Search Results

Search found 2984 results on 120 pages for 'xaml styling'.

Page 40/120 | < Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >

  • A WPF Image Button

    - by psheriff
    Instead of a normal button with words, sometimes you want a button that is just graphical. Yes, you can put an Image control in the Content of a normal Button control, but you still have the button outline, and trying to change the style can be rather difficult. Instead I like creating a user control that simulates a button, but just accepts an image. Figure 1 shows an example of three of these custom user controls to represent minimize, maximize and close buttons for a borderless window. Notice the highlighted image button has a gray rectangle around it. You will learn how to highlight using the VisualStateManager in this blog post.Figure 1: Creating a custom user control for things like image buttons gives you complete control over the look and feel.I would suggest you read my previous blog post on creating a custom Button user control as that is a good primer for what I am going to expand upon in this blog post. You can find this blog post at http://weblogs.asp.net/psheriff/archive/2012/08/10/create-your-own-wpf-button-user-controls.aspx.The User ControlThe XAML for this image button user control contains just a few controls, plus a Visual State Manager. The basic outline of the user control is shown below:<Border Grid.Row="0"        Name="borMain"        Style="{StaticResource pdsaButtonImageBorderStyle}"        MouseEnter="borMain_MouseEnter"        MouseLeave="borMain_MouseLeave"        MouseLeftButtonDown="borMain_MouseLeftButtonDown">  <VisualStateManager.VisualStateGroups>  ... MORE XAML HERE ...  </VisualStateManager.VisualStateGroups>  <Image Style="{StaticResource pdsaButtonImageImageStyle}"         Visibility="{Binding Path=Visibility}"         Source="{Binding Path=ImageUri}"         ToolTip="{Binding Path=ToolTip}" /></Border>There is a Border control named borMain and a single Image control in this user control. That is all that is needed to display the buttons shown in Figure 1. The definition for this user control is in a DLL named PDSA.WPF. The Style definitions for both the Border and the Image controls are contained in a resource dictionary names PDSAButtonStyles.xaml. Using a resource dictionary allows you to create a few different resource dictionaries, each with a different theme for the buttons.The Visual State ManagerTo display the highlight around the button as your mouse moves over the control, you will need to add a Visual State Manager group. Two different states are needed; MouseEnter and MouseLeave. In the MouseEnter you create a ColorAnimation to modify the BorderBrush color of the Border control. You specify the color to animate as “DarkGray”. You set the duration to less than a second. The TargetName of this storyboard is the name of the Border control “borMain” and since we are specifying a single color, you need to set the TargetProperty to “BorderBrush.Color”. You do not need any storyboard for the MouseLeave state. Leaving this VisualState empty tells the Visual State Manager to put everything back the way it was before the MouseEnter event.<VisualStateManager.VisualStateGroups>  <VisualStateGroup Name="MouseStates">    <VisualState Name="MouseEnter">      <Storyboard>        <ColorAnimation             To="DarkGray"            Duration="0:0:00.1"            Storyboard.TargetName="borMain"            Storyboard.TargetProperty="BorderBrush.Color" />      </Storyboard>    </VisualState>    <VisualState Name="MouseLeave" />  </VisualStateGroup></VisualStateManager.VisualStateGroups>Writing the Mouse EventsTo trigger the Visual State Manager to run its storyboard in response to the specified event, you need to respond to the MouseEnter event on the Border control. In the code behind for this event call the GoToElementState() method of the VisualStateManager class exposed by the user control. To this method you will pass in the target element (“borMain”) and the state (“MouseEnter”). The VisualStateManager will then run the storyboard contained within the defined state in the XAML.private void borMain_MouseEnter(object sender,  MouseEventArgs e){  VisualStateManager.GoToElementState(borMain,    "MouseEnter", true);}You also need to respond to the MouseLeave event. In this event you call the VisualStateManager as well, but specify “MouseLeave” as the state to go to.private void borMain_MouseLeave(object sender, MouseEventArgs e){  VisualStateManager.GoToElementState(borMain,     "MouseLeave", true);}The Resource DictionaryBelow is the definition of the PDSAButtonStyles.xaml resource dictionary file contained in the PDSA.WPF DLL. This dictionary can be used as the default look and feel for any image button control you add to a window. <ResourceDictionary  ... >  <!-- ************************* -->  <!-- ** Image Button Styles ** -->  <!-- ************************* -->  <!-- Image/Text Button Border -->  <Style TargetType="Border"         x:Key="pdsaButtonImageBorderStyle">    <Setter Property="Margin"            Value="4" />    <Setter Property="Padding"            Value="2" />    <Setter Property="BorderBrush"            Value="Transparent" />    <Setter Property="BorderThickness"            Value="1" />    <Setter Property="VerticalAlignment"            Value="Top" />    <Setter Property="HorizontalAlignment"            Value="Left" />    <Setter Property="Background"            Value="Transparent" />  </Style>  <!-- Image Button -->  <Style TargetType="Image"         x:Key="pdsaButtonImageImageStyle">    <Setter Property="Width"            Value="40" />    <Setter Property="Margin"            Value="6" />    <Setter Property="VerticalAlignment"            Value="Top" />    <Setter Property="HorizontalAlignment"            Value="Left" />  </Style></ResourceDictionary>Using the Button ControlOnce you make a reference to the PDSA.WPF DLL from your WPF application you will see the “PDSAucButtonImage” control appear in your Toolbox. Drag and drop the button onto a Window or User Control in your application. I have not referenced the PDSAButtonStyles.xaml file within the control itself so you do need to add a reference to this resource dictionary somewhere in your application such as in the App.xaml.<Application.Resources>  <ResourceDictionary>    <ResourceDictionary.MergedDictionaries>      <ResourceDictionary         Source="/PDSA.WPF;component/PDSAButtonStyles.xaml" />    </ResourceDictionary.MergedDictionaries>  </ResourceDictionary></Application.Resources>This will give your buttons a default look and feel unless you override that dictionary on a specific Window or User Control or on an individual button. After you have given a global style to your application and you drag your image button onto a window, the following will appear in your XAML window.<my:PDSAucButtonImage ... />There will be some other attributes set on the above XAML, but you simply need to set the x:Name, the ToolTip and ImageUri properties. You will also want to respond to the Click event procedure in order to associate an action with clicking on this button. In the sample code you download for this blog post you will find the declaration of the Minimize button to be the following:<my:PDSAucButtonImage       x:Name="btnMinimize"       Click="btnMinimize_Click"       ToolTip="Minimize Application"       ImageUri="/PDSA.WPF;component/Images/Minus.png" />The ImageUri property is a dependency property in the PDSAucButtonImage user control. The x:Name and the ToolTip we get for free. You have to create the Click event procedure yourself. This is also created in the PDSAucButtonImage user control as follows:private void borMain_MouseLeftButtonDown(object sender,  MouseButtonEventArgs e){  RaiseClick(e);}public delegate void ClickEventHandler(object sender,  RoutedEventArgs e);public event ClickEventHandler Click;protected void RaiseClick(RoutedEventArgs e){  if (null != Click)    Click(this, e);}Since a Border control does not have a Click event you will create one by using the MouseLeftButtonDown on the border to fire an event you create called “Click”.SummaryCreating your own image button control can be done in a variety of ways. In this blog post I showed you how to create a custom user control and simulate a button using a Border and Image control. With just a little bit of code to respond to the MouseLeftButtonDown event on the border you can raise your own Click event. Dependency properties, such as ImageUri, allow you to set attributes on your custom user control. Feel free to expand on this button by adding additional dependency properties, change the resource dictionary, and even the animation to make this button look and act like you want.NOTE: You can download the sample code for this article by visiting my website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then select “A WPF Image  Button” from the drop down list.

    Read the article

  • Yippy &ndash; the F# MVVM Pattern

    - by MarkPearl
    I did a recent post on implementing WPF with F#. Today I would like to expand on this posting to give a simple implementation of the MVVM pattern in F#. A good read about this topic can also be found on Dean Chalk’s blog although my example of the pattern is possibly simpler. With the MVVM pattern one typically has 3 segments, the view, viewmodel and model. With the beauty of WPF binding one is able to link the state based viewmodel to the view. In my implementation I have kept the same principles. I have a view (MainView.xaml), and and a ViewModel (MainViewModel.fs).     What I would really like to illustrate in this posting is the binding between the View and the ViewModel so I am going to jump to that… In Program.fs I have the following code… module Program open System open System.Windows open System.Windows.Controls open System.Windows.Markup open myViewModels // Create the View and bind it to the View Model let myView = Application.LoadComponent(new System.Uri("/FSharpWPF;component/MainView.xaml", System.UriKind.Relative)) :?> Window myView.DataContext <- new MainViewModel() :> obj // Application Entry point [<STAThread>] [<EntryPoint>] let main(_) = (new Application()).Run(myView) You can see that I have simply created the view (myView) and then created an instance of my viewmodel (MainViewModel) and then bound it to the data context with the code… myView.DataContext <- new MainViewModel() :> obj If I have a look at my viewmodel (MainViewModel) it looks like this… module myViewModels open System open System.Windows open System.Windows.Input open System.ComponentModel open ViewModelBase type MainViewModel() = // private variables let mutable _title = "Bound Data to Textbox" // public properties member x.Title with get() = _title and set(v) = _title <- v // public commands member x.MyCommand = new FuncCommand ( (fun d -> true), (fun e -> x.ShowMessage) ) // public methods member public x.ShowMessage = let msg = MessageBox.Show(x.Title) () I have exposed a few things, namely a property called Title that is mutable, a command and a method called ShowMessage that simply pops up a message box when called. If I then look at my view which I have created in xaml (MainView.xaml) it looks as follows… <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="F# WPF MVVM" Height="350" Width="525"> <Grid> <Grid.RowDefinitions> <RowDefinition Height="Auto"/> <RowDefinition Height="Auto"/> <RowDefinition Height="*"/> </Grid.RowDefinitions> <TextBox Text="{Binding Path=Title, Mode=TwoWay}" Grid.Row="0"/> <Button Command="{Binding MyCommand}" Grid.Row="1"> <TextBlock Text="Click Me"/> </Button> </Grid> </Window>   It is also very simple. It has a button that’s command is bound to the MyCommand and a textbox that has its text bound to the Title property. One other module that I have created is my ViewModelBase. Right now it is used to store my commanding function but I would look to expand on it at a later stage to implement other commonly used functions… module ViewModelBase open System open System.Windows open System.Windows.Input open System.ComponentModel type FuncCommand (canExec:(obj -> bool),doExec:(obj -> unit)) = let cecEvent = new DelegateEvent<EventHandler>() interface ICommand with [<CLIEvent>] member x.CanExecuteChanged = cecEvent.Publish member x.CanExecute arg = canExec(arg) member x.Execute arg = doExec(arg) Put this all together and you have a basic project that implements the MVVM pattern in F#. For me this is quite exciting as it turned out to be a lot simpler to do than I originally thought possible. Also because I have my view in XAML I can use the XAML designer to design forms in F# which I believe is a much cleaner way to go rather than implementing it all in code. Finally if I look at my viewmodel code, it is actually quite clean and compact…

    Read the article

  • Visual Studio compiles WPF application twice during build

    - by Brian Ensink
    I have a WPF app in VS2008 that compiles twice during the build. The two CSC command lines are similar but with some differences. The first CSC command line does not have an /resource options, the second has two /resource options on the command line. The second CSC command line has these additional arguments: /resource:"obj\Debug AutoCAD\VisualApp.g.resources" /resource:"obj\Debug AutoCAD\CAP.Visual.Properties.Resources.resources" I hate to post such a huge ugly compiler output but here are both command lines. 2>c:\WINDOWS\Microsoft.NET\Framework\v3.5\Csc.exe /noconfig /nowarn:1701,1702 /platform:x86 /errorreport:prompt /warn:4 /define:DEBUG;TRACE /reference:..\BIN\RELEASE\FOO.Base.dll /reference:..\BIN\RELEASE\FOO.CAPArchiveHandler.dll /reference:..\BIN\RELEASE\FOO.CAPDOM.dll /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\PresentationCore.dll" /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\PresentationFramework.dll" /reference:"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Core.dll" /reference:"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Data.DataSetExtensions.dll" /reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Data.dll /reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.dll /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\System.Runtime.Serialization.dll" /reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Xml.dll /reference:"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Xml.Linq.dll" /reference:"C:\Program Files\Telerik\RadControls for WPF Q1 2010\Binaries\WPF\Telerik.Windows.Controls.dll" /reference:"C:\Program Files\Telerik\RadControls for WPF Q1 2010\Binaries\WPF\Telerik.Windows.Controls.Docking.dll" /reference:"C:\Program Files\Telerik\RadControls for WPF Q1 2010\Binaries\WPF\Telerik.Windows.Controls.Navigation.dll" /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\UIAutomationProvider.dll" /reference:c:\project\FooStudio\BIN\DEBUGCAD\VS-3DEngine-Wrapper.dll /reference:c:\project\FooStudio\BIN\DEBUGCAD\VisualServiceClient.dll /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\WindowsBase.dll" /debug+ /debug:full /filealign:512 /out:"obj\Debug AutoCAD\VisualApp.exe" /target:winexe App.xaml.cs MainWindow.xaml.cs CameraAndLightingControl.xaml.cs CameraAndLightingViewModel.cs MainWindowViewModel.cs Properties\AssemblyInfo.cs Properties\Resources.Designer.cs Properties\Settings.Designer.cs ScenarioToolsWindow.xaml.cs SceneGraph.cs ScenePart.cs ToolWindow.xaml.cs "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\CameraAndLightingControl.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\MainWindow.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\ScenarioToolsWindow.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\ToolWindow.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\App.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\GeneratedInternalTypeHelper.g.cs" 2>Done building project "0ye0i4wb.tmp_proj". 2>c:\WINDOWS\Microsoft.NET\Framework\v3.5\Csc.exe /noconfig /nowarn:1701,1702 /platform:x86 /errorreport:prompt /warn:4 /define:DEBUG;TRACE /reference:..\BIN\RELEASE\FOO.Base.dll /reference:..\BIN\RELEASE\FOO.CAPArchiveHandler.dll /reference:..\BIN\RELEASE\FOO.CAPDOM.dll /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\PresentationCore.dll" /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\PresentationFramework.dll" /reference:"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Core.dll" /reference:"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Data.DataSetExtensions.dll" /reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Data.dll /reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.dll /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\System.Runtime.Serialization.dll" /reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Xml.dll /reference:"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Xml.Linq.dll" /reference:"C:\Program Files\Telerik\RadControls for WPF Q1 2010\Binaries\WPF\Telerik.Windows.Controls.dll" /reference:"C:\Program Files\Telerik\RadControls for WPF Q1 2010\Binaries\WPF\Telerik.Windows.Controls.Docking.dll" /reference:"C:\Program Files\Telerik\RadControls for WPF Q1 2010\Binaries\WPF\Telerik.Windows.Controls.Navigation.dll" /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\UIAutomationProvider.dll" /reference:c:\project\FooStudio\BIN\DEBUGCAD\VS-3DEngine-Wrapper.dll /reference:c:\project\FooStudio\BIN\DEBUGCAD\VisualServiceClient.dll /reference:"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\WindowsBase.dll" /debug+ /debug:full /filealign:512 /out:"obj\Debug AutoCAD\VisualApp.exe" /resource:"obj\Debug AutoCAD\VisualApp.g.resources" /resource:"obj\Debug AutoCAD\FOO.Visual.Properties.Resources.resources" /target:winexe App.xaml.cs MainWindow.xaml.cs CameraAndLightingControl.xaml.cs CameraAndLightingViewModel.cs MainWindowViewModel.cs Properties\AssemblyInfo.cs Properties\Resources.Designer.cs Properties\Settings.Designer.cs ScenarioToolsWindow.xaml.cs SceneGraph.cs ScenePart.cs ToolWindow.xaml.cs "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\CameraAndLightingControl.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\MainWindow.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\ScenarioToolsWindow.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\ToolWindow.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\App.g.cs" "c:\project\FooStudio\VisualApp\obj\Debug AutoCAD\GeneratedInternalTypeHelper.g.cs" Any idea what could possibly cause this? I think this is causing a problem I posted about earlier today.

    Read the article

  • How do I use Sketchflow sample data for a ListBoxItem Template at design time?

    - by Boris Nikolaevich
    I am using Expression Blend 4 and Visual Studio 2010 to create a Sketchflow prototype. I have a Sample Data collection and a ListBox that is bound to it. This displays as I would expect both at design time and at run time. However, the ListBoxItem template it just complex enough that I wanted to pull it out into its own XAML file. Even though the items still render as expected in the main ListBox where the template is used, when I open the template itself, all of the databound controls are empty. If I add a DataContext to the template, I can see and work with the populated objects while in the template, but then that local DataContext overrides the DataContext set on the listbox. A bit of code will illustrate. Start by creating a Sketchflow project (I am using Silverlight, but it should work the same for WPF), then add a project data source called SampleDataSource. Add a collection called ListData, with a single String property called Title. Here is the (scaled down) code for the main Sketchflow screen, which we'll call Main.xaml: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:local="clr-namespace:DemoScreens" mc:Ignorable="d" x:Class="DemoScreens.Main" Width="800" Height="600"> <UserControl.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source="ProjectDataSources.xaml"/> </ResourceDictionary.MergedDictionaries> <DataTemplate x:Key="ListBoxItemTemplate"> <local:DemoListBoxItemTemplate d:IsPrototypingComposition="True" Margin="0,0,5,0" Width="748"/> </DataTemplate> </ResourceDictionary> </UserControl.Resources> <Grid x:Name="LayoutRoot" Background="#5c87b2" DataContext="{Binding Source={StaticResource SampleDataSource}}"> <ListBox Background="White" x:Name="DemoList" Style="{StaticResource ListBox-Sketch}" Margin="20,100,20,20" ItemTemplate="{StaticResource ListBoxItemTemplate}" ItemsSource="{Binding ListData}" ScrollViewer.HorizontalScrollBarVisibility="Disabled"/> </Grid> </UserControl> You can see that it references the DemoListBoxItemTemplate, which is defined in its own DemoListBoxItemTemplate.xaml: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:local="clr-namespace:DemoScreens" mc:Ignorable="d" x:Class="DemoScreens.DemoListBoxItemTemplate"> <Grid x:Name="LayoutRoot"> <TextBlock Text="{Binding Title}" Style="{StaticResource BasicTextBlock-Sketch}" Width="150"/> </Grid> </UserControl> Obviously, this is way simpler than my actual listbox, but it should be enough to illustrate my problem. When you open Main.xaml in the Expression designer, the list box is populated with sample data. But when you open DemoListBoxItemTemplate.xaml, there is no data context and therefore no data to display—which makes it more difficult to identify controls visually. How can I have sample data displayed when I am working with the template, while still allowing the larger set of sample data to be used for the ListBox itself?

    Read the article

  • What is the standard convention for defining nested view:viewmodel mapping in MVVM Light

    - by firoso
    so in classic MVVM examples ive seen DataTemplate definitions are used to map up View Models to Views, what is the standard way to do this in MVVM Light framework, and where should the mappings be located? Following are examples of what I'm doing now and what I'm talking about, blendability is important to me! Main Window: <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" x:Class="STS2Editor.MainWindow" Title="{Binding ApplicationTitle, Mode=OneWay}" DataContext="{Binding RootViewModel, Source={StaticResource Locator}}"> <Window.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source="Skins/ApplicationSkin.xaml" /> <ResourceDictionary Source="Resources/ViewMappings.xaml" /> </ResourceDictionary.MergedDictionaries> </ResourceDictionary> </Window.Resources> <Grid> <ContentControl Content="{Binding ApplicationManagementViewModel}" HorizontalAlignment="Left" VerticalAlignment="Top"/> </Grid> </Window> In the above code, my RootViewModel class has an instance of the class ApplicationManagementViewModel with the same property name: public ApplicationManagementViewModel ApplicationManagementViewModel {get {...} set {...} } I reference the ResourceDictionary "ViewMappings.xaml" to specify how my view model is represented as a view. <ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:STS2Editor.ViewModel"> <DataTemplate DataType="{x:Type local:ApplicationManagementViewModel}"> <local:ApplicationManagementView/> </DataTemplate> </ResourceDictionary> should I be doing things like this using ViewModelLocator? what about collections of view models?

    Read the article

  • Inheritance of templates in WPF

    - by Alxandr
    I'm trying to make sure that every child of a given element (MPF.MWindow) gets custom templates. For instance, the button should get the template defined in resMButton.xaml. As of now I'm using the following code on: (resMWindow.xaml) <ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:MPF"> <Style x:Key="SystemKeyAnimations" TargetType="{x:Type Button}"> <Setter Property="Opacity" Value="0.5" /> <Setter Property="Background" Value="Transparent" /> <Style.Triggers> <EventTrigger RoutedEvent="Mouse.MouseEnter"> <BeginStoryboard> <Storyboard> <DoubleAnimationUsingKeyFrames BeginTime="00:00:00" Storyboard.TargetProperty="Opacity"> <SplineDoubleKeyFrame KeyTime="00:00:00.2" Value="1.0" /> </DoubleAnimationUsingKeyFrames> </Storyboard> </BeginStoryboard> </EventTrigger> <EventTrigger RoutedEvent="Mouse.MouseLeave"> <BeginStoryboard> <Storyboard> <DoubleAnimationUsingKeyFrames BeginTime="00:00:00" Storyboard.TargetProperty="Opacity"> <SplineDoubleKeyFrame KeyTime="00:00:00.2" Value="0.5" /> </DoubleAnimationUsingKeyFrames> </Storyboard> </BeginStoryboard> </EventTrigger> </Style.Triggers> </Style> <Style TargetType="{x:Type local:MWindow}"> <!-- Remove default frame appearance --> <Setter Property="WindowStyle" Value="None" /> <Setter Property="AllowsTransparency" Value="True" /> <Setter Property="Background" Value="Transparent" /> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type local:MWindow}"> <Border Background="{TemplateBinding Background}" BorderBrush="{TemplateBinding BorderBrush}" BorderThickness="{TemplateBinding BorderThickness}" x:Name="ChromeBorder"> <Grid> <Grid.ColumnDefinitions> <ColumnDefinition Width="4" /> <ColumnDefinition /> <ColumnDefinition Width="4" /> </Grid.ColumnDefinitions> <Grid.RowDefinitions> <RowDefinition Height="4" /> <RowDefinition /> <RowDefinition Height="4" /> </Grid.RowDefinitions> <Thumb Grid.Row="0" Grid.Column="1" x:Name="TopThumb" Cursor="SizeNS" BorderThickness="4" BorderBrush="Transparent" /> <Thumb Grid.Row="2" Grid.Column="1" x:Name="BottomThumb" Cursor="SizeNS" BorderThickness="4" BorderBrush="Transparent" /> <Thumb Grid.Row="1" Grid.Column="0" x:Name="LeftThumb" Cursor="SizeWE" BorderThickness="4" BorderBrush="Transparent" /> <Thumb Grid.Row="1" Grid.Column="2" x:Name="RightThumb" Cursor="SizeWE" BorderThickness="4" BorderBrush="Transparent" /> <Thumb Grid.Row="0" Grid.Column="0" x:Name="TopLeftThumb" Cursor="SizeNWSE" BorderThickness="5" BorderBrush="Transparent" /> <Thumb Grid.Row="0" Grid.Column="2" x:Name="TopRightThumb" Cursor="SizeNESW" BorderThickness="5" BorderBrush="Transparent" /> <Thumb Grid.Row="2" Grid.Column="0" x:Name="BottomLeftThumb" Cursor="SizeNESW" BorderThickness="5" BorderBrush="Transparent" /> <Thumb Grid.Row="2" Grid.Column="2" x:Name="BottomRightThumb" Cursor="SizeNWSE" BorderThickness="5" BorderBrush="Transparent" /> <Grid Grid.Row="1" Grid.Column="1"> <Grid.RowDefinitions> <RowDefinition Height="20" /> <RowDefinition /> </Grid.RowDefinitions> <Grid> <Grid.ColumnDefinitions> <ColumnDefinition /> <ColumnDefinition Width="Auto" /> </Grid.ColumnDefinitions> <StackPanel Orientation="Horizontal" Grid.Column="1"> <Button Command="local:WindowCommands.Minimize" Style="{StaticResource ResourceKey=SystemKeyAnimations}"> <Button.Template> <ControlTemplate> <Canvas Width="10" Height="10" Margin="5" Background="Transparent"> <Line X1="0" X2="10" Y1="5" Y2="5" Stroke="White" StrokeThickness="2" /> </Canvas> </ControlTemplate> </Button.Template> </Button> <Button Command="local:WindowCommands.Maximize" x:Name="MaximizeButton" Style="{StaticResource ResourceKey=SystemKeyAnimations}"> <Button.Template> <ControlTemplate> <Canvas Width="10" Height="10" Margin="5" Background="Transparent"> <Rectangle Width="10" Height="10" Stroke="White" StrokeThickness="2" /> </Canvas> </ControlTemplate> </Button.Template> </Button> <Button Command="ApplicationCommands.Close" Style="{StaticResource ResourceKey=SystemKeyAnimations}"> <Button.Template> <ControlTemplate> <Canvas Width="10" Height="10" Margin="5" Background="Transparent"> <Line X1="0" X2="10" Y1="0" Y2="10" Stroke="White" StrokeThickness="2" /> <Line X1="10" X2="0" Y1="0" Y2="10" Stroke="White" StrokeThickness="2" /> </Canvas> </ControlTemplate> </Button.Template> </Button> </StackPanel> <ContentControl x:Name="TitleContentControl"> <TextBlock Text="{TemplateBinding Title}" Foreground="DarkGray" Margin="5,0" /> </ContentControl> </Grid> <ContentPresenter Content="{TemplateBinding Content}" Grid.Row="1"> <ContentPresenter.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source="/MPF;component/Themes/resMWindowContent.xaml" /> </ResourceDictionary.MergedDictionaries> </ResourceDictionary> </ContentPresenter.Resources> </ContentPresenter> </Grid> </Grid> </Border> </ControlTemplate> </Setter.Value> </Setter> </Style> </ResourceDictionary> As you can see during the ContentPresenter which gets the content of the window I merge in a dicrionary called resMWindowContent.xaml. The resMWindowContent.xaml looks as following: <ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:MPF"> <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source="/MPF;component/Themes/resMButton.xaml" /> </ResourceDictionary.MergedDictionaries> </ResourceDictionary> It simply merges in the resMButton.xaml dictionary (this is done because in the feature I will have MTextBox, mList... and I want to separate them). The resMButton.xaml looks as following: <ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:MPF"> <Style TargetType="{x:Type Button}"> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type Button}"> <Grid Background="Transparent"> <Rectangle Stroke="{TemplateBinding BorderBrush}" StrokeThickness="{TemplateBinding BorderThickness}" Fill="{TemplateBinding Background}" /> <ContentPresenter Content="{TemplateBinding Content}" Margin="3" /> </Grid> </ControlTemplate> </Setter.Value> </Setter> </Style> </ResourceDictionary> A simple template drawing a square button. However, it isn't applied at all. My buttons remain normal, and I don't understand what I'm doing wrong. I just want every button inside the MWindow to get a special style (and in time every textbox and so forth). How do I achieve this? One note though: It's important that the styles doesn't apply to elements outside an MWindow.

    Read the article

  • Am I fundamentally misunderstanding how Silverlight runs? (debugging issues)

    - by SP
    I've got a vs2010 solution containing an ASP.Net 4 website, and a Silverlight 4 project. The website is linked to the Silverlight project ('Map') and the ClientBin folder contains a Map.xap file. The Map project is very simple. It contains the default App.xaml and App.xaml.cs files. The MainPage.xaml file looks like this <UserControl x:Class="Map.MainPage" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" d:DesignHeight="380" d:DesignWidth="800"> <Canvas x:Name="MainCanvas" Width="800" Height="380"> <Canvas.Background> <ImageBrush ImageSource="map.png" Stretch="None"/> </Canvas.Background> </Canvas> The code behind for that looks like this: public partial class MainPage : UserControl { public MainPage() { InitializeComponent(); throw new Exception(); } } Inside one of the website pages I have the default object pointing to my Silverlight xap When I run the website, I see my background image on the Canvas in the Silverlight window, so I know it's working in that sense. However, I cannot break on any breakpoints set in the MainPage.xaml.cs file (in IE). I have checked the correct settings for Silverlight debugging. And see that Exception I'm throwing in the MainPage constructor? I'm not seeing that either. In fact, nothing I put in there seems to be run at all, but I know the xaml is rendering because I can see my canvas background. What am I not getting here?

    Read the article

  • Dependencyproperty doesn't have value on load

    - by Jakob
    My problem is this, I have a UC called profile that contains another UC called FollowImageControl. In my Profile.xaml i declaretively bind a property of FollowImageControl called FollowerId to a CurrentUserId from Profile.xaml.cs. Problem is that I CurrentUserId is assigned in Profile.xaml.cs; the Profile.xaml code-behind. This means that I do not initially get the FollowerId. I have these methods in the FollowImageControl.xaml.cs: public static readonly DependencyProperty _followUserId = DependencyProperty.Register("FollowUserId", typeof(Guid), typeof(FollowImageControl), null); public Guid FollowUserId { get { return (Guid)GetValue(_followUserId); } set { SetValue(_followUserId, value); } } public FollowImageControl() { // Required to initialize variables InitializeComponent(); LoggedInUserId = WebContext.Current.User.UserId; var ctx = new NotesDomainContext(); if (ctx.IsFollowingUser(LoggedInUserId, FollowUserId).Value) SwitchToDelete.Begin(); } private void AddImg_MouseLeftButtonDown(object sender, MouseButtonEventArgs e) { if (LoggedInUserId != FollowUserId) { var ctx = new NotesDomainContext(); ctx.FollowUser(FollowUserId, LoggedInUserId); ctx.SubmitChanges(); } } THE WEIRD THING IS that when i insert breakpoints the FollowerUserId in FollowImageControl() is 0, but it has a value in AddImg_MouseLeftButtonDown, and there is no inbetween logic that sets the value of it. How is this??? Here's a little more code info: This is my binding from profile.xaml <internalCtrl:FollowImageControl FollowUserId="{Binding ElementName=ProfileCtrl, Path=CurrentUserId}" /> this is my constructor in profile.xaml.cs wherein the CurrentUserId is set public static readonly DependencyProperty _CurrentUserId = DependencyProperty.Register("CurrentUserId", typeof(Guid), typeof(Profile), null); public Guid CurrentUserId { get { return (Guid)GetValue(_CurrentUserId); } set { SetValue(_CurrentUserId, value); } } public Profile(Guid UserId) { CurrentUserId = UserId; InitializeComponent(); Loaded += new RoutedEventHandler(Profile_Loaded); } I'm seriously dumbfound that one minute the FollowerId has no value, and the next it holds the right, without me having changed the value in the code-behind.

    Read the article

  • How to add multiple handlers to an attached event in XAML ?

    - by Gishu
    I want to add 2 handlers to a particular event like shown above. However this won't compile - 'attribute can be set more than once'. I have multiple methods because they do different things (are named appropriately). e.g. the first handler has nothing in common with the second. My other option was to kludge a SetFlagForCursorTrackingAndCheckForViewLink method - which is "Yech!". Any ideas ?

    Read the article

  • WPF XAML: How to trigger style change in ListBoxItem ancestor to user class?

    - by dhovel
    I have an ObservableCollection of items of my class "PlaylistItem" that implements INotifyPropertyChanged. The collection is databound to a ListBox and everything else is working. I want to know what markup to use to trigger a style change of the wrapping ListBoxItem based on a property (e.g. "Playing", bool) of the PlaylistItem. How to I use FindAncestor to trigger the change? I can to this in code, but I know I that I can (somehow) do it in markup. Thanks in advance.

    Read the article

  • How to call method written in C# class library from Silverlight application(xaml.cs file) ?

    - by Shyju
    Can a Silverlight application call a method in a full .NET c# class library? I am trying to add a Silverlight control to my Existing ASP.NET project where i used to add reference to my Business Logic Project and access methods from My UI pages of ASP.NET Web application. Now I have added one Silverlight project to my solution. How can I use the already existing BL method which is in a C# class library ? When tried to add reference, it is saying that "You can only add project reference to other silver light projects in the solution". Should i give up ? Is there any way to get rid of this ?

    Read the article

  • iPhone SDK vs Windows Phone 7 Series SDK Challenge, Part 1: Hello World!

    In this series, I will be taking sample applications from the iPhone SDK and implementing them on Windows Phone 7 Series.  My goal is to do as much of an apples-to-apples comparison as I can.  This series will be written to not only compare and contrast how easy or difficult it is to complete tasks on either platform, how many lines of code, etc., but Id also like it to be a way for iPhone developers to either get started on Windows Phone 7 Series development, or for developers in general to learn the platform. Heres my methodology: Run the iPhone SDK app in the iPhone Simulator to get a feel for what it does and how it works, without looking at the implementation Implement the equivalent functionality on Windows Phone 7 Series using Silverlight. Compare the two implementations based on complexity, functionality, lines of code, number of files, etc. Add some functionality to the Windows Phone 7 Series app that shows off a way to make the scenario more interesting or leverages an aspect of the platform, or uses a better design pattern to implement the functionality. You can download Microsoft Visual Studio 2010 Express for Windows Phone CTP here, and the Expression Blend 4 Beta here. Hello World! Of course no first post would be allowed if it didnt focus on the hello world scenario.  The iPhone SDK follows that tradition with the Your First iPhone Application walkthrough.  I will say that the developer documentation for iPhone is pretty good.  There are plenty of walkthoughs and they break things down into nicely sized steps and do a good job of bringing the user along.  As expected, this application is quite simple.  It comprises of a text box, a label, and a button.  When you push the button, the label changes to Hello plus the  word you typed into the text box.  Makes perfect sense for a starter application.  Theres not much to this but it covers a few basic elements: Laying out basic UI Handling user input Hooking up events Formatting text     So, lets get started building a similar app for Windows Phone 7 Series! Implementing the UI: UI in Silverlight (and therefore Windows Phone 7) is defined in XAML, which is a declarative XML language also used by WPF on the desktop.  For anyone thats familiar with similar types of markup, its relatively straightforward to learn, but has a lot of power in it once you get it figured out.  Well talk more about that. This UI is very simple.  When I look at this, I note a couple of things: Elements are arranged vertically They are all centered So, lets create our Application and then start with the UI.  Once you have the the VS 2010 Express for Windows Phone tool running, create a new Windows Phone Project, and call it Hello World: Once created, youll see the designer on one side and your XAML on the other: Now, we can create our UI in one of three ways: Use the designer in Visual Studio to drag and drop the components Use the designer in Expression Blend 4 to drag and drop the components Enter the XAML by hand in either of the above Well start with (1), then kind of move to (3) just for instructional value. To develop this UI in the designer: First, delete all of the markup between inside of the Grid element (LayoutRoot).  You should be left with just this XAML for your MainPage.xaml (i shortened all the xmlns declarations below for brevity): 1: <phoneNavigation:PhoneApplicationPage 2: x:Class="HelloWorld.MainPage" 3: xmlns="...[snip]" 4: FontFamily="{StaticResource PhoneFontFamilyNormal}" 5: FontSize="{StaticResource PhoneFontSizeNormal}" 6: Foreground="{StaticResource PhoneForegroundBrush}"> 7:   8: <Grid x:Name="LayoutRoot" Background="{StaticResource PhoneBackgroundBrush}"> 9:   10: </Grid> 11:   12: </phoneNavigation:PhoneApplicationPage> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Well be adding XAML at line 9, so thats the important part. Now, Click on the center area of the phone surface Open the Toolbox and double click StackPanel Double click TextBox Double click TextBlock Double click Button That will create the necessary UI elements but they wont be arranged quite right.  Well fix it in a second.    Heres the XAML that we end up with: 1: <StackPanel Height="100" HorizontalAlignment="Left" Margin="10,10,0,0" Name="stackPanel1" VerticalAlignment="Top" Width="200"> 2: <TextBox Height="32" Name="textBox1" Text="TextBox" Width="100" /> 3: <TextBlock Height="23" Name="textBlock1" Text="TextBlock" /> 4: <Button Content="Button" Height="70" Name="button1" Width="160" /> 5: </StackPanel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The designer does its best at guessing what we want, but in this case we want things to be a bit simpler. So well just clean it up a bit.  We want the items to be centered and we want them to have a little bit of a margin on either side, so heres what we end up with.  Ive also made it match the values and style from the iPhone app: 1: <StackPanel Margin="10"> 2: <TextBox Name="textBox1" HorizontalAlignment="Stretch" Text="You" TextAlignment="Center"/> 3: <TextBlock Name="textBlock1" HorizontalAlignment="Center" Margin="0,100,0,0" Text="Hello You!" /> 4: <Button Name="button1" HorizontalAlignment="Center" Margin="0,150,0,0" Content="Hello"/> 5: </StackPanel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now lets take a look at what weve done there. Line 1: We removed all of the formatting from the StackPanel, except for Margin, as thats all we need.  Since our parent element is a Grid, by default the StackPanel will be sized to fit in that space.  The Margin says that we want to reserve 10 pixels on each side of the StackPanel. Line 2: Weve set the HorizontalAlignment of the TextBox to Stretch, which says that it should fill its parents size horizontally.  We want to do this so the TextBox is always full-width.  We also set TextAlignment to Center, to center the text. Line 3: In contrast to the TextBox above, we dont care how wide the TextBlock is, just so long as it is big enough for its text.  Thatll happen automatically, so we just set its Horizontal alignment to Center.  We also set a Margin above the TextBlock of 100 pixels to bump it down a bit, per the iPhone UI. Line 4: We do the same things here as in Line 3. Heres how the UI looks in the designer: Believe it or not, were almost done! Implementing the App Logic Now, we want the TextBlock to change its text when the Button is clicked.  In the designer, double click the Button to be taken to the Event Handler for the Buttons Click event.  In that event handler, we take the Text property from the TextBox, and format it into a string, then set it into the TextBlock.  Thats it! 1: private void button1_Click(object sender, RoutedEventArgs e) 2: { 3: string name = textBox1.Text; 4:   5: // if there isn't a name set, just use "World" 6: if (String.IsNullOrEmpty(name)) 7: { 8: name = "World"; 9: } 10:   11: // set the value into the TextBlock 12: textBlock1.Text = String.Format("Hello {0}!", name); 13:   14: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } We use the String.Format() method to handle the formatting for us.    Now all thats left is to test the app in the Windows Phone Emulator and verify it does what we think it does! And it does! Comparing against the iPhone Looking at the iPhone example, there are basically three things that you have to touch as the developer: 1) The UI in the Nib file 2) The app delegate 3) The view controller Counting lines is a bit tricky here, but to try to keep this even, Im going to only count lines of code that I could not have (or would not have) generated with the tooling.  Meaning, Im not counting XAML and Im not counting operations that happen in the Nib file with the XCode designer tool.  So in the case of the above, even though I modified the XAML, I could have done all of those operations using the visual designer tool.  And normally I would have, but the XAML is more instructive (and less steps!).  Im interested in things that I, as the developer have to figure out in code.  Im also not counting lines that just have a curly brace on them, or lines that are generated for me (e.g. method names that are generated for me when I make a connection, etc.) So, by that count, heres what I get from the code listing for the iPhone app found here: HelloWorldAppDelegate.h: 6 HelloWorldAppDelegate.m: 12 MyViewController.h: 8 MyViewController.m: 18 Which gives me a grand total of about 44 lines of code on iPhone.  I really do recommend looking at the iPhone code for a comparison to the above. Now, for the Windows Phone 7 Series application, the only code I typed was in the event handler above Main.Xaml.cs: 4 So a total of 4 lines of code on Windows Phone 7.  And more importantly, the process is just A LOT simpler.  For example, I was surprised that the User Interface Designer in XCode doesnt automatically create instance variables for me and wire them up to the corresponding elements.  I assumed I wouldnt have to write this code myself (and risk getting it wrong!).  I dont need to worry about view controllers or anything.  I just write my code.  This blog post up to this point has covered almost every aspect of this apps development in a few pages.  The iPhone tutorial has 5 top level steps with 2-3 sub sections of each. Now, its worth pointing out that the iPhone development model uses the Model View Controller (MVC) pattern, which is a very flexible and powerful pattern that enforces proper separation of concerns.  But its fairly complex and difficult to understand when you first walk up to it.  Here at Microsoft weve dabbled in MVC a bit, with frameworks like MFC on Visual C++ and with the ASP.NET MVC framework now.  Both are very powerful frameworks.  But one of the reasons weve stayed away from MVC with client UI frameworks is that its difficult to tool.  We havent seen the type of value that beats double click, write code! for the broad set of scenarios. Another thing to think about is how many of those lines of code were focused on my apps functionality?.  Or, the converse of How many lines of code were boilerplate plumbing?  In both examples, the actual number of functional code lines is similar.  I count most of them in MyViewController.m, in the changeGreeting method.  Its about 7 lines of code that do the work of taking the value from the TextBox and putting it into the label.  Versus 4 on the Windows Phone 7 side.  But, unfortunately, on iPhone I still have to write that other 37 lines of code, just to get there. 10% of the code, 1 file instead of 4, its just much simpler. Making Some Tweaks It turns out, I can actually do this application with ZERO  lines of code, if Im willing to change the spec a bit. The data binding functionality in Silverlight is incredibly powerful.  And what I can do is databind the TextBoxs value directly to the TextBlock.  Take some time looking at this XAML below.  Youll see that I have added another nested StackPanel and two more TextBlocks.  Why?  Because thats how I build that string, and the nested StackPanel will lay things out Horizontally for me, as specified by the Orientation property. 1: <StackPanel Margin="10"> 2: <TextBox Name="textBox1" HorizontalAlignment="Stretch" Text="You" TextAlignment="Center"/> 3: <StackPanel Orientation="Horizontal" HorizontalAlignment="Center" Margin="0,100,0,0" > 4: <TextBlock Text="Hello " /> 5: <TextBlock Name="textBlock1" Text="{Binding ElementName=textBox1, Path=Text}" /> 6: <TextBlock Text="!" /> 7: </StackPanel> 8: <Button Name="button1" HorizontalAlignment="Center" Margin="0,150,0,0" Content="Hello" Click="button1_Click" /> 9: </StackPanel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now, the real action is there in the bolded TextBlock.Text property: Text="{Binding ElementName=textBox1, Path=Text}" .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } That does all the heavy lifting.  It sets up a databinding between the TextBox.Text property on textBox1 and the TextBlock.Text property on textBlock1. As I change the text of the TextBox, the label updates automatically. In fact, I dont even need the button any more, so I could get rid of that altogether.  And no button means no event handler.  No event handler means no C# code at all.  Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Adventures in Windows 8: Placing items in a GridView with a ColumnSpan or RowSpan

    - by Laurent Bugnion
    Currently working on a Windows 8 app for an important client, I will be writing about small issues, tips and tricks, ideas and whatever occurs to me during the development and the integration of this app. When working with a GridView, it is quite common to use a VariableSizedWrapGrid as the ItemsPanel. This creates a nice flowing layout which will auto-adapt for various resolutions. This is ideal when you want to build views like the Windows 8 start menu. However immediately we notice that the Start menu allows to place items on one column (Smaller) or two columns (Larger). This switch happens through the AppBar. So how do we implement that in our app? Using ColumnSpan and RowSpan When you use a VariableSizedWrapGrid directly in your XAML, you can attach the VariableSizedWrapGrid.ColumnSpan and VariableSizedWrapGrid.RowSpan attached properties directly to an item to create the desired effect. For instance this code create this output (shown in Blend but it runs just the same): <VariableSizedWrapGrid ItemHeight="100" ItemWidth="100" Width="200" Orientation="Horizontal"> <Rectangle Fill="Purple" /> <Rectangle Fill="Orange" /> <Rectangle Fill="Yellow" VariableSizedWrapGrid.ColumnSpan="2" /> <Rectangle Fill="Red" VariableSizedWrapGrid.ColumnSpan="2" VariableSizedWrapGrid.RowSpan="2" /> <Rectangle Fill="Green" VariableSizedWrapGrid.RowSpan="2" /> <Rectangle Fill="Blue" /> <Rectangle Fill="LightGray" /> </VariableSizedWrapGrid> Using the VariableSizedWrapGrid as ItemsPanel When you use a GridView however, you typically bind the ItemsSource property to a collection, for example in a viewmodel. In that case, you want to be able to switch the ColumnSpan and RowSpan depending on properties on the item. I tried to find a way to bind the VariableSizedWrapGrid.ColumnSpan attached property on the GridView’s ItemContainerStyle template to an observable property on the item, but it didn’t work. Instead, I decided to use a StyleSelector to switch the GridViewItem’s style. Here’s how: First I added my two GridViews to my XAML as follows: <Page.Resources> <local:MainViewModel x:Key="Main" /> <DataTemplate x:Key="DataTemplate1"> <Grid Background="{Binding Brush}"> <TextBlock Text="{Binding BrushCode}" /> </Grid> </DataTemplate> </Page.Resources> <Page.DataContext> <Binding Source="{StaticResource Main}" /> </Page.DataContext> <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}" Margin="20"> <Grid.ColumnDefinitions> <ColumnDefinition Width="Auto" /> <ColumnDefinition Width="*" /> </Grid.ColumnDefinitions> <GridView ItemsSource="{Binding Items}" ItemTemplate="{StaticResource DataTemplate1}" VerticalAlignment="Top"> <GridView.ItemsPanel> <ItemsPanelTemplate> <VariableSizedWrapGrid ItemHeight="150" ItemWidth="150" /> </ItemsPanelTemplate> </GridView.ItemsPanel> </GridView> <GridView Grid.Column="1" ItemsSource="{Binding Items}" ItemTemplate="{StaticResource DataTemplate1}" VerticalAlignment="Top"> <GridView.ItemsPanel> <ItemsPanelTemplate> <VariableSizedWrapGrid ItemHeight="100" ItemWidth="100" /> </ItemsPanelTemplate> </GridView.ItemsPanel> </GridView> </Grid> The MainViewModel looks like this: public class MainViewModel { public IList<Item> Items { get; private set; } public MainViewModel() { Items = new List<Item> { new Item { Brush = new SolidColorBrush(Colors.Red) }, new Item { Brush = new SolidColorBrush(Colors.Blue) }, new Item { Brush = new SolidColorBrush(Colors.Green), }, // And more... }; } } As for the Item class, I am using an MVVM Light ObservableObject but you can use your own simple implementation of INotifyPropertyChanged of course: public class Item : ObservableObject { public const string ColSpanPropertyName = "ColSpan"; private int _colSpan = 1; public int ColSpan { get { return _colSpan; } set { Set(ColSpanPropertyName, ref _colSpan, value); } } public SolidColorBrush Brush { get; set; } public string BrushCode { get { return Brush.Color.ToString(); } } } Then I copied the GridViewItem’s style locally. To do this, I use Expression Blend’s functionality. It has the disadvantage to copy a large portion of XAML to your application, but the HUGE advantage to allow you to change the look and feel of your GridViewItem everywhere in the application. For example, you can change the selection chrome, the item’s alignments and many other properties. Actually everytime I use a ListBox, ListView or any other data control, I typically copy the item style to a resource dictionary in my application and I tweak it. Note that Blend for Windows 8 apps is automatically installed with every edition of Visual Studio 2012 (including Express) so you have no excuses anymore not to use Blend :) Open MainPage.xaml in Expression Blend by right clicking on the MainPage.xaml file in the Solution Explorer and selecting Open in Blend from the context menu. Note that the items do not look very nice! The reason is that the default ItemContainerStyle sets the content’s alignment to “Center” which I never quite understood. Seems to me that you rather want the content to be stretched, but anyway it is easy to change.   Right click on the GridView on the left and select Edit Additional Templates, Edit Generated Item Container (ItemContainerStyle), Edit a Copy. In the Create Style Resource dialog, enter the name “DefaultGridViewItemStyle”, select “Application” and press OK. Side note 1: You need to save in a global resource dictionary because later we will need to retrieve that Style from a global location. Side note 2": I would rather copy the style to an external resource dictionary that I link into the App.xaml file, but I want to keep things simple here. Blend switches in Template edit mode. The template you are editing now is inside the ItemContainerStyle and will govern the appearance of your items. This is where, for instance, the “checked” chrome is defined, and where you can alter it if you need to. Note that you can reuse this style for all your GridViews even if you use a different DataTemplate for your items. Makes sense? I probably need to think about writing another blog post dedicated to the ItemContainerStyle :) In the breadcrumb bar on top of the page, click on the style icon. The property we want to change now can be changed in the Style instead of the Template, which is a better idea. Blend is not in Style edit mode, as you can see in the Objects and Timeline pane. In the Properties pane, in the Search box, enter the word “content”. This will filter all the properties containing that partial string, including the two we are interested in: HorizontalContentAlignment and VerticalContentAlignment. Set these two values to “Stretch” instead of the default “Center”. Using the breadcrumb bar again, set the scope back to the Page (by clicking on the first crumb on the left). Notice how the items are now showing as squares in the first GridView. We will now use the same ItemContainerStyle for the second GridView. To do this, right click on the second GridView and select Edit Additional Templates, Edit Generate Item Container, Apply Resource, DefaultGridViewItemStyle. The page now looks nicer: And now for the ColumnSpan! So now, let’s change the ColumnSpan property. First, let’s define a new Style that inherits the ItemContainerStyle we created before. Make sure that you save everything in Blend by pressing Ctrl-Shift-S. Open App.xaml in Visual Studio. Below the newly created DefaultGridViewItemStyle resource, add the following style: <Style x:Key="WideGridViewItemStyle" TargetType="GridViewItem" BasedOn="{StaticResource DefaultGridViewItemStyle}"> <Setter Property="VariableSizedWrapGrid.ColumnSpan" Value="2" /> </Style> Add a new class to the project, and name it MainItemStyleSelector. Implement the class as follows: public class MainItemStyleSelector : StyleSelector { protected override Style SelectStyleCore(object item, DependencyObject container) { var i = (Item)item; if (i.ColSpan == 2) { return Application.Current.Resources["WideGridViewItemStyle"] as Style; } return Application.Current.Resources["DefaultGridViewItemStyle"] as Style; } } In MainPage.xaml, add a resource to the Page.Resources section: <local:MainItemStyleSelector x:Key="MainItemStyleSelector" /> In MainPage.xaml, replace the ItemContainerStyle property on the first GridView with the ItemContainerStyleSelector property, pointing to the StaticResource we just defined. <GridView ItemsSource="{Binding Items}" ItemTemplate="{StaticResource DataTemplate1}" VerticalAlignment="Top" ItemContainerStyleSelector="{StaticResource MainItemStyleSelector}"> <GridView.ItemsPanel> <ItemsPanelTemplate> <VariableSizedWrapGrid ItemHeight="150" ItemWidth="150" /> </ItemsPanelTemplate> </GridView.ItemsPanel> </GridView> Do the same for the second GridView as well. Finally, in the MainViewModel, change the ColumnSpan property on the 3rd Item to 2. new Item { Brush = new SolidColorBrush(Colors.Green), ColSpan = 2 }, Running the application now creates the following image, which is what we wanted. Notice how the green item is now a “wide tile”. You can also experiment by creating different Styles, all inheriting the DefaultGridViewItemStyle and using different values of RowSpan for instance. This will allow you to create any layout you want, while leaving the heavy lifting of “flowing the layout” to the GridView control. What about changing these values dynamically? Of course as we can see in the Start menu, it would be nice to be able to change the ColumnSpan and maybe even the RowSpan values at runtime. Unfortunately at this time I have not found a good way to do that. I am investigating however and will make sure to post a follow up when I find what I am looking for!   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • Silverlight 4 + MVVM + KeyDown event

    - by jturn
    I'm trying to build a sample game in Silverlight 4 using the MVVM design pattern to broaden my knowledge. I'm using Laurent Bugnion's MvvmLight toolkit as well (found here: http://mvvmlight.codeplex.com/ ). All I want to do right now is move a shape around within a Canvas by pressing specific keys. My solution contains a Player.xaml (just a rectangle; this will be moved around) and MainPage.xaml (the Canvas and an instance of the Player control). To my understanding, Silverlight doesn't support tunneling routed events, only bubbling. My big problem is that Player.xaml never recognizes the KeyDown event. It's always intercepted by MainPage.xaml first and it never reaches any child controls because it bubbles upward. I'd prefer that the logic to move the Player be in the PlayerViewModel class, but I don't think the Player can know about any KeyDown events firing without me explicitly passing them on down from the MainPage. I ended up adding the handler logic to the MainPageViewModel class. Now my problem is that the MainPageViewModel has no knowledge of Player.xaml so it cannot move this object when handling KeyDown events. I guess this is expected, as ViewModels should not have any knowledge of their associated Views. In not so many words...is there a way this Player user control within my MainPage.xaml can directly accept and handle KeyDown events? If not, what's the ideal method for my MainPageViewModel to communicate with its View's child controls? I'm trying to keep code out of the code-behind files as much as possible. Seems like it's best to put logic in the ViewModels for ease of testing and to decouple UI from logic. (MainPage.xaml) <UserControl x:Class="MvvmSampleGame.MainPage" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:game="clr-namespace:MvvmSampleGame" xmlns:i="clr-namespace:System.Windows.Interactivity;assembly=System.Windows.Interactivity" xmlns:cmd="clr-namespace:GalaSoft.MvvmLight.Command;assembly=GalaSoft.MvvmLight.Extras.SL4" mc:Ignorable="d" Height="300" Width="300" DataContext="{Binding Main, Source={StaticResource Locator}}"> <i:Interaction.Triggers> <i:EventTrigger EventName="KeyDown"> <cmd:EventToCommand Command="{Binding KeyPressCommand}" PassEventArgsToCommand="True" /> </i:EventTrigger> </i:Interaction.Triggers> <Canvas x:Name="LayoutRoot"> <game:Player x:Name="Player1"></game:Player> </Canvas> (MainViewModel.cs) public MainViewModel() { KeyPressCommand = new RelayCommand<KeyEventArgs>(KeyPressed); } public RelayCommand<KeyEventArgs> KeyPressCommand { get; private set; } private void KeyPressed(KeyEventArgs e) { if (e.Key == Key.Up || e.Key == Key.W) { // move player up } else if (e.Key == Key.Left || e.Key == Key.A) { // move player left } else if (e.Key == Key.Down || e.Key == Key.S) { // move player down } else if (e.Key == Key.Right || e.Key == Key.D) { // move player right } } Thanks in advance, Jeremy

    Read the article

  • MEF CompositionInitializer for WPF

    - by Reed
    The Managed Extensibility Framework is an amazingly useful addition to the .NET Framework.  I was very excited to see System.ComponentModel.Composition added to the core framework.  Personally, I feel that MEF is one tool I’ve always been missing in my .NET development. Unfortunately, one perfect scenario for MEF tends to fall short of it’s full potential is in Windows Presentation Foundation development.  In particular, there are many times when the XAML parser constructs objects in WPF development, which makes composition of those parts difficult.  The current release of MEF (Preview Release 9) addresses this for Silverlight developers via System.ComponentModel.Composition.CompositionInitializer.  However, there is no equivalent class for WPF developers. The CompositionInitializer class provides the means for an object to compose itself.  This is very useful with WPF and Silverlight development, since it allows a View, such as a UserControl, to be generated via the standard XAML parser, and still automatically pull in the appropriate ViewModel in an extensible manner.  Glenn Block has demonstrated the usage for Silverlight in detail, but the same issues apply in WPF. As an example, let’s take a look at a very simple case.  Take the following XAML for a Window: <Window x:Class="WpfApplication1.MainView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="MainWindow" Height="220" Width="300"> <Grid> <TextBlock Text="{Binding TheText}" /> </Grid> </Window> This does nothing but create a Window, add a simple TextBlock control, and use it to display the value of our “TheText” property in our DataContext class.  Since this is our main window, WPF will automatically construct and display this Window, so we need to handle constructing the DataContext and setting it ourselves. We could do this in code or in XAML, but in order to do it directly, we would need to hard code the ViewModel type directly into our XAML code, or we would need to construct the ViewModel class and set it in the code behind.  Both have disadvantages, and the disadvantages grow if we’re using MEF to compose our ViewModel. Ideally, we’d like to be able to have MEF construct our ViewModel for us.  This way, it can provide any construction requirements for our ViewModel via [ImportingConstructor], and it can handle fully composing the imported properties on our ViewModel.  CompositionInitializer allows this to occur. We use CompositionInitializer within our View’s constructor, and use it for self-composition of our View.  Using CompositionInitializer, we can modify our code behind to: public partial class MainView : Window { public MainView() { InitializeComponent(); CompositionInitializer.SatisfyImports(this); } [Import("MainViewModel")] public object ViewModel { get { return this.DataContext; } set { this.DataContext = value; } } } We then can add an Export on our ViewModel class like so: [Export("MainViewModel")] public class MainViewModel { public string TheText { get { return "Hello World!"; } } } MEF will automatically compose our application, decoupling our ViewModel injection to the DataContext of our View until runtime.  When we run this, we’ll see: There are many other approaches for using MEF to wire up the extensible parts within your application, of course.  However, any time an object is going to be constructed by code outside of your control, CompositionInitializer allows us to continue to use MEF to satisfy the import requirements of that object. In order to use this from WPF, I’ve ported the code from MEF Preview 9 and Glenn Block’s (now obsolete) PartInitializer port to Windows Presentation Foundation.  There are some subtle changes from the Silverlight port, mainly to handle running in a desktop application context.  The default behavior of my port is to construct an AggregateCatalog containing a DirectoryCatalog set to the location of the entry assembly of the application.  In addition, if an “Extensions” folder exists under the entry assembly’s directory, a second DirectoryCatalog for that folder will be included.  This behavior can be overridden by specifying a CompositionContainer or one or more ComposablePartCatalogs to the System.ComponentModel.Composition.Hosting.CompositionHost static class prior to the first use of CompositionInitializer. Please download CompositionInitializer and CompositionHost for VS 2010 RC, and contact me with any feedback. Composition.Initialization.Desktop.zip Edit on 3/29: Glenn Block has since updated his version of CompositionInitializer (and ExportFactory<T>!), and made it available here: http://cid-f8b2fd72406fb218.skydrive.live.com/self.aspx/blog/Composition.Initialization.Desktop.zip This is a .NET 3.5 solution, and should soon be pushed to CodePlex, and made available on the main MEF site.

    Read the article

  • How to add custom-control-derived TabItem to TabControl in WPF?

    - by orloffm
    I want to have my own base TabItem class and use other classes that derive from it. I define base class in MyNs namespace like this: public class MyCustomTab : TabItem { static MyCustomTab() { DefaultStyleKeyProperty.OverrideMetadata(typeof(MyCustomTab), new FrameworkPropertyMetadata(typeof(TabItem))); } } And this is what I do for the class that inherits from it: code-behind in MyNs namespace: public partial class ActualTab : MyCustomTab { public ActualTab() { InitializeComponent(); } } XAML: <MyCustomTab x:Class="MyNs.ActualTab" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"> <Grid> </Grid> </MyCustomTab> The error I get is "The tag 'MyCustomTab' does not exist in XML namespace 'http://schemas.microsoft.com/winfx/2006/xaml/presentation'". If I use TabItem tag in XAML the error says that it's not possible to define to different base classes. How to fix this?

    Read the article

  • Value is out of Range Exception While setting ResourceDictionary Source to CustomControl's generic.X

    - by Subhen
    Hi, I have a custom Control which contains the generic.xaml inside the Themes folder. I have set the build action to Resource. Now from App.xaml I am setting the reference to the DLL by using : xmlns:localFolder="clr-namespace:customControl;assembly=customControl" After the reference is set I am trying to Merge the Resource dictionary in my App.xaml as follow: <Application.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source="localFolder;component/Themes/generic.xaml"/> </ResourceDictionary.MergedDictionaries> </ResourceDictionary> </Application.Resources> But while running my application I am getting the following XAMLParseException: Attribute localFolder;component/Themes/generic.xaml value is out of range. [Line: 16 Position: 44]

    Read the article

  • Composing Silverlight Applications With MEF

    - by PeterTweed
    Anyone who has written an application with complexity enough to warrant multiple controls on multiple pages/forms should understand the benefit of composite application development.  That is defining your application architecture that can be separated into separate pieces each with it’s own distinct purpose that can then be “composed” together into the solution. Composition can be useful in any layer of the application, from the presentation layer, the business layer, common services or data access.  Historically people have had different options to achieve composing applications from distinct well known pieces – their own version of dependency injection, containers to aid with composition like Unity, the composite application guidance for WPF and Silverlight and before that the composite application block. Microsoft has been working on another mechanism to aid composition and extension of applications for some time now – the Managed Extensibility Framework or MEF for short.  With Silverlight 4 it is part of the Silverlight environment.  MEF allows a much simplified mechanism for composition and extensibility compared to other mechanisms – which has always been the primary issue for adoption of the earlier mechanisms/frameworks. This post will guide you through the simple use of MEF for the scenario of composition of an application – using exports, imports and composition.  Steps: 1.     Create a new Silverlight 4 application. 2.     Add references to the following assemblies: System.ComponentModel.Composition.dll System.ComponentModel.Composition.Initialization.dll 3.     Add a new user control called LeftControl. 4.     Replace the LayoutRoot Grid with the following xaml:     <Grid x:Name="LayoutRoot" Background="Beige" Margin="40" >         <Button Content="Left Content" Margin="30"></Button>     </Grid> 5.     Add the following statement to the top of the LeftControl.xaml.cs file using System.ComponentModel.Composition; 6.     Add the following attribute to the LeftControl class     [Export(typeof(LeftControl))]   This attribute tells MEF that the type LeftControl will be exported – i.e. made available for other applications to import and compose into the application. 7.     Add a new user control called RightControl. 8.     Replace the LayoutRoot Grid with the following xaml:     <Grid x:Name="LayoutRoot" Background="Green" Margin="40"  >         <TextBlock Margin="40" Foreground="White" Text="Right Control" FontSize="16" VerticalAlignment="Center" HorizontalAlignment="Center" ></TextBlock>     </Grid> 9.     Add the following statement to the top of the RightControl.xaml.cs file using System.ComponentModel.Composition; 10.   Add the following attribute to the RightControl class     [Export(typeof(RightControl))] 11.   Add the following xaml to the LayoutRoot Grid in MainPage.xaml:         <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">             <Border Name="LeftContent" Background="Red" BorderBrush="Gray" CornerRadius="20"></Border>             <Border Name="RightContent" Background="Red" BorderBrush="Gray" CornerRadius="20"></Border>         </StackPanel>   The borders will hold the controls that will be imported and composed via MEF. 12.   Add the following statement to the top of the MainPage.xaml.cs file using System.ComponentModel.Composition; 13.   Add the following properties to the MainPage class:         [Import(typeof(LeftControl))]         public LeftControl LeftUserControl { get; set; }         [Import(typeof(RightControl))]         public RightControl RightUserControl { get; set; }   This defines properties accepting LeftControl and RightControl types.  The attrributes are used to tell MEF the discovered type that should be applied to the property when composition occurs. 14.   Replace the MainPage constructore with the following code:         public MainPage()         {             InitializeComponent();             CompositionInitializer.SatisfyImports(this);             LeftContent.Child = LeftUserControl;             RightContent.Child = RightUserControl;         }   The CompositionInitializer.SatisfyImports(this) function call tells MEF to discover types related to the declared imports for this object (the MainPage object).  At that point, types matching those specified in the import defintions are discovered in the executing assembly location of the application and instantiated and assigned to the matching properties of the current object. 15.   Run the application and you will see the left control and right control types displayed in the MainPage:   Congratulations!  You have used MEF to dynamically compose user controls into a parent control in a composite application model. In the next post we will build on this topic to cover using MEF to compose Silverlight applications dynamically in download on demand scenarios – so .xap packages can be downloaded only when needed, avoiding large initial download for the main application xap. Take the Slalom Challenge at www.slalomchallenge.com!

    Read the article

  • Silverlight MergedDictionaries and subclassing of Application

    - by mikeymo
    We have subclassed the Silverlight Application class to add some additional functionality and then use this in multiple projects. The problem is that the Resources defined in App.xaml do not seem to get loaded. Has anyone else seen this and/or have some insight? Here are the contents of App.xaml (note: the application starts and runs fine but then chokes when it looks for a Resource) <myNS:ApplicationBase xmlns:myNS="clr-namespace:Corp.XYZ.Infrastructure.Silverlight.Core;assembly=Corp.XYZ.Infrastructure.Silverlight.Core" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="Corp.XYZ.BMW.App" > <myNS:ApplicationBase.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source="Resources/AlternateControlStyles/StandardExpander.xaml" /> </ResourceDictionary.MergedDictionaries> </ResourceDictionary> </myNS:ApplicationBase.Resources>

    Read the article

  • WPF UserControl Embedded Animation

    - by Matt B
    Hi all, I have a UserControl called Beetle.xaml which has animation makeing the legs move. So far so good. I added this to my Background.xaml page by decaring the xmlns and xaml as: xmlns:my="clr-namespace:Intellident.Liber8.GUI.Theme.Jungle" and <my:Beetle VerticalAlignment="Bottom" HorizontalAlignment="Left" Margin="180,0,0,175"> <UserControl.RenderTransform> <MatrixTransform x:Name="trnBeetle" /> </UserControl.RenderTransform> </my:Beetle> However I get errors telling me that I can't declare my:Name as I'm in the wrong scope. I can't declare my:Name as this doesn't exist. How do I do this, I want to create a path animation on the beetle to make him walk around... Ta, Matt. EDIT: THought I'd point out that both Beetle.xaml and Background.xaml live in Intellident.Liber8.GUI.Theme.Jungle namescope.

    Read the article

  • TFS 2010 build template failing to open in designer - how to fix?

    - by Duncan Bayne
    I can open the DefaultTemplate.xaml that was installed as part of our TFS 2010 RC setup. I created a copy of this template called ApplicationTemplate.xaml and modified it slightly, using the workflow designer in Visual Studio. Now, I can no longer open ApplicationTemplate.xaml. When I try, I receive many errors like the following: Error 2 Assembly 'Microsoft.TeamFoundation.Build.Client' was not found. Verify that you are not missing an assembly reference. Also, verify that your project and all referenced assemblies have been built. C:\Projects\tfs\Hydraulics\BuildProcessTemplates\ApplicationTemplate.xaml 1 1828 Miscellaneous Files However, I can still open and edit the DefaultTemplate.xaml file without any issues. Has anyone else come across this problem, & if so, did you manage to resolve it or did you have to recreate the template?

    Read the article

  • Why is the Dependency Property not returning its value?

    - by B-Rad
    I have a MyUserControl with the following Xaml: <TextBox Text="{Binding InputValueProperty}" /> In the MyUserControl.xaml.cs I have: public string InputValue { get { return (string)GetValue(InputValueProperty); } set { SetValue(InputValueProperty, value); } } public static readonly DependencyProperty InputValueProperty = DependencyProperty.Register("InputValueProperty", typeof(string), typeof(MyUserControl)); In my MainWindow.xaml I create a user control: <local:MyUserControl InputValue="My Input" /> Later on in my MainWindow.xaml.cs I am trying to access this string. All instances of MyUserControl are contained in a List and I access them with a foreach. string temp = userControl.InputValue; This is always null. In my MainWindow.xaml I can see the "My Input" in the text box of the user control but I can't ever seem to get it out of there.

    Read the article

  • Implementing Search for BlogReader Windows 8 Sample

    - by Harish Ranganathan
    The BlogReader sample is an excellent place to start speeding up your Windows 8 development skills.  The tutorial is available here and the complete source code is available here Create a project called WindowsBlogReader and create pages for ItemsPage.xaml, SplitPage.xaml and DetailPage.xaml and copy the corresponding code blocks from the sample listed above. Created a class file FeedData.cs and copy the code.  Finally, create a class DateConverter.cs and copy the code associated with it. With that you should be able to build and run the project.  There seems to be one issue in the sample feeds listed that the first week (feed1) doesn’t seem to expose it.  So you can skip that and use the second feed as first feed.  You will end up with one feed less but it works. I had demonstrated this in the recent TechDays at Chennai.  How we can use the Search Contract and implement Search for within the Blog Titles. First off, we need to declare that the App will be using Search Contract, in the Package.appmanifest file Next, we would need a handle of the Search Contract when user types on the search window in Charms Menu. If you had completed the code sample from the link above, you would have ItemsPage.xaml and ItemsPage.xaml.cs.  Open the ItemsPage.xaml.cs. Import the namespaces using System.Collections.ObjectModel and System.Linq. in the ItemsPage() constructor, right after this.InitializeComponent(); add the following code Windows.ApplicationModel.Search.SearchPane.GetForCurrentView().QuerySubmitted += ItemsPage_QuerySubmitted; This event is fired when users open up the Search Panel from Charms Menu, type something and hit enter. We need to handle this event declared in the delegate.  For that we need to pull the FeedDataSource instantiation to the root of the class to make it global. So, add the following as the first line within the partial class FeedDataSource feedDataSource; Also, modify the LoadState method, as follows:- protected override void LoadState(Object navigationParameter, Dictionary<String, Object> pageState)        {            feedDataSource = (FeedDataSource)App.Current.Resources["feedDataSource"];            if (feedDataSource != null)            {                this.DefaultViewModel["Items"] = feedDataSource.Feeds;            }        } Next is to implement the ItemsPage_QuerySubmitted method void ItemsPage_QuerySubmitted(Windows.ApplicationModel.Search.SearchPane sender, Windows.ApplicationModel.Search.SearchPaneQuerySubmittedEventArgs args)         {             this.DefaultViewModel["Items"] = from dynamic item in feedDataSource.Feeds                                              where                                              item.Title.Contains(args.QueryText)                                              select item;         } As you can see we are almost using the same defaultviewmodel with the change that we are using a linq query to do a search on feeds which has the Title that matches QueryText. With this we are ready to run the app. Run the App.  Hit the Charms Menu with Windows + C key combination and type a text to search within the blog. You can see that it filters the Blogs which has the matching text. We can modify the above Linq query to do a search for the Text in other attributes like description, actual blog content etc., I have uploaded the complete code since the original WindowsBlogReader Code is not available for download.  You can download it from here note:  this code is provided as-is without any warranties.  Cheers!!!

    Read the article

  • Iterating through StaticResource loaded by ResourceDictionary

    - by akaphenom
    Given a resource dictionary loading some static resources into memory - is there any way to iterate through theResources loaded into memory? My silverlight application keeps telling me it cannot find a static resource. I wonder if I have a naming convention issue or somehting - was hoping iterating through the resources in memory would help diagnose any issue... I have the following app.xaml <Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="Module1.MyApp"> <Application.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source="/FSSilverlightApp;component/TransitioningFrame.xaml" /> </ResourceDictionary.MergedDictionaries> </ResourceDictionary> </Application.Resources> </Application> and content template: <ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:navigation="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"> <ControlTemplate x:Key="TransitioningFrame" TargetType="navigation:Frame"> <Border Background="{TemplateBinding Background}" BorderBrush="{TemplateBinding BorderBrush}" BorderThickness="{TemplateBinding BorderThickness}" HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}" VerticalAlignment="{TemplateBinding VerticalContentAlignment}"> <ContentPresenter Cursor="{TemplateBinding Cursor}" HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}" Margin="{TemplateBinding Padding}" VerticalAlignment="{TemplateBinding VerticalContentAlignment}" Content="{TemplateBinding Content}"/> </Border> </ControlTemplate> </ResourceDictionary>

    Read the article

  • What is the scope of StaticResource within a WPF ResourceDictionary?

    - by Nicolas Webb
    I have a WPF ResourceDictionary with the following TextBlock: <TextBlock Visibility="{Binding Converter={StaticResource MyBoolProp ResourceKey=BoolToVis}}"> </TextBlock> The ResourceDictionary is included in App.xaml under MergedDictionaries: <Application.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source="MyResourceDictionary.xaml"/> Within the App.xaml I have defined the BoolToVis converter (again, under Application.Resources) <BooleanToVisibilityConverter x:Key="BoolToVis" /> When I start my app up - I get the following XamlParseException: "Provide value on 'System.Windows.Markup.StaticResourceHolder' threw an exception." The InnerException is: "Cannot find resource named 'BoolToVis'. Resource names are case sensitive." I'm able to refer to this converter directly with App.xaml (in fact, the particular XAML declaration is identical) and within other UserControls with no problems. This particular bit of code also worked fine under the .NET 4.0 RC (and Beta2). This error only started happening when I upgraded to the .NET 4.0 RTM. I'm able to work around it by declaring another BooleanToVisibilityConverter within MyResourceDictionary.xaml and referring to it like so: <TextBlock Visibility="{Binding Converter={StaticResource MyBoolProp ResourceKey=BoolToVis2}}"> </TextBlock> Any reason why I should need to do this?

    Read the article

< Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >