Search Results

Search found 4740 results on 190 pages for 'split mirror'.

Page 38/190 | < Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >

  • Is there a way to split the results of a select query into two equal halfs?

    - by Matthias
    I'd like to have a query returning two ResultSets each of which holding exactly half of all records matching a certain criteria. I tried using TOP 50 PERCENT in conjunction with an Order By but if the number of records in the table is odd, one record will show up in both resultsets. Example: I've got a simple table with TheID (PK) and TheValue fields (varchar(10)) and 5 records. Skip the where clause for now. SELECT TOP 50 PERCENT * FROM TheTable ORDER BY TheID asc results in the selected id's 1,2,3 SELECT TOP 50 PERCENT * FROM TheTable ORDER BY TheID desc results in the selected id's 3,4,5 3 is a dup. In real life of course the queries are fairly complicated with a ton of where clauses and subqueries.

    Read the article

  • How to group a period of time into yearly periods ? (split timespan into yearly periods)

    - by user315648
    I have a range of two datetimes: DateTime start = new DateTime(2012,4,1); DateTime end = new DateTime(2016,7,1); And I wish to get all periods GROUPED BY YEAR between this period. Meaning the output has to be: 2012-04-01 - 2012-12-31 2013-01-01 - 2013-12-31 2014-01-01 - 2014-12-31 2015-01-01 - 2015-12-31 2016-01-01 - 2016-07-01 Preferably the output would be in IList<Tuple<DateTime,DateTime>> list. How would you do this ? Is there anyway to do this with LINQ somehow ? Oh and daylight saving time is not absolutely critical, but surely a bonus. Thanks!

    Read the article

  • How can I split a list with multiple delimiters?

    - by Rob
    Basically, I want to enter text into a text area, and then use them. For example variable1:variable2@variable3 variable1:variable2@variable3 variable1:variable2@variable3 I know I could use explode to make each line into an array, and then use a foreach loop to use each line separately, but how would I separate the three variables to use?

    Read the article

  • How to split a View in several pages when a number of elements is reached?

    - by oalo
    I am using Views to display a gallery. Right now I have set up the View so it onlys shows 50 elements, but I want it to display a "Next" button that takes you to the next batch of elements. Preferably using AJAX / without reloading, but its not necessary. How can I do this? I have looked at all the options and searched for a module that does that with no success, but I am sure its a standard funcionality and you people can help me. Thank you for reading.

    Read the article

  • How to split this array into three's and place it in <td> using php?

    - by udaya
    Hi I have an php array of ten numbers $arr = array("first" => "1", "second" =>"2", "Third" =>"3", "Fourth" =>"4", "fifth" =>"5",, "sixth" =>"6", "seventh" =>"7", "eighth" =>"8", "ninth" =>"9","tenth"="10"); I have to place these values in a <td> by spliting the array in numbers of three such that my td contains first td contains <td>the first three values of an aray</td> second td contains <td>the next three values of an aray</td> third td contains <td>the next three values of an aray</td> if the remaining values in less than three in number it must be in the another td say now i have tenth value so my last td must contain tenth value

    Read the article

  • How to split row into multiple rows from the MySQL?

    - by user2818537
    I have a MySQL data table, in which I have more than 2 columns. First column has a unique value clinical trial value whereas second column has disease information. There are, in most of the cases, more than 2 disease names in one cell for a single id. I want to spilt those rows which cell contains two or more than two diseases. There is a pattern for searching also, i.e. small character is immediately followed by capital character., e.g. MalariaDengueTuberculosis like this. Suppose for these three diseases there is unique id, it should show like the following: NCT-ID disease 4534343654 Maleria 4534343654 Dengue 4534343654 Tubercoulsosis

    Read the article

  • MySQL Connector/Net 6.8.0 alpha has been released

    - by Roberto Garcia
    Dear MySQL users, MySQL Connector/Net 6.8.0, a new version of the all-managed .NET driver for MySQL has been released. This is an alpha release for 6.8.x and it's not recommended for production environments.It is appropriate for use with MySQL server versions 5.0-5.6 It is now available in source and binary form from http://dev.mysql.com/downloads/connector/net/#downloads and mirror sites (note that not all mirror sites may be up to date at this point-if you can't find this version on some mirror, please try again later or choose another download site.) The 6.8.0 version of MySQL Connector/Net has support for Entity Framework 6.0 including: - Async Query and Save- Code-Based Configuration- Dependency Resolution- DbSet.AddRange/RemoveRange- Code First Mapping to Insert/Update/Delete Stored Procedures - Configurable Migrations History Table- DbContext can now be created with a DbConnection that is already opened- Custom Code First Conventions The release is available to download at http://dev.mysql.com/downloads/connector/net/#downloads Documentation-------------------------------------You can view current Connector/Net documentation at http://dev.mysql.com/doc/refman/5.6/en/connector-net.html You can find our team blog at http://blogs.oracle.com/MySQLOnWindows You can also post questions on our forums at http://forums.mysql.com/ Enjoy and thanks for the support! Connector/NET Team

    Read the article

  • how to add water effect to an image

    - by brainydexter
    This is what I am trying to achieve: A given image would occupy say 3/4th height of the screen. The remaining 1/4th area would be a reflection of it with some waves (water effect) on it. I'm not sure how to do this. But here's my approach: render the given texture to another texture called mirror texture (maybe FBOs can help me?) invert mirror texture (scale it by -1 along Y) render mirror texture at height = 3/4 of the screen add some sense of noise to it OR using pixel shader and time, put pixel.z = sin(time) to make it wavy (Tech: C++/OpenGL/glsl) Is my approach correct ? Is there a better way to do this ? Also, can someone please recommend me if using FrameBuffer Objects would be the right thing here ? Thanks

    Read the article

  • how to add water effect to an image

    - by brainydexter
    This is what I am trying to achieve: A given image would occupy say 3/4th height of the screen. The remaining 1/4th area would be a reflection of it with some waves (water effect) on it. I'm not sure how to do this. But here's my approach: render the given texture to another texture called mirror texture (maybe FBOs can help me?) invert mirror texture (scale it by -1 along Y) render mirror texture at height = 3/4 of the screen add some sense of noise to it OR using pixel shader and time, put pixel.z = sin(time) to make it wavy (Tech: C++/OpenGL/glsl) Is my approach correct ? Is there a better way to do this ? Also, can someone please recommend me if using FrameBuffer Objects would be the right thing here ? Thanks

    Read the article

  • Which isometric angles can be mirrored (and otherwise transformed) for optimization?

    - by Tom
    I am working on a basic isometric game, and am struggling to find the correct mirrors. Mirror can be any form of transform. I have managed to get SE out of SW, by scaling the sprite on X axis by -1. Same applies for NE angle. Something is bugging me, that I should be able to also mirror N to S, but I cannot manage to pull this one off. Am I just too sleepy and trying to do the impossible, or a basic -1 scale on Y axis is not enough? What are the common used mirror table for optimizing 8 angle (N, NE, E, SE, S, SW, W, NW) isometric sprites?

    Read the article

  • How do I achieve virtual attributes in CakePHP (using code, not SQL) as implemented in Ruby on Rails

    - by ash
    Source: http://asciicasts.com/episodes/16-virtual-attributes I'd like to achieve a similar setup as below, but in CakePHP and where the virtual attributes are created using code, not SQL (as documented at http://book.cakephp.org/view/1070/Additional-Methods-and-Properties#Using-virtualFields-1590). class User < ActiveRecord::Base # Getter def full_name [first_name, last_name].join(' ') end # Setter def full_name=(name) split = name.split(' ', 2) self.first_name = split.first self.last_name = split.last end end

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • All Xen domU LVM volumes corrupt after reboot

    - by zcs
    I'm running a Debian Squeeze dom0, and after rebooting it all 7 of my domUs have data corruption. Each is setup as ext3 partition directly on a separate lvm2 volume. None of the lvm volumes will mount; all have bad superblocks. I've tried e2fsck with each superblock to no avail. What else can I try? Each domU has two LVM volumes connected to it, one for the disk and one for swap. The disk is mounted at root, formatted as a normal ext3 partition as a xen-blk device. The volumes are never mounted outside of the guest OS. I'm running Ubuntu 11.04 using the instructions here. I'm not sure that they didn't shutdown properly, all I know is they were corrupt after I issues a clean 'reboot' on the dom0. Here's a sample Xen config file; the rest are the same except for name, vcpus, memory, vif and disk. name = 'load1' vcpus = 2 memory = 512 vif = ['bridge=prbr0', 'bridge=eth0'] disk = ['phy:/dev/VolGroup00/load1-disk,xvda,w','phy:/dev/VolGroup00/load1-swap,xvdb,w'] #============================================================================ # Debian Installer specific variables def check_bool(name, value): value = str(value).lower() if value in ('t', 'tr', 'tru', 'true'): return True return False global var_check_with_default def var_check_with_default(default, var, val): if val: return val return default xm_vars.var('install', use='Install Debian, default: false', check=check_bool) xm_vars.var("install-method", use='Installation method to use "cdrom" or "network" (default: network)', check=lambda var, val: var_check_with_default('network', var, val)) # install-method == "network" xm_vars.var("install-mirror", use='Debian mirror to install from (default: http://archive.ubuntu.com/ubuntu)', check=lambda var, val: var_check_with_default('http://archive.ubuntu.com/ubuntu', var, val)) xm_vars.var("install-suite", use='Debian suite to install (default: natty)', check=lambda var, val: var_check_with_default('natty', var, val)) # install-method == "cdrom" xm_vars.var("install-media", use='Installation media to use (default: None)', check=lambda var, val: var_check_with_default(None, var, val)) xm_vars.var("install-cdrom-device", use='Installation media to use (default: xvdd)', check=lambda var, val: var_check_with_default('xvdd', var, val)) # Common options xm_vars.var("install-arch", use='Debian mirror to install from (default: amd64)', check=lambda var, val: var_check_with_default('amd64', var, val)) xm_vars.var("install-extra", use='Extra command line options (default: None)', check=lambda var, val: var_check_with_default(None, var, val)) xm_vars.var("install-installer", use='Debian installer to use (default: network uses install-mirror; cdrom uses /install.ARCH)', check=lambda var, val: var_check_with_default(None, var, val)) xm_vars.var("install-kernel", use='Debian installer kernel to use (default: uses install-installer)', check=lambda var, val: var_check_with_default(None, var, val)) xm_vars.var("install-ramdisk", use='Debian installer ramdisk to use (default: uses install-installer)', check=lambda var, val: var_check_with_default(None, var, val)) xm_vars.check() if not xm_vars.env.get('install'): bootloader="/usr/sbin/pygrub" elif xm_vars.env['install-method'] == "network": import os.path print "Install Mirror: %s" % xm_vars.env['install-mirror'] print "Install Suite: %s" % xm_vars.env['install-suite'] if xm_vars.env['install-installer']: installer = xm_vars.env['install-installer'] else: installer = xm_vars.env['install-mirror']+"/dists/"+xm_vars.env['install-suite'] + \ "/main/installer-"+xm_vars.env['install-arch']+"/current/images" print "Installer: %s" % installer print print "WARNING: Installer kernel and ramdisk are not authenticated." print if xm_vars.env.get('install-kernel'): kernelurl = xm_vars.env['install-kernel'] else: kernelurl = installer + "/netboot/xen/vmlinuz" if xm_vars.env.get('install-ramdisk'): ramdiskurl = xm_vars.env['install-ramdisk'] else: ramdiskurl = installer + "/netboot/xen/initrd.gz" import urllib class MyUrlOpener(urllib.FancyURLopener): def http_error_default(self, req, fp, code, msg, hdrs): raise IOError("%s %s" % (code, msg)) urlopener = MyUrlOpener() try: print "Fetching %s" % kernelurl kernel, _ = urlopener.retrieve(kernelurl) print "Fetching %s" % ramdiskurl ramdisk, _ = urlopener.retrieve(ramdiskurl) except IOError, _: raise elif xm_vars.env['install-method'] == "cdrom": arch_path = { 'i386': "/install.386", 'amd64': "/install.amd" } if xm_vars.env['install-media']: print "Install Media: %s" % xm_vars.env['install-media'] else: raise OptionError("No installation media given.") if xm_vars.env['install-installer']: installer = xm_vars.env['install-installer'] else: installer = arch_path[xm_vars.env['install-arch']] print "Installer: %s" % installer if xm_vars.env.get('install-kernel'): kernelpath = xm_vars.env['install-kernel'] else: kernelpath = installer + "/xen/vmlinuz" if xm_vars.env.get('install-ramdisk'): ramdiskpath = xm_vars.env['install-ramdisk'] else: ramdiskpath = installer + "/xen/initrd.gz" disk.insert(0, 'file:%s,%s:cdrom,r' % (xm_vars.env['install-media'], xm_vars.env['install-cdrom-device'])) bootloader="/usr/sbin/pygrub" bootargs="--kernel=%s --ramdisk=%s" % (kernelpath, ramdiskpath) print "From CD" else: print "WARNING: Unknown install-method: %s." % xm_vars.env['install-method'] if xm_vars.env.get('install'): # Figure out command line if xm_vars.env['install-extra']: extras=[xm_vars.env['install-extra']] else: extras=[] # Reboot will just restart the installer since this file is not # reparsed, so halt and restart that way. extras.append("debian-installer/exit/always_halt=true") extras.append("--") extras.append("quiet") console="hvc0" try: if len(vfb) >= 1: console="tty0" except NameError, e: pass extras.append("console="+ console) extra = str.join(" ", extras) print "command line is \"%s\"" % extra root There are two LVM logical volumes connected to each VM. Here's the fdisk -l output for the disk volume: Disk /dev/VolGroup00/VMNAME-disk: 8589 MB, 8589934592 bytes 255 heads, 63 sectors/track, 1044 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00029c01 Device Boot Start End Blocks Id System /dev/VolGroup00/VMNAME-disk1 1 1045 8386560 83 Linux And the swap volume: Disk /dev/VolGroup00/VMNAME-swap: 536 MB, 536870912 bytes 37 heads, 35 sectors/track, 809 cylinders Units = cylinders of 1295 * 512 = 663040 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x0004faae Device Boot Start End Blocks Id System /dev/VolGroup00/VMNAME-swap1 2 809 522240 82 Linux swap / Solaris Partition 1 has different physical/logical beginnings (non-Linux?): phys=(0, 32, 33) logical=(1, 21, 19) Partition 1 has different physical/logical endings: phys=(65, 36, 35) logical=(808, 4, 28)

    Read the article

  • Ivy via Nexus proxy

    - by Matthias Hryniszak
    Hi, does anyone knows how do I specify in Ivy something like mirror/mirrorOf in Maven? I'm working with a local Maven proxy (Nexus) and need the tool to specify which of the parent repositories should Nexus proxy be accessing. In Maven I do simply: <mirrors> <mirror> <id>central-mirror</id> <mirrorOf>central</mirrorOf> <url>http://localhost:8081/content/repositories/central</url> </mirror> </mirrors> but I can't find this kind of option in Ivy.

    Read the article

  • Create a mirrored linked list in Java

    - by glacier89
    Linked-List: Mirror Consider the following private class for a node of a singly-linked list of integers: private class Node{ public int value; public Node next; } A wrapper-class, called, ListImpl, contains a pointer, called start to the first node of a linked list of Node. Write an instance-method for ListImpl with the signature: public void mirror(); That makes a reversed copy of the linked-list pointed to by start and appends that copy to the end of the list. So, for example the list: start 1 2 3 after a call to mirror, becomes: start 1 2 3 3 2 1 Note: in your answer you do not need to dene the rest of the class for ListImpl just the mirror method.

    Read the article

  • Selective emboldeing of text in a webpage

    - by Eknath Iyer
    while printing out utf-8 characters onto a webpage, if encapsulate them with they get emboldened, but anything else, the page turns blank. Why? def main(): print "Content-type: text/html\r\n\r\n"; print '<html>' print '<head>' print '<style type="text/css">' print '.highlight { background-color: yellow }' print '.color1 { color: green; }' print '.color2 { color: blue; }' print '.color3 { color: purple; }' print '.color4 { color: red; }' print '.color5 { color: teal; }' print '.color6 { color: yellow; }' print '.color7 { color: orange; }' print '.color8 { color: violet; }' print '</style></head>' print '<body>' form = cgi.FieldStorage() ch = form.getvalue('choice') if ch == 'English': in_sent = form.getvalue('f1') in_sent = in_sent.lower() cho=0 elif ch == 'Hindi': in_sent = trans_he(form.getvalue('transl1').decode("utf-8")).strip() cho=1 #cho = 0 for english #cho = 1 for hindi adict=[] print '<center><u> User Input Sentence ==> <b>', in_sent,'</b></u></center><br>' in_sent=in_sent.strip().split(' ') colordict={} counter=1 for word in in_sent: colordict[word]=counter counter = counter + 1 f = open('bidirectional.alignment.txt','rb').read() records=f.strip().split('\n\n\n') for record in records: el=[] el2 = [] #basic file processing is done here. record = record.strip().split('\n') source = record[cho] target = record[(cho+1)%2] source_sent = source.split(' # ')[1] target_sent = target.split(' # ')[1] source_words = source_sent.strip().split(' ') target_words = target_sent.strip().split(' ') trans_index = source.split(' # ')[2].strip().split(' ') for word in in_sent: if word in source_words: if int(trans_index[source_words.index(word)]) > 0: tword=target_words[(int(trans_index[source_words.index(word)])-1)] target_sent = target_sent.replace(tword+' ','<b>'+tword+' </b>') # When the <b> tag is used here(for the 'target_sent = ...' statement). it is fine. But when <b> is replaced by something like in the next line or even <i> or <u>, it doesn't show an output at all source_sent = source_sent.replace(word+' ','<span class="color1">'+word+' </span>') el2.append(source_sent) el2.append(target_sent) el.append(target_sent.count('<b>')) el.append(el2) if target_sent.count('<b>') > 0: adict.append(el) print '<table><tr><td><center><h1>SOURCE LANGUAGE</h1></center></td><td><center> <h1>TARGET LANGUAGE</h1></center></td></tr>' for entry in adict: print '<tr><td>',entry[1][0],'</td><td>',trans_eh(entry[1][1]).encode("utf-8"),'</td> </tr>' print '</table></body>' print '</html>' main()

    Read the article

  • Java calendar getting weekdays not working

    - by Raptrex
    I am trying to get this to output all the weekdays (MON-FRI) between 5/16/2010 (a sunday) and 5/25/2010 (a tuesday). The correct output should be 17,18,19,20,21,24,25. However, the result im getting is 17,18,19,20,21,17,18,19. The other methods just split up the string the date is in import java.util.*; public class test { public static void main(String[] args) { String startTime = "5/16/2010 11:44 AM"; String endTime = "5/25/2010 12:00 PM"; GregorianCalendar startCal = new GregorianCalendar(); startCal.setLenient(true); String[] start = splitString(startTime); //this sets year, month day startCal.set(Integer.parseInt(start[2]),Integer.parseInt(start[0])-1,Integer.parseInt(start[1])); startCal.set(GregorianCalendar.HOUR, Integer.parseInt(start[3])); startCal.set(GregorianCalendar.MINUTE, Integer.parseInt(start[4])); if (start[5].equalsIgnoreCase("AM")) { startCal.set(GregorianCalendar.AM_PM, 0); } else { startCal.set(GregorianCalendar.AM_PM, 1); } GregorianCalendar endCal = new GregorianCalendar(); endCal.setLenient(true); String[] end = splitString(endTime); endCal.set(Integer.parseInt(end[2]),Integer.parseInt(end[0])-1,Integer.parseInt(end[1])); endCal.set(GregorianCalendar.HOUR, Integer.parseInt(end[3])); endCal.set(GregorianCalendar.MINUTE, Integer.parseInt(end[4])); if (end[5].equalsIgnoreCase("AM")) { endCal.set(GregorianCalendar.AM_PM, 0); } else { endCal.set(GregorianCalendar.AM_PM, 1); } for (int i = startCal.get(Calendar.DATE); i < endCal.get(Calendar.DATE); i++) { startCal.set(Calendar.DATE, i); startCal.set(Calendar.DAY_OF_WEEK, i); if (startCal.get(Calendar.DAY_OF_WEEK) == Calendar.MONDAY || startCal.get(Calendar.DAY_OF_WEEK) == Calendar.TUESDAY || startCal.get(Calendar.DAY_OF_WEEK) == Calendar.WEDNESDAY || startCal.get(Calendar.DAY_OF_WEEK) == Calendar.THURSDAY || startCal.get(Calendar.DAY_OF_WEEK) == Calendar.FRIDAY) { System.out.println("\t" + startCal.get(Calendar.DATE)); } } } private static String[] splitDate(String date) { String[] temp1 = date.split(" "); // split by space String[] temp2 = temp1[0].split("/"); // split by / //5/21/2010 10:00 AM return temp2; // return 5 21 2010 in one array } private static String[] splitTime(String date) { String[] temp1 = date.split(" "); // split by space String[] temp2 = temp1[1].split(":"); // split by : //5/21/2010 10:00 AM String[] temp3 = {temp2[0], temp2[1], temp1[2]}; return temp3; // return 10 00 AM in one array } private static String[] splitString(String date) { String[] temp1 = splitDate(date); String[] temp2 = splitTime(date); String[] temp3 = new String[6]; return dateFill(temp3, temp2[0], temp2[1], temp2[2], temp1[0], temp1[1], temp1[2]); } private static String[] dateFill(String[] date, String hours, String minutes, String ampm, String month, String day, String year) { date[0] = month; date[1] = day; date[2] = year; date[3] = hours; date[4] = minutes; date[5] = ampm; return date; } private String dateString(String[] date) { //return month+" "+day+", "+year+" "+hours+":"+minutes+" "+ampm //5/21/2010 10:00 AM return date[3]+"/"+date[4]+"/ "+date[5]+" "+date[0]+":"+date[1]+" "+date[2]; } }

    Read the article

  • jQuery: how to produce a ProgressBar from given markup

    - by Richard Knop
    So I'm using the ProgressBar JQuery plugin (http://t.wits.sg/misc/jQueryProgressBar/demo.php) to create some static progress bars. What I want to achieve is to from this markup: <span class="progress-bar">10 / 100</span> produce a progress bar with maximum value of 100 and current value of 10. I am using html() method to get the contents of the span and then split() to get the two numbers: $(document).ready(function() { $(".progress-bar").progressBar($(this).html().split(' / ')[0], { max: $(this).html().split(' / ')[1], textFormat: 'fraction' }); }); That doesn't work, any suggestions? I'm pretty sure the problem is with $(this).html().split(' / ')[0] and $(this).html().split(' / ')[1], is that a correct syntax?

    Read the article

  • How to detect the position of window in vim

    - by Yogesh Arora
    I am trying to customize the mappings for vimdiff and make them similar to winmerge In a vertical 2 way split, I want to map alt-left <a-left> to move current diff to left side and alt-right <a-right> to move current diff to right side. For merging i can use :diffg and :diffp. But I need to know which split i am in so that i can use :diffg/:diffp in that. Is there any way by which i can detect which split i am in. Specifically is there is any way by which i can know whether the cursor is in left split or right split

    Read the article

  • List of items with same values

    - by user559780
    I'm creating a list of items from a file BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("H:/temp/data.csv"))); try { List<Item> items = new ArrayList<Item>(); Item item = new Item(); String line = null; while ((line = reader.readLine()) != null) { String[] split = line.split(","); item.name = split[0]; item.quantity = Integer.valueOf(split[1]); item.price = Double.valueOf(split[2]); item.total = item.quantity * item.price; items.add(item); } for (Item item2 : items) { System.out.println("Item: " + item2.name); } } catch (IOException e) { reader.close(); e.printStackTrace(); } Problem is the list is displaying the last line in the file as the value for all items.

    Read the article

  • why i failed to build vsftp?

    - by hugemeow
    make, then failed with the following message. the main point is /lib/libcap.so.1: could not read symbols: File in wrong format, confusing... gcc -c readwrite.c -O2 -Wall -W -Wshadow -idirafter dummyinc gcc -c opts.c -O2 -Wall -W -Wshadow -idirafter dummyinc gcc -c ssl.c -O2 -Wall -W -Wshadow -idirafter dummyinc gcc -c sslslave.c -O2 -Wall -W -Wshadow -idirafter dummyinc gcc -c ptracesandbox.c -O2 -Wall -W -Wshadow -idirafter dummyinc gcc -c ftppolicy.c -O2 -Wall -W -Wshadow -idirafter dummyinc gcc -c sysutil.c -O2 -Wall -W -Wshadow -idirafter dummyinc gcc -c sysdeputil.c -O2 -Wall -W -Wshadow -idirafter dummyinc gcc -o vsftpd main.o utility.o prelogin.o ftpcmdio.o postlogin.o privsock.o tunables.o ftpdataio.o secbuf.o ls.o postprivparent.o logging.o str.o netstr.o sysstr.o strlist.o banner.o filestr.o parseconf.o secutil.o ascii.o oneprocess.o twoprocess.o privops.o standalone.o hash.o tcpwrap.o ipaddrparse.o access.o features.o readwrite.o opts.o ssl.o sslslave.o ptracesandbox.o ftppolicy.o sysutil.o sysdeputil.o -Wl,-s `./vsf_findlibs.sh` /lib/libcap.so.1: could not read symbols: File in wrong format collect2: ld returned 1 exit status make: *** [vsftpd] Error 1 [mirror@hugemeow vsftpd]$ ls /lib/libc libc-2.5.so libcap.so.1.10 libcidn.so.1 libcom_err.so.2.1 libcrypto.so.0.9.8e libcrypt.so.1 libcap.so.1 libcidn-2.5.so libcom_err.so.2 libcrypt-2.5.so libcrypto.so.6 libc.so.6 [mirror@hugemeow vsftpd]$ ls /lib/libc libc-2.5.so libcap.so.1.10 libcidn.so.1 libcom_err.so.2.1 libcrypto.so.0.9.8e libcrypt.so.1 libcap.so.1 libcidn-2.5.so libcom_err.so.2 libcrypt-2.5.so libcrypto.so.6 libc.so.6 [mirror@hugemeow vsftpd]$ ls /lib/libcap.so.1 -l lrwxrwxrwx 1 root root 14 Mar 20 2012 /lib/libcap.so.1 -> libcap.so.1.10 [mirror@hugemeow vsftpd]$ ls /lib/libcap.so.1 -lh lrwxrwxrwx 1 root root 14 Mar 20 2012 /lib/libcap.so.1 -> libcap.so.1.10 [mirror@hugemeow vsftpd]$ ls /lib/libcap.so.1 -lhL -rwxr-xr-x 1 root root 12K Mar 15 2007 /lib/libcap.so.1 this may have something to do with 64 bit system, but i have make modification to vsf_findlibs.sh 48 # Look for libcap (capabilities) 49 if locate_library /lib64/libcap.so.1; then 50 echo "/lib/libcap.so.1"; 51 elif locate_library /lib64/libcap.so.2; then 52 echo "/lib/libcap.so.2"; 53 else 54 # locate_library /usr/lib/libcap.so && echo "-lcap"; 55 # locate_library /lib/libcap.so && echo "-lcap"; 56 locate_library /lib64/libcap.so.1 && echo "-lcap"; 57 fi but make failed with the same error, why?

    Read the article

< Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >