and filter data, process missing values, remove outliers, etc. Supports .NET data binding. Statistical Models: Simple, multiple, nonlinear, logistic, Poisson regression. Generalized Linear Models. One and two-way ANOVA. Hypothesis Tests: 12 14 hypothesis tests, including the z-test, t-test, F-test, runs test, and more advanced tests, such as the Anderson-Darling test for normality, one and two-sample Kolmogorov-Smirnov test, and Levene's test for homogeneity of variances. Multivariate Statistics: K-means cluster analysis, hierarchical cluster analysis, principal component analysis (PCA), multivariate probability distributions. Statistical Distributions: 25 29 continuous and discrete statistical distributions, including uniform, Poisson, normal, lognormal, Weibull and Gumbel (extreme value) distributions. Random numbers: Random variates from any distribution, 4 high-quality random number generators, low discrepancy sequences, shufflers. New in version 4.0 (November, 2010) Support for .NET Framework Version 4.0 and Visual Studio 2010 TPL Parallellized – multicore ready sparse linear program solver - can solve problems with more than 1 million variables. Mixed integer linear programming using a branch and bound algorithm. special functions: hypergeometric, Riemann zeta, elliptic integrals, Frensel functions, Dawson's integral. Full set of window functions for FFT's. Product  Price Update subscription Single Developer License $999  $399  Team License (3 developers) $1999  $799  Department License (8 developers) $3999  $1599  Site License (Unlimited developers in one physical location) $7999  $3199    NMath http://www.centerspace.net .NET math and statistics libraries matrix and vector classes random number generators Fast Fourier Transforms (FFTs) numerical integration linear programming linear regression curve and surface fitting optimization hypothesis tests analysis of variance (ANOVA) probability distributions principal component analysis cluster analysis built on the Intel Math Kernel Library (MKL), which contains highly-optimized, extensively-threaded versions of BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear Algebra PACKage). Product  Price Update subscription Single Developer License $1295 $388 Team License (5 developers) $5180 $1554   DotNumerics http://www.dotnumerics.com/NumericalLibraries/Default.aspx free DotNumerics is a website dedicated to numerical computing for .NET that includes a C# Numerical Library for .NET containing algorithms for Linear Algebra, Differential Equations and Optimization problems. The Linear Algebra library includes CSLapack, CSBlas and CSEispack, ports from Fortran to C# of LAPACK, BLAS and EISPACK, respectively. Linear Algebra (CSLapack, CSBlas and CSEispack). Systems of linear equations, eigenvalue problems, least-squares solutions of linear systems and singular value problems. Differential Equations. Initial-value problem for nonstiff and stiff ordinary differential equations ODEs (explicit Runge-Kutta, implicit Runge-Kutta, Gear's BDF and Adams-Moulton). Optimization. Unconstrained and bounded constrained optimization of multivariate functions (L-BFGS-B, Truncated Newton and Simplex methods).   Math.NET Numerics http://numerics.mathdotnet.com/ free an open source numerical library - includes special functions, linear algebra, probability models, random numbers, interpolation, integral transforms. A merger of dnAnalytics with Math.NET Iridium in addition to a purely managed implementation will also support native hardware optimization. constants & special functions complex type support real and complex, dense and sparse linear algebra (with LU, QR, eigenvalues, ... decompositions) non-uniform probability distributions, multivariate distributions, sample generation alternative uniform random number generators descriptive statistics, including order statistics various interpolation methods, including barycentric approaches and splines numerical function integration (quadrature) routines integral transforms, like fourier transform (FFT) with arbitrary lengths support, and hartley spectral-space aware sequence manipulation (signal processing) combinatorics, polynomials, quaternions, basic number theory. parallelized where appropriate, to leverage multi-core and multi-processor systems fully managed or (if available) using native libraries (Intel MKL, ACMS, CUDA, FFTW) provides a native facade for F# developers

    Read the article

  • How to Buy an SD Card: Speed Classes, Sizes, and Capacities Explained

    - by Chris Hoffman
    Memory cards are used in digital cameras, music players, smartphones, tablets, and even laptops. But not all SD cards are created equal — there are different speed classes, physical sizes, and capacities to consider. Different devices require different types of SD cards. Here are the differences you’ll need to keep in mind when picking out the right SD card for your device. Speed Class In a nutshell, not all SD cards offer the same speeds. This matters for some tasks more than it matters for others. For example, if you’re a professional photographer taking photos in rapid succession on a DSLR camera saving them in high-resolution RAW format, you’ll want a fast SD card so your camera can save them as fast as possible. A fast SD card is also important if you want to record high-resolution video and save it directly to the SD card. If you’re just taking a few photos on a typical consumer camera or you’re just using an SD card to store some media files on your smartphone, the speed isn’t as important. Manufacturers use “speed classes” to measure an SD card’s speed. The SD Association that defines the SD card standard doesn’t actually define the exact speeds associated with these classes, but they do provide guidelines. There are four different speed classes — 10, 8, 4, and 2. 10 is the fastest, while 2 is the slowest. Class 2 is suitable for standard definition video recording, while classes 4 and 6 are suitable for high-definition video recording. Class 10 is suitable for “full HD video recording” and “HD still consecutive recording.” There are also two Ultra High Speed (UHS) speed classes, but they’re more expensive and are designed for professional use. UHS cards are designed for devices that support UHS. Here are the associated logos, in order from slowest to fastest:       You’ll probably be okay with a class 4 or 6 card for typical use in a digital camera, smartphone, or tablet. Class 10 cards are ideal if you’re shooting high-resolution videos or RAW photos. Class 2 cards are a bit on the slow side these days, so you may want to avoid them for all but the cheapest digital cameras. Even a cheap smartphone can record HD video, after all. An SD card’s speed class is identified on the SD card itself. You’ll also see the speed class on the online store listing or on the card’s packaging when purchasing it. For example, in the below photo, the middle SD card is speed class 4, while the two other cards are speed class 6. If you see no speed class symbol, you have a class 0 SD card. These cards were designed and produced before the speed class rating system was introduced. They may be slower than even a class 2 card. Physical Size Different devices use different sizes of SD cards. You’ll find standard-size CD cards, miniSD cards, and microSD cards. Standard SD cards are the largest, although they’re still very small. They measure 32x24x2.1 mm and weigh just two grams. Most consumer digital cameras for sale today still use standard SD cards. They have the standard “cut corner”  design. miniSD cards are smaller than standard SD cards, measuring 21.5x20x1.4 mm and weighing about 0.8 grams. This is the least common size today. miniSD cards were designed to be especially small for mobile phones, but we now have a smaller size. microSD cards are the smallest size of SD card, measuring 15x11x1 mm and weighing just 0.25 grams. These cards are used in most cell phones and smartphones that support SD cards. They’re also used in many other devices, such as tablets. SD cards will only fit into marching slots. You can’t plug a microSD card into a standard SD card slot — it won’t fit. However, you can purchase an adapter that allows you to plug a smaller SD card into a larger SD card’s form and fit it into the appropriate slot. Capacity Like USB flash drives, hard drives, solid-state drives, and other storage media, different SD cards can have different amounts of storage. But the differences between SD card capacities don’t stop there. Standard SDSC (SD) cards are 1 MB to 2 GB in size, or perhaps 4 GB in size — although 4 GB is non-standard. The SDHC standard was created later, and allows cards 2 GB to 32 GB in size. SDXC is a more recent standard that allows cards 32 GB to 2 TB in size. You’ll need a device that supports SDHC or SDXC cards to use them. At this point, the vast majority of devices should support SDHC. In fact, the SD cards you have are probably SDHC cards. SDXC is newer and less common. When buying an SD card, you’ll need to buy the right speed class, size, and capacity for your needs. Be sure to check what your device supports and consider what speed and capacity you’ll actually need. Image Credit: Ryosuke SEKIDO on Flickr, Clive Darra on Flickr, Steven Depolo on Flickr

    Read the article

  • AppHarbor - Azure Done Right AKA Heroku for .NET

    - by Robz / Fervent Coder
    Easy and Instant deployments and instant scale for .NET? Awhile back a few of us were looking at Ruby Gems as the answer to package management for .NET. The gems platform supported the concept of DLLs as packages although some changes would have needed to happen to have long term use for the entire community. From that we formed a partnership with some folks at Microsoft to make v2 into something that would meet wider adoption across the community, which people now call NuGet. So now we have the concept of package management. What comes next? Heroku Instant deployments and instant scaling. Stupid simple API. This is Heroku. It doesn’t sound like much, but when you think of how fast you can go from an idea to having someone else tinker with it, you can start to see its power. In literally seconds you can be looking at your rails application deployed and online. Then when you are ready to scale, you can do that. This is power. Some may call this “cloud-computing” or PaaS (Platform as a Service). I first ran into Heroku back in July when I met Nick of RubyGems.org. At the time there was no alternative in the .NET-o-sphere. I don’t count Windows Azure, mostly because it is not simple and I don’t believe there is a free version. Heroku itself would not lend itself well to .NET due to the nature of platforms and each language’s specific needs (solution stack).  So I tucked the idea in the back of my head and moved on. AppHarbor Enters The Scene I’m not sure when I first heard about AppHarbor as a possible .NET version of Heroku. It may have been in November, but I didn’t actually try it until January. I was instantly hooked. AppHarbor is awesome! It still has a ways to go to be considered Heroku for .NET, but it already has a growing community. I created a video series (at the bottom of this post) that really highlights how fast you can get a product onto the web and really shows the power and simplicity of AppHarbor. Deploying is as simple as a git/hg push to appharbor. From there they build your code, run any unit tests you have and deploy it if everything succeeds. The screen on the right shows a simple and elegant UI to getting things done. The folks at AppHarbor graciously gave me a limited number of invites to hand out. If you are itching to try AppHarbor then navigate to: https://appharbor.com/account/new?inviteCode=ferventcoder  After playing with it, send feedback if you want more features. Go vote up two features I want that will make it more like Heroku. Disclaimer: I am in no way affiliated with AppHarbor and have not received any funds or favors from anyone at AppHarbor. I just think it is awesome and I want others to know about it. From Zero To Deployed in 15 Minutes (Or Less) Now I have a challenge for you. I created a video series showing how fast I could go from nothing to a deployed application. It could have been from Zero to Deployed in Less than 5 minutes, but I wanted to show you the tools a little more and give you an opportunity to beat my time. And that’s the challenge. Beat my time and show it in a video response. The video series is below (at least one of the videos has to be watched on YouTube). The person with the best time by March 15th @ 11:59PM CST will receive a prize. Ground rules: .NET Application with a valid database connection Start from Zero Deployed with AppHarbor or an alternative A timer displayed in the video that runs during the entire process Video response published on YouTube or acceptable alternative Video(s) must be published by March 15th at 11:59PM CST. Either post the link here as a comment or on YouTube as a response (also by 11:59PM CST March 15th) From Zero To Deployed In 15 Minutes (Or Less) Part 1 From Zero To Deployed In 15 Minutes (Or Less) Part 2 From Zero To Deployed In 15 Minutes (Or Less) Part 3

    Read the article

  • Designing for the future

    - by Dennis Vroegop
    User interfaces and user experience design is a fast moving field. It’s something that changes pretty quick: what feels fresh today will look outdated tomorrow. I remember the day I first got a beta version of Windows 95 and I felt swept away by the user interface of the OS. It felt so modern! If I look back now, it feels old. Well, it should: the design is 17 years old which is an eternity in our field. Of course, this is not limited to UI. Same goes for many industries. I want you to think back of the cars that amazed you when you were in your teens (if you are in your teens then this may not apply to you). Didn’t they feel like part of the future? Didn’t you think that this was the ultimate in designs? And aren’t those designs hopelessly outdated today (again, depending on your age, it may just be me)? Let’s review the Win95 design: And let’s compare that to Windows 7: There are so many differences here, I wouldn’t even know where to start explaining them. The general feeling however is one of more usability: studies have shown Windows 7 is much easier to understand for new users than the older versions of Windows did. Of course, experienced Windows users didn’t like it: people are usually afraid of changes and like to stick to what they know. But for new users this was a huge improvement. And that is what UX design is all about: make a product easier to use, with less training required and make users feel more productive. Still, there are areas where this doesn’t hold up. There are plenty examples of designs from the past that are still fresh today. But if you look closely at them, you’ll notice some subtle differences. This differences are what keep the designs fresh. A good example is the signs you’ll find on the road. They haven’t changed much over the years (otherwise people wouldn’t recognize them anymore) but they have been changing gradually to reflect changes in traffic. The same goes for computer interfaces. With each new product or version of a product, the UI and UX is changed gradually. Every now and then however, a bigger change is needed. Just think about the introduction of the Ribbon in Microsoft Office 2007: the whole UI was redesigned. A lot of old users (not in age, but in times of using older versions) didn’t like it a bit, but new users or casual users seem to be more efficient using the product. Which, of course, is exactly the reason behind the changes. I believe that a big engine behind the changes in User Experience design has been the web. In the old days (i.e. before the explosion of the internet) user interface design in Windows applications was limited to choosing the margins between your battleship gray buttons. When the web came along, and especially the web 2.0 where the browsers started to act more and more as application platforms, designers stepped in and made a huge impact. In the browser, they could do whatever they wanted. In the beginning this was limited to the darn blink tag but gradually people really started to think about UX. Even more so: the design of the UI and the whole experience was taken away from the developers and put into the hands of people who knew what they were doing: UX designers. This caused some problems. Everyone who has done a web project in the early 2000’s must have had the same experience: the designers give you a set of Photoshop files and tell you to translate it to HTML. Which, of course, is very hard to do. However, with new tooling and new standards this became much easier. The latest version of HTML and CSS has taken the responsibility for the design away from the developers and placed them in the capable hands of the designers. And that’s where that responsibility belongs, after all, I don’t want a designer to muck around in my c# code just as much as he or she doesn’t want me to poke in the sites style definitions. This change in responsibilities resulted in good looking but more important: better thought out user interfaces in websites. And when websites became more and more interactive, people started to expect the same sort of look and feel from their desktop applications. But that didn’t really happen. Most business applications still have that battleship gray look and feel. Ok, they may use a different color but we’re not talking colors here but usability. Now, you may not be able to read the Dutch captions, but even if you did you wouldn’t understand what was going on. At least, not when you first see it. You have to scan the screen, read all the labels, see how they are related to the other elements on the screen and then figure out what they do. If you’re an experienced user of this application however, this might be a good thing: you know what to do and you get all the information you need in one single screen. But for most applications this isn’t the case. A lot of people only use their computer for a limited time a day (a weird concept for me, but it happens) and need it to get something done and then get on with their lives. For them, a user interface experience like the above isn’t working. (disclaimer: I just picked a screenshot, I am not saying this is bad software but it is an example of about 95% of the Windows applications out there). For the knowledge worker, this isn’t a problem. They use one or two systems and they know exactly what they need to do to achieve their goal. They don’t want any clutter on their screen that distracts them from their task, they just want to be as efficient as possible. When they know the systems they are very productive. The point is, how long does it take to become productive? And: could they be even more productive if the UX was better? Are there things missing that they don’t know about? Are there better ways to achieve what they want to achieve? Also: could a system be designed in such a way that it is not only much more easy to work with but also less tiring? in the example above you need to switch between the keyboard and mouse a lot, something that we now know can be very tiring. The goal of most applications (being client apps or websites on any kind of device) is to provide information. Information is data that when given to the right people, on the right time, in the right place and when it is correct adds value for that person (please, remember that definition: I still hear the statement “the information was wrong” which doesn’t make sense: data can be wrong, information cannot be). So if a system provides data, how can we make sure the chances of becoming information is as high as possible? A good example of a well thought-out system that attempts this is the Zune client. It is a very good application, and I think the UX is much better than it’s main competitor iTunes. Have a look at both: On the left you see the iTunes screenshot, on the right the Zune. As you notice, the Zune screen has more images but less chrome (chrome being visuals not part of the data you want to show, i.e. edges around buttons). The whole thing is text oriented or image oriented, where that text or image is part of the information you need. What is important is big, what’s less important is smaller. Yet, everything you need to know at that point is present and your attention is drawn immediately to what you’re trying to achieve: information about music. You can easily switch between the content on your machine and content on your Zune player but clicking on the image of the player. But if you didn’t know that, you’d find out soon enough: the whole UX is designed in such a way that it invites you to play around. So sooner or later (probably sooner) you’d click on that image and you would see what it does. In the iTunes version it’s harder to find: the discoverability is a lot lower. For inexperienced people the Zune player feels much more natural than the iTunes player, and they get up to speed a lot faster. How does this all work? Why is this UX better? The answer lies in a project from Microsoft with the codename (it seems to be becoming the official name though) “Metro”. Metro is a design language, based on certain principles. When they thought about UX they took a good long look around them and went out in search of metaphors. And they found them. The team noticed that signage in streets, airports, roads, buildings and so on are usually very clear and very precise. These signs give you the information you need and nothing more. It’s simple, clearly understood and fast to understand. A good example are airport signs. Airports can be intimidating places, especially for the non-experienced traveler. In the early 1990’s Amsterdam Airport Schiphol decided to redesign all the signage to make the traveller feel less disoriented. They developed a set of guidelines for signs and implemented those. Soon, most airports around the world adopted these ideas and you see variations of the Dutch signs everywhere on the globe. The signs are text-oriented. Yes, there are icons explaining what it all means for the people who can’t read or don’t understand the language, but the basic sign language is text. It’s clear, it’s high-contrast and it’s easy to understand. One look at the sign and you know where to go. The only thing I don’t like is the green sign pointing to the emergency exit, but since this is the default style for emergency exits I understand why they did this. If you look at the Zune UI again, you’ll notice the similarities. Text oriented, little or no icons, clear usage of fonts and all the information you need. This design language has a set of principles: Clean, light, open and fast Content, not chrome Soulful and alive These are just a couple of the principles, you can read the whole philosophy behind Metro for Windows Phone 7 here. These ideas seem to work. I love my Windows Phone 7. It’s easy to use, it’s clear, there’s no clutter that I do not need. It works for me. And I noticed it works for a lot of other people as well, especially people who aren’t as proficient with computers as I am. You see these ideas in a lot other places. Corning, a manufacturer of glass, has made a video of possible usages of their products. It’s their glimpse into the future. You’ll notice that a lot of the UI in the screens look a lot like what Microsoft is doing with Metro (not coincidentally Corning is the supplier for the Gorilla glass display surface on the new SUR40 device (or Surface v2.0 as a lot of people call it)). The idea behind this vision is that data should be available everywhere where you it. Systems should be available at all times and data is presented in a clear and light manner so that you can turn that data into information. You don’t need a lot of fancy animations that only distract from the data. You want the data and you want it fast. Have a look at this truly inspiring video that made: This is what I believe the future will look like. Of course, not everything is possible, or even desirable. But it is a nice way to think about the future . I feel very strongly about designing applications in such a way that they add value to the user. Designing applications that turn data into information. Applications that make the user feel happy to use them. So… when are you going to drop the battleship-gray designs? Tags van Technorati: surface,design,windows phone 7,wp7,metro

    Read the article

  • How do i mount my SD Card? I am using ubuntu 10.04

    - by shobhit
    root@shobhit:/media# lsusb Bus 002 Device 017: ID 14cd:125c Super Top Bus 002 Device 003: ID 0c45:6421 Microdia Bus 002 Device 002: ID 8087:0020 Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 011: ID 413c:8160 Dell Computer Corp. Bus 001 Device 006: ID 413c:8162 Dell Computer Corp. Bus 001 Device 005: ID 413c:8161 Dell Computer Corp. Bus 001 Device 004: ID 138a:0008 DigitalPersona, Inc Bus 001 Device 003: ID 0a5c:4500 Broadcom Corp. BCM2046B1 USB 2.0 Hub (part of BCM2046 Bluetooth) Bus 001 Device 002: ID 8087:0020 Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub root@shobhit:/home/shobhit/scripts/internalUtilities# sudo lspci -v -nn 00:1a.0 USB Controller [0c03]: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller [8086:3b3c] (rev 06) (prog-if 20) Subsystem: Dell Device [1028:0441] Flags: bus master, medium devsel, latency 0, IRQ 16 Memory at fbc08000 (32-bit, non-prefetchable) [size=1K] Capabilities: [50] Power Management version 2 Capabilities: [58] Debug port: BAR=1 offset=00a0 Capabilities: [98] PCIe advanced features <?> Kernel driver in use: ehci_hcd 00:1d.0 USB Controller [0c03]: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller [8086:3b34] (rev 06) (prog-if 20) Subsystem: Dell Device [1028:0441] Flags: bus master, medium devsel, latency 0, IRQ 23 Memory at fbc07000 (32-bit, non-prefetchable) [size=1K] Capabilities: [50] Power Management version 2 Capabilities: [58] Debug port: BAR=1 offset=00a0 Capabilities: [98] PCIe advanced features <?> Kernel driver in use: ehci_hcd 00:1e.0 PCI bridge [0604]: Intel Corporation 82801 Mobile PCI Bridge [8086:2448] (rev a6) (prog-if 01) Flags: bus master, fast devsel, latency 0 Bus: primary=00, secondary=20, subordinate=20, sec-latency=32 Capabilities: [50] Subsystem: Dell Device [1028:0441] 00:1f.0 ISA bridge [0601]: Intel Corporation Mobile 5 Series Chipset LPC Interface Controller [8086:3b0b] (rev 06) Subsystem: Dell Device [1028:0441] Flags: bus master, medium devsel, latency 0 Capabilities: [e0] Vendor Specific Information <?> Kernel modules: iTCO_wdt 00:1f.2 SATA controller [0106]: Intel Corporation 5 Series/3400 Series Chipset 6 port SATA AHCI Controller [8086:3b2f] (rev 06) (prog-if 01) Subsystem: Dell Device [1028:0441] Flags: bus master, 66MHz, medium devsel, latency 0, IRQ 29 I/O ports at f070 [size=8] I/O ports at f060 [size=4] I/O ports at f050 [size=8] I/O ports at f040 [size=4] I/O ports at f020 [size=32] Memory at fbc06000 (32-bit, non-prefetchable) [size=2K] Capabilities: [80] Message Signalled Interrupts: Mask- 64bit- Queue=0/0 Enable+ Capabilities: [70] Power Management version 3 Capabilities: [a8] SATA HBA <?> Capabilities: [b0] PCIe advanced features <?> Kernel driver in use: ahci Kernel modules: ahci 00:1f.3 SMBus [0c05]: Intel Corporation 5 Series/3400 Series Chipset SMBus Controller [8086:3b30] (rev 06) Subsystem: Dell Device [1028:0441] Flags: medium devsel, IRQ 3 Memory at fbc05000 (64-bit, non-prefetchable) [size=256] I/O ports at f000 [size=32] Kernel modules: i2c-i801 00:1f.6 Signal processing controller [1180]: Intel Corporation 5 Series/3400 Series Chipset Thermal Subsystem [8086:3b32] (rev 06) Subsystem: Dell Device [1028:0441] Flags: bus master, fast devsel, latency 0, IRQ 3 Memory at fbc04000 (64-bit, non-prefetchable) [size=4K] Capabilities: [50] Power Management version 3 Capabilities: [80] Message Signalled Interrupts: Mask- 64bit- Queue=0/0 Enable- 12:00.0 Network controller [0280]: Broadcom Corporation Device [14e4:4727] (rev 01) Subsystem: Dell Device [1028:0010] Flags: bus master, fast devsel, latency 0, IRQ 17 Memory at fbb00000 (64-bit, non-prefetchable) [size=16K] Capabilities: [40] Power Management version 3 Capabilities: [58] Vendor Specific Information <?> Capabilities: [48] Message Signalled Interrupts: Mask- 64bit+ Queue=0/0 Enable- Capabilities: [d0] Express Endpoint, MSI 00 Capabilities: [100] Advanced Error Reporting <?> Capabilities: [13c] Virtual Channel <?> Capabilities: [160] Device Serial Number cb-c0-8b-ff-ff-38-00-00 Capabilities: [16c] Power Budgeting <?> Kernel driver in use: wl Kernel modules: wl 13:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller [10ec:8168] (rev 03) Subsystem: Dell Device [1028:0441] Flags: bus master, fast devsel, latency 0, IRQ 28 I/O ports at e000 [size=256] Memory at d0b04000 (64-bit, prefetchable) [size=4K] Memory at d0b00000 (64-bit, prefetchable) [size=16K] Expansion ROM at fba00000 [disabled] [size=128K] Capabilities: [40] Power Management version 3 Capabilities: [50] Message Signalled Interrupts: Mask- 64bit+ Queue=0/0 Enable+ Capabilities: [70] Express Endpoint, MSI 01 Capabilities: [ac] MSI-X: Enable- Mask- TabSize=4 Capabilities: [cc] Vital Product Data <?> Capabilities: [100] Advanced Error Reporting <?> Capabilities: [140] Virtual Channel <?> Capabilities: [160] Device Serial Number 00-e0-4c-68-00-00-00-03 Kernel driver in use: r8169 Kernel modules: r8169 root@shobhit:/home/shobhit/scripts/internalUtilities# sudo lshw shobhit description: Portable Computer product: Vostro 3500 vendor: Dell Inc. version: A10 serial: FV1L3N1 width: 32 bits capabilities: smbios-2.6 dmi-2.6 smp-1.4 smp configuration: boot=normal chassis=portable cpus=2 uuid=44454C4C-5600-1031-804C-C6C04F334E31 *-core description: Motherboard product: 0G2R51 vendor: Dell Inc. physical id: 0 version: A10 serial: .FV1L3N1.CN7016612H00PW. slot: To Be Filled By O.E.M. *-cpu:0 description: CPU product: Intel(R) Core(TM) i5 CPU M 480 @ 2.67GHz vendor: Intel Corp. physical id: 4 bus info: cpu@0 version: 6.5.5 serial: 0002-0655-0000-0000-0000-0000 slot: CPU 1 size: 1197MHz capacity: 2926MHz width: 64 bits clock: 533MHz capabilities: boot fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx rdtscp x86-64 constant_tsc arch_perfmon pebs bts xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm sse4_1 sse4_2 popcnt lahf_lm ida arat tpr_shadow vnmi flexpriority ept vpid cpufreq configuration: id=4 *-cache:0 description: L1 cache physical id: 5 slot: L1-Cache size: 64KiB capacity: 64KiB capabilities: internal write-back unified *-cache:1 description: L2 cache physical id: 6 slot: L2-Cache size: 512KiB capacity: 512KiB capabilities: internal varies unified *-cache:2 description: L3 cache physical id: 7 slot: L3-Cache size: 3MiB capacity: 3MiB capabilities: internal varies unified *-logicalcpu:0 description: Logical CPU physical id: 4.1 width: 64 bits capabilities: logical *-logicalcpu:1 description: Logical CPU physical id: 4.2 width: 64 bits capabilities: logical *-logicalcpu:2 description: Logical CPU physical id: 4.3 width: 64 bits capabilities: logical *-logicalcpu:3 description: Logical CPU physical id: 4.4 width: 64 bits capabilities: logical *-logicalcpu:4 description: Logical CPU physical id: 4.5 width: 64 bits capabilities: logical *-logicalcpu:5 description: Logical CPU physical id: 4.6 width: 64 bits capabilities: logical *-logicalcpu:6 description: Logical CPU physical id: 4.7 width: 64 bits capabilities: logical *-logicalcpu:7 description: Logical CPU physical id: 4.8 width: 64 bits capabilities: logical *-logicalcpu:8 description: Logical CPU physical id: 4.9 width: 64 bits capabilities: logical *-logicalcpu:9 description: Logical CPU physical id: 4.a width: 64 bits capabilities: logical *-logicalcpu:10 description: Logical CPU physical id: 4.b width: 64 bits capabilities: logical *-logicalcpu:11 description: Logical CPU physical id: 4.c width: 64 bits capabilities: logical *-logicalcpu:12 description: Logical CPU physical id: 4.d width: 64 bits capabilities: logical *-logicalcpu:13 description: Logical CPU physical id: 4.e width: 64 bits capabilities: logical *-logicalcpu:14 description: Logical CPU physical id: 4.f width: 64 bits capabilities: logical *-logicalcpu:15 description: Logical CPU physical id: 4.10 width: 64 bits capabilities: logical *-memory description: System Memory physical id: 1d slot: System board or motherboard size: 3GiB *-bank:0 description: DIMM Synchronous 1333 MHz (0.8 ns) product: HMT112S6TFR8C-H9 vendor: AD80 physical id: 0 serial: 5525C935 slot: DIMM_A size: 1GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: DIMM Synchronous 1333 MHz (0.8 ns) product: HMT125S6TFR8C-H9 vendor: AD80 physical id: 1 serial: 3441D6CA slot: DIMM_B size: 2GiB width: 64 bits clock: 1333MHz (0.8ns) *-firmware description: BIOS vendor: Dell Inc. physical id: 0 version: A10 (10/25/2010) size: 64KiB capacity: 1984KiB capabilities: mca pci upgrade shadowing escd cdboot bootselect socketedrom edd int13floppy1200 int13floppy720 int13floppy2880 int5printscreen int9keyboard int14serial int17printer int10video acpi usb zipboot biosbootspecification *-cpu:1 physical id: 1 bus info: cpu@1 version: 6.5.5 serial: 0002-0655-0000-0000-0000-0000 size: 1197MHz capacity: 1197MHz capabilities: vmx ht cpufreq configuration: id=4 *-logicalcpu:0 description: Logical CPU physical id: 4.1 capabilities: logical *-logicalcpu:1 description: Logical CPU physical id: 4.2 capabilities: logical *-logicalcpu:2 description: Logical CPU physical id: 4.3 capabilities: logical *-logicalcpu:3 description: Logical CPU physical id: 4.4 capabilities: logical *-logicalcpu:4 description: Logical CPU physical id: 4.5 capabilities: logical *-logicalcpu:5 description: Logical CPU physical id: 4.6 capabilities: logical *-logicalcpu:6 description: Logical CPU physical id: 4.7 capabilities: logical *-logicalcpu:7 description: Logical CPU physical id: 4.8 capabilities: logical *-logicalcpu:8 description: Logical CPU physical id: 4.9 capabilities: logical *-logicalcpu:9 description: Logical CPU physical id: 4.a capabilities: logical *-logicalcpu:10 description: Logical CPU physical id: 4.b capabilities: logical *-logicalcpu:11 description: Logical CPU physical id: 4.c capabilities: logical *-logicalcpu:12 description: Logical CPU physical id: 4.d capabilities: logical *-logicalcpu:13 description: Logical CPU physical id: 4.e capabilities: logical *-logicalcpu:14 description: Logical CPU physical id: 4.f capabilities: logical *-logicalcpu:15 description: Logical CPU physical id: 4.10 capabilities: logical *-pci description: Host bridge product: Core Processor DRAM Controller vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 18 width: 32 bits clock: 33MHz configuration: driver=agpgart-intel resources: irq:0 *-display description: VGA compatible controller product: Core Processor Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 18 width: 64 bits clock: 33MHz capabilities: msi pm bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:30 memory:fac00000-faffffff memory:c0000000-cfffffff(prefetchable) ioport:f080(size=8) *-communication UNCLAIMED description: Communication controller product: 5 Series/3400 Series Chipset HECI Controller vendor: Intel Corporation physical id: 16 bus info: pci@0000:00:16.0 version: 06 width: 64 bits clock: 33MHz capabilities: pm msi bus_master cap_list configuration: latency=0 resources: memory:fbc09000-fbc0900f *-usb:0 description: USB Controller product: 5 Series/3400 Series Chipset USB2 Enhanced Host Controller vendor: Intel Corporation physical id: 1a bus info: pci@0000:00:1a.0 version: 06 width: 32 bits clock: 33MHz capabilities: pm debug bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:16 memory:fbc08000-fbc083ff *-multimedia description: Audio device product: 5 Series/3400 Series Chipset High Definition Audio vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 06 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=HDA Intel latency=0 resources: irq:22 memory:fbc00000-fbc03fff *-pci:0 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: 06 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm bus_master cap_list configuration: driver=pcieport resources: irq:24 ioport:2000(size=4096) memory:bc000000-bc1fffff memory:bc200000-bc3fffff(prefetchable) *-pci:1 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: 06 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm bus_master cap_list configuration: driver=pcieport resources: irq:25 ioport:3000(size=4096) memory:fbb00000-fbbfffff memory:bc400000-bc5fffff(prefetchable) *-network description: Wireless interface product: Broadcom Corporation vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:12:00.0 logical name: eth1 version: 01 serial: c0:cb:38:8b:aa:d8 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=wl0 driverversion=5.60.48.36 ip=10.0.1.50 latency=0 multicast=yes wireless=IEEE 802.11 resources: irq:17 memory:fbb00000-fbb03fff *-pci:2 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 3 vendor: Intel Corporation physical id: 1c.2 bus info: pci@0000:00:1c.2 version: 06 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm bus_master cap_list configuration: driver=pcieport resources: irq:26 ioport:e000(size=4096) memory:fba00000-fbafffff ioport:d0b00000(size=1048576) *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:13:00.0 logical name: eth0 version: 03 serial: 78:2b:cb:cc:0e:2a size: 10MB/s capacity: 1GB/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half latency=0 link=no multicast=yes port=MII speed=10MB/s resources: irq:28 ioport:e000(size=256) memory:d0b04000-d0b04fff(prefetchable) memory:d0b00000-d0b03fff(prefetchable) memory:fba00000-fba1ffff(prefetchable) *-pci:3 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 5 vendor: Intel Corporation physical id: 1c.4 bus info: pci@0000:00:1c.4 version: 06 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm bus_master cap_list configuration: driver=pcieport resources: irq:27 ioport:d000(size=4096) memory:fb000000-fb9fffff ioport:d0000000(size=10485760) *-usb:1 description: USB Controller product: 5 Series/3400 Series Chipset USB2 Enhanced Host Controller vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 06 width: 32 bits clock: 33MHz capabilities: pm debug bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:23 memory:fbc07000-fbc073ff *-pci:4 description: PCI bridge product: 82801 Mobile PCI Bridge vendor: Intel Corporation physical id: 1e bus info: pci@0000:00:1e.0 version: a6 width: 32 bits clock: 33MHz capabilities: pci bus_master cap_list *-isa description: ISA bridge product: Mobile 5 Series Chipset LPC Interface Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 06 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: latency=0 *-storage description: SATA controller product: 5 Series/3400 Series Chipset 6 port SATA AHCI Controller vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 logical name: scsi0 logical name: scsi1 version: 06 width: 32 bits clock: 66MHz capabilities: storage msi pm bus_master cap_list emulated configuration: driver=ahci latency=0 resources: irq:29 ioport:f070(size=8) ioport:f060(size=4) ioport:f050(size=8) ioport:f040(size=4) ioport:f020(size=32) memory:fbc06000-fbc067ff *-disk description: ATA Disk product: WDC WD3200BEKT-7 vendor: Western Digital physical id: 0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: 01.0 serial: WD-WX21AC0W1945 size: 298GiB (320GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=77e3ed41 *-volume:0 description: Windows NTFS volume physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 version: 3.1 serial: aa69-51c0 size: 98MiB capacity: 100MiB capabilities: primary bootable ntfs initialized configuration: clustersize=4096 created=2012-04-03 02:00:15 filesystem=ntfs label=System Reserved state=clean *-volume:1 description: Windows NTFS volume physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 version: 3.1 serial: 9854ff5c-1dea-a147-84a6-624e758f44b8 size: 48GiB capacity: 48GiB capabilities: primary ntfs initialized configuration: clustersize=4096 created=2012-04-10 13:55:31 filesystem=ntfs modified_by_chkdsk=true mounted_on_nt4=true resize_log_file=true state=dirty upgrade_on_mount=true *-volume:2 description: Extended partition physical id: 3 bus info: scsi@0:0.0.0,3 logical name: /dev/sda3 size: 48GiB capacity: 48GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume:0 description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 1952MiB capabilities: nofs *-logicalvolume:1 description: Linux filesystem partition physical id: 6 logical name: /dev/sda6 logical name: / capacity: 46GiB configuration: mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,barrier=1,data=ordered state=mounted *-volume:3 description: Windows NTFS volume physical id: 4 bus info: scsi@0:0.0.0,4 logical name: /dev/sda4 logical name: /media/56AA8094AA807273 version: 3.1 serial: 22a29e8d-56c7-9a4a-adea-528103948f6d size: 200GiB capacity: 200GiB capabilities: primary ntfs initialized configuration: clustersize=4096 created=2012-04-02 20:17:15 filesystem=ntfs modified_by_chkdsk=true mount.fstype=fuseblk mount.options=rw,nosuid,nodev,relatime,user_id=0,group_id=0,default_permissions,allow_other,blksize=4096 mounted_on_nt4=true resize_log_file=true state=mounted upgrade_on_mount=true *-cdrom description: DVD-RAM writer product: DVD+-RW TS-L633J vendor: TSSTcorp physical id: 1 bus info: scsi@1:0.0.0 logical name: /dev/cdrom logical name: /dev/cdrw logical name: /dev/dvd logical name: /dev/dvdrw logical name: /dev/scd0 logical name: /dev/sr0 version: D200 capabilities: removable audio cd-r cd-rw dvd dvd-r dvd-ram configuration: ansiversion=5 status=nodisc *-serial UNCLAIMED description: SMBus product: 5 Series/3400 Series Chipset SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 06 width: 64 bits clock: 33MHz configuration: latency=0 resources: memory:fbc05000-fbc050ff ioport:f000(size=32) *-generic UNCLAIMED description: Signal processing controller product: 5 Series/3400 Series Chipset Thermal Subsystem vendor: Intel Corporation physical id: 1f.6 bus info: pci@0000:00:1f.6 version: 06 width: 64 bits clock: 33MHz capabilities: pm msi bus_master cap_list configuration: latency=0 resources: memory:fbc04000-fbc04fff *-scsi physical id: 2 bus info: usb@2:1.1 logical name: scsi15 capabilities: emulated scsi-host configuration: driver=usb-storage *-disk description: SCSI Disk physical id: 0.0.0 bus info: scsi@15:0.0.0 logical name: /dev/sdb I have tried all options like fdisk /dev/sdb , pmount /dev/sdb but nothing is working .Pls guide me

    Read the article

  • How to reduce iOS AVPlayer start delay

    - by Bernt Habermeier
    Note, for the below question: All assets are local on the device -- no network streaming is taking place. The videos contain audio tracks. I'm working on an iOS application that requires playing video files with minimum delay to start the video clip in question. Unfortunately we do not know what specific video clip is next until we actually need to start it up. Specifically: When one video clip is playing, we will know what the next set of (roughly) 10 video clips are, but we don't know which one exactly, until it comes time to 'immediately' play the next clip. What I've done to look at actual start delays is to call addBoundaryTimeObserverForTimes on the video player, with a time period of one millisecond to see when the video actually started to play, and I take the difference of that time stamp with the first place in the code that indicates which asset to start playing. From what I've seen thus-far, I have found that using the combination of AVAsset loading, and then creating an AVPlayerItem from that once it's ready, and then waiting for AVPlayerStatusReadyToPlay before I call play, tends to take between 1 and 3 seconds to start the clip. I've since switched to what I think is roughly equivalent: calling [AVPlayerItem playerItemWithURL:] and waiting for AVPlayerItemStatusReadyToPlay to play. Roughly same performance. One thing I'm observing is that the first AVPlayer item load is slower than the rest. Seems one idea is to pre-flight the AVPlayer with a short / empty asset before trying to play the first video might be of good general practice. [http://stackoverflow.com/questions/900461/slow-start-for-avaudioplayer-the-first-time-a-sound-is-played] I'd love to get the video start times down as much as possible, and have some ideas of things to experiment with, but would like some guidance from anyone that might be able to help. Update: idea 7, below, as-implemented yields switching times of around 500 ms. This is an improvement, but it it'd be nice to get this even faster. Idea 1: Use N AVPlayers (won't work) Using ~ 10 AVPPlayer objects and start-and-pause all ~ 10 clips, and once we know which one we really need, switch to, and un-pause the correct AVPlayer, and start all over again for the next cycle. I don't think this works, because I've read there is roughly a limit of 4 active AVPlayer's in iOS. There was someone asking about this on StackOverflow here, and found out about the 4 AVPlayer limit: fast-switching-between-videos-using-avfoundation Idea 2: Use AVQueuePlayer (won't work) I don't believe that shoving 10 AVPlayerItems into an AVQueuePlayer would pre-load them all for seamless start. AVQueuePlayer is a queue, and I think it really only makes the next video in the queue ready for immediate playback. I don't know which one out of ~10 videos we do want to play back, until it's time to start that one. ios-avplayer-video-preloading Idea 3: Load, Play, and retain AVPlayerItems in background (not 100% sure yet -- but not looking good) I'm looking at if there is any benefit to load and play the first second of each video clip in the background (suppress video and audio output), and keep a reference to each AVPlayerItem, and when we know which item needs to be played for real, swap that one in, and swap the background AVPlayer with the active one. Rinse and Repeat. The theory would be that recently played AVPlayer/AVPlayerItem's may still hold some prepared resources which would make subsequent playback faster. So far, I have not seen benefits from this, but I might not have the AVPlayerLayer setup correctly for the background. I doubt this will really improve things from what I've seen. Idea 4: Use a different file format -- maybe one that is faster to load? I'm currently using .m4v's (video-MPEG4) H.264 format. I have not played around with other formats, but it may well be that some formats are faster to decode / get ready than others. Possible still using video-MPEG4 but with a different codec, or maybe quicktime? Maybe a lossless video format where decoding / setup is faster? Idea 5: Combination of lossless video format + AVQueuePlayer If there is a video format that is fast to load, but maybe where the file size is insane, one idea might be to pre-prepare the first 10 seconds of each video clip with a version that is boated but faster to load, but back that up with an asset that is encoded in H.264. Use an AVQueuePlayer, and add the first 10 seconds in the uncompressed file format, and follow that up with one that is in H.264 which gets up to 10 seconds of prepare/preload time. So I'd get 'the best' of both worlds: fast start times, but also benefits from a more compact format. Idea 6: Use a non-standard AVPlayer / write my own / use someone else's Given my needs, maybe I can't use AVPlayer, but have to resort to AVAssetReader, and decode the first few seconds (possibly write raw file to disk), and when it comes to playback, make use of the raw format to play it back fast. Seems like a huge project to me, and if I go about it in a naive way, it's unclear / unlikely to even work better. Each decoded and uncompressed video frame is 2.25 MB. Naively speaking -- if we go with ~ 30 fps for the video, I'd end up with ~60 MB/s read-from-disk requirement, which is probably impossible / pushing it. Obviously we'd have to do some level of image compression (perhaps native openGL/es compression formats via PVRTC)... but that's kind crazy. Maybe there is a library out there that I can use? Idea 7: Combine everything into a single movie asset, and seekToTime One idea that might be easier than some of the above, is to combine everything into a single movie, and use seekToTime. The thing is that we'd be jumping all around the place. Essentially random access into the movie. I think this may actually work out okay: avplayer-movie-playing-lag-in-ios5 Which approach do you think would be best? So far, I've not made that much progress in terms of reducing the lag.

    Read the article

  • Compare NSArray with NSMutableArray adding delta objects to NSMutableArray

    - by Hooligancat
    I have an NSMutableArray that is populated with objects of strings. For simplicity sake we'll say that the objects are a person and each person object contains information about that person. Thus I would have an NSMutableArray that is populated with person objects: person.firstName person.lastName person.age person.height And so on. The initial source of data comes from a web server and is populated when my application loads and completes it's initialization with the server. Periodically my application polls the server for the latest list of names. Currently I am creating an NSArray of the result set, emptying the NSMutableArray and then re-populating the NSMutableArray with NSArray results before destroying the NSArray object. This seems inefficient to me on a few levels and also presents me with a problem losing table row references which I can work around, but might be creating more work for myself in doing so. The inefficiency seems to be that I should be able to compare the two arrays and end up with a filtered NSArray. I could then add the filtered set to the NSMutableArray. This would mean that I can simply append new data to the NSMutableArray instead of throwing everything out and re-populating. Conversely I would need to do the same filter in reverse to see if there are records that need removing from the NSMutableArray. Is there any method to do this in a more efficient manner? Have I overlooked something in the docs some place that refers to a simpler technique? I have a problem when I empty the NSMutableArray and re-populate in that any referencing tables lose their selected row state. I can track it and re-select it, but my theory is that using some form of compare and adding objects and removing objects instead of dealing with the whole array in one block might mean I keep my row reference (assuming the item isn't deleted of course). Any suggestions or help much appreciated. Update Would it be just as fast to do a fast enumeration over each comparing each line item as I go? It seems like an expensive operation, but with the last fast enumeration code it might be pretty efficient...

    Read the article

  • Cross-platform embedded database/key-value store for C#

    - by Arne Claassen
    I'm looking for a fast, embeddable key/value store with cursor semantics over key collections (or a simple embeddable DB) that I can use in .NET and mono. Need it to be open-source, would prefer an MIT or Apache style license over a GPL license. Not opposed to a library that needs bindings to be written, as long as binaries are available for both windows and linux. Options considered: SQLite - has bindings and native implementation, but single-threaded and not all that fast Embedded InnoDB - no .NET bindings i can find and it's GPLv2 Berkley DB - no .NET bindings i can find Tokyo Cabinet - no .NET bindings i can find and problematic to build on windows MadCow Memory-mapped data structures - GPLv2 Is there an option better than the above that i'm missing, or bindings for the above i don't know about?

    Read the article

  • Box2d: Maximum possible linear velocity?

    - by Rosarch
    I think I've configured Box2d to have some sort of maximum velocity for any body, but I'm not sure. I apply an impulse like (100000000, 100000000), and the body moves just as fast as (100, 100) - which is not that fast at all. My game is a top-down 2d. Here is some code that may be relevant: private readonly Vector2 GRAVITY = new Vector2(0, 0); public void initializePhysics(ContactReporter contactReporter) { world = new World(GRAVITY, true); IContactListener contactListener = contactReporter; world.ContactListener = contactListener; } public void Update(GameTime gameTime) { // ... worldState.PhysicsWorld.Step((float)gameTime.ElapsedGameTime.TotalSeconds, 10, 10); //... }

    Read the article

  • jQuery slideToggle stay open on hover

    - by durilai
    I have a div that I have bound the jQuery hover event to activate a slideDown using slideToggle: <div class="Square"> <div class="RedSquare"></div> <div class="GraySquare"></div> </div> $("div.RedSquare").hover( function() { $(this).siblings("div.GraySquare").slideToggle("fast"); }, function() { $(this).siblings("div.GraySquare").slideToggle("fast"); } ); It toggles a div '.GraySquare' right below it. Basically making a gray box slide down from the red box. The problem I am facing is that when the mouse moves over the gray div the slide toggles up. I want it to remain down when hovering over the red or gray square. Any help is appreciated.

    Read the article

  • How can I force mod_perl to only allow one process per connection?

    - by Charles Ma
    I have a perl cgi script that's fairly resource intensive (takes about 2 seconds to finish). This is fine as long as only at most 4 or 5 of them are running at the same time and that's usually the case. The problem is that when a user clicks a link that calls this script, a new process is spawned to handle that connection request, so if a user clicks many times (if they're impatient), the server gets overloaded with new processes running and most of them are redundant. How can I ensure that only one instance of this process is running per host? This is an old system that I'm maintaining which uses an old framework for the frontend, and I would like to avoid using javascript to disable the button client side if possible. Converting this to fast-cgi perl is out of the question as well, again because this is an old system and adding fast-cgi to apache might break a lot of other things that this thing runs.

    Read the article

  • using AudioQueues with AudioFileReadBytes

    - by Santosh
    Hey Im trying to work with Audio queues to play a very big mp3 file (arround 23 hours long). when audio queue asks for buffers though callback, im using AudioFileReadBytes() API to read the bytes from audio file and feed the queue. startQueue fails with the error : prime failed any inputs????? Also I succeeded playing file using AudioFileReadPackets API instead of AudioFileReadBytes(). But the problem with API is that when I seek (fast forward) by a long interval, say 9 hours (for example fast forward from 32 mins playtime to 9:32 mins) then AudioFileReadPackets() takes a long time (almost 2 mins) to read from new location. any comments would be greatly appreciated.

    Read the article

  • Need advice on speeding up tableViewCell photo loading performance

    - by ambertch
    I have around 20 tableview cells that each contain a number (2-5) thumbnail sized pictures (they are VERY small Facebook profile pictures, ex. http://profile.ak.fbcdn.net/hprofile-ak-sf2p/hs254.snc3/23133_201668_2989_q.jpg). Each picture is an UIImageView added to the cell's contentview. Scrolling performance is poor, and measuring the draw time I've found the UIImage rendering is the bottleneck. I've researched/thought of some solutions but as I am new to iphone development I am not sure which strategy to pursue: preload all the images and retrieve them from disk instead of URL when drawing cells (I'm not sure if cell drawing will still be slow, so I want to hold off on the time investment here) Have the cells display a placeholder image from disk, while the picture is asynchronously loaded (this seems to be the best solution, but I'm currently not sure exactly how to do best do this) There's the fast drawing recommendation from Tweetie, but I don't know that will have much affect if it turns out my overhead is in network loading (http://blog.atebits.com/2008/12/fast-scrolling-in-tweetie-with-uitableview/) Thoughts/implementation advice? Thanks!

    Read the article

  • jQuery galleria plugin with dynamically loaded images

    - by panas
    I'm using the Galleria plugin with jQuery to create my image gallery. I'm trying to get load images dynamically from the user's selection into the DOM and have the gallery auto-update to display those new images but it's not working. Firebug shows the images are successfully loading into the DOM but Galleria displays no thumbnails. I need a way to reload Galleria to display the new images. /* ---- Gallery Code ---- */ if ($(this).find('div').attr('title') == 'photogallery' && $('.galleria_container').length == 0) { $('.gallery').galleria( { history : false, clickNext : true, onImage : function(image,caption,thumb) { if(! ($.browser.mozilla && navigator.appVersion.indexOf("Win")!=-1) ) { image.css('display','none').fadeIn(1000); } var _li = thumb.parents('li'); caption.css('display','none').fadeIn(1000); _li.siblings().children('img.selected').fadeTo(500,0.3); thumb.fadeTo('fast',1).addClass('selected'); image.attr('title','Next image >>'); }, onThumb : function(thumb) { var _li = thumb.parents('li'); var _fadeTo = _li.is('.active') ? '1' : '0.3'; thumb.css({display:'none',opacity:_fadeTo}).fadeIn(1500); thumb.hover ( function() { thumb.fadeTo('fast',1); }, function() { _li.not('.active').children('img').fadeTo('fast',0.3); } // don't fade out if the parent is active ) } }); } /* ---- Gallery Selector ---- */ $(document).ready(function() { var galleryImages = new Object(); <?php echo $myGal; ?> function setImages(type) { var image = ''; for (var i = 0; i < galleryImages[type].length; i++) { image += '<li><img src="' + galleryImages[type][i] + '"></li>'; } $('ul.gallery').html(image); } $('ul.menu-horiz li ul li').click(function() { setImages($(this).attr('rel')); }); }); The PHP code you see just creates an array of images. So to summarise my question: How can I reload Galleria once the new images have been loaded into the DOM?

    Read the article

  • Fulltext search for django : Mysql not so bad ? (vs sphinx, xapian)

    - by Eric
    I am studying fulltext search engines for django. It must be simple to install, fast indexing, fast index update, not blocking while indexing, fast search. After reading many web pages, I put in short list : Mysql MYISAM fulltext, djapian/python-xapian, and django-sphinx I did not choose lucene because it seems complex, nor haystack as it has less features than djapian/django-sphinx (like fields weighting). Then I made some benchmarks, to do so, I collected many free books on the net to generate a database table with 1 485 000 records (id,title,body), each record is about 600 bytes long. From the database, I also generated a list of 100 000 existing words and shuffled them to create a search list. For the tests, I made 2 runs on my laptop (4Go RAM, Dual core 2.0Ghz): the first one, just after a server reboot to clear all caches, the second is done juste after in order to test how good are cached results. Here are the "home made" benchmark results : 1485000 records with Title (150 bytes) and body (450 bytes) Mysql 5.0.75/Ubuntu 9.04 Fulltext : ========================================================================== Full indexing : 7m14.146s 1 thread, 1000 searchs with single word randomly taken from database : First run : 0:01:11.553524 next run : 0:00:00.168508 Mysql 5.5.4 m3/Ubuntu 9.04 Fulltext : ========================================================================== Full indexing : 6m08.154s 1 thread, 1000 searchs with single word randomly taken from database : First run : 0:01:11.553524 next run : 0:00:00.168508 1 thread, 100000 searchs with single word randomly taken from database : First run : 9m09s next run : 5m38s 1 thread, 10000 random strings (random strings should not be found in database) : just after the 100000 search test : 0:00:15.007353 1 thread, boolean search : 1000 x (+word1 +word2) First run : 0:00:21.205404 next run : 0:00:00.145098 Djapian Fulltext : ========================================================================== Full indexing : 84m7.601s 1 thread, 1000 searchs with single word randomly taken from database with prefetch : First run : 0:02:28.085680 next run : 0:00:14.300236 python-xapian Fulltext : ========================================================================== 1 thread, 1000 searchs with single word randomly taken from database : First run : 0:01:26.402084 next run : 0:00:00.695092 django-sphinx Fulltext : ========================================================================== Full indexing : 1m25.957s 1 thread, 1000 searchs with single word randomly taken from database : First run : 0:01:30.073001 next run : 0:00:05.203294 1 thread, 100000 searchs with single word randomly taken from database : First run : 12m48s next run : 9m45s 1 thread, 10000 random strings (random strings should not be found in database) : just after the 100000 search test : 0:00:23.535319 1 thread, boolean search : 1000 x (word1 word2) First run : 0:00:20.856486 next run : 0:00:03.005416 As you can see, Mysql is not so bad at all for fulltext search. In addition, its query cache is very efficient. Mysql seems to me a good choice as there is nothing to install (I need just to write a small script to synchronize an Innodb production table to a MyISAM search table) and as I do not really need advanced search feature like stemming etc... Here is the question : What do you think about Mysql fulltext search engine vs sphinx and xapian ?

    Read the article

  • jQuery selective hover

    - by Vitor
    Hello everyone, I'm trying to do a simple task with jQuery: I have a list of words which, when hovered, should fadeIn its corresponding image. For example: <a href="#" class="yellow">Yellow</a> <a href="#" class="blue">Blue</a> <a href="#" class="green">Green</a> <img src="yellow.jpg" class="yellow"> <img src="blue.jpg" class="blue"> <img src="green.jpg" class="green"> I'm currently doing it this way for each link/image: $('a.yellow').hover( function () { $('img.yellow').fadeIn('fast'); }, function () { $('img.yellow').fadeOut('fast'); }); The method above works fine, but as I'm still learning, I guess there's a better way to do that instead of repeating functions. Can anyone give me some light here? How can I improve this code?

    Read the article

  • jQuery Hover Problem - Hover Triggers on Mouse Move

    - by majman
    For reference: http://www.favsav.com/-public You'll notice that if you hover over a list item, the meta data slides up. If you leave your mouse still on top, and then move a smidgen to the left or right, it triggers again. There's some other silliness going on if you move around The code is pretty simple: $('li.post').hover(function(){ $(this).find('.meta').slideDown('fast'); }, function(){ $(this).find('.meta').slideUp('fast'); }) Any idea why things are behaving like this? This seems to only be happening in Firefox (i'm using 3.5.5 on OSX) UPDATE After restarting Firefox, all is well! Thanks for the input!

    Read the article

  • Best Data Structure For Time Series Data

    - by TriParkinson
    Hi all, I wonder if someone could take a minute out of their day to give their two cents on my problem. I would like some suggestions on what would be the best data structure for representing, on disk, a large data set of time series data. The main priority is speed of insertion, with other priorities in decreasing order; speed of retrieval, size on disk, size in memory, speed of removal. I have seen that B+ trees are often used in database because of their fast search times, but how about for fast insertion times? Is a linked list really the way to go? Thanks in advance for your time, Tri

    Read the article

  • Data denormalization and C# objects DB serialization

    - by Robert Koritnik
    I'm using a DB table with various different entities. This means that I can't have an arbitrary number of fields in it to save all kinds of different entities. I want instead save just the most important fields (dates, reference IDs - kind of foreign key to various other tables, most important text fields etc.) and an additional text field where I'd like to store more complete object data. the most obvious solution would be to use XML strings and store those. The second most obvious choice would be JSON, that usually shorter and probably also faster to serialize/deserialize... And is probably also faster. But is it really? My objects also wouldn't need to be strictly serializable, because JsonSerializer is usually able to serialize anything. Even anonymous objects, that may as well be used here. What would be the most optimal solution to solve this problem? Additional info My DB is highly normalised and I'm using Entity Framework, but for the purpose of having external super-fast fulltext search functionality I'm sacrificing a bit DB denormalisation. Just for the info I'm using SphinxSE on top of MySql. Sphinx would return row IDs that I would use to fast query my index optimised conglomerate table to get most important data from it much much faster than querying multiple tables all over my DB. My table would have columns like: RowID (auto increment) EntityID (of the actual entity - but not directly related because this would have to point to different tables) EntityType (so I would be able to get the actual entity if needed) DateAdded (record timestamp when it's been added into this table) Title Metadata (serialized data related to particular entity type) This table would be indexed with SPHINX indexer. When I would search for data using this indexer I would provide a series of EntityIDs and a limit date. Indexer would have to return a very limited paged amount of RowIDs ordered by DateAdded (descending). I would then just join these RowIDs to my table and get relevant results. So this won't actually be full text search but a filtering search. Getting RowIDs would be very fast this way and getting results back from the table would be much faster than comparing EntityIDs and DateAdded comparisons even though they would be properly indexed.

    Read the article

< Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >