Search Results

Search found 1210 results on 49 pages for 'raise'.

Page 4/49 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • How to raise an error, if the parsed number of a C++ stdlib stream is immediatly followed by a non whitespace character?

    - by Micha Wiedenmann
    In the following example, I didn't expect, that 1.2345foo would be parsed. Since I am reading data files, it is probably better to raise an error and notify the user. Is peek() the correct thing to do here? #include <iostream> #include <sstream> int main() { std::stringstream in("1.2345foo"); double x; in >> x; if (in) { std::cout << "good\n"; } else { std::cout << "bad\n"; } } Output good

    Read the article

  • [Raise|Trigger|Fire|...] an event?!?

    - by winSharp93
    Hello, in a German programming forum we currently have a discussion about events and what you (grammatically) do with them. The MSDN talks about "Event Raising" and "to raise an event". Thus, this seems to be one possibility. Are there any other synonyms? What about "to trigger an event" and "to fire an event"? A Google search will bring results for all of the three possibilities. This, however, does not mean that they are correct, too, of course. Are they? Are there any (stylistic, ...) differences or are they used in different contexts? Many thanks in advance for ending a heated debate :-)

    Read the article

  • How to raise an event when another event is raised?

    - by WulfgarPro
    Hi, I have an application that handles the OnQuit event of another running application. I would like to raise an additional (custom) event when the OnQuit event is handled. How could I implement such an event? My OnQuit handler is like so: private void StkQuit() { _stkApplicationUi.OnQuit -= StkQuit; Marshal.FinalReleaseComObject(_stkApplicationUi); Application.Exit(); } The reason I require the additional event is so that I can tell my View layer that the application has exited. If this is not the correct way, what would be better? WulfgarPro

    Read the article

  • OpenSCAD keeps crashing when I raise my precision past $fn=29?

    - by Jeremy Quick
    Out of the blue, OpenSCAD decided to stop working for me on designs that previously rendered just fine. After playing around I found out that any time I use a precision greater than $fn=29 the program crashes with the message "openscad.exe has stopped working". I can use any precision 29 and below, but the second I adjust it to even 30 the program crashes. This is a major problem as before I was using a precision of 100, and without it the design's moving parts do not work on print. I have uninstalled and reinstalled the program several times and haven't been able to fix the problem. I have watched the CPU during the calculations and it never reaches more than 35%. Does anyone have any suggestions as to how to fix this problem? I also have not changed computers or even the code. Thanks! I am using Windows 32 bit, Version 2013.06. The default version from the website.

    Read the article

  • Thunderbird doesn't raise or give focus when you click "Write" or "Reply".

    - by Neil
    I'm using Thunderbird 2.0.22, the version that comes with Ubuntu Intrepid 8.10. When I hit "Reply" or "Write", a new email window pops up, but it ends up being under the main Thunderbird Window, and doesn't have focus. Thunderbird is the only application that exhibits this weird behaviour, and it just started happening one day, whereas it worked fine before. I've seen this problem years ago as well, and wasn't sure how I fixed it.

    Read the article

  • Django: Overriding the clean() method in forms - question about raising errors

    - by Monika Sulik
    I've been doing things like this in the clean method: if self.cleaned_data['type'].organized_by != self.cleaned_data['organized_by']: raise forms.ValidationError('The type and organization do not match.') if self.cleaned_data['start'] > self.cleaned_data['end']: raise forms.ValidationError('The start date cannot be later than the end date.') But then that means that the form can only raise one of these errors at a time. Is there a way for the form to raise both of these errors? EDIT #1: Any solutions for the above are great, but would love something that would also work in a scenario like: if self.cleaned_data['type'].organized_by != self.cleaned_data['organized_by']: raise forms.ValidationError('The type and organization do not match.') if self.cleaned_data['start'] > self.cleaned_data['end']: raise forms.ValidationError('The start date cannot be later than the end date.') super(FooAddForm, self).clean() Where FooAddForm is a ModelForm and has unique constraints that might also cause errors. If anyone knows of something like that, that would be great...

    Read the article

  • WCF: WTF! Does WCF raise the bar or just the complexity level?

    - by rp
    I understand the value of the three-part service/host/client model offered by WCF. But is it just me or does it seem like WCF took something pretty direct and straightforward (the ASMX model) and made a mess out of it? Is there an alternative to using SvcUtil's command line step back in time to generate the proxy? With ASMX services a test harness was automatically provided; is there a good alternative today with WCF? I appreciate that the WS* stuff is more tightly integrated with WCF and hope to find some payoff for WCF there, but geeze, otherwise I'm perplexed. Also, the state of books available for WCF is abysmal at best. Juval Lowy, a superb author, has written a good O'Reilly reference book "Programming WCF Services" but it doesn't do that much (for me anyway) for learning now to use WCF. That book's precursor (and a little better organized, but not much, as a tutorial) is Michele Leroux Bustamante's Learning WCF. It has good spots but is outdated in place and its corresponding Web site is gone. Do you have good WCF learning references besides just continuing to Google the bejebus out of things? Thanks, rp

    Read the article

  • Casting to generic type in Java doesn't raise ClassCastException?

    - by Kip
    I have come across a strange behavior of Java that seems like a bug. Is it? Casting an Object to a generic type (say, K) does not throw a ClassCastException even if the object is not an instance of K. Here is an example: import java.util.*; public final class Test { private static<K,V> void addToMap(Map<K,V> map, Object ... vals) { for(int i = 0; i < vals.length; i += 2) map.put((K)vals[i], (V)vals[i+1]); //Never throws ClassCastException! } public static void main(String[] args) { Map<String,Integer> m = new HashMap<String,Integer>(); addToMap(m, "hello", "world"); //No exception System.out.println(m.get("hello")); //Prints "world", which is NOT an Integer!! } }

    Read the article

  • How do you raise a .Net event from an IronRuby class?

    - by Brian Genisio
    I'm trying to figure out how to implement an event in a ruby class. Specifically, I am trying to make my class implement an interface (INotifyPropertyChanged) that includes an event (PropertyChanged). I can create my add_PropertyChanged and remove_PropertyChanged methods... but then what? This is what my class looks like so far: class TestClass include System::ComponentModel::INotifyPropertyChanged def add_PropertyChanged(handler) end def remove_PropertyChanged(handler) end end

    Read the article

  • How can I safely raise events in an AsyncCallback?

    - by cyclotis04
    I'm writing a wrapper class around a TcpClient which raises an event when data arrives. I'm using BeginRead and EndRead, but when the parent form handles the event, it's not running on the UI thread. I do I need to use delegates and pass the context into the callback? I thought that callbacks were a way to avoid this... void ReadCallback(IAsyncResult ar) { int length = _tcpClient.GetStream().EndRead(ar); _stringBuilder.Append(ByteArrayToString(_buffer, length)); BeginRead(); OnStringArrival(EventArgs.Empty); }

    Read the article

  • how to raise warning if return value is disregarded - gcc or static code check?

    - by Drakosha
    I'd like to see all the places in my code (C++) which disregard return value of a function. How can I do it - with gcc or static code analysis tool? Bad code example: int f(int z) { return z + (z*2) + z/3 + z*z + 23; } int main() { int i = 7; f(i); ///// <<----- here I disregard the return value return 1; } Update: it should work even if the function and its use are in different files free static check tool

    Read the article

  • FETCH INTO doesn't raise an exception if the set is empty, does it?

    - by Cade Roux
    Here is some actual code I'm trying to debug: BEGIN OPEN bservice (coservice.prod_id); FETCH bservice INTO v_billing_alias_id, v_billing_service_uom_id, v_summary_remarks; CLOSE bservice; v_service_found := 1; -- An empty fetch is expected for some services. EXCEPTION WHEN OTHERS THEN v_service_found := 0; END; When the parametrized cursor bservice(prod_id) is empty, it fetches NULL into the three variables and does not throw an exception. So whoever wrote this code expecting it to throw an exception was wrong, right? The comment seems to imply that and empty fetch is expected and then it sets a flag for later handling, but I think this code cannot possibly have been tested with empty sets either. Obviously, it should use bservice%NOTFOUND or bservice%FOUND or similar.

    Read the article

  • How to raise an action picker with options of Send to via sms, email, etc.

    - by Pentium10
    I've seen in applications a popup that prompts me what I do want to do with a text. I am prompted to choose from Send by SMS, Send by Email, Send by Bluetooth, Send by Fring etc. How do I make such a popup, it seamed to be automatically built? Also how do I tell what message to use? And if needed how do I tell who the contact is? Maybe chooses the options based on the contact, (if has email, show email)

    Read the article

  • Where can these be posted besides the Python Cookbook?

    - by Noctis Skytower
    Whitespace Assembler #! /usr/bin/env python """Assembler.py Compiles a program from "Assembly" folder into "Program" folder. Can be executed directly by double-click or on the command line. Give name of *.WSA file without extension (example: stack_calc).""" ################################################################################ __author__ = 'Stephen "Zero" Chappell <[email protected]>' __date__ = '14 March 2010' __version__ = '$Revision: 3 $' ################################################################################ import string from Interpreter import INS, MNEMONIC ################################################################################ def parse(code): program = [] process_virtual(program, code) process_control(program) return tuple(program) def process_virtual(program, code): for line, text in enumerate(code.split('\n')): if not text or text[0] == '#': continue if text.startswith('part '): parse_part(program, line, text[5:]) elif text.startswith(' '): parse_code(program, line, text[5:]) else: syntax_error(line) def syntax_error(line): raise SyntaxError('Line ' + str(line + 1)) ################################################################################ def process_control(program): parts = get_parts(program) names = dict(pair for pair in zip(parts, generate_index())) correct_control(program, names) def get_parts(program): parts = [] for ins in program: if isinstance(ins, tuple): ins, arg = ins if ins == INS.PART: if arg in parts: raise NameError('Part definition was found twice: ' + arg) parts.append(arg) return parts def generate_index(): index = 1 while True: yield index index *= -1 if index > 0: index += 1 def correct_control(program, names): for index, ins in enumerate(program): if isinstance(ins, tuple): ins, arg = ins if ins in HAS_LABEL: if arg not in names: raise NameError('Part definition was never found: ' + arg) program[index] = (ins, names[arg]) ################################################################################ def parse_part(program, line, text): if not valid_label(text): syntax_error(line) program.append((INS.PART, text)) def valid_label(text): if not between_quotes(text): return False label = text[1:-1] if not valid_name(label): return False return True def between_quotes(text): if len(text) < 3: return False if text.count('"') != 2: return False if text[0] != '"' or text[-1] != '"': return False return True def valid_name(label): valid_characters = string.ascii_letters + string.digits + '_' valid_set = frozenset(valid_characters) label_set = frozenset(label) if len(label_set - valid_set) != 0: return False return True ################################################################################ from Interpreter import HAS_LABEL, Program NO_ARGS = Program.NO_ARGS HAS_ARG = Program.HAS_ARG TWO_WAY = tuple(set(NO_ARGS) & set(HAS_ARG)) ################################################################################ def parse_code(program, line, text): for ins, word in enumerate(MNEMONIC): if text.startswith(word): check_code(program, line, text[len(word):], ins) break else: syntax_error(line) def check_code(program, line, text, ins): if ins in TWO_WAY: if text: number = parse_number(line, text) program.append((ins, number)) else: program.append(ins) elif ins in HAS_LABEL: text = parse_label(line, text) program.append((ins, text)) elif ins in HAS_ARG: number = parse_number(line, text) program.append((ins, number)) elif ins in NO_ARGS: if text: syntax_error(line) program.append(ins) else: syntax_error(line) def parse_label(line, text): if not text or text[0] != ' ': syntax_error(line) text = text[1:] if not valid_label(text): syntax_error(line) return text ################################################################################ def parse_number(line, text): if not valid_number(text): syntax_error(line) return int(text) def valid_number(text): if len(text) < 2: return False if text[0] != ' ': return False text = text[1:] if '+' in text and '-' in text: return False if '+' in text: if text.count('+') != 1: return False if text[0] != '+': return False text = text[1:] if not text: return False if '-' in text: if text.count('-') != 1: return False if text[0] != '-': return False text = text[1:] if not text: return False valid_set = frozenset(string.digits) value_set = frozenset(text) if len(value_set - valid_set) != 0: return False return True ################################################################################ ################################################################################ from Interpreter import partition_number VMC_2_TRI = { (INS.PUSH, True): (0, 0), (INS.COPY, False): (0, 2, 0), (INS.COPY, True): (0, 1, 0), (INS.SWAP, False): (0, 2, 1), (INS.AWAY, False): (0, 2, 2), (INS.AWAY, True): (0, 1, 2), (INS.ADD, False): (1, 0, 0, 0), (INS.SUB, False): (1, 0, 0, 1), (INS.MUL, False): (1, 0, 0, 2), (INS.DIV, False): (1, 0, 1, 0), (INS.MOD, False): (1, 0, 1, 1), (INS.SET, False): (1, 1, 0), (INS.GET, False): (1, 1, 1), (INS.PART, True): (2, 0, 0), (INS.CALL, True): (2, 0, 1), (INS.GOTO, True): (2, 0, 2), (INS.ZERO, True): (2, 1, 0), (INS.LESS, True): (2, 1, 1), (INS.BACK, False): (2, 1, 2), (INS.EXIT, False): (2, 2, 2), (INS.OCHR, False): (1, 2, 0, 0), (INS.OINT, False): (1, 2, 0, 1), (INS.ICHR, False): (1, 2, 1, 0), (INS.IINT, False): (1, 2, 1, 1) } ################################################################################ def to_trinary(program): trinary_code = [] for ins in program: if isinstance(ins, tuple): ins, arg = ins trinary_code.extend(VMC_2_TRI[(ins, True)]) trinary_code.extend(from_number(arg)) else: trinary_code.extend(VMC_2_TRI[(ins, False)]) return tuple(trinary_code) def from_number(arg): code = [int(arg < 0)] if arg: for bit in reversed(list(partition_number(abs(arg), 2))): code.append(bit) return code + [2] return code + [0, 2] to_ws = lambda trinary: ''.join(' \t\n'[index] for index in trinary) def compile_wsa(source): program = parse(source) trinary = to_trinary(program) ws_code = to_ws(trinary) return ws_code ################################################################################ ################################################################################ import os import sys import time import traceback def main(): name, source, command_line, error = get_source() if not error: start = time.clock() try: ws_code = compile_wsa(source) except: print('ERROR: File could not be compiled.\n') traceback.print_exc() error = True else: path = os.path.join('Programs', name + '.ws') try: open(path, 'w').write(ws_code) except IOError as err: print(err) error = True else: div, mod = divmod((time.clock() - start) * 1000, 1) args = int(div), '{:.3}'.format(mod)[1:] print('DONE: Comipled in {}{} ms'.format(*args)) handle_close(error, command_line) def get_source(): if len(sys.argv) > 1: command_line = True name = sys.argv[1] else: command_line = False try: name = input('Source File: ') except: return None, None, False, True print() path = os.path.join('Assembly', name + '.wsa') try: return name, open(path).read(), command_line, False except IOError as err: print(err) return None, None, command_line, True def handle_close(error, command_line): if error: usage = 'Usage: {} <assembly>'.format(os.path.basename(sys.argv[0])) print('\n{}\n{}'.format('-' * len(usage), usage)) if not command_line: time.sleep(10) ################################################################################ if __name__ == '__main__': main() Whitespace Helpers #! /usr/bin/env python """Helpers.py Includes a function to encode Python strings into my WSA format. Has a "PRINT_LINE" function that can be copied to a WSA program. Contains a "PRINT" function and documentation as an explanation.""" ################################################################################ __author__ = 'Stephen "Zero" Chappell <[email protected]>' __date__ = '14 March 2010' __version__ = '$Revision: 1 $' ################################################################################ def encode_string(string, addr): print(' push', addr) print(' push', len(string)) print(' set') addr += 1 for offset, character in enumerate(string): print(' push', addr + offset) print(' push', ord(character)) print(' set') ################################################################################ # Prints a string with newline. # push addr # call "PRINT_LINE" """ part "PRINT_LINE" call "PRINT" push 10 ochr back """ ################################################################################ # def print(array): # if len(array) <= 0: # return # offset = 1 # while len(array) - offset >= 0: # ptr = array.ptr + offset # putch(array[ptr]) # offset += 1 """ part "PRINT" # Line 1-2 copy get less "__PRINT_RET_1" copy get zero "__PRINT_RET_1" # Line 3 push 1 # Line 4 part "__PRINT_LOOP" copy copy 2 get swap sub less "__PRINT_RET_2" # Line 5 copy 1 copy 1 add # Line 6 get ochr # Line 7 push 1 add goto "__PRINT_LOOP" part "__PRINT_RET_2" away part "__PRINT_RET_1" away back """ Whitespace Interpreter #! /usr/bin/env python """Interpreter.py Runs programs in "Programs" and creates *.WSO files when needed. Can be executed directly by double-click or on the command line. If run on command line, add "ASM" flag to dump program assembly.""" ################################################################################ __author__ = 'Stephen "Zero" Chappell <[email protected]>' __date__ = '14 March 2010' __version__ = '$Revision: 4 $' ################################################################################ def test_file(path): disassemble(parse(trinary(load(path))), True) ################################################################################ load = lambda ws: ''.join(c for r in open(ws) for c in r if c in ' \t\n') trinary = lambda ws: tuple(' \t\n'.index(c) for c in ws) ################################################################################ def enum(names): names = names.replace(',', ' ').split() space = dict((reversed(pair) for pair in enumerate(names)), __slots__=()) return type('enum', (object,), space)() INS = enum('''\ PUSH, COPY, SWAP, AWAY, \ ADD, SUB, MUL, DIV, MOD, \ SET, GET, \ PART, CALL, GOTO, ZERO, LESS, BACK, EXIT, \ OCHR, OINT, ICHR, IINT''') ################################################################################ def parse(code): ins = iter(code).__next__ program = [] while True: try: imp = ins() except StopIteration: return tuple(program) if imp == 0: # [Space] parse_stack(ins, program) elif imp == 1: # [Tab] imp = ins() if imp == 0: # [Tab][Space] parse_math(ins, program) elif imp == 1: # [Tab][Tab] parse_heap(ins, program) else: # [Tab][Line] parse_io(ins, program) else: # [Line] parse_flow(ins, program) def parse_number(ins): sign = ins() if sign == 2: raise StopIteration() buffer = '' code = ins() if code == 2: raise StopIteration() while code != 2: buffer += str(code) code = ins() if sign == 1: return int(buffer, 2) * -1 return int(buffer, 2) ################################################################################ def parse_stack(ins, program): code = ins() if code == 0: # [Space] number = parse_number(ins) program.append((INS.PUSH, number)) elif code == 1: # [Tab] code = ins() number = parse_number(ins) if code == 0: # [Tab][Space] program.append((INS.COPY, number)) elif code == 1: # [Tab][Tab] raise StopIteration() else: # [Tab][Line] program.append((INS.AWAY, number)) else: # [Line] code = ins() if code == 0: # [Line][Space] program.append(INS.COPY) elif code == 1: # [Line][Tab] program.append(INS.SWAP) else: # [Line][Line] program.append(INS.AWAY) def parse_math(ins, program): code = ins() if code == 0: # [Space] code = ins() if code == 0: # [Space][Space] program.append(INS.ADD) elif code == 1: # [Space][Tab] program.append(INS.SUB) else: # [Space][Line] program.append(INS.MUL) elif code == 1: # [Tab] code = ins() if code == 0: # [Tab][Space] program.append(INS.DIV) elif code == 1: # [Tab][Tab] program.append(INS.MOD) else: # [Tab][Line] raise StopIteration() else: # [Line] raise StopIteration() def parse_heap(ins, program): code = ins() if code == 0: # [Space] program.append(INS.SET) elif code == 1: # [Tab] program.append(INS.GET) else: # [Line] raise StopIteration() def parse_io(ins, program): code = ins() if code == 0: # [Space] code = ins() if code == 0: # [Space][Space] program.append(INS.OCHR) elif code == 1: # [Space][Tab] program.append(INS.OINT) else: # [Space][Line] raise StopIteration() elif code == 1: # [Tab] code = ins() if code == 0: # [Tab][Space] program.append(INS.ICHR) elif code == 1: # [Tab][Tab] program.append(INS.IINT) else: # [Tab][Line] raise StopIteration() else: # [Line] raise StopIteration() def parse_flow(ins, program): code = ins() if code == 0: # [Space] code = ins() label = parse_number(ins) if code == 0: # [Space][Space] program.append((INS.PART, label)) elif code == 1: # [Space][Tab] program.append((INS.CALL, label)) else: # [Space][Line] program.append((INS.GOTO, label)) elif code == 1: # [Tab] code = ins() if code == 0: # [Tab][Space] label = parse_number(ins) program.append((INS.ZERO, label)) elif code == 1: # [Tab][Tab] label = parse_number(ins) program.append((INS.LESS, label)) else: # [Tab][Line] program.append(INS.BACK) else: # [Line] code = ins() if code == 2: # [Line][Line] program.append(INS.EXIT) else: # [Line][Space] or [Line][Tab] raise StopIteration() ################################################################################ MNEMONIC = '\ push copy swap away add sub mul div mod set get part \ call goto zero less back exit ochr oint ichr iint'.split() HAS_ARG = [getattr(INS, name) for name in 'PUSH COPY AWAY PART CALL GOTO ZERO LESS'.split()] HAS_LABEL = [getattr(INS, name) for name in 'PART CALL GOTO ZERO LESS'.split()] def disassemble(program, names=False): if names: names = create_names(program) for ins in program: if isinstance(ins, tuple): ins, arg = ins assert ins in HAS_ARG has_arg = True else: assert INS.PUSH <= ins <= INS.IINT has_arg = False if ins == INS.PART: if names: print(MNEMONIC[ins], '"' + names[arg] + '"') else: print(MNEMONIC[ins], arg) elif has_arg and ins in HAS_ARG: if ins in HAS_LABEL and names: assert arg in names print(' ' + MNEMONIC[ins], '"' + names[arg] + '"') else: print(' ' + MNEMONIC[ins], arg) else: print(' ' + MNEMONIC[ins]) ################################################################################ def create_names(program): names = {} number = 1 for ins in program: if isinstance(ins, tuple) and ins[0] == INS.PART: label = ins[1] assert label not in names names[label] = number_to_name(number) number += 1 return names def number_to_name(number): name = '' for offset in reversed(list(partition_number(number, 27))): if offset: name += chr(ord('A') + offset - 1) else: name += '_' return name def partition_number(number, base): div, mod = divmod(number, base) yield mod while div: div, mod = divmod(div, base) yield mod ################################################################################ CODE = (' \t\n', ' \n ', ' \t \t\n', ' \n\t', ' \n\n', ' \t\n \t\n', '\t ', '\t \t', '\t \n', '\t \t ', '\t \t\t', '\t\t ', '\t\t\t', '\n \t\n', '\n \t \t\n', '\n \n \t\n', '\n\t \t\n', '\n\t\t \t\n', '\n\t\n', '\n\n\n', '\t\n ', '\t\n \t', '\t\n\t ', '\t\n\t\t') EXAMPLE = ''.join(CODE) ################################################################################ NOTES = '''\ STACK ===== push number copy copy number swap away away number MATH ==== add sub mul div mod HEAP ==== set get FLOW ==== part label call label goto label zero label less label back exit I/O === ochr oint ichr iint''' ################################################################################ ################################################################################ class Stack: def __init__(self): self.__data = [] # Stack Operators def push(self, number): self.__data.append(number) def copy(self, number=None): if number is None: self.__data.append(self.__data[-1]) else: size = len(self.__data) index = size - number - 1 assert 0 <= index < size self.__data.append(self.__data[index]) def swap(self): self.__data[-2], self.__data[-1] = self.__data[-1], self.__data[-2] def away(self, number=None): if number is None: self.__data.pop() else: size = len(self.__data) index = size - number - 1 assert 0 <= index < size del self.__data[index:-1] # Math Operators def add(self): suffix = self.__data.pop() prefix = self.__data.pop() self.__data.append(prefix + suffix) def sub(self): suffix = self.__data.pop() prefix = self.__data.pop() self.__data.append(prefix - suffix) def mul(self): suffix = self.__data.pop() prefix = self.__data.pop() self.__data.append(prefix * suffix) def div(self): suffix = self.__data.pop() prefix = self.__data.pop() self.__data.append(prefix // suffix) def mod(self): suffix = self.__data.pop() prefix = self.__data.pop() self.__data.append(prefix % suffix) # Program Operator def pop(self): return self.__data.pop() ################################################################################ class Heap: def __init__(self): self.__data = {} def set_(self, addr, item): if item: self.__data[addr] = item elif addr in self.__data: del self.__data[addr] def get_(self, addr): return self.__data.get(addr, 0) ################################################################################ import os import zlib import msvcrt import pickle import string class CleanExit(Exception): pass NOP = lambda arg: None DEBUG_WHITESPACE = False ################################################################################ class Program: NO_ARGS = INS.COPY, INS.SWAP, INS.AWAY, INS.ADD, \ INS.SUB, INS.MUL, INS.DIV, INS.MOD, \ INS.SET, INS.GET, INS.BACK, INS.EXIT, \ INS.OCHR, INS.OINT, INS.ICHR, INS.IINT HAS_ARG = INS.PUSH, INS.COPY, INS.AWAY, INS.PART, \ INS.CALL, INS.GOTO, INS.ZERO, INS.LESS def __init__(self, code): self.__data = code self.__validate() self.__build_jump() self.__check_jump() self.__setup_exec() def __setup_exec(self): self.__iptr = 0 self.__stck = stack = Stack() self.__heap = Heap() self.__cast = [] self.__meth = (stack.push, stack.copy, stack.swap, stack.away, stack.add, stack.sub, stack.mul, stack.div, stack.mod, self.__set, self.__get, NOP, self.__call, self.__goto, self.__zero, self.__less, self.__back, self.__exit, self.__ochr, self.__oint, self.__ichr, self.__iint) def step(self): ins = self.__data[self.__iptr] self.__iptr += 1 if isinstance(ins, tuple): self.__meth[ins[0]](ins[1]) else: self.__meth[ins]() def run(self): while True: ins = self.__data[self.__iptr] self.__iptr += 1 if isinstance(ins, tuple): self.__meth[ins[0]](ins[1]) else: self.__meth[ins]() def __oint(self): for digit in str(self.__stck.pop()): msvcrt.putwch(digit) def __ichr(self): addr = self.__stck.pop() # Input Routine while msvcrt.kbhit(): msvcrt.getwch() while True: char = msvcrt.getwch() if char in '\x00\xE0': msvcrt.getwch() elif char in string.printable: char = char.replace('\r', '\n') msvcrt.putwch(char) break item = ord(char) # Storing Number self.__heap.set_(addr, item) def __iint(self): addr = self.__stck.pop() # Input Routine while msvcrt.kbhit(): msvcrt.getwch() buff = '' char = msvcrt.getwch() while char != '\r' or not buff: if char in '\x00\xE0': msvcrt.getwch() elif char in '+-' and not buff: msvcrt.putwch(char) buff += char elif '0' <= char <= '9': msvcrt.putwch(char) buff += char elif char == '\b': if buff: buff = buff[:-1] msvcrt.putwch(char) msvcrt.putwch(' ') msvcrt.putwch(char) char = msvcrt.getwch() msvcrt.putwch(char) msvcrt.putwch('\n') item = int(buff) # Storing Number self.__heap.set_(addr, item) def __goto(self, label): self.__iptr = self.__jump[label] def __zero(self, label): if self.__stck.pop() == 0: self.__iptr = self.__jump[label] def __less(self, label): if self.__stck.pop() < 0: self.__iptr = self.__jump[label] def __exit(self): self.__setup_exec() raise CleanExit() def __set(self): item = self.__stck.pop() addr = self.__stck.po

    Read the article

  • Custom login in Django

    - by alpgs
    Django newbie here. I wrote simplified login form which takes email and password. It works great if both email and password are supplied, but if either is missing i get KeyError exception. According to django documentation this should never happen: By default, each Field class assumes the value is required, so if you pass an empty value -- either None or the empty string ("") -- then clean() will raise a ValidationError exception I tried to write my own validators for fields (clean_email and clean_password), but it doesn't work (ie I get KeyError exception). What am I doing wrong? class LoginForm(forms.Form): email = forms.EmailField(label=_(u'Your email')) password = forms.CharField(widget=forms.PasswordInput, label=_(u'Password')) def clean_email(self): data = self.cleaned_data['email'] if not data: raise forms.ValidationError(_("Please enter email")) return data def clean_password(self): data = self.cleaned_data['password'] if not data: raise forms.ValidationError(_("Please enter your password")) return data def clean(self): try: username = User.objects.get(email__iexact=self.cleaned_data['email']).username except User.DoesNotExist: raise forms.ValidationError(_("No such email registered")) password = self.cleaned_data['password'] self.user = auth.authenticate(username=username, password=password) if self.user is None or not self.user.is_active: raise forms.ValidationError(_("Email or password is incorrect")) return self.cleaned_data

    Read the article

  • try except block in Delphi

    - by Nik
    Do you guys know a way to trap log and re-raise exception in Delphi code. A simple example: procedure TForm3.Button1Click(Sender: TObject); begin try raise Exception.Create('Bum'); except on E: Exception do begin MyHandleException(E); end; end; end; procedure TForm3.MyHandleException(AException: Exception); begin ShowMessage(AException.Message); // raise AException; - this will access violate end; So I need to re-raise it in the except block but I was wondering is there a better way to write my own method to handle and (on specific conditions) to re-raise exceptions?

    Read the article

  • Is this a valid pattern for raising events in C#?

    - by Will Vousden
    Update: For the benefit of anyone reading this, since .NET 4, the lock is unnecessary due to changes in synchronization of auto-generated events, so I just use this now: public static void Raise<T>(this EventHandler<T> handler, object sender, T e) where T : EventArgs { if (handler != null) { handlerCopy(sender, e); } } And to raise it: SomeEvent.Raise(this, new FooEventArgs()); Having been reading one of Jon Skeet's articles on multithreading, I've tried to encapsulate the approach he advocates to raising an event in an extension method like so (with a similar generic version): public static void Raise(this EventHandler handler, object @lock, object sender, EventArgs e) { EventHandler handlerCopy; lock (@lock) { handlerCopy = handler; } if (handlerCopy != null) { handlerCopy(sender, e); } } This can then be called like so: protected virtual void OnSomeEvent(EventArgs e) { this.someEvent.Raise(this.eventLock, this, e); } Are there any problems with doing this? Also, I'm a little confused about the necessity of the lock in the first place. As I understand it, the delegate is copied in the example in the article to avoid the possibility of it changing (and becoming null) between the null check and the delegate call. However, I was under the impression that access/assignment of this kind is atomic, so why is the lock necessary? Update: With regards to Mark Simpson's comment below, I threw together a test: static class Program { private static Action foo; private static Action bar; private static Action test; static void Main(string[] args) { foo = () => Console.WriteLine("Foo"); bar = () => Console.WriteLine("Bar"); test += foo; test += bar; test.Test(); Console.ReadKey(true); } public static void Test(this Action action) { action(); test -= foo; Console.WriteLine(); action(); } } This outputs: Foo Bar Foo Bar This illustrates that the delegate parameter to the method (action) does not mirror the argument that was passed into it (test), which is kind of expected, I guess. My question is will this affect the validity of the lock in the context of my Raise extension method? Update: Here is the code I'm now using. It's not quite as elegant as I'd have liked, but it seems to work: public static void Raise<T>(this object sender, ref EventHandler<T> handler, object eventLock, T e) where T : EventArgs { EventHandler<T> copy; lock (eventLock) { copy = handler; } if (copy != null) { copy(sender, e); } }

    Read the article

  • C#/.NET Little Wonders: The EventHandler and EventHandler&lt;TEventArgs&gt; delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the last two weeks, we examined the Action family of delegates (and delegates in general), and the Func family of delegates and how they can be used to support generic, reusable algorithms and classes. So this week, we are going to look at a handy pair of delegates that can be used to eliminate the need for defining custom delegates when creating events: the EventHandler and EventHandler<TEventArgs> delegates. Events and delegates Before we begin, let’s quickly consider events in .NET.  According to the MSDN: An event in C# is a way for a class to provide notifications to clients of that class when some interesting thing happens to an object. So, basically, you can create an event in a type so that users of that type can subscribe to notifications of things of interest.  How is this different than some of the delegate programming that we talked about in the last two weeks?  Well, you can think of an event as a special access modifier on a delegate.  Some differences between the two are: Events are a special access case of delegates They behave much like delegates instances inside the type they are declared in, but outside of that type they can only be (un)subscribed to. Events can specify add/remove behavior explicitly If you want to do additional work when someone subscribes or unsubscribes to an event, you can specify the add and remove actions explicitly. Events have access modifiers, but these only specify the access level of those who can (un)subscribe A public event, for example, means anyone can (un)subscribe, but it does not mean that anyone can raise (invoke) the event directly.  Events can only be raised by the type that contains them In contrast, if a delegate is visible, it can be invoked outside of the object (not even in a sub-class!). Events tend to be for notifications only, and should be treated as optional Semantically speaking, events typically don’t perform work on the the class directly, but tend to just notify subscribers when something of note occurs. My basic rule-of-thumb is that if you are just wanting to notify any listeners (who may or may not care) that something has happened, use an event.  However, if you want the caller to provide some function to perform to direct the class about how it should perform work, make it a delegate. Declaring events using custom delegates To declare an event in a type, we simply use the event keyword and specify its delegate type.  For example, let’s say you wanted to create a new TimeOfDayTimer that triggers at a given time of the day (as opposed to on an interval).  We could write something like this: 1: public delegate void TimeOfDayHandler(object source, ElapsedEventArgs e); 2:  3: // A timer that will fire at time of day each day. 4: public class TimeOfDayTimer : IDisposable 5: { 6: // Event that is triggered at time of day. 7: public event TimeOfDayHandler Elapsed; 8:  9: // ... 10: } The first thing to note is that the event is a delegate type, which tells us what types of methods may subscribe to it.  The second thing to note is the signature of the event handler delegate, according to the MSDN: The standard signature of an event handler delegate defines a method that does not return a value, whose first parameter is of type Object and refers to the instance that raises the event, and whose second parameter is derived from type EventArgs and holds the event data. If the event does not generate event data, the second parameter is simply an instance of EventArgs. Otherwise, the second parameter is a custom type derived from EventArgs and supplies any fields or properties needed to hold the event data. So, in a nutshell, the event handler delegates should return void and take two parameters: An object reference to the object that raised the event. An EventArgs (or a subclass of EventArgs) reference to event specific information. Even if your event has no additional information to provide, you are still expected to provide an EventArgs instance.  In this case, feel free to pass the EventArgs.Empty singleton instead of creating new instances of EventArgs (to avoid generating unneeded memory garbage). The EventHandler delegate Because many events have no additional information to pass, and thus do not require custom EventArgs, the signature of the delegates for subscribing to these events is typically: 1: // always takes an object and an EventArgs reference 2: public delegate void EventHandler(object sender, EventArgs e) It would be insane to recreate this delegate for every class that had a basic event with no additional event data, so there already exists a delegate for you called EventHandler that has this very definition!  Feel free to use it to define any events which supply no additional event information: 1: public class Cache 2: { 3: // event that is raised whenever the cache performs a cleanup 4: public event EventHandler OnCleanup; 5:  6: // ... 7: } This will handle any event with the standard EventArgs (no additional information).  But what of events that do need to supply additional information?  Does that mean we’re out of luck for subclasses of EventArgs?  That’s where the generic for of EventHandler comes into play… The generic EventHandler<TEventArgs> delegate Starting with the introduction of generics in .NET 2.0, we have a generic delegate called EventHandler<TEventArgs>.  Its signature is as follows: 1: public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e) 2: where TEventArgs : EventArgs This is similar to EventHandler except it has been made generic to support the more general case.  Thus, it will work for any delegate where the first argument is an object (the sender) and the second argument is a class derived from EventArgs (the event data). For example, let’s say we wanted to create a message receiver, and we wanted it to have a few events such as OnConnected that will tell us when a connection is established (probably with no additional information) and OnMessageReceived that will tell us when a new message arrives (probably with a string for the new message text). So for OnMessageReceived, our MessageReceivedEventArgs might look like this: 1: public sealed class MessageReceivedEventArgs : EventArgs 2: { 3: public string Message { get; set; } 4: } And since OnConnected needs no event argument type defined, our class might look something like this: 1: public class MessageReceiver 2: { 3: // event that is called when the receiver connects with sender 4: public event EventHandler OnConnected; 5:  6: // event that is called when a new message is received. 7: public event EventHandler<MessageReceivedEventArgs> OnMessageReceived; 8:  9: // ... 10: } Notice, nowhere did we have to define a delegate to fit our event definition, the EventHandler and generic EventHandler<TEventArgs> delegates fit almost anything we’d need to do with events. Sidebar: Thread-safety and raising an event When the time comes to raise an event, we should always check to make sure there are subscribers, and then only raise the event if anyone is subscribed.  This is important because if no one is subscribed to the event, then the instance will be null and we will get a NullReferenceException if we attempt to raise the event. 1: // This protects against NullReferenceException... or does it? 2: if (OnMessageReceived != null) 3: { 4: OnMessageReceived(this, new MessageReceivedEventArgs(aMessage)); 5: } The above code seems to handle the null reference if no one is subscribed, but there’s a problem if this is being used in multi-threaded environments.  For example, assume we have thread A which is about to raise the event, and it checks and clears the null check and is about to raise the event.  However, before it can do that thread B unsubscribes to the event, which sets the delegate to null.  Now, when thread A attempts to raise the event, this causes the NullReferenceException that we were hoping to avoid! To counter this, the simplest best-practice method is to copy the event (just a multicast delegate) to a temporary local variable just before we raise it.  Since we are inside the class where this event is being raised, we can copy it to a local variable like this, and it will protect us from multi-threading since multicast delegates are immutable and assignments are atomic: 1: // always make copy of the event multi-cast delegate before checking 2: // for null to avoid race-condition between the null-check and raising it. 3: var handler = OnMessageReceived; 4: 5: if (handler != null) 6: { 7: handler(this, new MessageReceivedEventArgs(aMessage)); 8: } The very slight trade-off is that it’s possible a class may get an event after it unsubscribes in a multi-threaded environment, but this is a small risk and classes should be prepared for this possibility anyway.  For a more detailed discussion on this, check out this excellent Eric Lippert blog post on Events and Races. Summary Generic delegates give us a lot of power to make generic algorithms and classes, and the EventHandler delegate family gives us the flexibility to create events easily, without needing to redefine delegates over and over.  Use them whenever you need to define events with or without specialized EventArgs.   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Delegates, EventHandler

    Read the article

  • Groovy Debugging

    - by Vijay Allen Raj
    Groovy Debugging - An Overview:ADF BC developers may express snippets of business logic (like the following) as embedded groovy expressions: default / calculated attribute valuesvalidation rules / conditionserror message tokensLOV input values (VO) This approach has the advantages that: Groovy has a compact, EL-like syntax for expressing simple logicADF has extended this syntax to provide useful built-insembedded Groovy expressions are customizableGroovy debugging support helps improve maintainability of business logic expressed in Groovy.Following is an example how groovy debugging works.Example:This example shows how a script expression validator can be created and the groovy script debugged. It shows Step over, breakpoint functionalities as well as syntax coloring.Let us create a ADFBC application based on Emp and Dept tables, and add a script expression validator based on the script:  if (Sal >= 5000){ //If EmpSal is greater than a property value set on the custom //properties on the root AM //raise a custom exception else raise a custom warning if (Sal >= source.DBTransaction.rootApplicationModule.propertiesMap.salHigh) { adf.error.raise("ExcGreaterThanApplicationLimit"); } else { adf.error.warn("WarnGreaterThan5000"); } } else if (EmpSal <= 1000) { adf.error.raise("ExcTooLow"); }return true;In the Emp.xml Flat editor, place breakpoints at various locations as shown below:Right click the appmodule and click Debug. Enter a value greater than 5000 and click next. You can see the debugging work as shown below:  The code can be also be stepped over and debugged.

    Read the article

  • Trouble calculating correct decimal digits.

    - by Crath
    I am trying to create a program that will do some simple calculations, but am having trouble with the program not doing the correct math, or placing the decimal correctly, or something. Some other people I asked cannot figure it out either. Here is the code: http://pastie.org/887352 When you enter the following data: Weekly Wage: 500 Raise: 3 Years Employed: 8 It outputs the following data: Year Annual Salary 1 $26000.00 2 $26780.00 3 $27560.00 4 $28340.00 5 $29120.00 6 $29900.00 7 $30680.00 8 $31460.00 And it should be outputting: Year Annual Salary 1 $26000.00 2 $26780.00 3 $27583.40 4 $28410.90 5 $29263.23 6 $30141.13 7 $31045.36 8 $31976.72 Here is the full description of the task: 8.17 ( Pay Raise Calculator Application) Develop an application that computes the amount of money an employee makes each year over a user- specified number of years. Assume the employee receives a pay raise once every year. The user specifies in the application the initial weekly salary, the amount of the raise (in percent per year) and the number of years for which the amounts earned will be calculated. The application should run as shown in Fig. 8.22. in your text. (fig 8.22 is the output i posted above as what my program should be posting) Opening the template source code file. Open the PayRaise.cpp file in your text editor or IDE. Defining variables and prompting the user for input. To store the raise percentage and years of employment that the user inputs, define int variables rate and years, in main after line 12. Also define double variable wage to store the user’s annual wage. Then, insert statements that prompt the user for the raise percentage, years of employment and starting weekly wage. Store the values typed at the keyboard in the rate, years and wage variables, respectively. To find the annual wage, multiply the new wage by 52 (the number of weeks per year) and store the result in wage. Displaying a table header and formatting output. Use the left and setw stream manipulators to display a table header as shown in Fig. 8.22 in your text. The first column should be six characters wide. Then use the fixed and setprecision stream manipulators to format floating- point values with two positions to the left of the decimal point. Writing a for statement header. Insert a for statement. Before the first semicolon in the for statement header, define and initialize the variable counter to 1. Before the second semicolon, enter a loop- continuation condition that will cause the for statement to loop until counter has reached the number of years entered. After the second semicolon, enter the increment of counter so that the for statement executes once for each number of years. Calculating the pay raise. In the body of the for statement, display the value of counter in the first column and the value of wage in the second column. Then calculate the new weekly wage for the following year, and store the resulting value in the wage variable. To do this, add 1 to the percentage increase (be sure to divide the percentage by 100.0 ) and multiply the result by the current value in wage. Save, compile and run the application. Input a raise percentage and a number of years for the wage increase. View the results to ensure that the correct years are displayed and that the future wage results are correct. Close the Command Prompt window. We can not figure it out! Any help would be greatly appreciated, thanks!

    Read the article

  • Delphi Exception handling problem with multiple Exception handling blocks

    - by Robert Oschler
    I'm using Delphi Pro 6 on Windows XP with FastMM 4.92 and the JEDI JVCL 3.0. Given the code below, I'm having the following problem: only the first exception handling block gets a valid instance of E. The other blocks match properly with the class of the Exception being raised, but E is unassigned (nil). For example, given the current order of the exception handling blocks when I raise an E1 the block for E1 matches and E is a valid object instance. However, if I try to raise an E2, that block does match, but E is unassigned (nil). If I move the E2 catching block to the top of the ordering and raise an E1, then when the E1 block matches E is is now unassigned. With this new ordering if I raise an E2, E is properly assigned when it wasn't when the E2 block was not the first block in the ordering. Note I tried this case with a bare-bones project consisting of just a single Delphi form. Am I doing something really silly here or is something really wrong? Thanks, Robert type E1 = class(EAbort) end; E2 = class(EAbort) end; procedure TForm1.Button1Click(Sender: TObject); begin try raise E1.Create('hello'); except On E: E1 do begin OutputDebugString('E1'); end; On E: E2 do begin OutputDebugString('E2'); end; On E: Exception do begin OutputDebugString('E(all)'); end; end; // try() end;

    Read the article

  • Delph Exception handling problem with multiple Exception handling blocks

    - by Robert Oschler
    I'm using Delphi Pro 6 on Windows XP with FastMM 4.92 and the JEDI JVCL 3.0. Given the code below, I'm having the following problem: only the first exception handling block gets a valid instance of E. The other blocks match properly with the class of the Exception being raised, but E is unassigned (nil). For example, given the current order of the exception handling blocks when I raise an E1 the block for E1 matches and E is a valid object instance. However, if I try to raise an E2, that block does match, but E is unassigned (nil). If I move the E2 catching block to the top of the ordering and raise an E1, then when the E1 block matches E is is now unassigned. With this new ordering if I raise an E2, E is properly assigned when it wasn't when the E2 block was not the first block in the ordering. Note I tried this case with a bare-bones project consisting of just a single Delphi form. Am I doing something really silly here or is something really wrong? Thanks, Robert type E1 = class(EAbort) end; E2 = class(EAbort) end; procedure TForm1.Button1Click(Sender: TObject); begin try raise E1.Create('hello'); except On E: E1 do begin OutputDebugString('E1'); end; On E: E2 do begin OutputDebugString('E2'); end; On E: Exception do begin OutputDebugString('E(all)'); end; end; // try() end;

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >