Search Results

Search found 10863 results on 435 pages for 'no refunds no returns'.

Page 39/435 | < Previous Page | 35 36 37 38 39 40 41 42 43 44 45 46  | Next Page >

  • Sending a message to nil?

    - by Ryan Delucchi
    As a Java developer who is reading Apple's Objective-C 2.0 documentation: I wonder as to what sending a message to nil means - let alone how it is actually useful. Taking an excerpt from the documentation: There are several patterns in Cocoa that take advantage of this fact. The value returned from a message to nil may also be valid: If the method returns an object, any pointer type, any integer scalar of size less than or equal to sizeof(void*), a float, a double, a long double, or a long long, then a message sent to nil returns 0. If the method returns a struct, as defined by the Mac OS X ABI Function Call Guide to be returned in registers, then a message sent to nil returns 0.0 for every field in the data structure. Other struct data types will not be filled with zeros. If the method returns anything other than the aforementioned value types the return value of a message sent to nil is undefined. Has Java rendered my brain incapable of grokking the explanation above? Or is there something that I am missing that would make this as clear as glass? Note: Yes, I do get the idea of messages/receivers in Objective-C, I am simply confused about a receiver that happens to be nil.

    Read the article

  • How to find where error is.

    - by gurugio
    How can I find where the error occurs? In C language, the return value means what error occurs, such as failure to open file or memory allocation. There is no information where the error occurs. For example, function 'foo' calls A,B,C,D. If foo returns an error value, it might be return value of A or B or C or D. I cannot find what function returns error. I have to run debugger or add some codes to find what function returns error.

    Read the article

  • DropDownList and SelectListItem Array Item Updates in MVC

    - by Rick Strahl
    So I ran into an interesting behavior today as I deployed my first MVC 4 app tonight. I have a list form that has a filter drop down that allows selection of categories. This list is static and rarely changes so rather than loading these items from the database each time I load the items once and then cache the actual SelectListItem[] array in a static property. However, when we put the site online tonight we immediately noticed that the drop down list was coming up with pre-set values that randomly changed. Didn't take me long to trace this back to the cached list of SelectListItem[]. Clearly the list was getting updated - apparently through the model binding process in the selection postback. To clarify the scenario here's the drop down list definition in the Razor View:@Html.DropDownListFor(mod => mod.QueryParameters.Category, Model.CategoryList, "All Categories") where Model.CategoryList gets set with:[HttpPost] [CompressContent] public ActionResult List(MessageListViewModel model) { InitializeViewModel(model); busEntry entryBus = new busEntry(); var entries = entryBus.GetEntryList(model.QueryParameters); model.Entries = entries; model.DisplayMode = ApplicationDisplayModes.Standard; model.CategoryList = AppUtils.GetCachedCategoryList(); return View(model); } The AppUtils.GetCachedCategoryList() method gets the cached list or loads the list on the first access. The code to load up the list is housed in a Web utility class. The method looks like this:/// <summary> /// Returns a static category list that is cached /// </summary> /// <returns></returns> public static SelectListItem[] GetCachedCategoryList() { if (_CategoryList != null) return _CategoryList; lock (_SyncLock) { if (_CategoryList != null) return _CategoryList; var catBus = new busCategory(); var categories = catBus.GetCategories().ToList(); // Turn list into a SelectItem list var catList= categories .Select(cat => new SelectListItem() { Text = cat.Name, Value = cat.Id.ToString() }) .ToList(); catList.Insert(0, new SelectListItem() { Value = ((int)SpecialCategories.AllCategoriesButRealEstate).ToString(), Text = "All Categories except Real Estate" }); catList.Insert(1, new SelectListItem() { Value = "-1", Text = "--------------------------------" }); _CategoryList = catList.ToArray(); } return _CategoryList; } private static SelectListItem[] _CategoryList ; This seemed normal enough to me - I've been doing stuff like this forever caching smallish lists in memory to avoid an extra trip to the database. This list is used in various places throughout the application - for the list display and also when adding new items and setting up for notifications etc.. Watch that ModelBinder! However, it turns out that this code is clearly causing a problem. It appears that the model binder on the [HttpPost] method is actually updating the list that's bound to and changing the actual entry item in the list and setting its selected value. If you look at the code above I'm not setting the SelectListItem.Selected value anywhere - the only place this value can get set is through ModelBinding. Sure enough when stepping through the code I see that when an item is selected the actual model - model.CategoryList[x].Selected - reflects that. This is bad on several levels: First it's obviously affecting the application behavior - nobody wants to see their drop down list values jump all over the place randomly. But it's also a problem because the array is getting updated by multiple ASP.NET threads which likely would lead to odd crashes from time to time. Not good! In retrospect the modelbinding behavior makes perfect sense. The actual items and the Selected property is the ModelBinder's way of keeping track of one or more selected values. So while I assumed the list to be read-only, the ModelBinder is actually updating it on a post back producing the rather surprising results. Totally missed this during testing and is another one of those little - "Did you know?" moments. So, is there a way around this? Yes but it's maybe not quite obvious. I can't change the behavior of the ModelBinder, but I can certainly change the way that the list is generated. Rather than returning the cached list, I can return a brand new cloned list from the cached items like this:/// <summary> /// Returns a static category list that is cached /// </summary> /// <returns></returns> public static SelectListItem[] GetCachedCategoryList() { if (_CategoryList != null) { // Have to create new instances via projection // to avoid ModelBinding updates to affect this // globally return _CategoryList .Select(cat => new SelectListItem() { Value = cat.Value, Text = cat.Text }) .ToArray(); } …}  The key is that newly created instances of SelectListItems are returned not just filtered instances of the original list. The key here is 'new instances' so that the ModelBinding updates do not update the actual static instance. The code above uses LINQ and a projection into new SelectListItem instances to create this array of fresh instances. And this code works correctly - no more cross-talk between users. Unfortunately this code is also less efficient - it has to reselect the items and uses extra memory for the new array. Knowing what I know now I probably would have not cached the list and just take the hit to read from the database. If there is even a possibility of thread clashes I'm very wary of creating code like this. But since the method already exists and handles this load in one place this fix was easy enough to put in. Live and learn. It's little things like this that can cause some interesting head scratchers sometimes…© Rick Strahl, West Wind Technologies, 2005-2012Posted in MVC  ASP.NET  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Get vertex colors from fbx (OpenGL, FBX SDK)

    - by instancedName
    I'm kinda stuck with this one. I managed to get vertex positions, indices, normals, but I don't quite understand how te get vertex colors. I need them to fill my buffer. I tried funcion mesh-GetElementVertexColorCount() and then to iterate trough all of them, but it returns zero. I alse tried to get layer, and then use layer-GetVertexColors(), but it returns NULL pointer. Can anyone help me with this one?

    Read the article

  • Using a WCF Message Inspector to extend AppFabric Monitoring

    - by Shawn Cicoria
    I read through Ron Jacobs post on Monitoring WCF Data Services with AppFabric http://blogs.msdn.com/b/endpoint/archive/2010/06/09/tracking-wcf-data-services-with-windows-server-appfabric.aspx What is immediately striking are 2 things – it’s so easy to get monitoring data into a viewer (AppFabric Dashboard) w/ very little work.  And the 2nd thing is, why can’t this be a WCF message inspector on the dispatch side. So, I took the base class WCFUserEventProvider that’s located in the WCF/WF samples [1] in the following path, \WF_WCF_Samples\WCF\Basic\Management\AnalyticTraceExtensibility\CS\WCFAnalyticTracingExtensibility\  and then created a few classes that project the injection as a IEndPointBehavior There are just 3 classes to drive injection of the inspector at runtime via config: IDispatchMessageInspector implementation BehaviorExtensionElement implementation IEndpointBehavior implementation The full source code is below with a link to the solution file here: [Solution File] using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.ServiceModel.Dispatcher; using System.ServiceModel.Channels; using System.ServiceModel; using System.ServiceModel.Configuration; using System.ServiceModel.Description; using Microsoft.Samples.WCFAnalyticTracingExtensibility; namespace Fabrikam.Services { public class AppFabricE2EInspector : IDispatchMessageInspector { static WCFUserEventProvider evntProvider = null; static AppFabricE2EInspector() { evntProvider = new WCFUserEventProvider(); } public object AfterReceiveRequest( ref Message request, IClientChannel channel, InstanceContext instanceContext) { OperationContext ctx = OperationContext.Current; var opName = ctx.IncomingMessageHeaders.Action; evntProvider.WriteInformationEvent("start", string.Format("operation: {0} at address {1}", opName, ctx.EndpointDispatcher.EndpointAddress)); return null; } public void BeforeSendReply(ref System.ServiceModel.Channels.Message reply, object correlationState) { OperationContext ctx = OperationContext.Current; var opName = ctx.IncomingMessageHeaders.Action; evntProvider.WriteInformationEvent("end", string.Format("operation: {0} at address {1}", opName, ctx.EndpointDispatcher.EndpointAddress)); } } public class AppFabricE2EBehaviorElement : BehaviorExtensionElement { #region BehaviorExtensionElement /// <summary> /// Gets the type of behavior. /// </summary> /// <value></value> /// <returns>The type that implements the end point behavior<see cref="T:System.Type"/>.</returns> public override Type BehaviorType { get { return typeof(AppFabricE2EEndpointBehavior); } } /// <summary> /// Creates a behavior extension based on the current configuration settings. /// </summary> /// <returns>The behavior extension.</returns> protected override object CreateBehavior() { return new AppFabricE2EEndpointBehavior(); } #endregion BehaviorExtensionElement } public class AppFabricE2EEndpointBehavior : IEndpointBehavior //, IServiceBehavior { #region IEndpointBehavior public void AddBindingParameters(ServiceEndpoint endpoint, BindingParameterCollection bindingParameters) {} public void ApplyClientBehavior(ServiceEndpoint endpoint, ClientRuntime clientRuntime) { throw new NotImplementedException(); } public void ApplyDispatchBehavior(ServiceEndpoint endpoint, EndpointDispatcher endpointDispatcher) { endpointDispatcher.DispatchRuntime.MessageInspectors.Add(new AppFabricE2EInspector()); } public void Validate(ServiceEndpoint endpoint) { ; } #endregion IEndpointBehavior } }     [1] http://www.microsoft.com/downloads/details.aspx?FamilyID=35ec8682-d5fd-4bc3-a51a-d8ad115a8792&displaylang=en

    Read the article

  • AdvancedFormatProvider: Making string.format do more

    - by plblum
    When I have an integer that I want to format within the String.Format() and ToString(format) methods, I’m always forgetting the format symbol to use with it. That’s probably because its not very intuitive. Use {0:N0} if you want it with group (thousands) separators. text = String.Format("{0:N0}", 1000); // returns "1,000"   int value1 = 1000; text = value1.ToString("N0"); Use {0:D} or {0:G} if you want it without group separators. text = String.Format("{0:D}", 1000); // returns "1000"   int value2 = 1000; text2 = value2.ToString("D"); The {0:D} is especially confusing because Microsoft gives the token the name “Decimal”. I thought it reasonable to have a new format symbol for String.Format, "I" for integer, and the ability to tell it whether it shows the group separators. Along the same lines, why not expand the format symbols for currency ({0:C}) and percent ({0:P}) to let you omit the currency or percent symbol, omit the group separator, and even to drop the decimal part when the value is equal to the whole number? My solution is an open source project called AdvancedFormatProvider, a group of classes that provide the new format symbols, continue to support the rest of the native symbols and makes it easy to plug in additional format symbols. Please visit https://github.com/plblum/AdvancedFormatProvider to learn about it in detail and explore how its implemented. The rest of this post will explore some of the concepts it takes to expand String.Format() and ToString(format). AdvancedFormatProvider benefits: Supports {0:I} token for integers. It offers the {0:I-,} option to omit the group separator. Supports {0:C} token with several options. {0:C-$} omits the currency symbol. {0:C-,} omits group separators, and {0:C-0} hides the decimal part when the value would show “.00”. For example, 1000.0 becomes “$1000” while 1000.12 becomes “$1000.12”. Supports {0:P} token with several options. {0:P-%} omits the percent symbol. {0:P-,} omits group separators, and {0:P-0} hides the decimal part when the value would show “.00”. For example, 1 becomes “100 %” while 1.1223 becomes “112.23 %”. Provides a plug in framework that lets you create new formatters to handle specific format symbols. You register them globally so you can just pass the AdvancedFormatProvider object into String.Format and ToString(format) without having to figure out which plug ins to add. text = String.Format(AdvancedFormatProvider.Current, "{0:I}", 1000); // returns "1,000" text2 = String.Format(AdvancedFormatProvider.Current, "{0:I-,}", 1000); // returns "1000" text3 = String.Format(AdvancedFormatProvider.Current, "{0:C-$-,}", 1000.0); // returns "1000.00" The IFormatProvider parameter Microsoft has made String.Format() and ToString(format) format expandable. They each take an additional parameter that takes an object that implements System.IFormatProvider. This interface has a single member, the GetFormat() method, which returns an object that knows how to convert the format symbol and value into the desired string. There are already a number of web-based resources to teach you about IFormatProvider and the companion interface ICustomFormatter. I’ll defer to them if you want to dig more into the topic. The only thing I want to point out is what I think are implementation considerations. Why GetFormat() always tests for ICustomFormatter When you see examples of implementing IFormatProviders, the GetFormat() method always tests the parameter against the ICustomFormatter type. Why is that? public object GetFormat(Type formatType) { if (formatType == typeof(ICustomFormatter)) return this; else return null; } The value of formatType is already predetermined by the .net framework. String.Format() uses the StringBuilder.AppendFormat() method to parse the string, extracting the tokens and calling GetFormat() with the ICustomFormatter type. (The .net framework also calls GetFormat() with the types of System.Globalization.NumberFormatInfo and System.Globalization.DateTimeFormatInfo but these are exclusive to how the System.Globalization.CultureInfo class handles its implementation of IFormatProvider.) Your code replaces instead of expands I would have expected the caller to pass in the format string to GetFormat() to allow your code to determine if it handles the request. My vision would be to return null when the format string is not supported. The caller would iterate through IFormatProviders until it finds one that handles the format string. Unfortunatley that is not the case. The reason you write GetFormat() as above is because the caller is expecting an object that handles all formatting cases. You are effectively supposed to write enough code in your formatter to handle your new cases and call .net functions (like String.Format() and ToString(format)) to handle the original cases. Its not hard to support the native functions from within your ICustomFormatter.Format function. Just test the format string to see if it applies to you. If not, call String.Format() with a token using the format passed in. public string Format(string format, object arg, IFormatProvider formatProvider) { if (format.StartsWith("I")) { // handle "I" formatter } else return String.Format(formatProvider, "{0:" + format + "}", arg); } Formatters are only used by explicit request Each time you write a custom formatter (implementer of ICustomFormatter), it is not used unless you explicitly passed an IFormatProvider object that supports your formatter into String.Format() or ToString(). This has several disadvantages: Suppose you have several ICustomFormatters. In order to have all available to String.Format() and ToString(format), you have to merge their code and create an IFormatProvider to return an instance of your new class. You have to remember to utilize the IFormatProvider parameter. Its easy to overlook, especially when you have existing code that calls String.Format() without using it. Some APIs may call String.Format() themselves. If those APIs do not offer an IFormatProvider parameter, your ICustomFormatter will not be available to them. The AdvancedFormatProvider solves the first two of these problems by providing a plug-in architecture.

    Read the article

  • Fun with Aggregates

    - by Paul White
    There are interesting things to be learned from even the simplest queries.  For example, imagine you are given the task of writing a query to list AdventureWorks product names where the product has at least one entry in the transaction history table, but fewer than ten. One possible query to meet that specification is: SELECT p.Name FROM Production.Product AS p JOIN Production.TransactionHistory AS th ON p.ProductID = th.ProductID GROUP BY p.ProductID, p.Name HAVING COUNT_BIG(*) < 10; That query correctly returns 23 rows (execution plan and data sample shown below): The execution plan looks a bit different from the written form of the query: the base tables are accessed in reverse order, and the aggregation is performed before the join.  The general idea is to read all rows from the history table, compute the count of rows grouped by ProductID, merge join the results to the Product table on ProductID, and finally filter to only return rows where the count is less than ten. This ‘fully-optimized’ plan has an estimated cost of around 0.33 units.  The reason for the quote marks there is that this plan is not quite as optimal as it could be – surely it would make sense to push the Filter down past the join too?  To answer that, let’s look at some other ways to formulate this query.  This being SQL, there are any number of ways to write logically-equivalent query specifications, so we’ll just look at a couple of interesting ones.  The first query is an attempt to reverse-engineer T-SQL from the optimized query plan shown above.  It joins the result of pre-aggregating the history table to the Product table before filtering: SELECT p.Name FROM ( SELECT th.ProductID, cnt = COUNT_BIG(*) FROM Production.TransactionHistory AS th GROUP BY th.ProductID ) AS q1 JOIN Production.Product AS p ON p.ProductID = q1.ProductID WHERE q1.cnt < 10; Perhaps a little surprisingly, we get a slightly different execution plan: The results are the same (23 rows) but this time the Filter is pushed below the join!  The optimizer chooses nested loops for the join, because the cardinality estimate for rows passing the Filter is a bit low (estimate 1 versus 23 actual), though you can force a merge join with a hint and the Filter still appears below the join.  In yet another variation, the < 10 predicate can be ‘manually pushed’ by specifying it in a HAVING clause in the “q1” sub-query instead of in the WHERE clause as written above. The reason this predicate can be pushed past the join in this query form, but not in the original formulation is simply an optimizer limitation – it does make efforts (primarily during the simplification phase) to encourage logically-equivalent query specifications to produce the same execution plan, but the implementation is not completely comprehensive. Moving on to a second example, the following query specification results from phrasing the requirement as “list the products where there exists fewer than ten correlated rows in the history table”: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) < 10 ); Unfortunately, this query produces an incorrect result (86 rows): The problem is that it lists products with no history rows, though the reasons are interesting.  The COUNT_BIG(*) in the EXISTS clause is a scalar aggregate (meaning there is no GROUP BY clause) and scalar aggregates always produce a value, even when the input is an empty set.  In the case of the COUNT aggregate, the result of aggregating the empty set is zero (the other standard aggregates produce a NULL).  To make the point really clear, let’s look at product 709, which happens to be one for which no history rows exist: -- Scalar aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709;   -- Vector aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709 GROUP BY th.ProductID; The estimated execution plans for these two statements are almost identical: You might expect the Stream Aggregate to have a Group By for the second statement, but this is not the case.  The query includes an equality comparison to a constant value (709), so all qualified rows are guaranteed to have the same value for ProductID and the Group By is optimized away. In fact there are some minor differences between the two plans (the first is auto-parameterized and qualifies for trivial plan, whereas the second is not auto-parameterized and requires cost-based optimization), but there is nothing to indicate that one is a scalar aggregate and the other is a vector aggregate.  This is something I would like to see exposed in show plan so I suggested it on Connect.  Anyway, the results of running the two queries show the difference at runtime: The scalar aggregate (no GROUP BY) returns a result of zero, whereas the vector aggregate (with a GROUP BY clause) returns nothing at all.  Returning to our EXISTS query, we could ‘fix’ it by changing the HAVING clause to reject rows where the scalar aggregate returns zero: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) BETWEEN 1 AND 9 ); The query now returns the correct 23 rows: Unfortunately, the execution plan is less efficient now – it has an estimated cost of 0.78 compared to 0.33 for the earlier plans.  Let’s try adding a redundant GROUP BY instead of changing the HAVING clause: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY th.ProductID HAVING COUNT_BIG(*) < 10 ); Not only do we now get correct results (23 rows), this is the execution plan: I like to compare that plan to quantum physics: if you don’t find it shocking, you haven’t understood it properly :)  The simple addition of a redundant GROUP BY has resulted in the EXISTS form of the query being transformed into exactly the same optimal plan we found earlier.  What’s more, in SQL Server 2008 and later, we can replace the odd-looking GROUP BY with an explicit GROUP BY on the empty set: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ); I offer that as an alternative because some people find it more intuitive (and it perhaps has more geek value too).  Whichever way you prefer, it’s rather satisfying to note that the result of the sub-query does not exist for a particular correlated value where a vector aggregate is used (the scalar COUNT aggregate always returns a value, even if zero, so it always ‘EXISTS’ regardless which ProductID is logically being evaluated). The following query forms also produce the optimal plan and correct results, so long as a vector aggregate is used (you can probably find more equivalent query forms): WHERE Clause SELECT p.Name FROM Production.Product AS p WHERE ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) < 10; APPLY SELECT p.Name FROM Production.Product AS p CROSS APPLY ( SELECT NULL FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ) AS ca (dummy); FROM Clause SELECT q1.Name FROM ( SELECT p.Name, cnt = ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) FROM Production.Product AS p ) AS q1 WHERE q1.cnt < 10; This last example uses SUM(1) instead of COUNT and does not require a vector aggregate…you should be able to work out why :) SELECT q.Name FROM ( SELECT p.Name, cnt = ( SELECT SUM(1) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID ) FROM Production.Product AS p ) AS q WHERE q.cnt < 10; The semantics of SQL aggregates are rather odd in places.  It definitely pays to get to know the rules, and to be careful to check whether your queries are using scalar or vector aggregates.  As we have seen, query plans do not show in which ‘mode’ an aggregate is running and getting it wrong can cause poor performance, wrong results, or both. © 2012 Paul White Twitter: @SQL_Kiwi email: [email protected]

    Read the article

  • Learning PostgreSql: polymorphism

    - by Alexander Kuznetsov
    Functions in PL/PgSql are polymorphic, which is very different from T-SQL. Demonstrating polymorphism For example, the second CREATE FUNCTION in the following script does not replace the first function - it creates a second one: CREATE OR REPLACE FUNCTION public .GetQuoteOfTheDay ( someNumber INTEGER ) RETURNS VARCHAR AS $body$ BEGIN RETURN 'Say my name.' ; END ; $body$ LANGUAGE plpgsql ; CREATE OR REPLACE FUNCTION public .GetQuoteOfTheDay ( someNumber REAL ) RETURNS VARCHAR AS $body$ BEGIN RETURN...(read more)

    Read the article

  • Translate jQuery UI Datepicker format to .Net Date format

    - by Michael Freidgeim
    I needed to use the same date format in client jQuery UI Datepicker and server ASP.NET code. The actual format can be different for different localization cultures.I decided to translate Datepicker format to .Net Date format similar as it was asked to do opposite operation in http://stackoverflow.com/questions/8531247/jquery-datepickers-dateformat-how-to-integrate-with-net-current-culture-date Note that replace command need to replace whole words and order of calls is importantFunction that does opposite operation (translate  .Net Date format toDatepicker format) is described in http://www.codeproject.com/Articles/62031/JQueryUI-Datepicker-in-ASP-NET-MVC /// <summary> /// Uses regex '\b' as suggested in //http://stackoverflow.com/questions/6143642/way-to-have-string-replace-only-hit-whole-words /// </summary> /// <param name="original"></param> /// <param name="wordToFind"></param> /// <param name="replacement"></param> /// <param name="regexOptions"></param> /// <returns></returns> static public string ReplaceWholeWord(this string original, string wordToFind, string replacement, RegexOptions regexOptions = RegexOptions.None) { string pattern = String.Format(@"\b{0}\b", wordToFind); string ret=Regex.Replace(original, pattern, replacement, regexOptions); return ret; } /// <summary> /// E.g "DD, d MM, yy" to ,"dddd, d MMMM, yyyy" /// </summary> /// <param name="datePickerFormat"></param> /// <returns></returns> /// <remarks> /// Idea to replace from http://stackoverflow.com/questions/8531247/jquery-datepickers-dateformat-how-to-integrate-with-net-current-culture-date ///From http://docs.jquery.com/UI/Datepicker/$.datepicker.formatDate to http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx ///Format a date into a string value with a specified format. ///d - day of month (no leading zero) ---.Net the same ///dd - day of month (two digit) ---.Net the same ///D - day name short ---.Net "ddd" ///DD - day name long ---.Net "dddd" ///m - month of year (no leading zero) ---.Net "M" ///mm - month of year (two digit) ---.Net "MM" ///M - month name short ---.Net "MMM" ///MM - month name long ---.Net "MMMM" ///y - year (two digit) ---.Net "yy" ///yy - year (four digit) ---.Net "yyyy" /// </remarks> public static string JQueryDatePickerFormatToDotNetDateFormat(string datePickerFormat) { string sRet = datePickerFormat.ReplaceWholeWord("DD", "dddd").ReplaceWholeWord("D", "ddd"); sRet = sRet.ReplaceWholeWord("M", "MMM").ReplaceWholeWord("MM", "MMMM").ReplaceWholeWord("m", "M").ReplaceWholeWord("mm", "MM");//order is important sRet = sRet.ReplaceWholeWord("yy", "yyyy").ReplaceWholeWord("y", "yy");//order is important return sRet; }

    Read the article

  • Interesting Type difference in .NET 4.0 when using DataBinding

    - by Lorin Thwaits
    Consider this common construct that you and I have thrown into ASPX pages for years now: <%# DataBinder.Eval (Container.DataItem, "EmployeeID") %> In .NET 3.5.1 and older it returns -- tada -- a string.  No mystery there.  But in .NET 4.0 it returns the same type as the underlying data type -- which in this case for me was a nullable int.  Interesting, no?

    Read the article

  • Fun with Aggregates

    - by Paul White
    There are interesting things to be learned from even the simplest queries.  For example, imagine you are given the task of writing a query to list AdventureWorks product names where the product has at least one entry in the transaction history table, but fewer than ten. One possible query to meet that specification is: SELECT p.Name FROM Production.Product AS p JOIN Production.TransactionHistory AS th ON p.ProductID = th.ProductID GROUP BY p.ProductID, p.Name HAVING COUNT_BIG(*) < 10; That query correctly returns 23 rows (execution plan and data sample shown below): The execution plan looks a bit different from the written form of the query: the base tables are accessed in reverse order, and the aggregation is performed before the join.  The general idea is to read all rows from the history table, compute the count of rows grouped by ProductID, merge join the results to the Product table on ProductID, and finally filter to only return rows where the count is less than ten. This ‘fully-optimized’ plan has an estimated cost of around 0.33 units.  The reason for the quote marks there is that this plan is not quite as optimal as it could be – surely it would make sense to push the Filter down past the join too?  To answer that, let’s look at some other ways to formulate this query.  This being SQL, there are any number of ways to write logically-equivalent query specifications, so we’ll just look at a couple of interesting ones.  The first query is an attempt to reverse-engineer T-SQL from the optimized query plan shown above.  It joins the result of pre-aggregating the history table to the Product table before filtering: SELECT p.Name FROM ( SELECT th.ProductID, cnt = COUNT_BIG(*) FROM Production.TransactionHistory AS th GROUP BY th.ProductID ) AS q1 JOIN Production.Product AS p ON p.ProductID = q1.ProductID WHERE q1.cnt < 10; Perhaps a little surprisingly, we get a slightly different execution plan: The results are the same (23 rows) but this time the Filter is pushed below the join!  The optimizer chooses nested loops for the join, because the cardinality estimate for rows passing the Filter is a bit low (estimate 1 versus 23 actual), though you can force a merge join with a hint and the Filter still appears below the join.  In yet another variation, the < 10 predicate can be ‘manually pushed’ by specifying it in a HAVING clause in the “q1” sub-query instead of in the WHERE clause as written above. The reason this predicate can be pushed past the join in this query form, but not in the original formulation is simply an optimizer limitation – it does make efforts (primarily during the simplification phase) to encourage logically-equivalent query specifications to produce the same execution plan, but the implementation is not completely comprehensive. Moving on to a second example, the following query specification results from phrasing the requirement as “list the products where there exists fewer than ten correlated rows in the history table”: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) < 10 ); Unfortunately, this query produces an incorrect result (86 rows): The problem is that it lists products with no history rows, though the reasons are interesting.  The COUNT_BIG(*) in the EXISTS clause is a scalar aggregate (meaning there is no GROUP BY clause) and scalar aggregates always produce a value, even when the input is an empty set.  In the case of the COUNT aggregate, the result of aggregating the empty set is zero (the other standard aggregates produce a NULL).  To make the point really clear, let’s look at product 709, which happens to be one for which no history rows exist: -- Scalar aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709;   -- Vector aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709 GROUP BY th.ProductID; The estimated execution plans for these two statements are almost identical: You might expect the Stream Aggregate to have a Group By for the second statement, but this is not the case.  The query includes an equality comparison to a constant value (709), so all qualified rows are guaranteed to have the same value for ProductID and the Group By is optimized away. In fact there are some minor differences between the two plans (the first is auto-parameterized and qualifies for trivial plan, whereas the second is not auto-parameterized and requires cost-based optimization), but there is nothing to indicate that one is a scalar aggregate and the other is a vector aggregate.  This is something I would like to see exposed in show plan so I suggested it on Connect.  Anyway, the results of running the two queries show the difference at runtime: The scalar aggregate (no GROUP BY) returns a result of zero, whereas the vector aggregate (with a GROUP BY clause) returns nothing at all.  Returning to our EXISTS query, we could ‘fix’ it by changing the HAVING clause to reject rows where the scalar aggregate returns zero: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) BETWEEN 1 AND 9 ); The query now returns the correct 23 rows: Unfortunately, the execution plan is less efficient now – it has an estimated cost of 0.78 compared to 0.33 for the earlier plans.  Let’s try adding a redundant GROUP BY instead of changing the HAVING clause: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY th.ProductID HAVING COUNT_BIG(*) < 10 ); Not only do we now get correct results (23 rows), this is the execution plan: I like to compare that plan to quantum physics: if you don’t find it shocking, you haven’t understood it properly :)  The simple addition of a redundant GROUP BY has resulted in the EXISTS form of the query being transformed into exactly the same optimal plan we found earlier.  What’s more, in SQL Server 2008 and later, we can replace the odd-looking GROUP BY with an explicit GROUP BY on the empty set: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ); I offer that as an alternative because some people find it more intuitive (and it perhaps has more geek value too).  Whichever way you prefer, it’s rather satisfying to note that the result of the sub-query does not exist for a particular correlated value where a vector aggregate is used (the scalar COUNT aggregate always returns a value, even if zero, so it always ‘EXISTS’ regardless which ProductID is logically being evaluated). The following query forms also produce the optimal plan and correct results, so long as a vector aggregate is used (you can probably find more equivalent query forms): WHERE Clause SELECT p.Name FROM Production.Product AS p WHERE ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) < 10; APPLY SELECT p.Name FROM Production.Product AS p CROSS APPLY ( SELECT NULL FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ) AS ca (dummy); FROM Clause SELECT q1.Name FROM ( SELECT p.Name, cnt = ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) FROM Production.Product AS p ) AS q1 WHERE q1.cnt < 10; This last example uses SUM(1) instead of COUNT and does not require a vector aggregate…you should be able to work out why :) SELECT q.Name FROM ( SELECT p.Name, cnt = ( SELECT SUM(1) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID ) FROM Production.Product AS p ) AS q WHERE q.cnt < 10; The semantics of SQL aggregates are rather odd in places.  It definitely pays to get to know the rules, and to be careful to check whether your queries are using scalar or vector aggregates.  As we have seen, query plans do not show in which ‘mode’ an aggregate is running and getting it wrong can cause poor performance, wrong results, or both. © 2012 Paul White Twitter: @SQL_Kiwi email: [email protected]

    Read the article

  • How to enable hard-blocked bluetooth in Thinkpad Edge 320

    - by Non
    I'm trying to use the built-in bluetooth device of my Lenovo Thinkpad E320. It seems to be hard blocked, but i can't find any possibility to unblock it. rfkill list returns: 0: tpacpi_bluetooth_sw: Bluetooth Soft blocked: yes Hard blocked:yes cat /proc/acpi/ibm/bluetooth returns: status: disabled commands: enable, disable I tried to enable it by: Pressing Fn+F9 (Radio controll) echo enable | tee /proc/acpi/ibm/bluetooth rfkill unblock bluetooth Trough the BIOS. But it's not mentioned at all None of the actions influenced the ouputs above.

    Read the article

  • Single Responsibility Principle Implementation

    - by Mike S
    In my spare time, I've been designing a CMS in order to learn more about actual software design and architecture, etc. Going through the SOLID principles, I already notice that ideas like "MVC", "DRY", and "KISS", pretty much fall right into place. That said, I'm still having problems deciding if one of two implementations is the best choice when it comes to the Single Responsibility Principle. Implementation #1: class User getName getPassword getEmail // etc... class UserManager create read update delete class Session start stop class Login main class Logout main class Register main The idea behind this implementation is that all user-based actions are separated out into different classes (creating a possible case of the aptly-named Ravioli Code), but following the SRP to a "tee", almost literally. But then I thought that it was a bit much, and came up with this next implementation class UserView extends View getLogin //Returns the html for the login screen getShortLogin //Returns the html for an inline login bar getLogout //Returns the html for a logout button getRegister //Returns the html for a register page // etc... as needed class UserModel extends DataModel implements IDataModel // Implements no new methods yet, outside of the interface methods // Haven't figured out anything special to go here at the moment // All CRUD operations are handled by DataModel // through methods implemented by the interface class UserControl extends Control implements IControl login logout register startSession stopSession class User extends DataObject getName getPassword getEmail // etc... This is obviously still very organized, and still very "single responsibility". The User class is a data object that I can manipulate data on and then pass to the UserModel to save it to the database. All the user data rendering (what the user will see) is handled by UserView and it's methods, and all the user actions are in one space in UserControl (plus some automated stuff required by the CMS to keep a user logged in or to ensure that they stay out.) I personally can't think of anything wrong with this implementation either. In my personal feelings I feel that both are effectively correct, but I can't decide which one would be easier to maintain and extend as life goes on (despite leaning towards Implementation #1.) So what about you guys? What are your opinions on this? Which one is better? What basics (or otherwise, nuances) of that principle have I missed in either design?

    Read the article

  • Disable XF86Back and XF86Forward (back/forward on Lenovo Thinkpad)

    - by Nicolas Raoul
    My Thinkpad R500 has back/forward keys just about the direction keys, so on Firefox I keep losing entered text, accidentally. How to disable these back/forward keys? Excerpt from xev: KeyPress event, serial 29, synthetic NO, window 0x5e00001, root 0xbc, subw 0x0, time 2375874, (1279,794), root:(1285,881), state 0x10, keycode 166 (keysym 0x1008ff26, XF86Back), same_screen YES, XLookupString gives 0 bytes: XmbLookupString gives 0 bytes: XFilterEvent returns: False KeyPress event, serial 32, synthetic NO, window 0x5e00001, root 0xbc, subw 0x0, time 2377115, (1279,794), root:(1285,881), state 0x10, keycode 167 (keysym 0x1008ff27, XF86Forward), same_screen YES, XLookupString gives 0 bytes: XmbLookupString gives 0 bytes: XFilterEvent returns: False

    Read the article

  • Yet another use of OUTER APPLY in defensive programming

    - by Alexander Kuznetsov
    When a SELECT is used to populate variables from a subquery, it fails to change them if the subquery returns nothing - and that can lead to subtle bugs. We shall use OUTER APPLY to eliminate this problem. Prerequisites All we need is the following mock function that imitates a subquery: CREATE FUNCTION dbo.BoxById ( @BoxId INT ) RETURNS TABLE AS RETURN ( SELECT CAST ( 1 AS INT ) AS [Length] , CAST ( 2 AS INT ) AS [Width] , CAST ( 3 AS INT ) AS [Height] WHERE @BoxId = 1 ) ; Let us assume that this...(read more)

    Read the article

  • REST and PayPal

    - by Nikolay Fominyh
    Is it ok to query REST API and get redirect to third party from it, or it is only about resources? Let's look at following scenario: User gets to payment page User clicks on "Pay using paypal button" API query PayPal for redirect url API returns redirect url in response. Client side redirect goes here. User does PayPal routine and returns with token User query API with token API do token check and adds money Is this scenario complex for REST architecture?

    Read the article

  • returning a heap block by reference in c++

    - by basicR
    I was trying to brush up my c++ skills. I got 2 functions: concat_HeapVal() returns the output heap variable by value concat_HeapRef() returns the output heap variable by reference When main() runs it will be on stack,s1 and s2 will be on stack, I pass the value by ref only and in each of the below functions, I create a variable on heap and concat them. When concat_HeapVal() is called it returns me the correct output. When concat_HeapRef() is called it returns me some memory address (wrong output). Why? I use new operator in both the functions. Hence it allocates on heap. So when I return by reference, heap will still be VALID even when my main() stack memory goes out of scope. So it's left to OS to cleanup the memory. Right? string& concat_HeapRef(const string& s1, const string& s2) { string *temp = new string(); temp->append(s1); temp->append(s2); return *temp; } string* concat_HeapVal(const string& s1, const string& s2) { string *temp = new string(); temp->append(s1); temp->append(s2); return temp; } int main() { string s1,s2; string heapOPRef; string *heapOPVal; cout<<"String Conact Experimentations\n"; cout<<"Enter s-1 : "; cin>>s1; cout<<"Enter s-2 : "; cin>>s2; heapOPRef = concat_HeapRef(s1,s2); heapOPVal = concat_HeapVal(s1,s2); cout<<heapOPRef<<" "<<heapOPVal<<" "<<endl; return -9; }

    Read the article

  • javascript getMonth() gets me!

    - by Dave Noderer
    I’ve been working a lot with Microsoft CRM over the past few months and much of the screen level customization uses javascript. One thing I discovered today while breaking apart some dates was that the javascript getDate() returns the day of the month 1-31 as you would expect but the getMonth() returns 0-11… definitely not what I expected!!

    Read the article

  • Disable XF86Back and XF86Forward (browser back/forward on Lenovo Thinkpad)

    - by Nicolas Raoul
    My Thinkpad R500 has back/forward keys just about the direction keys, so on Firefox I keep losing entered text, accidentally. How to disable these back/forward keys? Excerpt from xev: KeyPress event, serial 29, synthetic NO, window 0x5e00001, root 0xbc, subw 0x0, time 2375874, (1279,794), root:(1285,881), state 0x10, keycode 166 (keysym 0x1008ff26, XF86Back), same_screen YES, XLookupString gives 0 bytes: XmbLookupString gives 0 bytes: XFilterEvent returns: False KeyPress event, serial 32, synthetic NO, window 0x5e00001, root 0xbc, subw 0x0, time 2377115, (1279,794), root:(1285,881), state 0x10, keycode 167 (keysym 0x1008ff27, XF86Forward), same_screen YES, XLookupString gives 0 bytes: XmbLookupString gives 0 bytes: XFilterEvent returns: False

    Read the article

  • MySQL select query result set changes based on column order

    - by user197191
    I have a drupal 7 site using the Views module to back-end site content search results. The same query with the same dataset returns different results from MySQL 5.5.28 to MySQL 5.6.14. The results from 5.5.28 are the correct, expected results. The results from 5.6.14 are not. If, however, I simply move a column in the select statement, the query returns the correct results. Here is the code-generated query in question (modified for readability). I apologize for the length; I couldn't find a way to reproduce it without the whole query: SELECT DISTINCT node_node_revision.nid AS node_node_revision_nid, node_revision.title AS node_revision_title, node_field_revision_field_position_institution_ref.nid AS node_field_revision_field_position_institution_ref_nid, node_revision.vid AS vid, node_revision.nid AS node_revision_nid, node_node_revision.title AS node_node_revision_title, SUM(search_index.score * search_total.count) AS score, 'node' AS field_data_field_system_inst_name_node_entity_type, 'node' AS field_revision_field_position_college_division_node_entity_t, 'node' AS field_revision_field_position_department_node_entity_type, 'node' AS field_revision_field_search_lvl_degree_lvls_node_entity_type, 'node' AS field_revision_field_position_app_deadline_node_entity_type, 'node' AS field_revision_field_position_start_date_node_entity_type, 'node' AS field_revision_body_node_entity_type FROM node_revision node_revision LEFT JOIN node node_node_revision ON node_revision.nid = node_node_revision.nid LEFT JOIN field_revision_field_position_institution_ref field_revision_field_position_institution_ref ON node_revision.vid = field_revision_field_position_institution_ref.revision_id AND (field_revision_field_position_institution_ref.entity_type = 'node' AND field_revision_field_position_institution_ref.deleted = '0') LEFT JOIN node node_field_revision_field_position_institution_ref ON field_revision_field_position_institution_ref.field_position_institution_ref_target_id = node_field_revision_field_position_institution_ref.nid LEFT JOIN field_revision_field_position_cip_code field_revision_field_position_cip_code ON node_revision.vid = field_revision_field_position_cip_code.revision_id AND (field_revision_field_position_cip_code.entity_type = 'node' AND field_revision_field_position_cip_code.deleted = '0') LEFT JOIN node node_field_revision_field_position_cip_code ON field_revision_field_position_cip_code.field_position_cip_code_target_id = node_field_revision_field_position_cip_code.nid LEFT JOIN node node_node_revision_1 ON node_revision.nid = node_node_revision_1.nid LEFT JOIN field_revision_field_position_vacancy_status field_revision_field_position_vacancy_status ON node_revision.vid = field_revision_field_position_vacancy_status.revision_id AND (field_revision_field_position_vacancy_status.entity_type = 'node' AND field_revision_field_position_vacancy_status.deleted = '0') LEFT JOIN search_index search_index ON node_revision.nid = search_index.sid LEFT JOIN search_total search_total ON search_index.word = search_total.word WHERE ( ( (node_node_revision.status = '1') AND (node_node_revision.type IN ('position')) AND (field_revision_field_position_vacancy_status.field_position_vacancy_status_target_id IN ('38')) AND( (search_index.type = 'node') AND( (search_index.word = 'accountant') ) ) AND ( (node_revision.vid=node_node_revision.vid AND node_node_revision.status=1) ) ) ) GROUP BY search_index.sid, vid, score, field_data_field_system_inst_name_node_entity_type, field_revision_field_position_college_division_node_entity_t, field_revision_field_position_department_node_entity_type, field_revision_field_search_lvl_degree_lvls_node_entity_type, field_revision_field_position_app_deadline_node_entity_type, field_revision_field_position_start_date_node_entity_type, field_revision_body_node_entity_type HAVING ( ( (COUNT(*) >= '1') ) ) ORDER BY node_node_revision_title ASC LIMIT 20 OFFSET 0; Again, this query returns different sets of results from MySQL 5.5.28 (correct) to 5.6.14 (incorrect). If I move the column named "score" (the SUM() column) to the end of the column list, the query returns the correct set of results in both versions of MySQL. My question is: Is this expected behavior (and why), or is this a bug? I'm on the verge of reverting my entire environment back to 5.5 because of this.

    Read the article

  • How NumLock is used in Ubuntu?

    - by ???
    I found that, when the NumLock is on, then many key combination won't work. For example, generally Ctrl-A is used to select all, but it won't work when NumLock is on. There are two keyboard: The laptop one (Thinkpad T61), and an external USB keyboard. The logs shown in xev: (no log when pressed Fn+NumLock on the laptop keyboard) Logs when pressed the NumLock on the USB keyboard: (Switch On) KeyPress event, serial 40, synthetic NO, window 0xb600001, root 0xac, subw 0x0, time 22187595, (102,107), root:(1198,133), state 0x10, keycode 77 (keysym 0xff7f, Num_Lock), same_screen YES, XLookupString gives 0 bytes: XmbLookupString gives 0 bytes: XFilterEvent returns: False PropertyNotify event, serial 40, synthetic NO, window 0xb600001, atom 0x1b8 (XKLAVIER_STATE), time 22187601, state PropertyNewValue KeyRelease event, serial 40, synthetic NO, window 0xb600001, root 0xac, subw 0x0, time 22187723, (102,107), root:(1198,133), state 0x10, keycode 77 (keysym 0xff7f, Num_Lock), same_screen YES, XLookupString gives 0 bytes: XFilterEvent returns: False (Switch Off) KeyPress event, serial 40, synthetic NO, window 0xb600001, root 0xac, subw 0x0, time 22187899, (102,107), root:(1198,133), state 0x0, keycode 77 (keysym 0xff7f, Num_Lock), same_screen YES, XLookupString gives 0 bytes: XmbLookupString gives 0 bytes: XFilterEvent returns: False PropertyNotify event, serial 40, synthetic NO, window 0xb600001, atom 0x1b8 (XKLAVIER_STATE), time 22187904, state PropertyNewValue KeyRelease event, serial 40, synthetic NO, window 0xb600001, root 0xac, subw 0x0, time 22188003, (102,107), root:(1198,133), state 0x10, keycode 77 (keysym 0xff7f, Num_Lock), same_screen YES, XLookupString gives 0 bytes: XFilterEvent returns: False

    Read the article

  • XNA Xbox 360 Content Manager Thread freezing Draw Thread

    - by Alikar
    I currently have a game that takes in large images, easily bigger than 1MB, to serve as backgrounds. I know exactly when this transition is supposed to take place, so I made a loader class to handle loading these large images in the background, but when I load the images it still freezes the main thread where the drawing takes place. Since this code runs on the 360 I move the thread to the 4th hardware thread, but that doesn't seem to help. Below is the class I am using. Any thoughts as to why my new content manager which should be in its own thread is interrupting the draw in my main thread would be appreciated. namespace FileSystem { /// <summary> /// This is used to reference how many objects reference this texture. /// Everytime someone references a texture we increase the iNumberOfReferences. /// When a class calls remove on a specific texture we check to see if anything /// else is referencing the class, if it is we don't remove it. If there isn't /// anything referencing the texture its safe to dispose of. /// </summary> class TextureContainer { public uint uiNumberOfReferences = 0; public Texture2D texture; } /// <summary> /// This class loads all the files from the Content. /// </summary> static class FileManager { static Microsoft.Xna.Framework.Content.ContentManager Content; static EventWaitHandle wh = new AutoResetEvent(false); static Dictionary<string, TextureContainer> Texture2DResourceDictionary; static List<Texture2D> TexturesToDispose; static List<String> TexturesToLoad; static int iProcessor = 4; private static object threadMutex = new object(); private static object Texture2DMutex = new object(); private static object loadingMutex = new object(); private static bool bLoadingTextures = false; /// <summary> /// Returns if we are loading textures or not. /// </summary> public static bool LoadingTexture { get { lock (loadingMutex) { return bLoadingTextures; } } } /// <summary> /// Since this is an static class. This is the constructor for the file loadeder. This is the version /// for the Xbox 360. /// </summary> /// <param name="_Content"></param> public static void Initalize(IServiceProvider serviceProvider, string rootDirectory, int _iProcessor ) { Content = new Microsoft.Xna.Framework.Content.ContentManager(serviceProvider, rootDirectory); Texture2DResourceDictionary = new Dictionary<string, TextureContainer>(); TexturesToDispose = new List<Texture2D>(); iProcessor = _iProcessor; CreateThread(); } /// <summary> /// Since this is an static class. This is the constructor for the file loadeder. /// </summary> /// <param name="_Content"></param> public static void Initalize(IServiceProvider serviceProvider, string rootDirectory) { Content = new Microsoft.Xna.Framework.Content.ContentManager(serviceProvider, rootDirectory); Texture2DResourceDictionary = new Dictionary<string, TextureContainer>(); TexturesToDispose = new List<Texture2D>(); CreateThread(); } /// <summary> /// Creates the thread incase we wanted to set up some parameters /// Outside of the constructor. /// </summary> static public void CreateThread() { Thread t = new Thread(new ThreadStart(StartThread)); t.Start(); } // This is the function that we thread. static public void StartThread() { //BBSThreadClass BBSTC = (BBSThreadClass)_oData; FileManager.Execute(); } /// <summary> /// This thread shouldn't be called by the outside world. /// It allows the File Manager to loop. /// </summary> static private void Execute() { // Make sure our thread is on the correct processor on the XBox 360. #if WINDOWS #else Thread.CurrentThread.SetProcessorAffinity(new int[] { iProcessor }); Thread.CurrentThread.IsBackground = true; #endif // This loop will load textures into ram for us away from the main thread. while (true) { wh.WaitOne(); // Locking down our data while we process it. lock (threadMutex) { lock (loadingMutex) { bLoadingTextures = true; } bool bContainsKey = false; for (int con = 0; con < TexturesToLoad.Count; con++) { // If we have already loaded the texture into memory reference // the one in the dictionary. lock (Texture2DMutex) { bContainsKey = Texture2DResourceDictionary.ContainsKey(TexturesToLoad[con]); } if (bContainsKey) { // Do nothing } // Otherwise load it into the dictionary and then reference the // copy in the dictionary else { TextureContainer TC = new TextureContainer(); TC.uiNumberOfReferences = 1; // We start out with 1 referece. // Loading the texture into memory. try { TC.texture = Content.Load<Texture2D>(TexturesToLoad[con]); // This is passed into the dictionary, thus there is only one copy of // the texture in memory. // There is an issue with Sprite Batch and disposing textures. // This will have to wait until its figured out. lock (Texture2DMutex) { bContainsKey = Texture2DResourceDictionary.ContainsKey(TexturesToLoad[con]); Texture2DResourceDictionary.Add(TexturesToLoad[con], TC); } // We don't have the find the reference to the container since we // already have it. } // Occasionally our texture will already by loaded by another thread while // this thread is operating. This mainly happens on the first level. catch (Exception e) { // If this happens we don't worry about it since this thread only loads // texture data and if its already there we don't need to load it. } } Thread.Sleep(100); } } lock (loadingMutex) { bLoadingTextures = false; } } } static public void LoadTextureList(List<string> _textureList) { // Ensuring that we can't creating threading problems. lock (threadMutex) { TexturesToLoad = _textureList; } wh.Set(); } /// <summary> /// This loads a 2D texture which represents a 2D grid of Texels. /// </summary> /// <param name="_textureName">The name of the picture you wish to load.</param> /// <returns>Holds the image data.</returns> public static Texture2D LoadTexture2D( string _textureName ) { TextureContainer temp; lock (Texture2DMutex) { bool bContainsKey = false; // If we have already loaded the texture into memory reference // the one in the dictionary. lock (Texture2DMutex) { bContainsKey = Texture2DResourceDictionary.ContainsKey(_textureName); if (bContainsKey) { temp = Texture2DResourceDictionary[_textureName]; temp.uiNumberOfReferences++; // Incrementing the number of references } // Otherwise load it into the dictionary and then reference the // copy in the dictionary else { TextureContainer TC = new TextureContainer(); TC.uiNumberOfReferences = 1; // We start out with 1 referece. // Loading the texture into memory. try { TC.texture = Content.Load<Texture2D>(_textureName); // This is passed into the dictionary, thus there is only one copy of // the texture in memory. } // Occasionally our texture will already by loaded by another thread while // this thread is operating. This mainly happens on the first level. catch(Exception e) { temp = Texture2DResourceDictionary[_textureName]; temp.uiNumberOfReferences++; // Incrementing the number of references } // There is an issue with Sprite Batch and disposing textures. // This will have to wait until its figured out. Texture2DResourceDictionary.Add(_textureName, TC); // We don't have the find the reference to the container since we // already have it. temp = TC; } } } // Return a reference to the texture return temp.texture; } /// <summary> /// Go through our dictionary and remove any references to the /// texture passed in. /// </summary> /// <param name="texture">Texture to remove from texture dictionary.</param> public static void RemoveTexture2D(Texture2D texture) { foreach (KeyValuePair<string, TextureContainer> pair in Texture2DResourceDictionary) { // Do our references match? if (pair.Value.texture == texture) { // Only one object or less holds a reference to the // texture. Logically it should be safe to remove. if (pair.Value.uiNumberOfReferences <= 1) { // Grabing referenc to texture TexturesToDispose.Add(pair.Value.texture); // We are about to release the memory of the texture, // thus we make sure no one else can call this member // in the dictionary. Texture2DResourceDictionary.Remove(pair.Key); // Once we have removed the texture we don't want to create an exception. // So we will stop looking in the list since it has changed. break; } // More than one Object has a reference to this texture. // So we will not be removing it from memory and instead // simply marking down the number of references by 1. else { pair.Value.uiNumberOfReferences--; } } } } /*public static void DisposeTextures() { int Count = TexturesToDispose.Count; // If there are any textures to dispose of. if (Count > 0) { for (int con = 0; con < TexturesToDispose.Count; con++) { // =!THIS REMOVES THE TEXTURE FROM MEMORY!= // This is not like a normal dispose. This will actually // remove the object from memory. Texture2D is inherited // from GraphicsResource which removes it self from // memory on dispose. Very nice for game efficency, // but "dangerous" in managed land. Texture2D Temp = TexturesToDispose[con]; Temp.Dispose(); } // Remove textures we've already disposed of. TexturesToDispose.Clear(); } }*/ /// <summary> /// This loads a 2D texture which represnets a font. /// </summary> /// <param name="_textureName">The name of the font you wish to load.</param> /// <returns>Holds the font data.</returns> public static SpriteFont LoadFont( string _fontName ) { SpriteFont temp = Content.Load<SpriteFont>( _fontName ); return temp; } /// <summary> /// This loads an XML document. /// </summary> /// <param name="_textureName">The name of the XML document you wish to load.</param> /// <returns>Holds the XML data.</returns> public static XmlDocument LoadXML( string _fileName ) { XmlDocument temp = Content.Load<XmlDocument>( _fileName ); return temp; } /// <summary> /// This loads a sound file. /// </summary> /// <param name="_fileName"></param> /// <returns></returns> public static SoundEffect LoadSound( string _fileName ) { SoundEffect temp = Content.Load<SoundEffect>(_fileName); return temp; } } }

    Read the article

  • C# 5 Async, Part 1: Simplifying Asynchrony – That for which we await

    - by Reed
    Today’s announcement at PDC of the future directions C# is taking excite me greatly.  The new Visual Studio Async CTP is amazing.  Asynchronous code – code which frustrates and demoralizes even the most advanced of developers, is taking a huge leap forward in terms of usability.  This is handled by building on the Task functionality in .NET 4, as well as the addition of two new keywords being added to the C# language: async and await. This core of the new asynchronous functionality is built upon three key features.  First is the Task functionality in .NET 4, and based on Task and Task<TResult>.  While Task was intended to be the primary means of asynchronous programming with .NET 4, the .NET Framework was still based mainly on the Asynchronous Pattern and the Event-based Asynchronous Pattern. The .NET Framework added functionality and guidance for wrapping existing APIs into a Task based API, but the framework itself didn’t really adopt Task or Task<TResult> in any meaningful way.  The CTP shows that, going forward, this is changing. One of the three key new features coming in C# is actually a .NET Framework feature.  Nearly every asynchronous API in the .NET Framework has been wrapped into a new, Task-based method calls.  In the CTP, this is done via as external assembly (AsyncCtpLibrary.dll) which uses Extension Methods to wrap the existing APIs.  However, going forward, this will be handled directly within the Framework.  This will have a unifying effect throughout the .NET Framework.  This is the first building block of the new features for asynchronous programming: Going forward, all asynchronous operations will work via a method that returns Task or Task<TResult> The second key feature is the new async contextual keyword being added to the language.  The async keyword is used to declare an asynchronous function, which is a method that either returns void, a Task, or a Task<T>. Inside the asynchronous function, there must be at least one await expression.  This is a new C# keyword (await) that is used to automatically take a series of statements and break it up to potentially use discontinuous evaluation.  This is done by using await on any expression that evaluates to a Task or Task<T>. For example, suppose we want to download a webpage as a string.  There is a new method added to WebClient: Task<string> WebClient.DownloadStringTaskAsync(Uri).  Since this returns a Task<string> we can use it within an asynchronous function.  Suppose, for example, that we wanted to do something similar to my asynchronous Task example – download a web page asynchronously and check to see if it supports XHTML 1.0, then report this into a TextBox.  This could be done like so: private async void button1_Click(object sender, RoutedEventArgs e) { string url = "http://reedcopsey.com"; string content = await new WebClient().DownloadStringTaskAsync(url); this.textBox1.Text = string.Format("Page {0} supports XHTML 1.0: {1}", url, content.Contains("XHTML 1.0")); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Let’s walk through what’s happening here, step by step.  By adding the async contextual keyword to the method definition, we are able to use the await keyword on our WebClient.DownloadStringTaskAsync method call. When the user clicks this button, the new method (Task<string> WebClient.DownloadStringTaskAsync(string)) is called, which returns a Task<string>.  By adding the await keyword, the runtime will call this method that returns Task<string>, and execution will return to the caller at this point.  This means that our UI is not blocked while the webpage is downloaded.  Instead, the UI thread will “await” at this point, and let the WebClient do it’s thing asynchronously. When the WebClient finishes downloading the string, the user interface’s synchronization context will automatically be used to “pick up” where it left off, and the Task<string> returned from DownloadStringTaskAsync is automatically unwrapped and set into the content variable.  At this point, we can use that and set our text box content. There are a couple of key points here: Asynchronous functions are declared with the async keyword, and contain one or more await expressions In addition to the obvious benefits of shorter, simpler code – there are some subtle but tremendous benefits in this approach.  When the execution of this asynchronous function continues after the first await statement, the initial synchronization context is used to continue the execution of this function.  That means that we don’t have to explicitly marshal the call that sets textbox1.Text back to the UI thread – it’s handled automatically by the language and framework!  Exception handling around asynchronous method calls also just works. I’d recommend every C# developer take a look at the documentation on the new Asynchronous Programming for C# and Visual Basic page, download the Visual Studio Async CTP, and try it out.

    Read the article

  • MDX using EXISTING, AGGREGATE, CROSSJOIN and WHERE

    - by James Rogers
    It is a well-published approach to using the EXISTING function to decode AGGREGATE members and nested sub-query filters.  Mosha wrote a good blog on it here and a more recent one here.  The use of EXISTING in these scenarios is very useful and sometimes the only option when dealing with multi-select filters.  However, there are some limitations I have run across when using the EXISTING function against an AGGREGATE member:   The AGGREGATE member must be assigned to the Dimension.Hierarchy being detected by the EXISTING function in the calculated measure. The AGGREGATE member cannot contain a crossjoin from any other dimension or hierarchy or EXISTING will not be able to detect the members in the AGGREGATE member.   Take the following query (from Adventure Works DW 2008):   With   member [Week Count] as 'count(existing([Date].[Fiscal Weeks].[Fiscal Week].members))'    member [Date].[Fiscal Weeks].[CM] as 'AGGREGATE({[Date].[Fiscal Weeks].[Fiscal Week].&[47]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[48]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[49]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[50]&[2004]})'   select   {[Week Count]} on columns from   [Adventure Works]     where   [Date].[Fiscal Weeks].[CM]   Here we are attempting to count the existing fiscal weeks in slicer.  This is useful to get a per-week average for another member. Many applications generate queries in this manner (such as Oracle OBIEE).  This query returns the correct result of (4) weeks. Now let's put a twist in it.  What if the querying application submits the query in the following manner:   With   member [Week Count] as 'count(existing([Date].[Fiscal Weeks].[Fiscal Week].members))'    member [Customer].[Customer Geography].[CM] as 'AGGREGATE({[Date].[Fiscal Weeks].[Fiscal Week].&[47]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[48]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[49]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[50]&[2004]})'   select   {[Week Count]} on columns from   [Adventure Works]     where   [Customer].[Customer Geography].[CM]   Here we are attempting to count the existing fiscal weeks in slicer.  However, the AGGREGATE member is built on a different dimension (in name) than the one EXISTING is trying to detect.  In this case the query returns (174) which is the total number of [Date].[Fiscal Weeks].[Fiscal Week].members defined in the dimension.   Now another twist, the AGGREGATE member will be named appropriately and contain the hierarchy we are trying to detect with EXISTING but it will be cross-joined with another hierarchy:   With   member [Week Count] as 'count(existing([Date].[Fiscal Weeks].[Fiscal Week].members))'    member [Date].[Fiscal Weeks].[CM] as 'AGGREGATE({[Date].[Fiscal Weeks].[Fiscal Week].&[47]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[48]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[49]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[50]&[2004]}*    {[Customer].[Customer Geography].[Country].&[Australia],[Customer].[Customer Geography].[Country].&[United States]})'  select   {[Week Count]} on columns from   [Adventure Works]    where   [Date].[Fiscal Weeks].[CM]   Once again, we are attempting to count the existing fiscal weeks in slicer.  Again, in this case the query returns (174) which is the total number of [Date].[Fiscal Weeks].[Fiscal Week].members defined in the dimension. However, in 2008 R2 this query returns the correct result of 4 and additionally , the following will return the count of existing countries as well (2):   With   member [Week Count] as 'count(existing([Date].[Fiscal Weeks].[Fiscal Week].members))'   member [Country Count] as 'count(existing([Customer].[Customer Geography].[Country].members))'  member [Date].[Fiscal Weeks].[CM] as 'AGGREGATE({[Date].[Fiscal Weeks].[Fiscal Week].&[47]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[48]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[49]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[50]&[2004]}*    {[Customer].[Customer Geography].[Country].&[Australia],[Customer].[Customer Geography].[Country].&[United States]})'  select   {[Week Count]} on columns from   [Adventure Works]    where   [Date].[Fiscal Weeks].[CM]   2008 R2 seems to work as long as the AGGREGATE member is on at least one of the hierarchies attempting to be detected (i.e. [Date].[Fiscal Weeks] or [Customer].[Customer Geography]). If not, it seems that the engine cannot find a "point of entry" into the aggregate member and ignores it for calculated members.   One way around this would be to put the sets from the AGGREGATE member explicitly in the WHERE clause (slicer).  I realize this is only supported in SSAS 2005 and 2008.  However, after talking with Chris Webb (his blog is here and I highly recommend following his efforts and musings) it is a far more efficient way to filter/slice a query:   With   member [Week Count] as 'count(existing([Date].[Fiscal Weeks].[Fiscal Week].members))'    select   {[Week Count]} on columns from   [Adventure Works]    where   ({[Date].[Fiscal Weeks].[Fiscal Week].&[47]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[48]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[49]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[50]&[2004]}   ,{[Customer].[Customer Geography].[Country].&[Australia],[Customer].[Customer Geography].[Country].&[United States]})   This query returns the correct result of (4) weeks.  Additionally, we can count the cross-join members of the two hierarchies in the slicer:   With   member [Week Count] as 'count(existing([Date].[Fiscal Weeks].[Fiscal Week].members)*existing([Customer].[Customer Geography].[Country].members))'    select   {[Week Count]} on columns from   [Adventure Works]    where   ({[Date].[Fiscal Weeks].[Fiscal Week].&[47]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[48]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[49]&[2004],[Date].[Fiscal Weeks].[Fiscal Week].&[50]&[2004]}   ,{[Customer].[Customer Geography].[Country].&[Australia],[Customer].[Customer Geography].[Country].&[United States]})   We get the correct number of (8) here.

    Read the article

  • Mocking successive calls of similar type via sequential mocking

    - by mehfuzh
    In this post , i show how you can benefit from  sequential mocking feature[In JustMock] for setting up expectations with successive calls of same type.  To start let’s first consider the following dummy database and entity class. public class Person {     public virtual string Name { get; set; }     public virtual int Age { get; set; } }   public interface IDataBase {     T Get<T>(); } Now, our test goal is to return different entity for successive calls on IDataBase.Get<T>(). By default, the behavior in JustMock is override , which is similar to other popular mocking tools. By override it means that the tool will consider always the latest user setup. Therefore, the first example will return the latest entity every-time and will fail in line #12: Person person1 = new Person { Age = 30, Name = "Kosev" }; Person person2 = new Person { Age = 80, Name = "Mihail" };   var database = Mock.Create<IDataBase>();   Queue<Person> queue = new Queue<Person>();   Mock.Arrange(() => database.Get<Person>()).Returns(() => queue.Dequeue()); Mock.Arrange(() => database.Get<Person>()).Returns(person2);   // this will fail Assert.Equal(person1.GetHashCode(), database.Get<Person>().GetHashCode());   Assert.Equal(person2.GetHashCode(), database.Get<Person>().GetHashCode()); We can solve it the following way using a Queue and that removes the item from bottom on each call: Person person1 = new Person { Age = 30, Name = "Kosev" }; Person person2 = new Person { Age = 80, Name = "Mihail" };   var database = Mock.Create<IDataBase>();   Queue<Person> queue = new Queue<Person>();   queue.Enqueue(person1); queue.Enqueue(person2);   Mock.Arrange(() => database.Get<Person>()).Returns(queue.Dequeue());   Assert.Equal(person1.GetHashCode(), database.Get<Person>().GetHashCode()); Assert.Equal(person2.GetHashCode(), database.Get<Person>().GetHashCode()); This will ensure that right entity is returned but this is not an elegant solution. So, in JustMock we introduced a  new option that lets you set up your expectations sequentially. Like: Person person1 = new Person { Age = 30, Name = "Kosev" }; Person person2 = new Person { Age = 80, Name = "Mihail" };   var database = Mock.Create<IDataBase>();   Mock.Arrange(() => database.Get<Person>()).Returns(person1).InSequence(); Mock.Arrange(() => database.Get<Person>()).Returns(person2).InSequence();   Assert.Equal(person1.GetHashCode(), database.Get<Person>().GetHashCode()); Assert.Equal(person2.GetHashCode(), database.Get<Person>().GetHashCode()); The  “InSequence” modifier will tell the mocking tool to return the expected result as in the order it is specified by user. The solution though pretty simple and but neat(to me) and way too simpler than using a collection to solve this type of cases. Hope that helps P.S. The example shown in my blog is using interface don’t require a profiler  and you can even use a notepad and build it referencing Telerik.JustMock.dll, run it with GUI tools and it will work. But this feature also applies to concrete methods that includes JM profiler and can be implemented for more complex scenarios.

    Read the article

< Previous Page | 35 36 37 38 39 40 41 42 43 44 45 46  | Next Page >