Search Results

Search found 22224 results on 889 pages for 'point of sale'.

Page 4/889 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • Keeping sync in multiplayer RTS game that uses floating point arithmetic

    - by Calmarius
    I'm writing a 2D space RTS game in C#. Single player works. Now I want to add some multiplayer functionality. I googled for it and it seems there is only one way to have thousands of units continuously moving without a powerful net connection: send only the commands through the network while running the same simulation at every player. And now there is a problem the entire engine uses doubles everywhere. And floating point calculations are depends heavily on compiler optimalizations and cpu architecture so it is very hard to keep things syncronized. And it is not grid based at all, and have a simple phisics engine to move the space-ships (space ships have impulse and angular-momentum...). So recoding the entire stuff to use fixed point would be quite cumbersome (but probably the only solution). So I have 2 options so far: Say bye to the current code and restart from scratch using integers Make the game LAN only where there is enough bandwidth to have 8 players with thousands of units and sending the positions and orientation etc in (almost) every frame... So I looking for better opinions, (or even tips on migrating the code to fixed-point without messing everything up...)

    Read the article

  • Restricting Access to Application(s) on Point of Sale system

    - by BSchlinker
    I have a customer with two point of sale systems, a few workstations and a Windows 2003 SBS Server. The point of sale systems are typically running QuickBooks Point of Sale and are logged in with a user who has restricted permissions / access (via Group Policy). Occasionally, one of the managers needs to be able to run a few additional applications -- including some accounting software. I have created an additional user for this manager, allowing them to login and access the accounting software. The problem is, it can be problematic to switch users on the system, as QuickBooks takes a few minutes to close (on POSUser) and then reopen (on ManagerUser). If customers are waiting, this slows things down drastically. Since the accounting software is stored on a network drive, it would be easiest if the manager could simply double click something, authenticate against the network drive / domain controller and then the program would launch. When they close the program, the session to the network drive would be lost and the program would no longer be accessible. Is there any easy way to do this? Both users are on a domain and the system is Windows 7. I just don't want to require the user to switch back and forth. In a worst case scenario, they forget to switch back and leave the accounting software wide open.

    Read the article

  • Finding furthermost point in game world

    - by user13414
    I am attempting to find the furthermost point in my game world given the player's current location and a normalized direction vector in screen space. My current algorithm is: convert player world location to screen space multiply the direction vector by a large number (2000) and add it to the player's screen location to get the distant screen location convert the distant screen location to world space create a line running from the player's world location to the distant world location loop over the bounding "walls" (of which there are always 4) of my game world check whether the wall and the line intersect if so, where they intersect is the furthermost point of my game world in the direction of the vector Here it is, more or less, in code: public Vector2 GetFurthermostWorldPoint(Vector2 directionVector) { var screenLocation = entity.WorldPointToScreen(entity.Location); var distantScreenLocation = screenLocation + (directionVector * 2000); var distantWorldLocation = entity.ScreenPointToWorld(distantScreenLocation); var line = new Line(entity.Center, distantWorldLocation); float intersectionDistance; Vector2 intersectionPoint; foreach (var boundingWall in entity.Level.BoundingWalls) { if (boundingWall.Intersects(line, out intersectionDistance, out intersectionPoint)) { return intersectionPoint; } } Debug.Assert(false, "No intersection found!"); return Vector2.Zero; } Now this works, for some definition of "works". I've found that the further out my distant screen location is, the less chance it has of working. When digging into the reasons why, I noticed that calls to Viewport.Unproject could result in wildly varying return values for points that are "far away". I wrote this stupid little "test" to try and understand what was going on: [Fact] public void wtf() { var screenPositions = new Vector2[] { new Vector2(400, 240), new Vector2(400, -2000), }; var viewport = new Viewport(0, 0, 800, 480); var projectionMatrix = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, viewport.Width / viewport.Height, 1, 200000); var viewMatrix = Matrix.CreateLookAt(new Vector3(400, 630, 600), new Vector3(400, 345, 0), new Vector3(0, 0, 1)); var worldMatrix = Matrix.Identity; foreach (var screenPosition in screenPositions) { var nearPoint = viewport.Unproject(new Vector3(screenPosition, 0), projectionMatrix, viewMatrix, worldMatrix); var farPoint = viewport.Unproject(new Vector3(screenPosition, 1), projectionMatrix, viewMatrix, worldMatrix); Console.WriteLine("For screen position {0}:", screenPosition); Console.WriteLine(" Projected Near Point = {0}", nearPoint.TruncateZ()); Console.WriteLine(" Projected Far Point = {0}", farPoint.TruncateZ()); Console.WriteLine(); } } The output I get on the console is: For screen position {X:400 Y:240}: Projected Near Point = {X:400 Y:629.571 Z:599.0967} Projected Far Point = {X:392.9302 Y:-83074.98 Z:-175627.9} For screen position {X:400 Y:-2000}: Projected Near Point = {X:400 Y:626.079 Z:600.7554} Projected Far Point = {X:390.2068 Y:-767438.6 Z:148564.2} My question is really twofold: what am I doing wrong with the unprojection such that it varies so wildly and, thus, does not allow me to determine the corresponding world point for my distant screen point? is there a better way altogether to determine the furthermost point in world space given a current world space location, and a directional vector in screen space?

    Read the article

  • Floating point vs integer calculations on modern hardware

    - by maxpenguin
    I am doing some performance critical work in C++, and we are currently using integer calculations for problems that are inherently floating point because "its faster". This causes a whole lot of annoying problems and adds a lot of annoying code. Now, I remember reading about how floating point calculations were so slow approximately circa the 386 days, where I believe (IIRC) that there was an optional co-proccessor. But surely nowadays with exponentially more complex and powerful CPUs it makes no difference in "speed" if doing floating point or integer calculation? Especially since the actual calculation time is tiny compared to something like causing a pipeline stall or fetching something from main memory? I know the correct answer is to benchmark on the target hardware, what would be a good way to test this? I wrote two tiny C++ programs and compared their run time with "time" on Linux, but the actual run time is too variable (doesn't help I am running on a virtual server). Short of spending my entire day running hundreds of benchmarks, making graphs etc. is there something I can do to get a reasonable test of the relative speed? Any ideas or thoughts? Am I completely wrong? The programs I used as follows, they are not identical by any means: #include <iostream> #include <cmath> #include <cstdlib> #include <time.h> int main( int argc, char** argv ) { int accum = 0; srand( time( NULL ) ); for( unsigned int i = 0; i < 100000000; ++i ) { accum += rand( ) % 365; } std::cout << accum << std::endl; return 0; } Program 2: #include <iostream> #include <cmath> #include <cstdlib> #include <time.h> int main( int argc, char** argv ) { float accum = 0; srand( time( NULL ) ); for( unsigned int i = 0; i < 100000000; ++i ) { accum += (float)( rand( ) % 365 ); } std::cout << accum << std::endl; return 0; } Thanks in advance!

    Read the article

  • Floating point equality and tolerances

    - by doron
    Comparing two floating point number by something like a_float == b_float is looking for trouble since a_float / 3.0 * 3.0 might not be equal to a_float due to round off error. What one normally does is something like fabs(a_float - b_float) < tol. How does one calculate tol? Ideally tolerance should be just larger than the value of one or two of the least significant figures. So if the single precision floating point number is use tol = 10E-6 should be about right. However this does not work well for the general case where a_float might be very small or might be very large. How does one calculate tol correctly for all general cases? I am interested in C or C++ cases specifically.

    Read the article

  • Understanding floating point problems

    - by Maxim Gershkovich
    Could someone here please help me understand how to determine when floating point limitations will cause errors in your calculations. For example the following code. CalculateTotalTax = function (TaxRate, TaxFreePrice) { return ((parseFloat(TaxFreePrice) / 100) * parseFloat(TaxRate)).toFixed(4); }; I have been unable to input any two values that have caused for me an incorrect result for this method. If I remove the toFixed(4) I can infact see where the calculations start to lose accuracy (somewhere around the 6th decimal place). Having said that though, my understanding of floats is that even small numbers can sometimes fail to be represented or have I misunderstood and can 4 decimal places (for example) always be represented accurately. MSDN explains floats as such... This means they cannot hold an exact representation of any quantity that is not a binary fraction (of the form k / (2 ^ n) where k and n are integers) Now I assume this applies to all floats (inlcuding those used in javascript). Fundamentally my question boils down to this. How can one determine if any specific method will be vulnerable to errors in floating point operations, at what precision will those errors materialize and what inputs will be required to produce those errors? Hopefully what I am asking makes sense.

    Read the article

  • Nicely representing a floating-point number in python

    - by dln385
    I want to represent a floating-point number as a string rounded to some number of significant digits, and never using the exponential format. Essentially, I want to display any floating-point number and make sure it “looks nice”. There are several parts to this problem: I need to be able to specify the number of significant digits. The number of significant digits needs to be variable, which can't be done with with the string formatting operator. I need it to be rounded the way a person would expect, not something like 1.999999999999 I've figured out one way of doing this, though it looks like a work-round and it's not quite perfect. (The maximum precision is 15 significant digits.) >>> def f(number, sigfig): return ("%.15f" % (round(number, int(-1 * floor(log10(number)) + (sigfig - 1))))).rstrip("0").rstrip(".") >>> print f(0.1, 1) 0.1 >>> print f(0.0000000000368568, 2) 0.000000000037 >>> print f(756867, 3) 757000 Is there a better way to do this? Why doesn't Python have a built-in function for this?

    Read the article

  • magento, making a grouped product show on sale based on product children prices

    - by thrice801
    Hi, Question regarding Magento and sale items. So I have to use grouped items to link multiple items which are the same style but different colors, these are the items I have showing on my search results/category pages. - I am trying to figure out how I can make the master sku, show as on sale, when the children items are marked on sale. I am able to make it show up on the product page, but anytime I have tried calling any of the getchildren methods outside of grouped.phtml, I have failed, horribly. I think I worked on that method for probably 36 hours unsuccessfully calling it from any other page. So, I thought I would ask here. Does anyone know how I could call the getchildskus or whatever it is method, from the category page, so that I can do something like, for each child product, compare sale price with active price, if there is a difference, calculate the percentage off, and display the largest difference as "ON SALE, UP TO 30% OFF!", or whatever it may be? Any help would be much appreciated. (oh, and I cant set a price on the main group sku, I sell sunglasses and watches mainly and many times a different color will differ in price quite significantly.)

    Read the article

  • Convert pre-IEEE-574 C++ floating-point numbers to/from C#

    - by Richard Kucia
    Before .Net, before math coprocessors, before IEEE-574, Microsoft defined a bit pattern for floating-point numbers. Old versions of the C++ compiler happily used that definition. I am writing a C# app that needs to read/write such floating-point numbers in a file. How can I do the conversions between the 2 bit formats? I need conversion methods in both directions. This app is going to run in a PocketPC/WinCE environment. Changing the structure of the file is out-of-scope for this project. Is there a C++ compiler option that instructs it to use the old FP format? That would be ideal. I could then exchange data between the C# code and C++ code by using a null-terminated text string, and the C++ methods would be simple wrappers around sprintf and atof functions. At the very least, I'm hoping someone can reply with the bit definitions for the old FP format, so I can put together a low-level bit manipulation algorithm if necessary. Thanks.

    Read the article

  • How to efficiently compare the sign of two floating-point values while handling negative zeros

    - by François Beaune
    Given two floating-point numbers, I'm looking for an efficient way to check if they have the same sign, given that if any of the two values is zero (+0.0 or -0.0), they should be considered to have the same sign. For instance, SameSign(1.0, 2.0) should return true SameSign(-1.0, -2.0) should return true SameSign(-1.0, 2.0) should return false SameSign(0.0, 1.0) should return true SameSign(0.0, -1.0) should return true SameSign(-0.0, 1.0) should return true SameSign(-0.0, -1.0) should return true A naive but correct implementation of SameSign in C++ would be: bool SameSign(float a, float b) { if (fabs(a) == 0.0f || fabs(b) == 0.0f) return true; return (a >= 0.0f) == (b >= 0.0f); } Assuming the IEEE floating-point model, here's a variant of SameSign that compiles to branchless code (at least with with Visual C++ 2008): bool SameSign(float a, float b) { int ia = binary_cast<int>(a); int ib = binary_cast<int>(b); int az = (ia & 0x7FFFFFFF) == 0; int bz = (ib & 0x7FFFFFFF) == 0; int ab = (ia ^ ib) >= 0; return (az | bz | ab) != 0; } with binary_cast defined as follow: template <typename Target, typename Source> inline Target binary_cast(Source s) { union { Source m_source; Target m_target; } u; u.m_source = s; return u.m_target; } I'm looking for two things: A faster, more efficient implementation of SameSign, using bit tricks, FPU tricks or even SSE intrinsics. An efficient extension of SameSign to three values.

    Read the article

  • Floating point inaccuracy examples

    - by David Rutten
    How do you explain floating point inaccuracy to fresh programmers and laymen who still think computers are infinitely wise and accurate? Do you have a favourite example or anecdote which seems to get the idea across much better than an precise, but dry, explanation? How is this taught in Computer Science classes?

    Read the article

  • Why differs floating-point precision in C# when separated by parantheses and when separated by state

    - by Andreas Larsen
    I am aware of how floating point precision works in the regular cases, but I stumbled on an odd situation in my C# code. Why aren't result1 and result2 the exact same floating point value here? const float A; // Arbitrary value const float B; // Arbitrary value float result1 = (A*B)*dt; float result2 = (A*B); result2 *= dt; From this page I figured float arithmetic was left-associative and that this means values are evaluated and calculated in a left-to-right manner. The full source code involves XNA's Quaternions. I don't think it's relevant what my constants are and what the VectorHelper.AddPitchRollYaw() does. The test passes just fine if I calculate the delta pitch/roll/yaw angles in the same manner, but as the code is below it does not pass: X Expected: 0.275153548f But was: 0.275153786f [TestFixture] internal class QuaternionPrecisionTest { [Test] public void Test() { JoystickInput input; input.Pitch = 0.312312432f; input.Roll = 0.512312432f; input.Yaw = 0.912312432f; const float dt = 0.017001f; float pitchRate = input.Pitch * PhysicsConstants.MaxPitchRate; float rollRate = input.Roll * PhysicsConstants.MaxRollRate; float yawRate = input.Yaw * PhysicsConstants.MaxYawRate; Quaternion orient1 = Quaternion.Identity; Quaternion orient2 = Quaternion.Identity; for (int i = 0; i < 10000; i++) { float deltaPitch = (input.Pitch * PhysicsConstants.MaxPitchRate) * dt; float deltaRoll = (input.Roll * PhysicsConstants.MaxRollRate) * dt; float deltaYaw = (input.Yaw * PhysicsConstants.MaxYawRate) * dt; // Add deltas of pitch, roll and yaw to the rotation matrix orient1 = VectorHelper.AddPitchRollYaw( orient1, deltaPitch, deltaRoll, deltaYaw); deltaPitch = pitchRate * dt; deltaRoll = rollRate * dt; deltaYaw = yawRate * dt; orient2 = VectorHelper.AddPitchRollYaw( orient2, deltaPitch, deltaRoll, deltaYaw); } Assert.AreEqual(orient1.X, orient2.X, "X"); Assert.AreEqual(orient1.Y, orient2.Y, "Y"); Assert.AreEqual(orient1.Z, orient2.Z, "Z"); Assert.AreEqual(orient1.W, orient2.W, "W"); } } Granted, the error is small and only presents itself after a large number of iterations, but it has caused me some great headackes.

    Read the article

  • Floating point mantissa bias

    - by user69514
    Does anybody know how to go out solving this problem? * a = 1.0 × 2^9 * b = -1.0 × 2^9 * c = 1.0 × 2^1 Using the floating-point (the representation uses a 14-bit format, 5 bits for the exponent with a bias of 16, a normalized mantissa of 8 bits, and a single sign bit for the number), perform the following two calculations, paying close attention to the order of operations. * b + (a + c) = ? * (b + a) + c = ?

    Read the article

  • Real life example fo Floating Point error

    - by Rob
    Is there any examples of a company that was burned by floating point data that caused a rounding issue? We're implementing a new system and all the monetary values are stored in floats. I think if i can show actual examples of why this has failed it'll have more weight than the theory of why the values can't be stored properly.

    Read the article

  • Floating point arithmetics restricted to integers

    - by user396672
    I use doubles for a uniform implementation of some arithmetic calculations. These calculations may be actually applied to integers too, but there are no C++-like templates in Java and I don't want to duplicate the implementation code, so I simply use "double" version for ints. Does JVM spec guarantees the correctness of integer operations such a <=,=, +, -, *, and / (in case of remainder==0) when the operations are emulated as corresponding floating point ops? (Any integer, of course, has reasonable size to be represented in double's mantissa)

    Read the article

  • Floating point computer - Trouble with getting back correct results

    - by Francisco P.
    Having trouble with a challenge. Let's say I have a theoretical, base 10, floating point calculator with the following characteristics Only 3 digits for mantissa 1 digit for exponent Sign for mantissa and exponent How would this machine compute the following? 300 + \sum_{i=1}^{100} 0.2 The correct result is 320. The machine's result is 300. But why? Can't get where the 20 goes goes missing... Thanks for your time.

    Read the article

  • Custom Floating Point Representation

    - by Abion47
    I'm trying to write a parser that will read a particular file type, and I need to map the different data types to C# equivalents. Most of them aren't that difficult, but I'm having trouble wrapping my head around what "int16 with a bias of 14" means. I've deduced that it's some kind of floating point type, so my best bet would be to write a converter that would map it to a float, double, or decimal type. I'm not sure where to take it from here, though.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >