Search Results

Search found 19802 results on 793 pages for 'linq entity framework'.

Page 39/793 | < Previous Page | 35 36 37 38 39 40 41 42 43 44 45 46  | Next Page >

  • Is a full list returned first and then filtered when using linq to sql to filter data from a databas

    - by RJ
    This is probably a very simple question that I am working through in an MVC project. Here's an example of what I am talking about. I have an rdml file linked to a database with a table called Users that has 500,000 rows. But I only want to find the Users who were entered on 5/7/2010. So let's say I do this in my UserRepository: from u in db.GetUsers() where u.CreatedDate = "5/7/2010" select u (doing this from memory so don't kill me if my syntax is a little off, it's the concept I am looking for) Does this statement first return all 500,000 rows and then filter it or does it only bring back the filtered list?

    Read the article

  • How to avoid geometric slowdown with large Linq transactions?

    - by Shaul
    I've written some really nice, funky libraries for use in LinqToSql. (Some day when I have time to think about it I might make it open source... :) ) Anyway, I'm not sure if this is related to my libraries or not, but I've discovered that when I have a large number of changed objects in one transaction, and then call DataContext.GetChangeSet(), things start getting reaalllly slooowwwww. When I break into the code, I find that my program is spinning its wheels doing an awful lot of Equals() comparisons between the objects in the change set. I can't guarantee this is true, but I suspect that if there are n objects in the change set, then the call to GetChangeSet() is causing every object to be compared to every other object for equivalence, i.e. at best (n^2-n)/2 calls to Equals()... Yes, of course I could commit each object separately, but that kinda defeats the purpose of transactions. And in the program I'm writing, I could have a batch job containing 100,000 separate items, that all need to be committed together. Around 5 billion comparisons there. So the question is: (1) is my assessment of the situation correct? Do you get this behavior in pure, textbook LinqToSql, or is this something my libraries are doing? And (2) is there a standard/reasonable workaround so that I can create my batch without making the program geometrically slower with every extra object in the change set?

    Read the article

  • How to write simple Where Clause for dynamic filtering in linq when we use groups in join

    - by malik
    I have simple search page i want to filter the results. var TransactionStats = from trans in context.ProductTransactionSet.Include("SPL") select new { trans.InvoiceNo, ProductGroup = from tranline in trans.ProductTransactionLines group tranline by tranline.ProductTransaction.TransactionID into ProductGroupDetil select new { TransactionDateTime = ProductGroupDetil.Select (Content => Content.TransactionDateTime) } }; I want to use TransactionDateTime in where clause when required. if (_FilterCrieteria.DateFrom.HasValue) { TransactionStats.Where ( a => a.ProductGroup.Where ( dt => dt.DateofTransaction >= _FilterCrieteria.DateFrom && dt.DateofTransaction >= _FilterCrieteria.DateFrom ) ) } Can any one correct the syntax?

    Read the article

  • How to get the value of an XML element using Linq even when empty.

    - by Yeodave
    Please excuse my stupidity, I tend to find the traversing XML overly complicated. I am using ASP.NET in VB. I have an XML document which contains all the details of staff in my company... <staff> <staffName>Test Staff</staffName> <staffTitle>Slave</staffTitle> <staffDepartmentName>Finance</staffDepartmentName> <staffOffice>London</staffOffice> <staffEmail>[email protected]</staffEmail> <staffPhone>0207 123 456</staffPhone> <staffNotes>Working hours Mon to Thurs 9.15 - 5.15</staffNotes> <staffBio></staffBio> </staff> As you can see, some nodes do not always contain data for ever member of staff; only Directors have biographies. I access the values like this... For Each staff In ( _ From matches In myXMLFile.Descendants("staff").Descendants("staffName") _ Where matches.Nodes(0).ToString.ToLower.Contains(LCase(search)) _ Order By matches.Value _ Select matches) staffName = staff.Descendants("staffName").Nodes(0).ToString) staffTitle = staff.Descendants("staffTitle").Nodes(0).ToString) staffOffice = staff.Descendants("staffOffice").Nodes(0).ToString) staffEmail = staff.Descendants("staffEmail").Nodes(0).ToString) staffPhone = staff.Descendants("staffPhone").Nodes(0).ToString) staffNotes = staff.Descendants("staffNotes").Nodes(0).ToString) staffBio = staff.Descendants("staffBio").Nodes(0).ToString) ' Do something with that data... Next Once it gets to staffBio I get an error saying "Object reference not set to an instance of an object." obviously because that node does not exist. My question is how can I assign the value to a variable even when it is empty without having to do a conditional check before each assignment?

    Read the article

  • How to query for entities with no matching siblings, with LINQ?

    - by Ryan
    I've got the two following entities ... class Citation { public int CitationId { get; set; } public string Identifier { get; set; } } class CitationIdentifier { public int CitationIdentifierId { get; set; } public string Identifier { get; set; } } I'm trying to query for all Citation records where the Identifier property does not match any of the CitationIdentifiers record Identifier property. So, if I have a Citation with an Identifier property containing "foo", but there are no CitationIdentifier records with an Identifier property containing "foo", then I'd like to retrieve that Citation. I'm working with an IDbSet<Citation>. Any ideas? Thanks.

    Read the article

  • Is there a framework for describing object oriented communication standards/protocols?

    - by martin
    Currently I'm dealing with the development of specifications for communication standards/protocols for b2b-integration based on object oriented models. I.e. if you take a look at the healthcare domain there is HL7v3 with its HDF. Now I ask if there is a more generic framework, that describes how a specification for a communication standard should be developed. For b2b-integration I want to describe a communication standard based on uml models for a broad domain. My thought was to divide the domain into subdomains and derive message type from the resulting model. There is already a given framework, but I want to compare it to another framework. My idea is to compare them using a generic framework. It should describe several levels. Does anybody know such a framework? I have searched a while on google scholar, but haven't an appropiate framework yet. The only thing I have found is ebXML, but I think it is not exactly what I need.

    Read the article

  • LINQ to SQL - Lightweight O/RM?

    - by CoffeeAddict
    I've heard from some that LINQ to SQL is good for lightweight apps. But then I see LINQ to SQL being used for Stackoverflow, and a bunch of other .coms I know (from interviewing with them). Ok, so is this true? for an e-commerce site that's bringing in millions and you're typically only doing basic CRUDs most the time with the exception of an occasional stored proc for something more complex, is LINQ to SQL complete enough and performance-wise good enough or able to be tweaked enough to run happily on an e-commerce site? I've heard that you just need to tweak performance on the DB side when using LINQ to SQL for a better approach. So there are really 2 questions here: 1) Meaning/scope/definition of a "Lightweight" O/RM solution: What the heck does "lightweight" mean when people say LINQ to SQL is a "lightweight O/RM" and is that true??? If this is so lightweight then why do I see a bunch of huge .coms using it? Is it good enough to run major .coms (obviously it looks like it is) and what determines what the context of "lightweight" is...it's such a generic statement. 2) Performance: I'm working on my own .com and researching different O/RMs. I'm not really looking at the Entity Framework (yet), just want to figure out the LINQ to SQL basics here and determine if it will be efficient enough for me. The problem I think is you can't tweak or control the SQL it generates...

    Read the article

  • StreamInsight 2.1, meet LINQ

    - by Roman Schindlauer
    Someone recently called LINQ “magic” in my hearing. I leapt to LINQ’s defense immediately. Turns out some people don’t realize “magic” is can be a pejorative term. I thought LINQ needed demystification. Here’s your best demystification resource: http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx. I won’t repeat much of what Matt Warren says in his excellent series, but will talk about some core ideas and how they affect the 2.1 release of StreamInsight. Let’s tell the story of a LINQ query. Compile time It begins with some code: IQueryable<Product> products = ...; var query = from p in products             where p.Name == "Widget"             select p.ProductID; foreach (int id in query) {     ... When the code is compiled, the C# compiler (among other things) de-sugars the query expression (see C# spec section 7.16): ... var query = products.Where(p => p.Name == "Widget").Select(p => p.ProductID); ... Overload resolution subsequently binds the Queryable.Where<Product> and Queryable.Select<Product, int> extension methods (see C# spec sections 7.5 and 7.6.5). After overload resolution, the compiler knows something interesting about the anonymous functions (lambda syntax) in the de-sugared code: they must be converted to expression trees, i.e.,“an object structure that represents the structure of the anonymous function itself” (see C# spec section 6.5). The conversion is equivalent to the following rewrite: ... var prm1 = Expression.Parameter(typeof(Product), "p"); var prm2 = Expression.Parameter(typeof(Product), "p"); var query = Queryable.Select<Product, int>(     Queryable.Where<Product>(         products,         Expression.Lambda<Func<Product, bool>>(Expression.Property(prm1, "Name"), prm1)),         Expression.Lambda<Func<Product, int>>(Expression.Property(prm2, "ProductID"), prm2)); ... If the “products” expression had type IEnumerable<Product>, the compiler would have chosen the Enumerable.Where and Enumerable.Select extension methods instead, in which case the anonymous functions would have been converted to delegates. At this point, we’ve reduced the LINQ query to familiar code that will compile in C# 2.0. (Note that I’m using C# snippets to illustrate transformations that occur in the compiler, not to suggest a viable compiler design!) Runtime When the above program is executed, the Queryable.Where method is invoked. It takes two arguments. The first is an IQueryable<> instance that exposes an Expression property and a Provider property. The second is an expression tree. The Queryable.Where method implementation looks something like this: public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate) {     return source.Provider.CreateQuery<T>(     Expression.Call(this method, source.Expression, Expression.Quote(predicate))); } Notice that the method is really just composing a new expression tree that calls itself with arguments derived from the source and predicate arguments. Also notice that the query object returned from the method is associated with the same provider as the source query. By invoking operator methods, we’re constructing an expression tree that describes a query. Interestingly, the compiler and operator methods are colluding to construct a query expression tree. The important takeaway is that expression trees are built in one of two ways: (1) by the compiler when it sees an anonymous function that needs to be converted to an expression tree, and; (2) by a query operator method that constructs a new queryable object with an expression tree rooted in a call to the operator method (self-referential). Next we hit the foreach block. At this point, the power of LINQ queries becomes apparent. The provider is able to determine how the query expression tree is evaluated! The code that began our story was intentionally vague about the definition of the “products” collection. Maybe it is a queryable in-memory collection of products: var products = new[]     { new Product { Name = "Widget", ProductID = 1 } }.AsQueryable(); The in-memory LINQ provider works by rewriting Queryable method calls to Enumerable method calls in the query expression tree. It then compiles the expression tree and evaluates it. It should be mentioned that the provider does not blindly rewrite all Queryable calls. It only rewrites a call when its arguments have been rewritten in a way that introduces a type mismatch, e.g. the first argument to Queryable.Where<Product> being rewritten as an expression of type IEnumerable<Product> from IQueryable<Product>. The type mismatch is triggered initially by a “leaf” expression like the one associated with the AsQueryable query: when the provider recognizes one of its own leaf expressions, it replaces the expression with the original IEnumerable<> constant expression. I like to think of this rewrite process as “type irritation” because the rewritten leaf expression is like a foreign body that triggers an immune response (further rewrites) in the tree. The technique ensures that only those portions of the expression tree constructed by a particular provider are rewritten by that provider: no type irritation, no rewrite. Let’s consider the behavior of an alternative LINQ provider. If “products” is a collection created by a LINQ to SQL provider: var products = new NorthwindDataContext().Products; the provider rewrites the expression tree as a SQL query that is then evaluated by your favorite RDBMS. The predicate may ultimately be evaluated using an index! In this example, the expression associated with the Products property is the “leaf” expression. StreamInsight 2.1 For the in-memory LINQ to Objects provider, a leaf is an in-memory collection. For LINQ to SQL, a leaf is a table or view. When defining a “process” in StreamInsight 2.1, what is a leaf? To StreamInsight a leaf is logic: an adapter, a sequence, or even a query targeting an entirely different LINQ provider! How do we represent the logic? Remember that a standing query may outlive the client that provisioned it. A reference to a sequence object in the client application is therefore not terribly useful. But if we instead represent the code constructing the sequence as an expression, we can host the sequence in the server: using (var server = Server.Connect(...)) {     var app = server.Applications["my application"];     var source = app.DefineObservable(() => Observable.Range(0, 10, Scheduler.NewThread));     var query = from i in source where i % 2 == 0 select i; } Example 1: defining a source and composing a query Let’s look in more detail at what’s happening in example 1. We first connect to the remote server and retrieve an existing app. Next, we define a simple Reactive sequence using the Observable.Range method. Notice that the call to the Range method is in the body of an anonymous function. This is important because it means the source sequence definition is in the form of an expression, rather than simply an opaque reference to an IObservable<int> object. The variation in Example 2 fails. Although it looks similar, the sequence is now a reference to an in-memory observable collection: var local = Observable.Range(0, 10, Scheduler.NewThread); var source = app.DefineObservable(() => local); // can’t serialize ‘local’! Example 2: error referencing unserializable local object The Define* methods support definitions of operator tree leaves that target the StreamInsight server. These methods all have the same basic structure. The definition argument is a lambda expression taking between 0 and 16 arguments and returning a source or sink. The method returns a proxy for the source or sink that can then be used for the usual style of LINQ query composition. The “define” methods exploit the compile-time C# feature that converts anonymous functions into translatable expression trees! Query composition exploits the runtime pattern that allows expression trees to be constructed by operators taking queryable and expression (Expression<>) arguments. The practical upshot: once you’ve Defined a source, you can compose LINQ queries in the familiar way using query expressions and operator combinators. Notably, queries can be composed using pull-sequences (LINQ to Objects IQueryable<> inputs), push sequences (Reactive IQbservable<> inputs), and temporal sequences (StreamInsight IQStreamable<> inputs). You can even construct processes that span these three domains using “bridge” method overloads (ToEnumerable, ToObservable and To*Streamable). Finally, the targeted rewrite via type irritation pattern is used to ensure that StreamInsight computations can leverage other LINQ providers as well. Consider the following example (this example depends on Interactive Extensions): var source = app.DefineEnumerable((int id) =>     EnumerableEx.Using(() =>         new NorthwindDataContext(), context =>             from p in context.Products             where p.ProductID == id             select p.ProductName)); Within the definition, StreamInsight has no reason to suspect that it ‘owns’ the Queryable.Where and Queryable.Select calls, and it can therefore defer to LINQ to SQL! Let’s use this source in the context of a StreamInsight process: var sink = app.DefineObserver(() => Observer.Create<string>(Console.WriteLine)); var query = from name in source(1).ToObservable()             where name == "Widget"             select name; using (query.Bind(sink).Run("process")) {     ... } When we run the binding, the source portion which filters on product ID and projects the product name is evaluated by SQL Server. Outside of the definition, responsibility for evaluation shifts to the StreamInsight server where we create a bridge to the Reactive Framework (using ToObservable) and evaluate an additional predicate. It’s incredibly easy to define computations that span multiple domains using these new features in StreamInsight 2.1! Regards, The StreamInsight Team

    Read the article

  • Basic Spatial Data with SQL Server and Entity Framework 5.0

    - by Rick Strahl
    In my most recent project we needed to do a bit of geo-spatial referencing. While spatial features have been in SQL Server for a while using those features inside of .NET applications hasn't been as straight forward as could be, because .NET natively doesn't support spatial types. There are workarounds for this with a few custom project like SharpMap or a hack using the Sql Server specific Geo types found in the Microsoft.SqlTypes assembly that ships with SQL server. While these approaches work for manipulating spatial data from .NET code, they didn't work with database access if you're using Entity Framework. Other ORM vendors have been rolling their own versions of spatial integration. In Entity Framework 5.0 running on .NET 4.5 the Microsoft ORM finally adds support for spatial types as well. In this post I'll describe basic geography features that deal with single location and distance calculations which is probably the most common usage scenario. SQL Server Transact-SQL Syntax for Spatial Data Before we look at how things work with Entity framework, lets take a look at how SQL Server allows you to use spatial data to get an understanding of the underlying semantics. The following SQL examples should work with SQL 2008 and forward. Let's start by creating a test table that includes a Geography field and also a pair of Long/Lat fields that demonstrate how you can work with the geography functions even if you don't have geography/geometry fields in the database. Here's the CREATE command:CREATE TABLE [dbo].[Geo]( [id] [int] IDENTITY(1,1) NOT NULL, [Location] [geography] NULL, [Long] [float] NOT NULL, [Lat] [float] NOT NULL ) Now using plain SQL you can insert data into the table using geography::STGeoFromText SQL CLR function:insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.527200 45.712113)', 4326), -121.527200, 45.712113 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.517265 45.714240)', 4326), -121.517265, 45.714240 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.511536 45.714825)', 4326), -121.511536, 45.714825) The STGeomFromText function accepts a string that points to a geometric item (a point here but can also be a line or path or polygon and many others). You also need to provide an SRID (Spatial Reference System Identifier) which is an integer value that determines the rules for how geography/geometry values are calculated and returned. For mapping/distance functionality you typically want to use 4326 as this is the format used by most mapping software and geo-location libraries like Google and Bing. The spatial data in the Location field is stored in binary format which looks something like this: Once the location data is in the database you can query the data and do simple distance computations very easily. For example to calculate the distance of each of the values in the database to another spatial point is very easy to calculate. Distance calculations compare two points in space using a direct line calculation. For our example I'll compare a new point to all the points in the database. Using the Location field the SQL looks like this:-- create a source point DECLARE @s geography SET @s = geography:: STGeomFromText('POINT(-121.527200 45.712113)' , 4326); --- return the ids select ID, Location as Geo , Location .ToString() as Point , @s.STDistance( Location) as distance from Geo order by distance The code defines a new point which is the base point to compare each of the values to. You can also compare values from the database directly, but typically you'll want to match a location to another location and determine the difference for which you can use the geography::STDistance function. This query produces the following output: The STDistance function returns the straight line distance between the passed in point and the point in the database field. The result for SRID 4326 is always in meters. Notice that the first value passed was the same point so the difference is 0. The other two points are two points here in town in Hood River a little ways away - 808 and 1256 meters respectively. Notice also that you can order the result by the resulting distance, which effectively gives you results that are ordered radially out from closer to further away. This is great for searches of points of interest near a central location (YOU typically!). These geolocation functions are also available to you if you don't use the Geography/Geometry types, but plain float values. It's a little more work, as each point has to be created in the query using the string syntax, but the following code doesn't use a geography field but produces the same result as the previous query.--- using float fields select ID, geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326), geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326). ToString(), @s.STDistance( geography::STGeomFromText ('POINT(' + STR(long ,15, 7) + ' ' + Str(lat ,15, 7) + ')' , 4326)) as distance from geo order by distance Spatial Data in the Entity Framework Prior to Entity Framework 5.0 on .NET 4.5 consuming of the data above required using stored procedures or raw SQL commands to access the spatial data. In Entity Framework 5 however, Microsoft introduced the new DbGeometry and DbGeography types. These immutable location types provide a bunch of functionality for manipulating spatial points using geometry functions which in turn can be used to do common spatial queries like I described in the SQL syntax above. The DbGeography/DbGeometry types are immutable, meaning that you can't write to them once they've been created. They are a bit odd in that you need to use factory methods in order to instantiate them - they have no constructor() and you can't assign to properties like Latitude and Longitude. Creating a Model with Spatial Data Let's start by creating a simple Entity Framework model that includes a Location property of type DbGeography: public class GeoLocationContext : DbContext { public DbSet<GeoLocation> Locations { get; set; } } public class GeoLocation { public int Id { get; set; } public DbGeography Location { get; set; } public string Address { get; set; } } That's all there's to it. When you run this now against SQL Server, you get a Geography field for the Location property, which looks the same as the Location field in the SQL examples earlier. Adding Spatial Data to the Database Next let's add some data to the table that includes some latitude and longitude data. An easy way to find lat/long locations is to use Google Maps to pinpoint your location, then right click and click on What's Here. Click on the green marker to get the GPS coordinates. To add the actual geolocation data create an instance of the GeoLocation type and use the DbGeography.PointFromText() factory method to create a new point to assign to the Location property:[TestMethod] public void AddLocationsToDataBase() { var context = new GeoLocationContext(); // remove all context.Locations.ToList().ForEach( loc => context.Locations.Remove(loc)); context.SaveChanges(); var location = new GeoLocation() { // Create a point using native DbGeography Factory method Location = DbGeography.PointFromText( string.Format("POINT({0} {1})", -121.527200,45.712113) ,4326), Address = "301 15th Street, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.714240, -121.517265), Address = "The Hatchery, Bingen" }; context.Locations.Add(location); location = new GeoLocation() { // Create a point using a helper function (lat/long) Location = CreatePoint(45.708457, -121.514432), Address = "Kaze Sushi, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.722780, -120.209227), Address = "Arlington, OR" }; context.Locations.Add(location); context.SaveChanges(); } As promised, a DbGeography object has to be created with one of the static factory methods provided on the type as the Location.Longitude and Location.Latitude properties are read only. Here I'm using PointFromText() which uses a "Well Known Text" format to specify spatial data. In the first example I'm specifying to create a Point from a longitude and latitude value, using an SRID of 4326 (just like earlier in the SQL examples). You'll probably want to create a helper method to make the creation of Points easier to avoid that string format and instead just pass in a couple of double values. Here's my helper called CreatePoint that's used for all but the first point creation in the sample above:public static DbGeography CreatePoint(double latitude, double longitude) { var text = string.Format(CultureInfo.InvariantCulture.NumberFormat, "POINT({0} {1})", longitude, latitude); // 4326 is most common coordinate system used by GPS/Maps return DbGeography.PointFromText(text, 4326); } Using the helper the syntax becomes a bit cleaner, requiring only a latitude and longitude respectively. Note that my method intentionally swaps the parameters around because Latitude and Longitude is the common format I've seen with mapping libraries (especially Google Mapping/Geolocation APIs with their LatLng type). When the context is changed the data is written into the database using the SQL Geography type which looks the same as in the earlier SQL examples shown. Querying Once you have some location data in the database it's now super easy to query the data and find out the distance between locations. A common query is to ask for a number of locations that are near a fixed point - typically your current location and order it by distance. Using LINQ to Entities a query like this is easy to construct:[TestMethod] public void QueryLocationsTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 kilometers ordered by distance var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) < 5000) .OrderBy( loc=> loc.Location.Distance(sourcePoint) ) .Select( loc=> new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n0} meters)", location.Address, location.Distance); } } This example produces: 301 15th Street, Hood River (0 meters)The Hatchery, Bingen (809 meters)Kaze Sushi, Hood River (1,074 meters)   The first point in the database is the same as my source point I'm comparing against so the distance is 0. The other two are within the 5 mile radius, while the Arlington location which is 65 miles or so out is not returned. The result is ordered by distance from closest to furthest away. In the code, I first create a source point that is the basis for comparison. The LINQ query then selects all locations that are within 5km of the source point using the Location.Distance() function, which takes a source point as a parameter. You can either use a pre-defined value as I'm doing here, or compare against another database DbGeography property (say when you have to points in the same database for things like routes). What's nice about this query syntax is that it's very clean and easy to read and understand. You can calculate the distance and also easily order by the distance to provide a result that shows locations from closest to furthest away which is a common scenario for any application that places a user in the context of several locations. It's now super easy to accomplish this. Meters vs. Miles As with the SQL Server functions, the Distance() method returns data in meters, so if you need to work with miles or feet you need to do some conversion. Here are a couple of helpers that might be useful (can be found in GeoUtils.cs of the sample project):/// <summary> /// Convert meters to miles /// </summary> /// <param name="meters"></param> /// <returns></returns> public static double MetersToMiles(double? meters) { if (meters == null) return 0F; return meters.Value * 0.000621371192; } /// <summary> /// Convert miles to meters /// </summary> /// <param name="miles"></param> /// <returns></returns> public static double MilesToMeters(double? miles) { if (miles == null) return 0; return miles.Value * 1609.344; } Using these two helpers you can query on miles like this:[TestMethod] public void QueryLocationsMilesTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 miles ordered by distance var fiveMiles = GeoUtils.MilesToMeters(5); var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) <= fiveMiles) .OrderBy(loc => loc.Location.Distance(sourcePoint)) .Select(loc => new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n1} miles)", location.Address, GeoUtils.MetersToMiles(location.Distance)); } } which produces: 301 15th Street, Hood River (0.0 miles)The Hatchery, Bingen (0.5 miles)Kaze Sushi, Hood River (0.7 miles) Nice 'n simple. .NET 4.5 Only Note that DbGeography and DbGeometry are exclusive to Entity Framework 5.0 (not 4.4 which ships in the same NuGet package or installer) and requires .NET 4.5. That's because the new DbGeometry and DbGeography (and related) types are defined in the 4.5 version of System.Data.Entity which is a CLR assembly and is only updated by major versions of .NET. Why this decision was made to add these types to System.Data.Entity rather than to the frequently updated EntityFramework assembly that would have possibly made this work in .NET 4.0 is beyond me, especially given that there are no native .NET framework spatial types to begin with. I find it also odd that there is no native CLR spatial type. The DbGeography and DbGeometry types are specific to Entity Framework and live on those assemblies. They will also work for general purpose, non-database spatial data manipulation, but then you are forced into having a dependency on System.Data.Entity, which seems a bit silly. There's also a System.Spatial assembly that's apparently part of WCF Data Services which in turn don't work with Entity framework. Another example of multiple teams at Microsoft not communicating and implementing the same functionality (differently) in several different places. Perplexed as a I may be, for EF specific code the Entity framework specific types are easy to use and work well. Working with pre-.NET 4.5 Entity Framework and Spatial Data If you can't go to .NET 4.5 just yet you can also still use spatial features in Entity Framework, but it's a lot more work as you can't use the DbContext directly to manipulate the location data. You can still run raw SQL statements to write data into the database and retrieve results using the same TSQL syntax I showed earlier using Context.Database.ExecuteSqlCommand(). Here's code that you can use to add location data into the database:[TestMethod] public void RawSqlEfAddTest() { string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT({0} {1})', 4326),@p0 )"; var sql = string.Format(sqlFormat,-121.527200, 45.712113); Console.WriteLine(sql); var context = new GeoLocationContext(); Assert.IsTrue(context.Database.ExecuteSqlCommand(sql,"301 N. 15th Street") > 0); } Here I'm using the STGeomFromText() function to add the location data. Note that I'm using string.Format here, which usually would be a bad practice but is required here. I was unable to use ExecuteSqlCommand() and its named parameter syntax as the longitude and latitude parameters are embedded into a string. Rest assured it's required as the following does not work:string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT(@p0 @p1)', 4326),@p2 )";context.Database.ExecuteSqlCommand(sql, -121.527200, 45.712113, "301 N. 15th Street") Explicitly assigning the point value with string.format works however. There are a number of ways to query location data. You can't get the location data directly, but you can retrieve the point string (which can then be parsed to get Latitude and Longitude) and you can return calculated values like distance. Here's an example of how to retrieve some geo data into a resultset using EF's and SqlQuery method:[TestMethod] public void RawSqlEfQueryTest() { var sqlFormat = @" DECLARE @s geography SET @s = geography:: STGeomFromText('POINT({0} {1})' , 4326); SELECT Address, Location.ToString() as GeoString, @s.STDistance( Location) as Distance FROM GeoLocations ORDER BY Distance"; var sql = string.Format(sqlFormat, -121.527200, 45.712113); var context = new GeoLocationContext(); var locations = context.Database.SqlQuery<ResultData>(sql); Assert.IsTrue(locations.Count() > 0); foreach (var location in locations) { Console.WriteLine(location.Address + " " + location.GeoString + " " + location.Distance); } } public class ResultData { public string GeoString { get; set; } public double Distance { get; set; } public string Address { get; set; } } Hopefully you don't have to resort to this approach as it's fairly limited. Using the new DbGeography/DbGeometry types makes this sort of thing so much easier. When I had to use code like this before I typically ended up retrieving data pks only and then running another query with just the PKs to retrieve the actual underlying DbContext entities. This was very inefficient and tedious but it did work. Summary For the current project I'm working on we actually made the switch to .NET 4.5 purely for the spatial features in EF 5.0. This app heavily relies on spatial queries and it was worth taking a chance with pre-release code to get this ease of integration as opposed to manually falling back to stored procedures or raw SQL string queries to return spatial specific queries. Using native Entity Framework code makes life a lot easier than the alternatives. It might be a late addition to Entity Framework, but it sure makes location calculations and storage easy. Where do you want to go today? ;-) Resources Download Sample Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in ADO.NET  Sql Server  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Entity/Component based engine rendering separation from logic

    - by Denis Narushevich
    I noticed in Unity3D that each gameObject(entity) have its own renderer component, as far I understand, such component handle rendering logic. I wonder if it is a common practice in entity/component based engines, when single entity have renderer components and logic components such as position, behavior altogether in one box? Such approach sound odd to me, in my understanding entity itself belongs to logic part and shouldn't contain any render specific things inside. With such approach it is impossible to swap renderers, it would require to rewrite all that customized renderers. The way I would do it is, that entity would contain only logic specific components, like AI,transform,scripts plus reference to mesh, or sprite. Then some entity with Camera component would store all references to object that is visible to the camera. And in order to render all that stuff I would have to pass Camera reference to Renderer class and render all sprites,meshes of visible entities. Is such approach somehow wrong?

    Read the article

  • C#: LINQ vs foreach - Round 1.

    - by James Michael Hare
    So I was reading Peter Kellner's blog entry on Resharper 5.0 and its LINQ refactoring and thought that was very cool.  But that raised a point I had always been curious about in my head -- which is a better choice: manual foreach loops or LINQ?    The answer is not really clear-cut.  There are two sides to any code cost arguments: performance and maintainability.  The first of these is obvious and quantifiable.  Given any two pieces of code that perform the same function, you can run them side-by-side and see which piece of code performs better.   Unfortunately, this is not always a good measure.  Well written assembly language outperforms well written C++ code, but you lose a lot in maintainability which creates a big techncial debt load that is hard to offset as the application ages.  In contrast, higher level constructs make the code more brief and easier to understand, hence reducing technical cost.   Now, obviously in this case we're not talking two separate languages, we're comparing doing something manually in the language versus using a higher-order set of IEnumerable extensions that are in the System.Linq library.   Well, before we discuss any further, let's look at some sample code and the numbers.  First, let's take a look at the for loop and the LINQ expression.  This is just a simple find comparison:       // find implemented via LINQ     public static bool FindViaLinq(IEnumerable<int> list, int target)     {         return list.Any(item => item == target);     }         // find implemented via standard iteration     public static bool FindViaIteration(IEnumerable<int> list, int target)     {         foreach (var i in list)         {             if (i == target)             {                 return true;             }         }           return false;     }   Okay, looking at this from a maintainability point of view, the Linq expression is definitely more concise (8 lines down to 1) and is very readable in intention.  You don't have to actually analyze the behavior of the loop to determine what it's doing.   So let's take a look at performance metrics from 100,000 iterations of these methods on a List<int> of varying sizes filled with random data.  For this test, we fill a target array with 100,000 random integers and then run the exact same pseudo-random targets through both searches.                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     Any         10       26          0.00046             30.00%     Iteration   10       20          0.00023             -     Any         100      116         0.00201             18.37%     Iteration   100      98          0.00118             -     Any         1000     1058        0.01853             16.78%     Iteration   1000     906         0.01155             -     Any         10,000   10,383      0.18189             17.41%     Iteration   10,000   8843        0.11362             -     Any         100,000  104,004     1.8297              18.27%     Iteration   100,000  87,941      1.13163             -   The LINQ expression is running about 17% slower for average size collections and worse for smaller collections.  Presumably, this is due to the overhead of the state machine used to track the iterators for the yield returns in the LINQ expressions, which seems about right in a tight loop such as this.   So what about other LINQ expressions?  After all, Any() is one of the more trivial ones.  I decided to try the TakeWhile() algorithm using a Count() to get the position stopped like the sample Pete was using in his blog that Resharper refactored for him into LINQ:       // Linq form     public static int GetTargetPosition1(IEnumerable<int> list, int target)     {         return list.TakeWhile(item => item != target).Count();     }       // traditionally iterative form     public static int GetTargetPosition2(IEnumerable<int> list, int target)     {         int count = 0;           foreach (var i in list)         {             if(i == target)             {                 break;             }               ++count;         }           return count;     }   Once again, the LINQ expression is much shorter, easier to read, and should be easier to maintain over time, reducing the cost of technical debt.  So I ran these through the same test data:                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile   10       41          0.00041             128%     Iteration   10       18          0.00018             -     TakeWhile   100      171         0.00171             88%     Iteration   100      91          0.00091             -     TakeWhile   1000     1604        0.01604             94%     Iteration   1000     825         0.00825             -     TakeWhile   10,000   15765       0.15765             92%     Iteration   10,000   8204        0.08204             -     TakeWhile   100,000  156950      1.5695              92%     Iteration   100,000  81635       0.81635             -     Wow!  I expected some overhead due to the state machines iterators produce, but 90% slower?  That seems a little heavy to me.  So then I thought, well, what if TakeWhile() is not the right tool for the job?  The problem is TakeWhile returns each item for processing using yield return, whereas our for-loop really doesn't care about the item beyond using it as a stop condition to evaluate. So what if that back and forth with the iterator state machine is the problem?  Well, we can quickly create an (albeit ugly) lambda that uses the Any() along with a count in a closure (if a LINQ guru knows a better way PLEASE let me know!), after all , this is more consistent with what we're trying to do, we're trying to find the first occurence of an item and halt once we find it, we just happen to be counting on the way.  This mostly matches Any().       // a new method that uses linq but evaluates the count in a closure.     public static int TakeWhileViaLinq2(IEnumerable<int> list, int target)     {         int count = 0;         list.Any(item =>             {                 if(item == target)                 {                     return true;                 }                   ++count;                 return false;             });         return count;     }     Now how does this one compare?                         List<T> On 100,000 Iterations     Method         Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile      10       41          0.00041             128%     Any w/Closure  10       23          0.00023             28%     Iteration      10       18          0.00018             -     TakeWhile      100      171         0.00171             88%     Any w/Closure  100      116         0.00116             27%     Iteration      100      91          0.00091             -     TakeWhile      1000     1604        0.01604             94%     Any w/Closure  1000     1101        0.01101             33%     Iteration      1000     825         0.00825             -     TakeWhile      10,000   15765       0.15765             92%     Any w/Closure  10,000   10802       0.10802             32%     Iteration      10,000   8204        0.08204             -     TakeWhile      100,000  156950      1.5695              92%     Any w/Closure  100,000  108378      1.08378             33%     Iteration      100,000  81635       0.81635             -     Much better!  It seems that the overhead of TakeAny() returning each item and updating the state in the state machine is drastically reduced by using Any() since Any() iterates forward until it finds the value we're looking for -- for the task we're attempting to do.   So the lesson there is, make sure when you use a LINQ expression you're choosing the best expression for the job, because if you're doing more work than you really need, you'll have a slower algorithm.  But this is true of any choice of algorithm or collection in general.     Even with the Any() with the count in the closure it is still about 30% slower, but let's consider that angle carefully.  For a list of 100,000 items, it was the difference between 1.01 ms and 0.82 ms roughly in a List<T>.  That's really not that bad at all in the grand scheme of things.  Even running at 90% slower with TakeWhile(), for the vast majority of my projects, an extra millisecond to save potential errors in the long term and improve maintainability is a small price to pay.  And if your typical list is 1000 items or less we're talking only microseconds worth of difference.   It's like they say: 90% of your performance bottlenecks are in 2% of your code, so over-optimizing almost never pays off.  So personally, I'll take the LINQ expression wherever I can because they will be easier to read and maintain (thus reducing technical debt) and I can rely on Microsoft's development to have coded and unit tested those algorithm fully for me instead of relying on a developer to code the loop logic correctly.   If something's 90% slower, yes, it's worth keeping in mind, but it's really not until you start get magnitudes-of-order slower (10x, 100x, 1000x) that alarm bells should really go off.  And if I ever do need that last millisecond of performance?  Well then I'll optimize JUST THAT problem spot.  To me it's worth it for the readability, speed-to-market, and maintainability.

    Read the article

  • Repair .NET Framework on Windows 2008 R2

    - by Niels R.
    One of our web servers has become inoperable and after some searching we think the .NET Framework might be corrupted in some way. The server runs Windows 2008 R2 and uses the 2.0 framework for the ASP.NET application that is (or better: was) running using IIS 7.5. I'm wondering how we can reinstall the .NET 2.0 Framework on Windows 2008 R2. Any ideas? Kind regards, Niels R.

    Read the article

  • Repair .NET Framework on Windows 2008 R2

    - by Niels R.
    One of our web servers has become inoperable and after some searching we think the .NET Framework might be corrupted in some way. The server runs Windows 2008 R2 and uses the 2.0 framework for the ASP.NET application that is (or better: was) running using IIS 7.5. I'm wondering how we can reinstall the .NET 2.0 Framework on Windows 2008 R2. Any ideas? Kind regards, Niels R.

    Read the article

  • Open source report framework

    - by Tiax
    I'm looking for a open source report framework for statistics. A more detailed explanation is: We have a number of tests running on different servers collecting data (for example, login time) every 5min. What we need is a framework that collects this data (or exposes web services for us to push the data into the framework) and presents it in form of graphs and so on. Does anyone know of a framework that's easy to use out of the box but has the power to grow? If you know what I mean. Thanks in advance!

    Read the article

  • Creating Entity Framework objects with Unity for Unit of Work/Repository pattern

    - by TobyEvans
    Hi there, I'm trying to implement the Unit of Work/Repository pattern, as described here: http://blogs.msdn.com/adonet/archive/2009/06/16/using-repository-and-unit-of-work-patterns-with-entity-framework-4-0.aspx This requires each Repository to accept an IUnitOfWork implementation, eg an EF datacontext extended with a partial class to add an IUnitOfWork interface. I'm actually using .net 3.5, not 4.0. My basic Data Access constructor looks like this: public DataAccessLayer(IUnitOfWork unitOfWork, IRealtimeRepository realTimeRepository) { this.unitOfWork = unitOfWork; this.realTimeRepository = realTimeRepository; } So far, so good. What I'm trying to do is add Dependency Injection using the Unity Framework. Getting the EF data context to be created with Unity was an adventure, as it had trouble resolving the constructor - what I did in the end was to create another constructor in my partial class with a new overloaded constructor, and marked that with [InjectionConstructor] [InjectionConstructor] public communergyEntities(string connectionString, string containerName) :this() { (I know I need to pass the connection string to the base object, that can wait until once I've got all the objects initialising correctly) So, using this technique, I can happily resolve my entity framework object as an IUnitOfWork instance thus: using (IUnityContainer container = new UnityContainer()) { container.RegisterType<IUnitOfWork, communergyEntities>(); container.Configure<InjectedMembers>() .ConfigureInjectionFor<communergyEntities>( new InjectionConstructor("a", "b")) DataAccessLayer target = container.Resolve<DataAccessLayer>(); Great. What I need to do now is create the reference to the repository object for the DataAccessLayer - the DAL only needs to know the interface, so I'm guessing that I need to instantiate it as part of the Unity Resolve statement, passing it the appropriate IUnitOfWork interface. In the past, I would have just passed the Repository constructor the db connection string, and it would have gone away, created a local Entity Framework object and used that just for the lifetime of the Repository method. This is different, in that I create an Entity Framework instance as an IUnitOfWork implementation during the Unity Resolve statement, and it's that instance I need to pass into the constructor of the Repository - is that possible, and if so, how? I'm wondering if I could make the Repository a property and mark it as a Dependency, but that still wouldn't solve the problem of how to create the Repository with the IUnitOfWork object that the DAL is being Resolved with I'm not sure if I've understood this pattern correctly, and will happily take advice on the best way to implement it - Entity Framework is staying, but Unity can be swapped out if not the best approach. If I've got the whole thing upside down, please tell me thanks

    Read the article

  • ADO.NET Entity Framework with OLE DB Access Data Source

    - by Tim Long
    Has anyone found a way to make the ADO.NET Entity Framework work with OLE DB or ODBC data sources? Specifically, I need to work with an Access database that for various reasons can't be upsized to SQL. This MSDN page says: The .NET Framework includes ADO.NET providers for direct access to Microsoft SQL Server (including Entity Framework support), and for indirect access to other databases with ODBC and OLE DB drivers (see .NET Framework Data Providers). For direct access to other databases, many third-party providers are available as shown below. The reference to "indirect access to other databases" is tantalising but I confess that I am hopelessly confused by all the different names for data access technology.

    Read the article

  • Best practices for using the Entity Framework with WPF DataBinding

    - by Ken Smith
    I'm in the process of building my first real WPF application (i.e., the first intended to be used by someone besides me), and I'm still wrapping my head around the best way to do things in WPF. It's a fairly simple data access application using the still-fairly-new Entity Framework, but I haven't been able to find a lot of guidance online for the best way to use these two technologies (WPF and EF) together. So I thought I'd toss out how I'm approaching it, and see if anyone has any better suggestions. I'm using the Entity Framework with SQL Server 2008. The EF strikes me as both much more complicated than it needs to be, and not yet mature, but Linq-to-SQL is apparently dead, so I might as well use the technology that MS seems to be focusing on. This is a simple application, so I haven't (yet) seen fit to build a separate data layer around it. When I want to get at data, I use fairly simple Linq-to-Entity queries, usually straight from my code-behind, e.g.: var families = from family in entities.Family.Include("Person") orderby family.PrimaryLastName, family.Tag select family; Linq-to-Entity queries return an IOrderedQueryable result, which doesn't automatically reflect changes in the underlying data, e.g., if I add a new record via code to the entity data model, the existence of this new record is not automatically reflected in the various controls referencing the Linq query. Consequently, I'm throwing the results of these queries into an ObservableCollection, to capture underlying data changes: familyOC = new ObservableCollection<Family>(families.ToList()); I then map the ObservableCollection to a CollectionViewSource, so that I can get filtering, sorting, etc., without having to return to the database. familyCVS.Source = familyOC; familyCVS.View.Filter = new Predicate<object>(ApplyFamilyFilter); familyCVS.View.SortDescriptions.Add(new System.ComponentModel.SortDescription("PrimaryLastName", System.ComponentModel.ListSortDirection.Ascending)); familyCVS.View.SortDescriptions.Add(new System.ComponentModel.SortDescription("Tag", System.ComponentModel.ListSortDirection.Ascending)); I then bind the various controls and what-not to that CollectionViewSource: <ListBox DockPanel.Dock="Bottom" Margin="5,5,5,5" Name="familyList" ItemsSource="{Binding Source={StaticResource familyCVS}, Path=., Mode=TwoWay}" IsSynchronizedWithCurrentItem="True" ItemTemplate="{StaticResource familyTemplate}" SelectionChanged="familyList_SelectionChanged" /> When I need to add or delete records/objects, I manually do so from both the entity data model, and the ObservableCollection: private void DeletePerson(Person person) { entities.DeleteObject(person); entities.SaveChanges(); personOC.Remove(person); } I'm generally using StackPanel and DockPanel controls to position elements. Sometimes I'll use a Grid, but it seems hard to maintain: if you want to add a new row to the top of your grid, you have to touch every control directly hosted by the grid to tell it to use a new line. Uggh. (Microsoft has never really seemed to get the DRY concept.) I almost never use the VS WPF designer to add, modify or position controls. The WPF designer that comes with VS is sort of vaguely helpful to see what your form is going to look like, but even then, well, not really, especially if you're using data templates that aren't binding to data that's available at design time. If I need to edit my XAML, I take it like a man and do it manually. Most of my real code is in C# rather than XAML. As I've mentioned elsewhere, entirely aside from the fact that I'm not yet used to "thinking" in it, XAML strikes me as a clunky, ugly language, that also happens to come with poor designer and intellisense support, and that can't be debugged. Uggh. Consequently, whenever I can see clearly how to do something in C# code-behind that I can't easily see how to do in XAML, I do it in C#, with no apologies. There's been plenty written about how it's a good practice to almost never use code-behind in WPF page (say, for event-handling), but so far at least, that makes no sense to me whatsoever. Why should I do something in an ugly, clunky language with god-awful syntax, an astonishingly bad editor, and virtually no type safety, when I can use a nice, clean language like C# that has a world-class editor, near-perfect intellisense, and unparalleled type safety? So that's where I'm at. Any suggestions? Am I missing any big parts of this? Anything that I should really think about doing differently?

    Read the article

  • Does Sandcastle support Entity Framework Partial Classes?

    - by ChrisHDog
    I am attempting to use Sandcastle (and Sandcastle Help File Builder) to do some "auto-documentation" of some classes I am using. The classes that are giving me trouble are some partial classes on Entity Framework items that add methods and properties to those Framework items. The triple slash comments don't appear to come through on the methods and properties created in the partial classes. I have out how to get xml documentation of the base properties using the short summary and long description fields on the .emdx editor, but that doesn't provide a solution for the items in the partial classes. Is this possible? Is it perhaps just settings that I'm not setting correctly to pick up the partial classes? Does Sandcastle do partial classes in non-Entity Framework settings? Is what I'm doing even possible (has anyone else successfully used the xml created from triple slash comments to create documentation on entity framework partial classes, and if so how did you do that)? Any assistance is appreciated

    Read the article

  • Where to start .NET Entity Framework and ORM?

    - by Freshblood
    Hello I haven't used any database system enough but i believe i know logic of databases and i have learnt little sql so i shouldn't start to learn ORM before learn them well? Where can i start to learn .NET Entity Framework and which version of framework i have to start 3.5 or 4.0 because i heard that 4.0 has strong support for Entity Framework.I am looking sources web pages,e-books or other else.

    Read the article

  • ASP.NET MVC 2: Updating a Linq-To-Sql Entity with an EntitySet

    - by Simon
    I have a Linq to Sql Entity which has an EntitySet. In my View I display the Entity with it's properties plus an editable list for the child entites. The user can dynamically add and delete those child entities. The DefaultModelBinder works fine so far, it correctly binds the child entites. Now my problem is that I just can't get Linq To Sql to delete the deleted child entities, it will happily add new ones but not delete the deleted ones. I have enabled cascade deleting in the foreign key relationship, and the Linq To Sql designer added the "DeleteOnNull=true" attribute to the foreign key relationships. If I manually delete a child entity like this: myObject.Childs.Remove(child); context.SubmitChanges(); This will delete the child record from the DB. But I can't get it to work for a model binded object. I tried the following: // this does nothing public ActionResult Update(int id, MyObject obj) // obj now has 4 child entities { var obj2 = _repository.GetObj(id); // obj2 has 6 child entities if(TryUpdateModel(obj2)) //it sucessfully updates obj2 and its childs { _repository.SubmitChanges(); // nothing happens, records stay in DB } else ..... return RedirectToAction("List"); } and this throws an InvalidOperationException, I have a german OS so I'm not exactly sure what the error message is in english, but it says something along the lines of that the entity needs a Version (Timestamp row?) or no update check policies. I have set UpdateCheck="Never" to every column except the primary key column. public ActionResult Update(MyObject obj) { _repository.MyObjectTable.Attach(obj, true); _repository.SubmitChanges(); // never gets here, exception at attach } I've read alot about similar "problems" with Linq To Sql, but it seems most of those "problems" are actually by design. So am I right in my assumption that this doesn't work like I expect it to work? Do I really have to manually iterate through the child entities and delete, update and insert them manually? For such a simple object this may work, but I plan to create more complex objects with nested EntitySets and so on. This is just a test to see what works and what not. So far I'm disappointed with Linq To Sql (maybe I just don't get it). Would be the Entity Framework or NHibernate a better choice for this scenario? Or would I run into the same problem?

    Read the article

  • ADO.NET Data Services Entity Framework request error when property setter is internal

    - by Jim Straatman
    I receive an error message when exposing an ADO.NET Data Service using an Entity Framework data model that contains an entity (called "Case") with an internal setter on a property. If I modify the setter to be public (using the entity designer), the data services works fine. I don’t need the entity "Case" exposed in the data service, so I tried to limit which entities are exposed using SetEntitySetAccessRule. This didn’t work, and service end point fails with the same error. public static void InitializeService(IDataServiceConfiguration config) { config.SetEntitySetAccessRule("User", EntitySetRights.AllRead); } The error message is reported in a browser when the .svc endpoint is called. It is very generic, and reads “Request Error. The server encountered an error processing the request. See server logs for more details.” Unfortunately, there are no entries in the System and Application event logs. I found this stackoverflow question that shows how to configure tracing on the service. After doing so, the following NullReferenceExceptoin error was reported in the trace log. Does anyone know how to avoid this exception when including an entity with an internal setter? Blockquote 131076 3 0 2 MOTOJIM http://msdn.microsoft.com/en-US/library/System.ServiceModel.Diagnostics.TraceHandledException.aspx Handling an exception. 685a2910-19-128703978432492675 System.NullReferenceException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 Object reference not set to an instance of an object. at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMemberMetadata(ResourceType resourceType, MetadataWorkspace workspace, IDictionary2 entitySets, IDictionary2 knownTypes) at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMetadata(IDictionary2 knownTypes, IDictionary2 entitySets) at System.Data.Services.Providers.BaseServiceProvider.PopulateMetadata() at System.Data.Services.DataService1.CreateProvider(Type dataServiceType, Object dataSourceInstance, DataServiceConfiguration&amp; configuration) at System.Data.Services.DataService1.EnsureProviderAndConfigForRequest() at System.Data.Services.DataService1.ProcessRequestForMessage(Stream messageBody) at SyncInvokeProcessRequestForMessage(Object , Object[] , Object[] ) at System.ServiceModel.Dispatcher.SyncMethodInvoker.Invoke(Object instance, Object[] inputs, Object[]&amp; outputs) at System.ServiceModel.Dispatcher.DispatchOperationRuntime.InvokeBegin(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage5(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage4(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage3(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage2(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.ImmutableDispatchRuntime.ProcessMessage1(MessageRpc&amp; rpc) at System.ServiceModel.Dispatcher.MessageRpc.Process(Boolean isOperationContextSet) </StackTrace> <ExceptionString>System.NullReferenceException: Object reference not set to an instance of an object. at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMemberMetadata(ResourceType resourceType, MetadataWorkspace workspace, IDictionary2 entitySets, IDictionary2 knownTypes) at System.Data.Services.Providers.ObjectContextServiceProvider.PopulateMetadata(IDictionary2 knownTypes, IDictionary2 entitySets) at System.Data.Services.Providers.BaseServiceProvider.P

    Read the article

  • should I use Entity Framework instead of raw ADO.NET

    - by user110182
    I am new to CSLA and Entity Framework. I am creating a new CSLA / Silverlight application that will replace a 12 year old Win32 C++ system. The old system uses a custom DCOM business object library and uses ODBC to get to SQL Server. The new system will not immediately replace the old system -- they must coexist against the same database for years to come. At first I thought EF was the way to go since it is the latest and greatest. After making a small EF model and only 2 CSLA editable root objects (I will eventually have hundreds of objects as my DB has 800+ tables) I am seriously questioning the use of EF. In the current system I have the need many times to do fine detail performance tuning of the queries which I can do because of 100% control of generated SQL. But it seems in EF that so much happens behind the scenes that I lose that control. Article like http://toomanylayers.blogspot.com/2009/01/entity-framework-and-linq-to-sql.html don't help my impression of EF. People seem to like EF because of LINQ to EF but since my criteria is passed between client and server as criteria object it seems like I could build queries just as easily without LINQ. I understand in WCF RIA that there is query projection (or something like that) where I can do client side LINQ which does move to the server before translation into actual SQL so in that case I can see the benefit of EF, but not in CSLA. If I use raw ADO.NET, will I regret my decision 5 years from now? Has anyone else made this choice recently and which way did you go?

    Read the article

  • should I use Entity Framework instead of raw ADO.NET

    - by user110182
    I am new to CSLA and Entity Framework. I am creating a new CSLA / Silverlight application that will replace a 12 year old Win32 C++ system. The old system uses a custom DCOM business object library and uses ODBC to get to SQL Server. The new system will not immediately replace the old system -- they must coexist against the same database for years to come. At first I thought EF was the way to go since it is the latest and greatest. After making a small EF model and only 2 CSLA editable root objects (I will eventually have hundreds of objects as my DB has 800+ tables) I am seriously questioning the use of EF. In the current system I have the need many times to do fine detail performance tuning of the queries which I can do because of 100% control of generated SQL. But it seems in EF that so much happens behind the scenes that I lose that control. Article like http://toomanylayers.blogspot.com/2009/01/entity-framework-and-linq-to-sql.html don't help my impression of EF. People seem to like EF because of LINQ to EF but since my criteria is passed between client and server as criteria object it seems like I could build queries just as easily without LINQ. I understand in WCF RIA that there is query projection (or something like that) where I can do client side LINQ which does move to the server before translation into actual SQL so in that case I can see the benefit of EF, but not in CSLA. If I use raw ADO.NET, will I regret my decision 5 years from now? Has anyone else made this choice recently and which way did you go?

    Read the article

  • What is the best way to update an unattached entity on Entity Framework?

    - by Carlos Loth
    Hi, In my project I have some data classes to retrieve data from the database using the Entity Framework. We called these classes *EntityName*Manager. All of them have a method to retrieve entities from database and they behave most like this: static public EntityA SelectByName(String name) { using (var context = new ApplicationContext()) { var query = from a in context.EntityASet where a.Name == name select a; try { var entityA = query.First(); context.Detach(entityA); return entityA; } catch (InvalidOperationException ex) { throw new DataLayerException( String.Format("The entityA whose name is '{0}' was not found.", name), ex); } } } You can see that I detach the entity before return it to the method caller. So, my question is "what is the best way to create an update method on my *EntityA*Manager class?" I'd like to pass the modified entity as a parameter of the method. But I haven't figured out a way of doing it without going to the database and reload the entity and update its values inside a new context. Any ideas? Thanks in advance, Carlos Loth.

    Read the article

  • Entity Framework 4 / POCO - Where to start?

    - by Basiclife
    Hi, I've been programming for a while and have used LINQ-To-SQL and LINQ-To-Entities before (although when using entities it has been on a Entity/Table 1-1 relationship - ie not much different than L2SQL) I've been doing a lot of reading about Inversion of Control, Unit of Work, POCO and repository patterns and would like to use this methodology in my new applications. Where I'm struggling is finding a clear, concise beginners guide for EF4 which doesn't assume knowledge of EF1. The specific questions I need answered are: Code first / model first? Pros/cons in regards to EF4 (ie what happens if I do code first, change the code at a later date and need to regenerate my DB model - Does the data get preserved and transformed or dropped?) Assuming I'm going code-first (I'd like to see how EF4 converts that to a DB schema) how do I actually get started? Quite often I've seen articles with entity diagrams stating "So this is my entity model, now I'm going to ..." - Unfortunately, I'm unclear if they're created the model in the designer, saved it to generate code then stopped any further auto-code generation -or- They've coded (POCO)? classes and the somehow imported them into the deisgner view? I suppose what I really need is an understanding of where the "magic" comes from and how to add it myself if I'm not just generating an EF model directly from a DB. I'm aware the question is a little vague but I don't know what I don't know - So any input / correction / clarification appreciated. Needless to say, I don't expect anyone to sit here and teach me EF - I'd just like some good tutorials/forums/blogs/etc. for complete entity newbies Many thanks in advance

    Read the article

< Previous Page | 35 36 37 38 39 40 41 42 43 44 45 46  | Next Page >