Search Results

Search found 36506 results on 1461 pages for 'unsigned long long int'.

Page 402/1461 | < Previous Page | 398 399 400 401 402 403 404 405 406 407 408 409  | Next Page >

  • How to read verbose VC++ linker output

    - by Assaf Lavie
    Trying to debug some linker errors, I turned on /VERBOSE and I'm trying to make sense of the output. It occurs to me that I really don't know how to read it. For example: 1>Compiling version info 1>Linking... 1>Starting pass 1 1>Processed /DEFAULTLIB:mfc80.lib 1>Processed /DEFAULTLIB:mfcs80.lib 1>Processed /DEFAULTLIB:msvcrt.lib 1>Processed /DEFAULTLIB:kernel32.lib 1>Processed /DEFAULTLIB:user32.lib .... 1>Processed /DEFAULTLIB:libgslcblasMD.lib 1>Searching libraries 1> Searching V:\Src\Solutions\\..\..\\Common\Win32\Lib\PlxApi.lib: 1> Searching ..\..\..\..\out\win32\release\lib\camerageometry.lib: 1> Searching ..\..\..\..\out\win32\release\lib\geometry.lib: 1> Found "public: __thiscall VisionMap::Geometry::Box2d::operator class VisionMap::Geometry::Box2DInt(void)const " (??BBox2d@Geometry@VisionMap@@QBE?AVBox2DInt@12@XZ) 1> Referenced in FocusDlg.obj 1> Loaded geometry.lib(Box2d.obj) 1>Processed /DEFAULTLIB:CGAL-vc80-mt.lib 1>Processed /DEFAULTLIB:boost_thread-vc80-mt-1_33_1.lib What's going on here? I think I understand this bit: 1>Processed /DEFAULTLIB:libgslcblasMD.lib 1>Searching libraries 1> Searching V:\Src\Solutions\\..\..\\Common\Win32\Lib\PlxApi.lib: 1> Searching ..\..\..\..\out\win32\release\lib\camerageometry.lib: 1> Searching ..\..\..\..\out\win32\release\lib\geometry.lib: 1> Found "public: __thiscall VisionMap::Geometry::Box2d::operator class VisionMap::Geometry::Box2DInt(void)const " (??BBox2d@Geometry@VisionMap@@QBE?AVBox2DInt@12@XZ) 1> Referenced in FocusDlg.obj 1> Loaded geometry.lib(Box2d.obj) It's trying to find the implementation of the above operator, which is used somewhere in FocusDlg.cpp, and it finds it in geometry.lib. But what does 1>Processed /DEFAULTLIB:libgslcblasMD.lib mean? What determines the order of symbol resolution? Why is it loading this particular symbol while processing libgslcblasMD.lib which is a 3rd party library? Or am I reading it wrong? It seems that the linker is going through the symbols referenced in the project's various object files, but I have no idea in what order. It then searches the static libraries the project uses - by project reference, explicit import and automatic default library imports; but it does so in an order that, again, seems arbitrary to me. When it finds a symbol, for example in geometry.lib, it then continues to find a bunch of other symbols from the same lib: 1> Searching V:\Src\Solutions\\..\..\\Common\Win32\Lib\PlxApi.lib: 1> Searching ..\..\..\..\out\win32\release\lib\camerageometry.lib: 1> Searching ..\..\..\..\out\win32\release\lib\geometry.lib: 1> Found "public: __thiscall VisionMap::Geometry::Box2d::operator class VisionMap::Geometry::Box2DInt(void)const " (??BBox2d@Geometry@VisionMap@@QBE?AVBox2DInt@12@XZ) 1> Referenced in FocusDlg.obj 1> Loaded geometry.lib(Box2d.obj) 1>Processed /DEFAULTLIB:CGAL-vc80-mt.lib 1>Processed /DEFAULTLIB:boost_thread-vc80-mt-1_33_1.lib 1> Found "public: __thiscall VisionMap::Geometry::Box2DInt::Box2DInt(int,int,int,int)" (??0Box2DInt@Geometry@VisionMap@@QAE@HHHH@Z) 1> Referenced in FocusDlg.obj 1> Referenced in ImageView.obj 1> Referenced in geometry.lib(Box2d.obj) 1> Loaded geometry.lib(Box2DInt.obj) 1> Found "public: virtual __thiscall VisionMap::Geometry::Point3d::~Point3d(void)" (??1Point3d@Geometry@VisionMap@@UAE@XZ) 1> Referenced in GPSFrm.obj 1> Referenced in MainFrm.obj 1> Loaded geometry.lib(Point3d.obj) 1> Found "void __cdecl VisionMap::Geometry::serialize<class boost::archive::binary_oarchive>(class boost::archive::binary_oarchive &,class VisionMap::Geometry::Point3d &,unsigned int)" (??$serialize@Vbinary_oarchive@archive@boost@@@Geometry@VisionMap@@YAXAAVbinary_oarchive@archive@boost@@AAVPoint3d@01@I@Z) 1> Referenced in GPSFrm.obj 1> Referenced in MainFrm.obj 1> Loaded geometry.lib(GeometrySerializationImpl.obj) But then, for some reason, it goes on to find symbols that are defined in other libs, and returns to geometry later on (a bunch of times). So clearly it's not doing "look in geometry and load every symbol that's references in the project, and then continue to other libraries". But it's not clear to me what is the order of symbol lookup. And what's the deal with all those libraries being processed at the beginning of the linker's work, but not finding any symbols to load from them? Does this project really not use anything from msvcrt.lib, kernel32.lib? Seems unlikely. So basically I'm looking to decipher the underlying order in the linker's operation.

    Read the article

  • The DOS DEBUG Environment

    - by MarkPearl
    Today I thought I would go back in time and have a look at the DEBUG command that has been available since the beginning of dawn in DOS, MS-DOS and Microsoft Windows. up to today I always knew it was there, but had no clue on how to use it so for those that are interested this might be a great geek party trick to pull out when you want the awe the younger generation and want to show them what “real” programming is about. But wait, you will have to do it relatively quickly as it seems like DEBUG was finally dumped from the Windows group in Windows 7. Not to worry, pull out that Windows XP box which will get you even more geek points and you can still poke DEBUG a bit. So, for those that are interested and want to find out a bit about the history of DEBUG read the wiki link here. That all put aside, lets get our hands dirty.. How to Start DEBUG in Windows Make sure your version of Windows supports DEBUG. Open up a console window Make a directory where you want to play with debug – in my instance I called it C221 Enter the directory and type Debug You will get a response with a – as illustrated in the image below…   The commands available in DEBUG There are several commands available in DEBUG. The most common ones are A (Assemble) R (Register) T (Trace) G (Go) D (Dump or Display) U (Unassemble) E (Enter) P (Proceed) N (Name) L (Load) W (Write) H (Hexadecimal) I (Input) O (Output) Q (Quit) I am not going to cover all these commands, but what I will do is go through a few of them briefly. A is for Assemble Command (to write code) The A command translates assembly language statements into machine code. It is quite useful for writing small assembly programs. Below I have written a very basic assembly program. The code typed out is as follows mov ax,0015 mov cx,0023 sub cx,ax mov [120],al mov cl,[120]A nop R is for Register (to jump to a point in memory) The r command turns out to be one of the most frequent commands you will use in DEBUG. It allows you to view the contents of registers and to change their values. It can be used with the following combinations… R – Displays the contents of all the registers R f – Displays the flags register R register_name – Displays the contents of a specific register All three methods are illustrated in the image above T is for Trace (To execute a program step by step) The t command allows us to execute the program step by step. Before we can trace the program we need to point back to the beginning of the program. We do this by typing in r ip, which moves us back to memory point 100. We then type trace which executes the first line of code (line 100) (As shown in the image below starting from the red arrow). You can see from the above image that the register AX now contains 0015 as per our instruction mov ax,0015 You can also see that the IP points to line 0103 which has the MOV CX,0023 command If we type t again it will now execute the second line of the program which moves 23 in the cx register. Again, we can see that the line of code was executed and that the CX register now holds the value of 23. What I would like to highlight now is the section underlined in red. These are the status flags. The ones we are going to look at now are 1st (NV), 4th (PL), 5th (NZ) & 8th (NC) NV means no overflow, the alternate would be OV PL means that the sign of the previous arithmetic operation was Plus, the alternate would be NG (Negative) NZ means that the results of the previous arithmetic operation operation was Not Zero, the alternate would be ZR NC means that No final Carry resulted from the previous arithmetic operation. CY means that there was a final Carry. We could now follow this process of entering the t command until the entire program is executed line by line. G is for Go (To execute a program up to a certain line number) So we have looked at executing a program line by line, which is fine if your program is minuscule BUT totally unpractical if we have any decent sized program. A quicker way to run some lines of code is to use the G command. The ‘g’ command executes a program up to a certain specified point. It can be used in connection with the the reset IP command. You would set your initial point and then run the G command with the line you want to end on. P is for Proceed (Similar to trace but slightly more streamlined) Another command similar to trace is the proceed command. All that the p command does is if it is called and it encounters a CALL, INT or LOOP command it terminates the program execution. In the example below I modified our example program to include an int 20 at the end of it as illustrated in the image below… Then when executing the code when I encountered the int 20 command I typed the P command and the program terminated normally (illustrated below). D is for Dump (or for those more polite Display) So, we have all these assembly lines of code, but if you have ever opened up an exe or com file in a text/hex editor, it looks nothing like assembly code. The D command is a way that we can see what our code looks like in memory (or in a hex editor). If we examined the image above, we can see that Debug is storing our assembly code with each instruction following immediately after the previous one. For instance in memory address 110 we have int and 111 we have 20. If we examine the dump of memory we can see at memory point 110 CD is stored and at memory point 111 20 is stored. U is for Unassemble (or Convert Machine code to Assembly Code) So up to now we have gone through a bunch of commands, but probably one of the most useful is the U command. Let’s say we don’t understand machine code so well and so instead we want to see it in its equivalent assembly code. We can type the U command followed by the start memory point, followed by the end memory point and it will show us the assembly code equivalent of the machine code. E is for a bunch of things… The E command can be used for a bunch of things… One example is to enter data or machine code instructions directly into memory. It can also be used to display the contents of memory locations. I am not going to worry to much about it in this post. N / L / W is for Name, Load & Write So we have written out assembly code in debug, and now we want to save it to disk, or write it as a com file or load it. This is where the N, L & W command come in handy. The n command is used to give a name to the executable program file and is pretty simple to use. The w command is a bit trickier. It saves to disk all the memory between point bx and point cx so you need to specify the bx memory address and the cx memory address for it to write your code. Let’s look at an example illustrated below. You do this by calling the r command followed by the either bx or cx. We can then go to the directory where we were working and will see the new file with the name we specified. The L command is relatively simple. You would first specify the name of the file you would like to load using the N command, and then call the L command. Q is for Quit The last command that I am going to write about in this post is the Q command. Simply put, calling the Q command exits DEBUG. Commands we did not Cover Out of the standard DEBUG commands we covered A, T, G, D, U, E, P, R, N, L & W. The ones we did not cover were H, I & O – I might make mention of these in a later post, but for the basics they are not really needed. Some Useful Resources Please note this post is based on the COS2213 handouts for UNISA A Guide to DEBUG - http://mirror.href.com/thestarman/asm/debug/debug.htm#NT

    Read the article

  • Move penetrating OBB out of another OBB to resolve collision

    - by Milo
    I'm working on collision resolution for my game. I just need a good way to get an object out of another object if it gets stuck. In this case a car. Here is a typical scenario. The red car is in the green object. How do I correctly get it out so the car can slide along the edge of the object as it should. I tried: if(buildings.size() > 0) { Entity e = buildings.get(0); Vector2D vel = new Vector2D(); vel.x = vehicle.getVelocity().x; vel.y = vehicle.getVelocity().y; vel.normalize(); while(vehicle.getRect().overlaps(e.getRect())) { vehicle.setCenter(vehicle.getCenterX() - vel.x * 0.1f, vehicle.getCenterY() - vel.y * 0.1f); } colided = true; } But that does not work too well. Is there some sort of vector I could calculate to use as the vector to move the car away from the object? Thanks Here is my OBB2D class: public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } };

    Read the article

  • How to create a simple adf dashboard application with EJB 3.0

    - by Rodrigues, Raphael
    In this month's Oracle Magazine, Frank Nimphius wrote a very good article about an Oracle ADF Faces dashboard application to support persistent user personalization. You can read this entire article clicking here. The idea in this article is to extend the dashboard application. My idea here is to create a similar dashboard application, but instead ADF BC model layer, I'm intending to use EJB3.0. There are just a one small trick here and I'll show you. I'm using the HR usual oracle schema. The steps are: 1. Create a ADF Fusion Application with EJB as a layer model 2. Generate the entities from table (I'm using Department and Employees only) 3. Create a new Session Bean. I called it: HRSessionEJB 4. Create a new method like that: public List getAllDepartmentsHavingEmployees(){ JpaEntityManager jpaEntityManager = (JpaEntityManager)em.getDelegate(); Query query = jpaEntityManager.createNamedQuery("Departments.allDepartmentsHavingEmployees"); JavaBeanResult.setQueryResultClass(query, AggregatedDepartment.class); return query.getResultList(); } 5. In the Departments entity, create a new native query annotation: @Entity @NamedQueries( { @NamedQuery(name = "Departments.findAll", query = "select o from Departments o") }) @NamedNativeQueries({ @NamedNativeQuery(name="Departments.allDepartmentsHavingEmployees", query = "select e.department_id, d.department_name , sum(e.salary), avg(e.salary) , max(e.salary), min(e.salary) from departments d , employees e where d.department_id = e.department_id group by e.department_id, d.department_name")}) public class Departments implements Serializable {...} 6. Create a new POJO called AggregatedDepartment: package oramag.sample.dashboard.model; import java.io.Serializable; import java.math.BigDecimal; public class AggregatedDepartment implements Serializable{ @SuppressWarnings("compatibility:5167698678781240729") private static final long serialVersionUID = 1L; private BigDecimal departmentId; private String departmentName; private BigDecimal sum; private BigDecimal avg; private BigDecimal max; private BigDecimal min; public AggregatedDepartment() { super(); } public AggregatedDepartment(BigDecimal departmentId, String departmentName, BigDecimal sum, BigDecimal avg, BigDecimal max, BigDecimal min) { super(); this.departmentId = departmentId; this.departmentName = departmentName; this.sum = sum; this.avg = avg; this.max = max; this.min = min; } public void setDepartmentId(BigDecimal departmentId) { this.departmentId = departmentId; } public BigDecimal getDepartmentId() { return departmentId; } public void setDepartmentName(String departmentName) { this.departmentName = departmentName; } public String getDepartmentName() { return departmentName; } public void setSum(BigDecimal sum) { this.sum = sum; } public BigDecimal getSum() { return sum; } public void setAvg(BigDecimal avg) { this.avg = avg; } public BigDecimal getAvg() { return avg; } public void setMax(BigDecimal max) { this.max = max; } public BigDecimal getMax() { return max; } public void setMin(BigDecimal min) { this.min = min; } public BigDecimal getMin() { return min; } } 7. Create the util java class called JavaBeanResult. The function of this class is to configure a native SQL query to return POJOs in a single line of code using the utility class. Credits: http://onpersistence.blogspot.com.br/2010/07/eclipselink-jpa-native-constructor.html package oramag.sample.dashboard.model.util; /******************************************************************************* * Copyright (c) 2010 Oracle. All rights reserved. * This program and the accompanying materials are made available under the * terms of the Eclipse Public License v1.0 and Eclipse Distribution License v. 1.0 * which accompanies this distribution. * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html * and the Eclipse Distribution License is available at * http://www.eclipse.org/org/documents/edl-v10.php. * * @author shsmith ******************************************************************************/ import java.lang.reflect.Constructor; import java.lang.reflect.InvocationTargetException; import java.util.ArrayList; import java.util.List; import javax.persistence.Query; import org.eclipse.persistence.exceptions.ConversionException; import org.eclipse.persistence.internal.helper.ConversionManager; import org.eclipse.persistence.internal.sessions.AbstractRecord; import org.eclipse.persistence.internal.sessions.AbstractSession; import org.eclipse.persistence.jpa.JpaHelper; import org.eclipse.persistence.queries.DatabaseQuery; import org.eclipse.persistence.queries.QueryRedirector; import org.eclipse.persistence.sessions.Record; import org.eclipse.persistence.sessions.Session; /*** * This class is a simple query redirector that intercepts the result of a * native query and builds an instance of the specified JavaBean class from each * result row. The order of the selected columns musts match the JavaBean class * constructor arguments order. * * To configure a JavaBeanResult on a native SQL query use: * JavaBeanResult.setQueryResultClass(query, SomeBeanClass.class); * where query is either a JPA SQL Query or native EclipseLink DatabaseQuery. * * @author shsmith * */ public final class JavaBeanResult implements QueryRedirector { private static final long serialVersionUID = 3025874987115503731L; protected Class resultClass; public static void setQueryResultClass(Query query, Class resultClass) { JavaBeanResult javaBeanResult = new JavaBeanResult(resultClass); DatabaseQuery databaseQuery = JpaHelper.getDatabaseQuery(query); databaseQuery.setRedirector(javaBeanResult); } public static void setQueryResultClass(DatabaseQuery query, Class resultClass) { JavaBeanResult javaBeanResult = new JavaBeanResult(resultClass); query.setRedirector(javaBeanResult); } protected JavaBeanResult(Class resultClass) { this.resultClass = resultClass; } @SuppressWarnings("unchecked") public Object invokeQuery(DatabaseQuery query, Record arguments, Session session) { List results = new ArrayList(); try { Constructor[] constructors = resultClass.getDeclaredConstructors(); Constructor javaBeanClassConstructor = null; // (Constructor) resultClass.getDeclaredConstructors()[0]; Class[] constructorParameterTypes = null; // javaBeanClassConstructor.getParameterTypes(); List rows = (List) query.execute( (AbstractSession) session, (AbstractRecord) arguments); for (Object[] columns : rows) { boolean found = false; for (Constructor constructor : constructors) { javaBeanClassConstructor = constructor; constructorParameterTypes = javaBeanClassConstructor.getParameterTypes(); if (columns.length == constructorParameterTypes.length) { found = true; break; } // if (columns.length != constructorParameterTypes.length) { // throw new ColumnParameterNumberMismatchException( // resultClass); // } } if (!found) throw new ColumnParameterNumberMismatchException( resultClass); Object[] constructorArgs = new Object[constructorParameterTypes.length]; for (int j = 0; j < columns.length; j++) { Object columnValue = columns[j]; Class parameterType = constructorParameterTypes[j]; // convert the column value to the correct type--if possible constructorArgs[j] = ConversionManager.getDefaultManager() .convertObject(columnValue, parameterType); } results.add(javaBeanClassConstructor.newInstance(constructorArgs)); } } catch (ConversionException e) { throw new ColumnParameterMismatchException(e); } catch (IllegalArgumentException e) { throw new ColumnParameterMismatchException(e); } catch (InstantiationException e) { throw new ColumnParameterMismatchException(e); } catch (IllegalAccessException e) { throw new ColumnParameterMismatchException(e); } catch (InvocationTargetException e) { throw new ColumnParameterMismatchException(e); } return results; } public final class ColumnParameterMismatchException extends RuntimeException { private static final long serialVersionUID = 4752000720859502868L; public ColumnParameterMismatchException(Throwable t) { super( "Exception while processing query results-ensure column order matches constructor parameter order", t); } } public final class ColumnParameterNumberMismatchException extends RuntimeException { private static final long serialVersionUID = 1776794744797667755L; public ColumnParameterNumberMismatchException(Class clazz) { super( "Number of selected columns does not match number of constructor arguments for: " + clazz.getName()); } } } 8. Create the DataControl and a jsf or jspx page 9. Drag allDepartmentsHavingEmployees from DataControl and drop in your page 10. Choose Graph > Type: Bar (Normal) > any layout 11. In the wizard screen, Bars label, adds: sum, avg, max, min. In the X Axis label, adds: departmentName, and click in OK button 12. Run the page, the result is showed below: You can download the workspace here . It was using the latest jdeveloper version 11.1.2.2.

    Read the article

  • Finding the normal of OBB face with an OBB penetrating

    - by Milo
    Below is an illustration: I have an OBB in an OBB (see below for OBB2D code if needed). What I need to determine is, what face it is in, and what direction do I point the normal? The goal is to get the OBB out of the OBB so the normal needs to face outward of the OBB. How could I go about: Finding what face the line is penetrating given the 4 corners of the OBB and the class below: if we define dx=x2-x1 and dy=y2-y1, then the normals are (-dy, dx) and (dy, -dx). Which normal points outward of the OBB? Thanks public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } };

    Read the article

  • SPARC T3-1 Record Results Running JD Edwards EnterpriseOne Day in the Life Benchmark with Added Batch Component

    - by Brian
    Using Oracle's SPARC T3-1 server for the application tier and Oracle's SPARC Enterprise M3000 server for the database tier, a world record result was produced running the Oracle's JD Edwards EnterpriseOne applications Day in the Life benchmark run concurrently with a batch workload. The SPARC T3-1 server based result has 25% better performance than the IBM Power 750 POWER7 server even though the IBM result did not include running a batch component. The SPARC T3-1 server based result has 25% better space/performance than the IBM Power 750 POWER7 server as measured by the online component. The SPARC T3-1 server based result is 5x faster than the x86-based IBM x3650 M2 server system when executing the online component of the JD Edwards EnterpriseOne 9.0.1 Day in the Life benchmark. The IBM result did not include a batch component. The SPARC T3-1 server based result has 2.5x better space/performance than the x86-based IBM x3650 M2 server as measured by the online component. The combination of SPARC T3-1 and SPARC Enterprise M3000 servers delivered a Day in the Life benchmark result of 5000 online users with 0.875 seconds of average transaction response time running concurrently with 19 Universal Batch Engine (UBE) processes at 10 UBEs/minute. The solution exercises various JD Edwards EnterpriseOne applications while running Oracle WebLogic Server 11g Release 1 and Oracle Web Tier Utilities 11g HTTP server in Oracle Solaris Containers, together with the Oracle Database 11g Release 2. The SPARC T3-1 server showed that it could handle the additional workload of batch processing while maintaining the same number of online users for the JD Edwards EnterpriseOne Day in the Life benchmark. This was accomplished with minimal loss in response time. JD Edwards EnterpriseOne 9.0.1 takes advantage of the large number of compute threads available in the SPARC T3-1 server at the application tier and achieves excellent response times. The SPARC T3-1 server consolidates the application/web tier of the JD Edwards EnterpriseOne 9.0.1 application using Oracle Solaris Containers. Containers provide flexibility, easier maintenance and better CPU utilization of the server leaving processing capacity for additional growth. A number of Oracle advanced technology and features were used to obtain this result: Oracle Solaris 10, Oracle Solaris Containers, Oracle Java Hotspot Server VM, Oracle WebLogic Server 11g Release 1, Oracle Web Tier Utilities 11g, Oracle Database 11g Release 2, the SPARC T3 and SPARC64 VII+ based servers. This is the first published result running both online and batch workload concurrently on the JD Enterprise Application server. No published results are available from IBM running the online component together with a batch workload. The 9.0.1 version of the benchmark saw some minor performance improvements relative to 9.0. When comparing between 9.0.1 and 9.0 results, the reader should take this into account when the difference between results is small. Performance Landscape JD Edwards EnterpriseOne Day in the Life Benchmark Online with Batch Workload This is the first publication on the Day in the Life benchmark run concurrently with batch jobs. The batch workload was provided by Oracle's Universal Batch Engine. System RackUnits Online Users Resp Time (sec) BatchConcur(# of UBEs) BatchRate(UBEs/m) Version SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10 M3000, 1xSPARC64 VII+ (2.86 GHz), Solaris 10 4 5000 0.88 19 10 9.0.1 Resp Time (sec) — Response time of online jobs reported in seconds Batch Concur (# of UBEs) — Batch concurrency presented in the number of UBEs Batch Rate (UBEs/m) — Batch transaction rate in UBEs/minute. JD Edwards EnterpriseOne Day in the Life Benchmark Online Workload Only These results are for the Day in the Life benchmark. They are run without any batch workload. System RackUnits Online Users ResponseTime (sec) Version SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10 M3000, 1xSPARC64 VII (2.75 GHz), Solaris 10 4 5000 0.52 9.0.1 IBM Power 750, 1xPOWER7 (3.55 GHz), IBM i7.1 4 4000 0.61 9.0 IBM x3650M2, 2xIntel X5570 (2.93 GHz), OVM 2 1000 0.29 9.0 IBM result from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used WebSphere Configuration Summary Hardware Configuration: 1 x SPARC T3-1 server 1 x 1.65 GHz SPARC T3 128 GB memory 16 x 300 GB 10000 RPM SAS 1 x Sun Flash Accelerator F20 PCIe Card, 92 GB 1 x 10 GbE NIC 1 x SPARC Enterprise M3000 server 1 x 2.86 SPARC64 VII+ 64 GB memory 1 x 10 GbE NIC 2 x StorageTek 2540 + 2501 Software Configuration: JD Edwards EnterpriseOne 9.0.1 with Tools 8.98.3.3 Oracle Database 11g Release 2 Oracle 11g WebLogic server 11g Release 1 version 10.3.2 Oracle Web Tier Utilities 11g Oracle Solaris 10 9/10 Mercury LoadRunner 9.10 with Oracle Day in the Life kit for JD Edwards EnterpriseOne 9.0.1 Oracle’s Universal Batch Engine - Short UBEs and Long UBEs Benchmark Description JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations. Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and other manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company. The workload consists of online transactions and the UBE workload of 15 short and 4 long UBEs. LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time. The UBE processes workload runs from the JD Enterprise Application server. Oracle's UBE processes come as three flavors: Short UBEs < 1 minute engage in Business Report and Summary Analysis, Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address, Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs. The UBE workload generates large numbers of PDF files reports and log files. The UBE Queues are categorized as the QBATCHD, a single threaded queue for large UBEs, and the QPROCESS queue for short UBEs run concurrently. One of the Oracle Solaris Containers ran 4 Long UBEs, while another Container ran 15 short UBEs concurrently. The mixed size UBEs ran concurrently from the SPARC T3-1 server with the 5000 online users driven by the LoadRunner. Oracle’s UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute. Key Points and Best Practices Two JD Edwards EnterpriseOne Application Servers and two Oracle Fusion Middleware WebLogic Servers 11g R1 coupled with two Oracle Fusion Middleware 11g Web Tier HTTP Server instances on the SPARC T3-1 server were hosted in four separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers. See Also SPARC T3-1 oracle.com SPARC Enterprise M3000 oracle.com Oracle Solaris oracle.com JD Edwards EnterpriseOne oracle.com Oracle Database 11g Release 2 Enterprise Edition oracle.com Disclosure Statement Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 6/27/2011.

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #048

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Order of Result Set of SELECT Statement on Clustered Indexed Table When ORDER BY is Not Used Above theory is true in most of the cases. However SQL Server does not use that logic when returning the resultset. SQL Server always returns the resultset which it can return fastest.In most of the cases the resultset which can be returned fastest is the resultset which is returned using clustered index. Effect of TRANSACTION on Local Variable – After ROLLBACK and After COMMIT One of the Jr. Developer asked me this question (What will be the Effect of TRANSACTION on Local Variable – After ROLLBACK and After COMMIT?) while I was rushing to an important meeting. I was getting late so I asked him to talk with his Application Tech Lead. When I came back from meeting both of them were looking for me. They said they are confused. I quickly wrote down following example for them. 2008 SQL SERVER – Guidelines and Coding Standards Complete List Download Coding standards and guidelines are very important for any developer on the path of a successful career. A coding standard is a set of guidelines, rules and regulations on how to write code. Coding standards should be flexible enough or should take care of the situation where they should not prevent best practices for coding. They are basically the guidelines that one should follow for better understanding. Download Guidelines and Coding Standards complete List Download Get Answer in Float When Dividing of Two Integer Many times we have requirements of some calculations amongst different fields in Tables. One of the software developers here was trying to calculate some fields having integer values and divide it which gave incorrect results in integer where accurate results including decimals was expected. Puzzle – Computed Columns Datatype Explanation SQL Server automatically does a cast to the data type having the highest precedence. So the result of INT and INT will be INT, but INT and FLOAT will be FLOAT because FLOAT has a higher precedence. If you want a different data type, you need to do an EXPLICIT cast. Renaming SP is Not Good Idea – Renaming Stored Procedure Does Not Update sys.procedures I have written many articles about renaming a tables, columns and procedures SQL SERVER – How to Rename a Column Name or Table Name, here I found something interesting about renaming the stored procedures and felt like sharing it with you all. The interesting fact is that when we rename a stored procedure using SP_Rename command, the Stored Procedure is successfully renamed. But when we try to test the procedure using sp_helptext, the procedure will be having the old name instead of new names. 2009 Insert Values of Stored Procedure in Table – Use Table Valued Function It is clear from the result set that , where I have converted stored procedure logic into the table valued function, is much better in terms of logic as it saves a large number of operations. However, this option should be used carefully. The performance of the stored procedure is “usually” better than that of functions. Interesting Observation – Index on Index View Used in Similar Query Recently, I was working on an optimization project for one of the largest organizations. While working on one of the queries, we came across a very interesting observation. We found that there was a query on the base table and when the query was run, it used the index, which did not exist in the base table. On careful examination, we found that the query was using the index that was on another view. This was very interesting as I have personally never experienced a scenario like this. In simple words, “Query on the base table can use the index created on the indexed view of the same base table.” Interesting Observation – Execution Plan and Results of Aggregate Concatenation Queries Working with SQL Server has never seemed to be monotonous – no matter how long one has worked with it. Quite often, I come across some excellent comments that I feel like acknowledging them as blog posts. Recently, I wrote an article on SQL SERVER – Execution Plan and Results of Aggregate Concatenation Queries Depend Upon Expression Location, which is well received in the community. 2010 I encourage all of you to go through complete series and write your own on the subject. If you write an article and send it to me, I will publish it on this blog with due credit to you. If you write on your own blog, I will update this blog post pointing to your blog post. SQL SERVER – ORDER BY Does Not Work – Limitation of the View 1 SQL SERVER – Adding Column is Expensive by Joining Table Outside View – Limitation of the View 2 SQL SERVER – Index Created on View not Used Often – Limitation of the View 3 SQL SERVER – SELECT * and Adding Column Issue in View – Limitation of the View 4 SQL SERVER – COUNT(*) Not Allowed but COUNT_BIG(*) Allowed – Limitation of the View 5 SQL SERVER – UNION Not Allowed but OR Allowed in Index View – Limitation of the View 6 SQL SERVER – Cross Database Queries Not Allowed in Indexed View – Limitation of the View 7 SQL SERVER – Outer Join Not Allowed in Indexed Views – Limitation of the View 8 SQL SERVER – SELF JOIN Not Allowed in Indexed View – Limitation of the View 9 SQL SERVER – Keywords View Definition Must Not Contain for Indexed View – Limitation of the View 10 SQL SERVER – View Over the View Not Possible with Index View – Limitations of the View 11 2011 Startup Parameters Easy to Configure If you are a regular reader of this blog, you must be aware that I have written about SQL Server Denali recently. Here is the quickest way to reach into the screen where we can change the startup parameters. Go to SQL Server Configuration Manager >> SQL Server Services >> Right Click on the Server >> Properties >> Startup Parameters 2012 Validating Unique Columnname Across Whole Database I sometimes come across very strange requirements and often I do not receive a proper explanation of the same. Here is the one of those examples. For example “Our business requirement is when we add new column we want it unique across current database.” Read the solution to this strange request in this blog post. Excel Losing Decimal Values When Value Pasted from SSMS ResultSet It is very common when users are coping the resultset to Excel, the floating point or decimals are missed. The solution is very much simple and it requires a small adjustment in the Excel. By default Excel is very smart and when it detects the value which is getting pasted is numeric it changes the column format to accommodate that. Basic Calculation and PEMDAS Order of Operation Read this interesting blog post for fantastic conversation about the subject. Copy Column Headers from Resultset – SQL in Sixty Seconds #027 – Video http://www.youtube.com/watch?v=x_-3tLqTRv0 Delete From Multiple Table – Update Multiple Table in Single Statement There are two questions which I get every single day multiple times. In my gmail, I have created standard canned reply for them. Let us see the questions here. I want to delete from multiple table in a single statement how will I do it? I want to update multiple table in a single statement how will I do it? Read the answer in the blog post. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • terminate called after throwing an instance of 'std::length_error'

    - by mark
    hello all, this is my first post here. As i am newbie, the problem might be stupid. I was writing a piece of code while the following error message shown, terminate called after throwing an instance of 'std::length_error' what(): basic_string::_S_create /home/gcj/finals /home/gcj/quals where Aborted the following is the offending code especially Line 39 to Line 52. It is weired for me as this block of code is almost same as the Line64 to Line79. int main(){ std::vector<std::string> dirs, need; std::string tmp_str; std::ifstream fp_in("small.in"); std::ofstream fp_out("output"); std::string::iterator iter_substr_begin, iter_substr_end; std::string slash("/"); int T, N, M; fp_in>>T; for (int t = 0; t < T; t++){ std::cout<<" time "<< t << std::endl; fp_in >> N >> M; for (int n =0; n<N; n++){ fp_in>>tmp_str; dirs.push_back(tmp_str); tmp_str.clear(); } for (int m=0; m<M; m++){ fp_in>>tmp_str; need.push_back(tmp_str); tmp_str.clear(); } for (std::vector<std::string>::iterator iter = dirs.begin(); iter!=dirs.end(); iter++){ for (std::string::iterator iter_str = (*iter).begin()+1; iter_str<(*iter).end(); ++iter_str){ if ((*iter_str)=='/') { std::string tmp_str2((*iter).begin(), iter_str); if (find(dirs.begin(), dirs.end(), tmp_str2)==dirs.end()) { dirs.push_back(tmp_str2); } } } } for (std::vector<std::string>::iterator iter_tmp = dirs.begin(); iter_tmp!= dirs.end(); ++iter_tmp) std::cout<<*iter_tmp<<" "; dirs.clear(); std::cout<<std::endl; std::cout<<" need "<<std::endl; //processing the next for (std::vector<std::string>::iterator iter_tmp = need.begin(); iter_tmp!=need.end(); ++iter_tmp) std::cout<<*iter_tmp<<" "; std::cout<<" where "; for (std::vector<std::string>::iterator iter = need.begin(); iter!=need.end(); iter++){ for (std::string::iterator iter_str = (*iter).begin()+1; iter_str<(*iter).end(); ++iter_str){ if ((*iter_str)=='/') { std::string tmp_str2((*iter).begin(), iter_str); if (find(need.begin(), need.end(), tmp_str2)==need.end()) { need.push_back(tmp_str2); } } } } for (std::vector<std::string>::iterator iter_tmp = need.begin(); iter_tmp!= need.end(); ++iter_tmp) std::cout<<*iter_tmp<<" "; need.clear(); std::cout<<std::endl; //finish processing the next } for (std::vector<std::string>::iterator iter= dirs.begin(); iter!=dirs.end(); iter++) std::cout<<*iter<<" "; std::cout<<std::endl; for (std::vector<std::string>::iterator iter= need.begin(); iter!=need.end(); iter++) std::cout<<*iter<<" "; std::cout<<std::endl; fp_out.close(); } best regards, Mark

    Read the article

  • client problems - misaligned expectations & not following SDLC protocols

    - by louism
    hi guys, im having some serious problems with a client on a project - i could use some advice please the short version i have been working with this client now for almost 6 months without any problems (a classified website project in the range of 500 hours) over the last few days things have drastically deteriorated to the point where ive had to place the project on-hold whilst i work-out what to do (this has pissed the client off even more) to be simplistic, the root cause of the issue is this: the client doesnt read the specs i make for him, i code the feature, he than wants to change things, i tell him its not to the agreed spec and that that change will have to be postponed and possibly charged for, he gets upset and rants saying 'hes paid for the feature' and im not keeping to the agreement (<- misalignment of expectations) i think the root cause of the root cause is my clients failure to take my SDLC protocols seriously. i have a bug tracking system in place which he practically refuses to use (he still emails me bugs), he doesnt seem to care to much for the protocols i use for dealing with scope creep and change control the whole situation came to a head recently where he 'cracked it' (an aussie term for being fed-up). the more terms like 'postponed for post-launch implementation', 'costed feature addition', and 'not to agreed spec' i kept using, the worse it got finally, he began to bully me - basically insisting i shut-up and do the work im being paid for. i wrote a long-winded email explaining how wrong he was on all these different points, and explaining what all the SDLC protocols do to protect the success of the project. than i deleted that email and wrote a new one in the new email, i suggested as a solution i write up a list of grievances we both had. we than review the list and compromise on different points: he gets some things he wants, i get some things i want. sometimes youve got to give ground to get ground his response to this suggestion was flat-out refusal, and a restatement that i should just get on with the work ive been paid to do so there you have the very subjective short version. if you have the time and inclination, the long version may be a little less bias as it has the email communiques between me and my client the long version (with background) the long version works by me showing you the email communiques which lead to the situation coming to a head. so here it is, judge for yourself where the trouble started... 1. client asked me why something was missing from a feature i just uploaded, my response was to show him what was in the spec: it basically said the item he was looking for was never going to be included 2. [clients response...] Memo Louis, We are following your own title fields and keeping a consistent layout. Why the big fuss about not adding "Part". It simply replaces "model" and is consistent with your current title fields. 3. [my response...] hi [client], the 'part' field appeared to me as a redundancy / mistake. i requested clarification but never received any in a timely manner (about 2 weeks ago) the specification for this feature also indicated it wasnt going to be included: RE: "Why the big fuss about not adding "Part" " it may not appear so, but it would actually be a lot of work for me to now add a 'Part' field it could take me up to 15-20 minutes to properly explain why its such a big undertaking to do this, but i would prefer to use that time instead to work on completing your v1.1 features as a simplistic explanation - it connects to the change in paradigm from a 'generic classified ad' model to a 'specific attributes for specific categories' model basically, i am saying it is a big fuss, but i understand that it doesnt look that way - after all, it is just one ity-bitty field :) if you require a fuller explanation, please let me know and i will commit the time needed to write that out also, if you recall when we first started on the project, i said that with the effort/time required for features, you would likely not know off the top of your head. you may think something is really complex, but in reality its quite simple, you might think something is easy - but it could actually be a massive trauma to code (which is the case here with the 'Part' field). if you also recalled, i said the best course of action is to just ask, and i would let you know on a case-by-case basis 4. [email from me to client...] hi [client], the online catalogue page is now up live (see my email from a few days ago for information on how it works) note: the window of opportunity for input/revisions on what data the catalogue stores has now closed (as i have put the code up live now) RE: the UI/layout of the online catalogue page you may still do visual/ui tweaks to the page at the moment (this window for input/revisions will close in a couple of days time) 5. [email from client to me...] *(note: i had put up the feature & asked the client to review it, never heard back from them for a few days)* Memo Louis, Here you go again. CLOSED without a word of input from the customer. I don't think so. I will reply tomorrow regarding the content and functionality we require from this feature. 5. [from me to client...] hi [client]: RE: from my understanding, you are saying that the mini-sale yard control would change itself based on the fact someone was viewing for parts & accessories <- is that correct? this change is outside the scope of the v1.1 mini-spec and therefore will need to wait 'til post launch for costing/implementation 6. [email from client to me...] Memo Louis, Following your v1.1 mini-spec and all your time paid in full for the work selected. We need to make the situation clear. There will be no further items held for post-launch. Do not expect us to pay for any further items other than those we have agreed upon. You have undertaken to complete the Parts and accessories feature as follows. Obviously, as part of this process the "mini search" will be effected, and will require "adaption to make sense". 7. [email from me to client...] hi [client], RE: "There will be no further items held for post-launch. Do not expect us to pay for any further items other than those we have agreed upon." a few points to consider: 1) the specification for the 'parts & accessories' feature was as follows: (i.e. [what] "...we have agreed upon.") 2) you have received the 'parts & accessories' feature free of charge (you have paid $0 for it). ive spent two days coding that feature as a gesture of good will i would request that you please consider these two facts carefully and sincerely 8. [email from client to me...] Memo Louis, I don't see how you are giving us anything for free. From your original fee proposal you have deleted more than 30 hours of included features. Your title "shelved features". Further you have charged us twice by adding back into the site, at an addition cost, some of those "shelved features" features. See v1.1 mini-spec. Did include in your original fee proposal a change request budget but then charge without discussion items included in v1.1 mini-spec. Included a further Features test plan for a regression test, a fee of 10 hours that would not have been required if the "shelved features" were not left out of the agreed fee proposal. I have made every attempt to satisfy your your uneven business sense by offering you everything your heart desired, in the v1.1 mini-spec, to be left once again with your attitude of "its too hard, lets leave it for post launch". I am no longer accepting anything less than what we have contracted you to do. That is clearly defined in v1.1 mini-spec, and you are paid in advance for delivering those items as an acceptable function. a few notes about the above email... i had to cull features from the original spec because it didnt fit into the budget. i explained this to the client at the start of the project (he wanted more features than he had budget hours to do them all) nothing has been charged for twice, i didnt charge the client for culled features. im charging him to now do those culled features the draft version of the project schedule included a change request budget of 10 hours, but i had to remove that to meet the budget (the client may not have been aware of this to be fair to them) what the client refers to as my attitude of 'too hard/leave it for post-launch', i called a change request protocol and a method for keeping scope creep under control 9. [email from me to client...] hi [client], RE: "...all your grievances..." i had originally written out a long email response; it was fantastic, it had all these great points of how 'you were wrong' and 'i was right', you would of loved it (and by 'loved it', i mean it would of just infuriated you more) so, i decided to deleted it start over, for two reasons: 1) a long email is being disrespectful of your time (youre a busy businessman with things to do) 2) whos wrong or right gets us no closer to fixing the problems we are experiencing what i propose is this... i prepare a bullet point list of your grievances and my grievances (yes, im unhappy too about how things are going - and it has little to do with money) i submit this list to you for you to add to as necessary we then both take a good hard look at this list, and we decide which areas we are willing to give ground on as an example, the list may look something like this: "louis, you keep taking away features you said you would do" [your grievance 2] [your grievance 3] [your grievance ...] "[client], i feel you dont properly read the specs i prepare for you..." [my grievance 2] [my grievance 3] [my grievance ...] if you are willing to give this a try, let me know will it work? who knows. but if it doesnt, we can always go back to arguing some more :) obviously, this will only work if you are willing to give it a genuine try, and you can accept that you may have to 'give some ground to get some ground' what do you think? 10. [email from client to me ...] Memo Louis, Instead of wasting your time listing grievances, I would prefer you complete the items in v1.1 mini-spec, to a satisfactory conclusion. We almost had the website ready for launch until you brought the v1.1 mini-spec into the frame. Obviously I expected you could complete the v1.1 mini-spec in a two-week time frame as you indicated and give the site a more profession presentation. Most of the problems have been caused by you not following our instructions, but deciding to do what you feel like at the time. And then arguing with us how the missing information is not necessary. For instance "Parts and Accessories". Why on earth would you leave out the parts heading, when it ties-in with the fields you have already developed. It replaces "model" and is just as important in the context of information that appears in the "Details" panel. We are at a stage where the the v1.1 mini-spec needs to be completed without further time wasting and the site is complete (subject to all features working). We are on standby at this end to do just that. Let me know when you are back, working on the site and we will process and complete each v1.1 mini-spec, item by item, until the job is complete. 11. [last email from me to client...] hi [client], based on this reply, and your demonstrated unwillingness to compromise/give any ground on issues at hand, i have decided to place your project on-hold for the moment i will be considering further options on how to over-come our challenges over the next few days i will contact you by monday 17/may to discuss any new options i have come up with, and if i believe it is appropriate to restart work on your project at that point or not told you it was long... what do you think?

    Read the article

  • Does Test Driven Development (TDD) improve Quality and Correctness? (Part 1)

    - by David V. Corbin
    Since the dawn of the computer age, various methodologies have been introduced to improve quality and reduce cost. In this posting, I will by sharing my experiences with Test Driven Development; both its benefits and limitations. To start this topic, we need to agree on what TDD is. The first is to define each of the three words as used in this context. Test - An item or action which measures something in some quantifiable form. Driven - The primary motivation or focus of a series of activities (process) Development - All phases of a software project/product from concept through delivery. The above are very simple definitions that result in the following: "TDD is a process where the primary focus is on measuring and quantifying all aspects of the creation of a (software) product." There are many places where TDD is used outside of software development, even though it is not known by this name. Consider the (conventional) education process that most of us grew up on. The focus was to get the best grades as measured by different tests. Many of these tests measured rote memorization and not understanding of the subject matter. The result of this that many people graduated with high scores but without "quality and correctness" in their ability to utilize the subject matter (of course, the flip side is true where certain people DID understand the material but were not very good at taking this type of test). Returning to software development, let us look at some common scenarios. While these items are generally applicable regardless of platform, language and tools; the remainder of this post will utilize Microsoft Visual Studio and Team Foundation Server (TFS) for examples. It should be realized that everyone does at least some aspect of TDD. At the most rudimentary level, getting a program to compile involves a "pass/fail" measurement (is the syntax valid) that drives their ability to proceed further (run the program). Other developers may create "Unit Tests" in the belief that having a test for every method/property of a class and good code coverage is the goal of TDD. These items may be helpful and even important, but really only address a small aspect of the overall effort. To see TDD in a bigger view, lets identify the various activities that are part of the Software Development LifeCycle. These are going to be presented in a Waterfall style for simplicity, but each item also occurs within Iterative methodologies such as Agile/Scrum. the key ones here are: Requirements Gathering Architecture Design Implementation Quality Assurance Can each of these items be subjected to a process which establishes metrics (quantified metrics) that reflect both the quality and correctness of each item? It should be clear that conventional Unit Tests do not apply to all of these items; at best they can verify that a local aspect (e.g. a Class/Method) of implementation matches the (test writers perspective of) the appropriate design document. So what can we do? For each of area, the goal is to create tests that are quantifiable and durable. The ability to quantify the measurements (beyond a simple pass/fail) is critical to tracking progress(eventually measuring the level of success that has been achieved) and for providing clear information on what items need to be addressed (along with the appropriate time to address them - in varying levels of detail) . Durability is important so that the test can be reapplied (ideally in an automated fashion) over the entire cycle. Returning for a moment back to our "education example", one must also be careful of how the tests are organized and how the measurements are taken. If a test is in a multiple choice format, there is a significant statistical probability that a correct answer might be the result of a random guess. Also, in many situations, having the student simply provide a final answer can obscure many important elements. For example, on a math test, having the student simply provide a numeric answer (rather than showing the methodology) may result in a complete mismatch between the process and the result. It is hard to determine which is worse: The student who makes a simple arithmetric error at one step of a long process (resulting in a wrong answer) or The student who (without providing the "workflow") uses a completely invalid approach, yet still comes up with the right number. The "Wrong Process"/"Right Answer" is probably the single biggest problem in software development. Even very simple items can suffer from this. As an example consider the following code for a "straight line" calculation....Is it correct? (for Integral Points)         int Solve(int m, int b, int x) { return m * x + b; }   Most people would respond "Yes". But let's take the question one step further... Is it correct for all possible values of m,b,x??? (no fair if you cheated by being focused on the bolded text!)  Without additional information regarding constrains on "the possible values of m,b,x" the answer must be NO, there is the risk of overflow/wraparound that will produce an incorrect result! To properly answer this question (i.e. Test the Code), one MUST be able to backtrack from the implementation through the design, and architecture all the way back to the requirements. And the requirement itself must be tested against the stakeholder(s). It is only when the bounding conditions are defined that it is possible to determine if the code is "Correct" and has "Quality". Yet, how many of us (myself included) have written such code without even thinking about it. In many canses we (think we) "know" what the bounds are, and that the code will be correct. As we all know, requirements change, "code reuse" causes implementations to be applied to different scenarios, etc. This leads directly to the types of system failures that plague so many projects. This approach to TDD is much more holistic than ones which start by focusing on the details. The fundamental concepts still apply: Each item should be tested. The test should be defined/implemented before (or concurrent with) the definition/implementation of the actual item. We also add concepts that expand the scope and alter the style by recognizing: There are many things beside "lines of code" that benefit from testing (measuring/evaluating in a formal way) Correctness and Quality can not be solely measured by "correct results" In the future parts, we will examine in greater detail some of the techniques that can be applied to each of these areas....

    Read the article

  • Review my ASP.NET Authentication code.

    - by Niels Bosma
    I have had some problems with authentication in ASP.NET. I'm not used most of the built in authentication in .NET. I gotten some complaints from users using Internet Explorer (any version - may affect other browsers as well) that the login process proceeds but when redirected they aren't authenticated and are bounced back to loginpage (pages that require authentication check if logged in and if not redirect back to loginpage). Can this be a cookie problem? Do I need to check if cookies are enabled by the user? What's the best way to build authentication if you have a custom member table and don't want to use ASP.NET login controls? Here my current code: using System; using System.Linq; using MyCompany; using System.Web; using System.Web.Security; using MyCompany.DAL; using MyCompany.Globalization; using MyCompany.DAL.Logs; using MyCompany.Logging; namespace MyCompany { public class Auth { public class AuthException : Exception { public int StatusCode = 0; public AuthException(string message, int statusCode) : base(message) { StatusCode = statusCode; } } public class EmptyEmailException : AuthException { public EmptyEmailException() : base(Language.RES_ERROR_LOGIN_CLIENT_EMPTY_EMAIL, 6) { } } public class EmptyPasswordException : AuthException { public EmptyPasswordException() : base(Language.RES_ERROR_LOGIN_CLIENT_EMPTY_PASSWORD, 7) { } } public class WrongEmailException : AuthException { public WrongEmailException() : base(Language.RES_ERROR_LOGIN_CLIENT_WRONG_EMAIL, 2) { } } public class WrongPasswordException : AuthException { public WrongPasswordException() : base(Language.RES_ERROR_LOGIN_CLIENT_WRONG_PASSWORD, 3) { } } public class InactiveAccountException : AuthException { public InactiveAccountException() : base(Language.RES_ERROR_LOGIN_CLIENT_INACTIVE_ACCOUNT, 5) { } } public class EmailNotValidatedException : AuthException { public EmailNotValidatedException() : base(Language.RES_ERROR_LOGIN_CLIENT_EMAIL_NOT_VALIDATED, 4) { } } private readonly string CLIENT_KEY = "9A751E0D-816F-4A92-9185-559D38661F77"; private readonly string CLIENT_USER_KEY = "0CE2F700-1375-4B0F-8400-06A01CED2658"; public Client Client { get { if(!IsAuthenticated) return null; if(HttpContext.Current.Items[CLIENT_KEY]==null) { HttpContext.Current.Items[CLIENT_KEY] = ClientMethods.Get<Client>((Guid)ClientId); } return (Client)HttpContext.Current.Items[CLIENT_KEY]; } } public ClientUser ClientUser { get { if (!IsAuthenticated) return null; if (HttpContext.Current.Items[CLIENT_USER_KEY] == null) { HttpContext.Current.Items[CLIENT_USER_KEY] = ClientUserMethods.GetByClientId((Guid)ClientId); } return (ClientUser)HttpContext.Current.Items[CLIENT_USER_KEY]; } } public Boolean IsAuthenticated { get; set; } public Guid? ClientId { get { if (!IsAuthenticated) return null; return (Guid)HttpContext.Current.Session["ClientId"]; } } public Guid? ClientUserId { get { if (!IsAuthenticated) return null; return ClientUser.Id; } } public int ClientTypeId { get { if (!IsAuthenticated) return 0; return Client.ClientTypeId; } } public Auth() { if (HttpContext.Current.User.Identity.IsAuthenticated) { IsAuthenticated = true; } } public void RequireClientOfType(params int[] types) { if (!(IsAuthenticated && types.Contains(ClientTypeId))) { HttpContext.Current.Response.Redirect((new UrlFactory(false)).GetHomeUrl(), true); } } public void Logout() { Logout(true); } public void Logout(Boolean redirect) { FormsAuthentication.SignOut(); IsAuthenticated = false; HttpContext.Current.Session["ClientId"] = null; HttpContext.Current.Items[CLIENT_KEY] = null; HttpContext.Current.Items[CLIENT_USER_KEY] = null; if(redirect) HttpContext.Current.Response.Redirect((new UrlFactory(false)).GetHomeUrl(), true); } public void Login(string email, string password, bool autoLogin) { Logout(false); email = email.Trim().ToLower(); password = password.Trim(); int status = 1; LoginAttemptLog log = new LoginAttemptLog { AutoLogin = autoLogin, Email = email, Password = password }; try { if (string.IsNullOrEmpty(email)) throw new EmptyEmailException(); if (string.IsNullOrEmpty(password)) throw new EmptyPasswordException(); ClientUser clientUser = ClientUserMethods.GetByEmailExcludingProspects(email); if (clientUser == null) throw new WrongEmailException(); if (!clientUser.Password.Equals(password)) throw new WrongPasswordException(); Client client = clientUser.Client; if (!(bool)client.PreRegCheck) throw new EmailNotValidatedException(); if (!(bool)client.Active || client.DeleteFlag.Equals("y")) throw new InactiveAccountException(); FormsAuthentication.SetAuthCookie(client.Id.ToString(), true); HttpContext.Current.Session["ClientId"] = client.Id; log.KeyId = client.Id; log.KeyEntityId = ClientMethods.GetEntityId(client.ClientTypeId); } catch (AuthException ax) { status = ax.StatusCode; log.Success = status == 1; log.Status = status; } finally { LogRecorder.Record(log); } } } }

    Read the article

  • Microsoft and the open source community

    - by Charles Young
    For the last decade, I have repeatedly, in my imitable Microsoft fan boy style, offered an alternative view to commonly held beliefs about Microsoft's stance on open source licensing.  In earlier times, leading figures in Microsoft were very vocal in resisting the idea that commercial licensing is outmoded or morally reprehensible.  Many people interpreted this as all-out corporate opposition to open source licensing.  I never read it that way. It is true that I've met individual employees of Microsoft who are antagonistic towards FOSS (free and open source software), but I've met more who are supportive or at least neutral on the subject.  In any case, individual attitudes of employees don't necessarily reflect a corporate stance.  The strongest opposition I've encountered has actually come from outside the company.  It's not a charitable thought, but I sometimes wonder if there are people in the .NET community who are opposed to FOSS simply because they believe, erroneously, that Microsoft is opposed. Here, for what it is worth, are the points I've repeated endlessly over the years and which have often been received with quizzical scepticism. a)  A decade ago, Microsoft's big problem was not FOSS per se, or even with copyleft.  The thing which really kept them awake at night was the fear that one day, someone might find, deep in the heart of the Windows code base, some code that should not be there and which was published under GPL.  The likelihood of this ever happening has long since faded away, but there was a time when MS was running scared.  I suspect this is why they held out for a while from making Windows source code open to inspection.  Nowadays, as an MVP, I am positively encouraged to ask to see Windows source. b)  Microsoft has never opposed the open source community.  They have had problems with specific people and organisations in the FOSS community.  Back in the 1990s, Richard Stallman gave time and energy to a successful campaign to launch antitrust proceedings against Microsoft.  In more recent times, the negative attitude of certain people to Microsoft's submission of two FOSS licences to the OSI (both of which have long since been accepted), and the mad scramble to try to find any argument, however tenuous, to block their submission was not, let us say, edifying. c) Microsoft has never, to my knowledge, written off the FOSS model.  They certainly don't agree that more traditional forms of licensing are inappropriate or immoral, and they've always been prepared to say so.  One reason why it was so hard to convince people that Microsoft is not rabidly antagonistic towards FOSS licensing is that so many people think they have no involvement in open source.  A decade ago, there was virtually no evidence of any such involvement.  However, that was a long time ago.  Quietly over the years, Microsoft has got on with the job of working out how to make use of FOSS licensing and how to support the FOSS community.  For example, as well as making increasingly extensive use of Github, they run an important FOSS forge (CodePlex) on which they, themselves, host many hundreds of distinct projects.  The total count may even be in the thousands now.  I suspect there is a limit of about 500 records on CodePlex searches because, for the past few years, whenever I search for Microsoft-specific projects on CodePlex, I always get approx. 500 hits.  Admittedly, a large volume of the stuff they publish under FOSS licences amounts to code samples, but many of those 'samples' have grown into useful and fully featured frameworks, libraries and tools. All this is leading up to the observation that yesterday's announcement by Scott Guthrie marks a significant milestone and should not go unnoticed.  If you missed it, let me summarise.   From the first release of .NET, Microsoft has offered a web development framework called ASP.NET.  The core libraries are included in the .NET framework which is released free of charge, but which is not open source.   However, in recent years, the number of libraries that constitute ASP.NET have grown considerably.  Today, most professional ASP.NET web development exploits the ASP.NET MVC framework.  This, together with several other important parts of the ASP.NET technology stack, is released on CodePlex under the Apache 2.0 licence.   Hence, today, a huge swathe of web development on the .NET/Azure platform relies four-square on the use of FOSS frameworks and libraries. Yesterday, Scott Guthrie announced the next stage of ASP.NET's journey towards FOSS nirvana.  This involves extending ASP.NET's FOSS stack to include Web API and the MVC Razor view engine which is rapidly becoming the de facto 'standard' for building web pages in ASP.NET.  However, perhaps the more important announcement is that the ASP.NET team will now accept and review contributions from the community.  Scott points out that this model is already in place elsewhere in Microsoft, and specifically draws attention to development of the Windows Azure SDKs.  These SDKs are central to Azure development.   The .NET and Java SDKs are published under Apache 2.0 on Github and Microsoft is open to community contributions.  Accepting contributions is a more profound move than simply releasing code under FOSS licensing.  It means that Microsoft is wholeheartedly moving towards a full-blooded open source approach for future evolution of some of their central and most widely used .NET and Azure frameworks and libraries.  In conjunction with Scott's announcement, Microsoft has also released Git support for CodePlex (at long last!) and, perhaps more importantly, announced significant new investment in their own FOSS forge. Here at Solidsoft we have several reasons to be very interested in Scott's announcement. I'll draw attention to one of them.  Earlier this year we wrote the initial version of a new UK Government web application called CloudStore.  CloudStore provides a way for local and central government to discover and purchase applications and services. We wrote the web site using ASP.NET MVC which is FOSS.  However, this point has been lost on the ladies and gentlemen of the press and, I suspect, on some of the decision makers on the government side.  They announced a few weeks ago that future versions of CloudStore will move to a FOSS framework, clearly oblivious of the fact that it is already built on a FOSS framework.  We are, it is fair to say, mildly irked by the uninformed and badly out-of-date assumption that “if it is Microsoft, it can't be FOSS”.  Old prejudices live on.

    Read the article

  • JSF : able to do mass update but unable to update a single row in a datatable

    - by nash
    I have a simple data object: Car. I am showing the properties of Car objects in a JSF datatable. If i display the properties using inputText tags, i am able to get the modified values in the managed bean. However i just want a single row editable. So have placed a edit button in a separate column and inputText and outputText for every property of Car. the edit button just toggles the rendering of inputText and outputText. Plus i placed a update button in a separate column which is used to save the updated values. However on clicking the update button, i still get the old values instead of the modified values. Here is the complete code: public class Car { int id; String brand; String color; public Car(int id, String brand, String color) { this.id = id; this.brand = brand; this.color = color; } //getters and setters of id, brand, color } Here is the managed bean: import java.util.ArrayList; import java.util.List; import javax.faces.bean.ManagedBean; import javax.faces.bean.RequestScoped; import javax.faces.component.UIData; @ManagedBean(name = "CarTree") @RequestScoped public class CarTree { int editableRowId; List<Car> carList; private UIData myTable; public CarTree() { carList = new ArrayList<Car>(); carList.add(new Car(1, "jaguar", "grey")); carList.add(new Car(2, "ferari", "red")); carList.add(new Car(3, "camri", "steel")); } public String update() { System.out.println("updating..."); //below statments print old values, was expecting modified values System.out.println("new car brand is:" + ((Car) myTable.getRowData()).brand); System.out.println("new car color is:" + ((Car) myTable.getRowData()).color); //how to get modified row values in this method?? return null; } public int getEditableRowId() { return editableRowId; } public void setEditableRowId(int editableRowId) { this.editableRowId = editableRowId; } public UIData getMyTable() { return myTable; } public void setMyTable(UIData myTable) { this.myTable = myTable; } public List<Car> getCars() { return carList; } public void setCars(List<Car> carList) { this.carList = carList; } } here is the JSF 2 page: <?xml version='1.0' encoding='UTF-8' ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.sun.com/jsf/html" xmlns:f="http://java.sun.com/jsf/core"> <h:head> <title>Facelet Title</title> </h:head> <h:body> <h:form id="carForm" prependId="false"> <h:dataTable id="dt" binding="#{CarTree.myTable}" value="#{CarTree.cars}" var="car" > <h:column> <h:outputText value="#{car.id}" /> </h:column> <h:column> <h:outputText value="#{car.brand}" rendered="#{CarTree.editableRowId != car.id}"/> <h:inputText value="#{car.brand}" rendered="#{CarTree.editableRowId == car.id}"/> </h:column> <h:column> <h:outputText value="#{car.color}" rendered="#{CarTree.editableRowId != car.id}"/> <h:inputText value="#{car.color}" rendered="#{CarTree.editableRowId == car.id}"/> </h:column> <h:column> <h:commandButton value="edit"> <f:setPropertyActionListener target="#{CarTree.editableRowId}" value="#{car.id}" /> </h:commandButton> </h:column> <h:column> <h:commandButton value="update" action="#{CarTree.update}"/> </h:column> </h:dataTable> </h:form> </h:body> </html> However if i just keep the inputText tags and remove the rendered attributes, i get the modified values in the update method. How can i get the modified values for the single row edit?

    Read the article

  • Why Is Faulty Behaviour In The .NET Framework Not Fixed?

    - by Alois Kraus
    Here is the scenario: You have a Windows Form Application that calls a method via Invoke or BeginInvoke which throws exceptions. Now you want to find out where the error did occur and how the method has been called. Here is the output we do get when we call Begin/EndInvoke or simply Invoke The actual code that was executed was like this:         private void cInvoke_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Invoke);         }            [MethodImpl(MethodImplOptions.NoInlining)]         void InvokingFunction(CallMode mode)         {             switch (mode)             {                 case CallMode.Invoke:                     this.Invoke(new MethodInvoker(GenerateError));   The faulting method is called GenerateError which does throw a NotImplementedException exception and wraps it in a NotSupportedException.           [MethodImpl(MethodImplOptions.NoInlining)]         void GenerateError()         {             F1();         }           private void F1()         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new NotSupportedException("Outer Exception", ex);             }         }           private void F2()         {            throw new NotImplementedException("Inner Exception");         } It is clear that the method F2 and F1 did actually throw these exceptions but we do not see them in the call stack. If we directly call the InvokingFunction and catch and print the exception we can find out very easily how we did get into this situation. We see methods F1,F2,GenerateError and InvokingFunction directly in the stack trace and we see that actually two exceptions did occur. Here is for comparison what we get from Invoke/EndInvoke System.NotImplementedException: Inner Exception     StackTrace:    at System.Windows.Forms.Control.MarshaledInvoke(Control caller, Delegate method, Object[] args, Boolean synchronous)     at System.Windows.Forms.Control.Invoke(Delegate method, Object[] args)     at WindowsFormsApplication1.AppForm.InvokingFunction(CallMode mode)     at WindowsFormsApplication1.AppForm.cInvoke_Click(Object sender, EventArgs e)     at System.Windows.Forms.Control.OnClick(EventArgs e)     at System.Windows.Forms.Button.OnClick(EventArgs e) The exception message is kept but the stack starts running from our Invoke call and not from the faulting method F2. We have therefore no clue where this exception did occur! The stack starts running at the method MarshaledInvoke because the exception is rethrown with the throw catchedException which resets the stack trace. That is bad but things are even worse because if previously lets say 5 exceptions did occur .NET will return only the first (innermost) exception. That does mean that we do not only loose the original call stack but all other exceptions and all data contained therein as well. It is a pity that MS does know about this and simply closes this issue as not important. Programmers will play a lot more around with threads than before thanks to TPL, PLINQ that do come with .NET 4. Multithreading is hyped quit a lot in the press and everybody wants to use threads. But if the .NET Framework makes it nearly impossible to track down the easiest UI multithreading issue I have a problem with that. The problem has been reported but obviously not been solved. .NET 4 Beta 2 did not have changed that dreaded GetBaseException call in MarshaledInvoke to return only the innermost exception of the complete exception stack. It is really time to fix this. WPF on the other hand does the right thing and wraps the exceptions inside a TargetInvocationException which makes much more sense. But Not everybody uses WPF for its daily work and Windows forms applications will still be used for a long time. Below is the code to repro the issues shown and how the exceptions can be rendered in a meaningful way. The default Exception.ToString implementation generates a hard to interpret stack if several nested exceptions did occur. using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using System.Threading; using System.Globalization; using System.Runtime.CompilerServices;   namespace WindowsFormsApplication1 {     public partial class AppForm : Form     {         enum CallMode         {             Direct = 0,             BeginInvoke = 1,             Invoke = 2         };           public AppForm()         {             InitializeComponent();             Thread.CurrentThread.CurrentUICulture = CultureInfo.InvariantCulture;             Application.ThreadException += new System.Threading.ThreadExceptionEventHandler(Application_ThreadException);         }           void Application_ThreadException(object sender, System.Threading.ThreadExceptionEventArgs e)         {             cOutput.Text = PrintException(e.Exception, 0, null).ToString();         }           private void cDirectUnhandled_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Direct);         }           private void cDirectCall_Click(object sender, EventArgs e)         {             try             {                 InvokingFunction(CallMode.Direct);             }             catch (Exception ex)             {                 cOutput.Text = PrintException(ex, 0, null).ToString();             }         }           private void cInvoke_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Invoke);         }           private void cBeginInvokeCall_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.BeginInvoke);         }           [MethodImpl(MethodImplOptions.NoInlining)]         void InvokingFunction(CallMode mode)         {             switch (mode)             {                 case CallMode.Direct:                     GenerateError();                     break;                 case CallMode.Invoke:                     this.Invoke(new MethodInvoker(GenerateError));                     break;                 case CallMode.BeginInvoke:                     IAsyncResult res = this.BeginInvoke(new MethodInvoker(GenerateError));                     this.EndInvoke(res);                     break;             }         }           [MethodImpl(MethodImplOptions.NoInlining)]         void GenerateError()         {             F1();         }           private void F1()         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new NotSupportedException("Outer Exception", ex);             }         }           private void F2()         {            throw new NotImplementedException("Inner Exception");         }           StringBuilder PrintException(Exception ex, int identLevel, StringBuilder sb)         {             StringBuilder builtStr = sb;             if( builtStr == null )                 builtStr = new StringBuilder();               if( ex == null )                 return builtStr;                 WriteLine(builtStr, String.Format("{0}: {1}", ex.GetType().FullName, ex.Message), identLevel);             WriteLine(builtStr, String.Format("StackTrace: {0}", ShortenStack(ex.StackTrace)), identLevel + 1);             builtStr.AppendLine();               return PrintException(ex.InnerException, ++identLevel, builtStr);         }               void WriteLine(StringBuilder sb, string msg, int identLevel)         {             foreach (string trimmedLine in SplitToLines(msg)                                            .Select( (line) => line.Trim()) )             {                 for (int i = 0; i < identLevel; i++)                     sb.Append('\t');                 sb.Append(trimmedLine);                 sb.AppendLine();             }         }           string ShortenStack(string stack)         {             int nonAppFrames = 0;             // Skip stack frames not part of our app but include two foreign frames and skip the rest             // If our stack frame is encountered reset counter to 0             return SplitToLines(stack)                               .Where((line) =>                               {                                   nonAppFrames = line.Contains("WindowsFormsApplication1") ? 0 : nonAppFrames + 1;                                   return nonAppFrames < 3;                               })                              .Select((line) => line)                              .Aggregate("", (current, line) => current + line + Environment.NewLine);         }           static char[] NewLines = Environment.NewLine.ToCharArray();         string[] SplitToLines(string str)         {             return str.Split(NewLines, StringSplitOptions.RemoveEmptyEntries);         }     } }

    Read the article

  • WPF Lookless Control Events

    - by Scott
    I have the following class: public class LooklessControl : Control { public List<int> IntList { get; private set; } public int CurrentInt { get; private set; } private int _index = 0; static LooklessControl() { DefaultStyleKeyProperty.OverrideMetadata(typeof(LooklessControl), new FrameworkPropertyMetadata(typeof(LooklessControl))); } public LooklessControl() { IntList = new List<int>(); for (int i = 0; i < 10; i++) { IntList.Add(i); } CurrentInt = IntList[_index]; } public static readonly RoutedCommand NextItemCommand = new RoutedCommand("NextItemCommand", typeof(LooklessControl)); private void ExecutedNextItemCommand(object sender, ExecutedRoutedEventArgs e) { NextItemHandler(); } private void CanExecuteNextItemCommand(object sender, CanExecuteRoutedEventArgs e) { e.CanExecute = true; } public static readonly RoutedCommand PrevItemCommand = new RoutedCommand("PrevItemCommand", typeof(LooklessControl)); private void ExecutedPrevItemCommand(ExecutedRoutedEventArgs e) { PrevItemHandler(); } private void CanExecutePrevItemCommand(object sender, CanExecuteRoutedEventArgs e) { e.CanExecute = true; } public static readonly RoutedEvent NextItemEvent = EventManager.RegisterRoutedEvent("NextItemEvent", RoutingStrategy.Bubble, typeof(RoutedEventHandler), typeof(LooklessControl)); public event RoutedEventHandler NextItem { add { AddHandler(NextItemEvent, value); } remove { RemoveHandler(NextItemEvent, value); } } private void RaiseNextItemEvent() { RoutedEventArgs args = new RoutedEventArgs(LooklessControl.NextItemEvent); RaiseEvent(args); } public static readonly RoutedEvent PrevItemEvent = EventManager.RegisterRoutedEvent("PrevItemEvent", RoutingStrategy.Bubble, typeof(RoutedEventHandler), typeof(LooklessControl)); public event RoutedEventHandler PrevItem { add { AddHandler(PrevItemEvent, value); } remove { RemoveHandler(PrevItemEvent, value); } } private void RaisePrevItemEvent() { RoutedEventArgs args = new RoutedEventArgs(LooklessControl.PrevItemEvent); RaiseEvent(args); } private void NextItemHandler() { _index++; if (_index == IntList.Count) { _index = 0; } CurrentInt = IntList[_index]; RaiseNextItemEvent(); } private void PrevItemHandler() { _index--; if (_index == 0) { _index = IntList.Count - 1; } CurrentInt = IntList[_index]; RaisePrevItemEvent(); } } The class has a default style, in Generic.xaml, that looks like this: <Style x:Key="{x:Type local:LooklessControl}" TargetType="{x:Type local:LooklessControl}"> <Setter Property="Height" Value="200"/> <Setter Property="Width" Value="90"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type local:LooklessControl}"> <Border BorderBrush="Black" BorderThickness="1" Padding="2"> <Grid> <Grid.RowDefinitions> <RowDefinition Height="20"/> <RowDefinition Height="*"/> </Grid.RowDefinitions> <Rectangle Grid.Row="0" Fill="LightGray"/> <Rectangle Grid.Row="1" Fill="Gainsboro"/> <Grid Grid.Row="0"> <Grid.ColumnDefinitions> <ColumnDefinition Width="10"/> <ColumnDefinition Width="*"/> <ColumnDefinition Width="10"/> </Grid.ColumnDefinitions> <Path Grid.Column="0" x:Name="pathLeftArrow" Data="M0,0.5 L1,1 1,0Z" Width="6" Height="14" Stretch="Fill" HorizontalAlignment="Center" Fill="SlateBlue"/> <TextBlock Grid.Column="1" Name="textBlock" Text="{Binding RelativeSource={RelativeSource TemplatedParent}, Path=CurrentInt}" HorizontalAlignment="Center" VerticalAlignment="Center" FontFamily="Junction" FontSize="13"/> <Path Grid.Column="2" x:Name="pathRightArrow" Data="M0,0 L1,0.5 0,1Z" Width="6" Height="14" Stretch="Fill" HorizontalAlignment="Center" Fill="SlateBlue"/> </Grid> <ListBox Grid.Row="1" HorizontalContentAlignment="Center" VerticalContentAlignment="Center" Background="Transparent" ItemsSource="{Binding RelativeSource={RelativeSource TemplatedParent}, Path=IntList}"/> </Grid> </Border> </ControlTemplate> </Setter.Value> </Setter> </Style> How do I make it so that when the user clicks on pathLeftArrow it fires LooklessControl.PrevItemCommand, or or they click on pathRightArrow and it fires LooklessControl.NextItemCommand, or they click on an item in the ListBox and LooklessControl is notified of the newly selected item? In other words, without adding x:Class to the top of Generic.xaml and thus creating a code-behind file for it, which I assume you wouldn't want to do, how do you handle events for elements in your xaml that don't have a Command property (which is just about everything other than a Button)? Should LooklessControl have it's own XAML file (much like what you get when you create a new UserControl) associated with it that Generic.xaml just pulls in as a MergedDictionar as its default template? Or is there some other acknowledged way to do what I'm trying to do?

    Read the article

  • JPA behaviour...

    - by Marcel
    Hi I have some trouble understanding a JPA behaviour. Mabye someone could give me a hint. Situation: Product entity: @Entity public class Product implements Serializable { ... @OneToMany(mappedBy="product", fetch=FetchType.EAGER) private List<ProductResource> productResources = new ArrayList<ProductResource>(); .... public List<ProductResource> getProductResources() { return productResources; } public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (!(obj instanceof Product)) return false; Product p = (Product) obj; return p.productId == productId; } } Resource entity: @Entity public class Resource implements Serializable { ... @OneToMany(mappedBy="resource", fetch=FetchType.EAGER) private List<ProductResource> productResources = new ArrayList<ProductResource>(); ... public void setProductResource(List<ProductResource> productResource) { this.productResources = productResource; } public List<ProductResource> getProductResources() { return productResources; } public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (!(obj instanceof Resource)) return false; Resource r = (Resource) obj; return (long)resourceId==(long)r.resourceId; } } ProductResource Entity: This is a JoinTable (association class) with additional properties (amount). It maps Product and Resources. @Entity public class ProductResource implements Serializable { ... @JoinColumn(nullable=false, updatable=false) @ManyToOne(fetch=FetchType.EAGER, cascade=CascadeType.PERSIST) private Product product; @JoinColumn(nullable=false, updatable=false) @ManyToOne(fetch=FetchType.EAGER, cascade=CascadeType.PERSIST) private Resource resource; private int amount; public void setProduct(Product product) { this.product = product; if(!product.getProductResources().contains((this))){ product.getProductResources().add(this); } } public Product getProduct() { return product; } public void setResource(Resource resource) { this.resource = resource; if(!resource.getProductResources().contains((this))){ resource.getProductResources().add(this); } } public Resource getResource() { return resource; } ... public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (!(obj instanceof ProductResource)) return false; ProductResource pr = (ProductResource) obj; return (long)pr.productResourceId == (long)productResourceId; } } This is the Session Bean (running on glassfish). @Stateless(mappedName="PersistenceManager") public class PersistenceManagerBean implements PersistenceManager { @PersistenceContext(unitName = "local_mysql") private EntityManager em; public Object create(Object entity) { em.persist(entity); return entity; } public void delete(Object entity) { em.remove(em.merge(entity)); } public Object retrieve(Class entityClass, Long id) { Object entity = em.find(entityClass, id); return entity; } public void update(Object entity) { em.merge(entity); } } I call the session Bean from a java client: public class Start { public static void main(String[] args) throws NamingException { PersistenceManager pm = (PersistenceManager) new InitialContext().lookup("java:global/BackITServer/PersistenceManagerBean"); ProductResource pr = new ProductResource(); Product p = new Product(); Resource r = new Resource(); pr.setProduct(p); pr.setResource(r); ProductResource pr_stored = (ProductResource) pm.create(pr); pm.delete(pr_stored); Product p_ret = (Product) pm.retrieve(Product.class, pr_stored.getProduct().getProductId()); // prints out true ???????????????????????????????????? System.out.println(p_ret.getProductResources().contains(pr_stored)); } } So here comes my problem. Why is the ProductResource entity still in the List productResources(see code above). The productResource tuple in the db is gone after the deletion and I do newly retrieve the Product entity. If I understood right every method call of the client happens in a new persistence context, but here i obviously get back the non-refreshed product object!? Any help is appreciated Thanks Marcel

    Read the article

  • Binary Search Tree Implementation

    - by Gabe
    I've searched the forum, and tried to implement the code in the threads I found. But I've been working on this real simple program since about 10am, and can't solve the seg. faults for the life of me. Any ideas on what I'm doing wrong would be greatly appreciated. BST.h (All the implementation problems should be in here.) #ifndef BST_H_ #define BST_H_ #include <stdexcept> #include <iostream> #include "btnode.h" using namespace std; /* A class to represent a templated binary search tree. */ template <typename T> class BST { private: //pointer to the root node in the tree BTNode<T>* root; public: //default constructor to make an empty tree BST(); /* You have to document these 4 functions */ void insert(T value); bool search(const T& value) const; bool search(BTNode<T>* node, const T& value) const; void printInOrder() const; void remove(const T& value); //function to print out a visual representation //of the tree (not just print the tree's values //on a single line) void print() const; private: //recursive helper function for "print()" void print(BTNode<T>* node,int depth) const; }; /* Default constructor to make an empty tree */ template <typename T> BST<T>::BST() { root = NULL; } template <typename T> void BST<T>::insert(T value) { BTNode<T>* newNode = new BTNode<T>(value); cout << newNode->data; if(root == NULL) { root = newNode; return; } BTNode<T>* current = new BTNode<T>(NULL); current = root; current->data = root->data; while(true) { if(current->left == NULL && current->right == NULL) break; if(current->right != NULL && current->left != NULL) { if(newNode->data > current->data) current = current->right; else if(newNode->data < current->data) current = current->left; } else if(current->right != NULL && current->left == NULL) { if(newNode->data < current->data) break; else if(newNode->data > current->data) current = current->right; } else if(current->right == NULL && current->left != NULL) { if(newNode->data > current->data) break; else if(newNode->data < current->data) current = current->left; } } if(current->data > newNode->data) current->left = newNode; else current->right = newNode; return; } //public helper function template <typename T> bool BST<T>::search(const T& value) const { return(search(root,value)); //start at the root } //recursive function template <typename T> bool BST<T>::search(BTNode<T>* node, const T& value) const { if(node == NULL || node->data == value) return(node != NULL); //found or couldn't find value else if(value < node->data) return search(node->left,value); //search left subtree else return search(node->right,value); //search right subtree } template <typename T> void BST<T>::printInOrder() const { //print out the value's in the tree in order // //You may need to use this function as a helper //and create a second recursive function //(see "print()" for an example) } template <typename T> void BST<T>::remove(const T& value) { if(root == NULL) { cout << "Tree is empty. No removal. "<<endl; return; } if(!search(value)) { cout << "Value is not in the tree. No removal." << endl; return; } BTNode<T>* current; BTNode<T>* parent; current = root; parent->left = NULL; parent->right = NULL; cout << root->left << "LEFT " << root->right << "RIGHT " << endl; cout << root->data << " ROOT" << endl; cout << current->data << "CURRENT BEFORE" << endl; while(current != NULL) { cout << "INTkhkjhbljkhblkjhlk " << endl; if(current->data == value) break; else if(value > current->data) { parent = current; current = current->right; } else { parent = current; current = current->left; } } cout << current->data << "CURRENT AFTER" << endl; // 3 cases : //We're looking at a leaf node if(current->left == NULL && current->right == NULL) // It's a leaf { if(parent->left == current) parent->left = NULL; else parent->right = NULL; delete current; cout << "The value " << value << " was removed." << endl; return; } // Node with single child if((current->left == NULL && current->right != NULL) || (current->left != NULL && current->right == NULL)) { if(current->left == NULL && current->right != NULL) { if(parent->left == current) { parent->left = current->right; cout << "The value " << value << " was removed." << endl; delete current; } else { parent->right = current->right; cout << "The value " << value << " was removed." << endl; delete current; } } else // left child present, no right child { if(parent->left == current) { parent->left = current->left; cout << "The value " << value << " was removed." << endl; delete current; } else { parent->right = current->left; cout << "The value " << value << " was removed." << endl; delete current; } } return; } //Node with 2 children - Replace node with smallest value in right subtree. if (current->left != NULL && current->right != NULL) { BTNode<T>* check; check = current->right; if((check->left == NULL) && (check->right == NULL)) { current = check; delete check; current->right = NULL; cout << "The value " << value << " was removed." << endl; } else // right child has children { //if the node's right child has a left child; Move all the way down left to locate smallest element if((current->right)->left != NULL) { BTNode<T>* leftCurrent; BTNode<T>* leftParent; leftParent = current->right; leftCurrent = (current->right)->left; while(leftCurrent->left != NULL) { leftParent = leftCurrent; leftCurrent = leftCurrent->left; } current->data = leftCurrent->data; delete leftCurrent; leftParent->left = NULL; cout << "The value " << value << " was removed." << endl; } else { BTNode<T>* temp; temp = current->right; current->data = temp->data; current->right = temp->right; delete temp; cout << "The value " << value << " was removed." << endl; } } return; } } /* Print out the values in the tree and their relationships visually. Sample output: 22 18 15 10 9 5 3 1 */ template <typename T> void BST<T>::print() const { print(root,0); } template <typename T> void BST<T>::print(BTNode<T>* node,int depth) const { if(node == NULL) { std::cout << std::endl; return; } print(node->right,depth+1); for(int i=0; i < depth; i++) { std::cout << "\t"; } std::cout << node->data << std::endl; print(node->left,depth+1); } #endif main.cpp #include "bst.h" #include <iostream> using namespace std; int main() { BST<int> tree; cout << endl << "LAB #13 - BINARY SEARCH TREE PROGRAM" << endl; cout << "----------------------------------------------------------" << endl; // Insert. cout << endl << "INSERT TESTS" << endl; // No duplicates allowed. tree.insert(0); tree.insert(5); tree.insert(15); tree.insert(25); tree.insert(20); // Search. cout << endl << "SEARCH TESTS" << endl; int x = 0; int y = 1; if(tree.search(x)) cout << "The value " << x << " is on the tree." << endl; else cout << "The value " << x << " is NOT on the tree." << endl; if(tree.search(y)) cout << "The value " << y << " is on the tree." << endl; else cout << "The value " << y << " is NOT on the tree." << endl; // Removal. cout << endl << "REMOVAL TESTS" << endl; tree.remove(0); tree.remove(1); tree.remove(20); // Print. cout << endl << "PRINTED DIAGRAM OF BINARY SEARCH TREE" << endl; cout << "----------------------------------------------------------" << endl; tree.print(); cout << endl << "Program terminated. Goodbye." << endl << endl; } BTNode.h #ifndef BTNODE_H_ #define BTNODE_H_ #include <iostream> /* A class to represent a node in a binary search tree. */ template <typename T> class BTNode { public: //constructor BTNode(T d); //the node's data value T data; //pointer to the node's left child BTNode<T>* left; //pointer to the node's right child BTNode<T>* right; }; /* Simple constructor. Sets the data value of the BTNode to "d" and defaults its left and right child pointers to NULL. */ template <typename T> BTNode<T>::BTNode(T d) : left(NULL), right(NULL) { data = d; } #endif Thanks.

    Read the article

  • The remote server returned an error: (400) Bad Request - uploading less 2MB file size?

    - by fiberOptics
    The file succeed to upload when it is 2KB or lower in size. The main reason why I use streaming is to be able to upload file up to at least 1 GB. But when I try to upload file with less 1MB size, I get bad request. It is my first time to deal with downloading and uploading process, so I can't easily find the cause of error. Testing part: private void button24_Click(object sender, EventArgs e) { try { OpenFileDialog openfile = new OpenFileDialog(); if (openfile.ShowDialog() == System.Windows.Forms.DialogResult.OK) { string port = "3445"; byte[] fileStream; using (FileStream fs = new FileStream(openfile.FileName, FileMode.Open, FileAccess.Read, FileShare.Read)) { fileStream = new byte[fs.Length]; fs.Read(fileStream, 0, (int)fs.Length); fs.Close(); fs.Dispose(); } string baseAddress = "http://localhost:" + port + "/File/AddStream?fileID=9"; HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create(baseAddress); request.Method = "POST"; request.ContentType = "text/plain"; //request.ContentType = "application/octet-stream"; Stream serverStream = request.GetRequestStream(); serverStream.Write(fileStream, 0, fileStream.Length); serverStream.Close(); using (HttpWebResponse response = request.GetResponse() as HttpWebResponse) { int statusCode = (int)response.StatusCode; StreamReader reader = new StreamReader(response.GetResponseStream()); } } } catch (Exception ex) { MessageBox.Show(ex.Message); } } Service: [WebInvoke(UriTemplate = "AddStream?fileID={fileID}", Method = "POST", BodyStyle = WebMessageBodyStyle.Bare)] public bool AddStream(long fileID, System.IO.Stream fileStream) { ClasslLogic.FileComponent svc = new ClasslLogic.FileComponent(); return svc.AddStream(fileID, fileStream); } Server code for streaming: namespace ClasslLogic { public class StreamObject : IStreamObject { public bool UploadFile(string filename, Stream fileStream) { try { FileStream fileToupload = new FileStream(filename, FileMode.Create); byte[] bytearray = new byte[10000]; int bytesRead, totalBytesRead = 0; do { bytesRead = fileStream.Read(bytearray, 0, bytearray.Length); totalBytesRead += bytesRead; } while (bytesRead > 0); fileToupload.Write(bytearray, 0, bytearray.Length); fileToupload.Close(); fileToupload.Dispose(); } catch (Exception ex) { throw new Exception(ex.Message); } return true; } } } Web config: <system.serviceModel> <bindings> <basicHttpBinding> <binding> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="2097152" maxBytesPerRead="4096" maxNameTableCharCount="2097152" /> <security mode="None" /> </binding> <binding name="ClassLogicBasicTransfer" closeTimeout="00:05:00" openTimeout="00:05:00" receiveTimeout="00:15:00" sendTimeout="00:01:00" allowCookies="false" bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="67108864" maxReceivedMessageSize="67108864" messageEncoding="Mtom" textEncoding="utf-8" useDefaultWebProxy="true"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="67108864" maxBytesPerRead="4096" maxNameTableCharCount="67108864" /> <security mode="None"> <transport clientCredentialType="None" proxyCredentialType="None" realm="" /> <message clientCredentialType="UserName" algorithmSuite="Default" /> </security> </binding> <binding name="BaseLogicWSHTTP"> <security mode="None" /> </binding> <binding name="BaseLogicWSHTTPSec" /> </basicHttpBinding> </bindings> <behaviors> <serviceBehaviors> <behavior> <!-- To avoid disclosing metadata information, set the value below to false and remove the metadata endpoint above before deployment --> <serviceMetadata httpGetEnabled="true" /> <!-- To receive exception details in faults for debugging purposes, set the value below to true. Set to false before deployment to avoid disclosing exception information --> <serviceDebug includeExceptionDetailInFaults="true" /> </behavior> </serviceBehaviors> </behaviors> <serviceHostingEnvironment multipleSiteBindingsEnabled="true" aspNetCompatibilityEnabled="true" /> </system.serviceModel> I'm not sure if this affects the streaming function, because I'm using WCF4.0 rest template which config is dependent in Global.asax. One more thing is this, whether I run the service and passing a stream or not, the created file always contain this thing. How could I remove the "NUL" data? Thanks in advance. Edit public bool UploadFile(string filename, Stream fileStream) { try { FileStream fileToupload = new FileStream(filename, FileMode.Create); byte[] bytearray = new byte[10000]; int bytesRead, totalBytesRead = 0; do { bytesRead = fileStream.Read(bytearray, totalBytesRead, bytearray.Length - totalBytesRead); totalBytesRead += bytesRead; } while (bytesRead > 0); fileToupload.Write(bytearray, 0, totalBytesRead); fileToupload.Close(); fileToupload.Dispose(); } catch (Exception ex) { throw new Exception(ex.Message); } return true; }

    Read the article

  • How to add correct cancellation when downloading a file with the example in the samples of the new P

    - by Mike
    Hello everybody, I have downloaded the last samples of the Parallel Programming team, and I don't succeed in adding correctly the possibility to cancel the download of a file. Here is the code I ended to have: var wreq = (HttpWebRequest)WebRequest.Create(uri); // Fire start event DownloadStarted(this, new DownloadStartedEventArgs(remoteFilePath)); long totalBytes = 0; wreq.DownloadDataInFileAsync(tmpLocalFile, cancellationTokenSource.Token, allowResume, totalBytesAction => { totalBytes = totalBytesAction; }, readBytes => { Log.Debug("Progression : {0} / {1} => {2}%", readBytes, totalBytes, 100 * (double)readBytes / totalBytes); DownloadProgress(this, new DownloadProgressEventArgs(remoteFilePath, readBytes, totalBytes, (int)(100 * readBytes / totalBytes))); }) .ContinueWith( (antecedent ) => { if (antecedent.IsFaulted) Log.Debug(antecedent.Exception.Message); //Fire end event SetEndDownload(antecedent.IsCanceled, antecedent.Exception, tmpLocalFile, 0); }, cancellationTokenSource.Token); I want to fire an end event after the download is finished, hence the ContinueWith. I slightly changed the code of the samples to add the CancellationToken and the 2 delegates to get the size of the file to download, and the progression of the download: return webRequest.GetResponseAsync() .ContinueWith(response => { if (totalBytesAction != null) totalBytesAction(response.Result.ContentLength); response.Result.GetResponseStream().WriteAllBytesAsync(filePath, ct, resumeDownload, progressAction).Wait(ct); }, ct); I had to add the call to the Wait function, because if I don't, the method exits and the end event is fired too early. Here are the modified method extensions (lot of code, apologies :p) public static Task WriteAllBytesAsync(this Stream stream, string filePath, CancellationToken ct, bool resumeDownload = false, Action<long> progressAction = null) { if (stream == null) throw new ArgumentNullException("stream"); // Copy from the source stream to the memory stream and return the copied data return stream.CopyStreamToFileAsync(filePath, ct, resumeDownload, progressAction); } public static Task CopyStreamToFileAsync(this Stream source, string destinationPath, CancellationToken ct, bool resumeDownload = false, Action<long> progressAction = null) { if (source == null) throw new ArgumentNullException("source"); if (destinationPath == null) throw new ArgumentNullException("destinationPath"); // Open the output file for writing var destinationStream = FileAsync.OpenWrite(destinationPath); // Copy the source to the destination stream, then close the output file. return CopyStreamToStreamAsync(source, destinationStream, ct, progressAction).ContinueWith(t => { var e = t.Exception; destinationStream.Close(); if (e != null) throw e; }, ct, TaskContinuationOptions.ExecuteSynchronously, TaskScheduler.Current); } public static Task CopyStreamToStreamAsync(this Stream source, Stream destination, CancellationToken ct, Action<long> progressAction = null) { if (source == null) throw new ArgumentNullException("source"); if (destination == null) throw new ArgumentNullException("destination"); return Task.Factory.Iterate(CopyStreamIterator(source, destination, ct, progressAction)); } private static IEnumerable<Task> CopyStreamIterator(Stream input, Stream output, CancellationToken ct, Action<long> progressAction = null) { // Create two buffers. One will be used for the current read operation and one for the current // write operation. We'll continually swap back and forth between them. byte[][] buffers = new byte[2][] { new byte[BUFFER_SIZE], new byte[BUFFER_SIZE] }; int filledBufferNum = 0; Task writeTask = null; int readBytes = 0; // Until there's no more data to be read or cancellation while (true) { ct.ThrowIfCancellationRequested(); // Read from the input asynchronously var readTask = input.ReadAsync(buffers[filledBufferNum], 0, buffers[filledBufferNum].Length); // If we have no pending write operations, just yield until the read operation has // completed. If we have both a pending read and a pending write, yield until both the read // and the write have completed. yield return writeTask == null ? readTask : Task.Factory.ContinueWhenAll(new[] { readTask, writeTask }, tasks => tasks.PropagateExceptions()); // If no data was read, nothing more to do. if (readTask.Result <= 0) break; readBytes += readTask.Result; if (progressAction != null) progressAction(readBytes); // Otherwise, write the written data out to the file writeTask = output.WriteAsync(buffers[filledBufferNum], 0, readTask.Result); // Swap buffers filledBufferNum ^= 1; } } So basically, at the end of the chain of called methods, I let the CancellationToken throw an OperationCanceledException if a Cancel has been requested. What I hoped was to get IsFaulted == true in the appealing code and to fire the end event with the canceled flags and the correct exception. But what I get is an unhandled exception on the line response.Result.GetResponseStream().WriteAllBytesAsync(filePath, ct, resumeDownload, progressAction).Wait(ct); telling me that I don't catch an AggregateException. I've tried various things, but I don't succeed to make the whole thing work properly. Does anyone of you have played enough with that library and may help me? Thanks in advance Mike

    Read the article

  • flex and bison: wrong output

    - by user2972227
    I am doing a homework using flex and bison to make a complex number calculator. But my program cannot give a correct output. .lex file: %option noyywrap %{ #include<stdio.h> #include<stdlib.h> #include "complex_cal.h" #define YYSTYPE complex #include "complex_cal.tab.h" void RmWs(char* str); %} /* Add your Flex definitions here */ /* Some definitions are already provided to you*/ ws [ \t]+ digits [0-9] number (0|[1-9]+{digits}*)\.?{digits}* im [i] complexnum {ws}*[-]*{ws}*{number}{ws}*[+|-]{ws}*{number}{ws}*{im}{ws}* op [-+*/()] %% {complexnum} {RmWs(yytext); sscanf(yytext,"%lf %lf",&(yylval.real),&(yylval.img)); return CNUMBER;} {ws} /**/ {op} return *yytext; %% /* function provided to student to remove */ /* all the whitespaces from a string. */ void RmWs(char* str){ int i=0,j=0; char temp[strlen(str)+1]; strcpy(temp,str); while (temp[i]!='\0'){ while (temp[i]==' '){i++;} str[j]=temp[i]; i++; j++; } str[j]='\0'; } .y file: %{ #include <stdio.h> #include <stdlib.h> #include "complex_cal.h" /* prototypes of the provided functions */ complex complex_add (complex, complex); complex complex_sub (complex, complex); complex complex_mul (complex, complex); complex complex_div (complex, complex); /* prototypes of the provided functions */ int yylex(void); int yyerror(const char*); %} %token CNUMBER %left '+' '-' %left '*' '/' %nonassoc '(' ')' %% /* start: Add your grammar rules and actions here */ complexexp: complexexp '+' complexexpmultidiv {$$=complex_add($1, $3);} | complexexp '-' complexexpmultidiv {$$=complex_sub($1, $3);} | complexexpmultidiv {$$.real=$1.real;$$.img=$1.img;} ; complexexpmultidiv: complexexpmultidiv '*' complexsimple {$$=complex_mul($1, $3);} | complexexpmultidiv '/' complexsimple {$$=complex_div($1, $3);} | complexsimple {$$.real=$1.real;$$.img=$1.img;} ; complexsimple: '(' complexexp ')' {$$.real=$2.real;$$.img=$2.img;} | '(' CNUMBER ')' {$$.real=$2.real;$$.img=$2.img;} ; /* end: Add your grammar rules and actions here */ %% int main(){ return yyparse(); } int yyerror(const char* s){ printf("%s\n", s); return 0; } /* function provided to do complex addition */ /* input : complex numbers c1, c2 */ /* output: nothing */ /* side effect : none */ /* return value: result of addition in c3 */ complex complex_add (complex c1, complex c2){ /* c1 + c2 */ complex c3; c3.real = c1.real + c2.real; c3.img = c1.img + c2.img; return c3; } /* function provided to do complex subtraction */ /* input : complex numbers c1, c2 */ /* output: nothing */ /* side effect : none */ /* return value: result of subtraction in c3 */ complex complex_sub (complex c1, complex c2){ /* c1 - c2 */ complex c3; c3.real = c1.real - c2.real; c3.img = c1.img - c2.img; return c3; } /* function provided to do complex multiplication */ /* input : complex numbers c1, c2 */ /* output: nothing */ /* side effect : none */ /* return value: result of multiplication in c3 */ complex complex_mul (complex c1, complex c2){ /* c1 * c2 */ complex c3; c3.real = c1.real*c2.real - c1.img*c2.img; c3.img = c1.img*c2.real + c1.real*c2.img; return c3; } /* function provided to do complex division */ /* input : complex numbers c1, c2 */ /* output: nothing */ /* side effect : none */ /* return value: result of c1/c2 in c3 */ complex complex_div (complex c1, complex c2){ /* c1 / c2 (i.e. c1 divided by c2 ) */ complex c3; double d; /*divisor calculation using the conjugate of c2*/ d = c2.real*c2.real + c2.img*c2.img; c3.real = (c1.real*c2.real + c1.img*c2.img)/d; c3.img = (c1.img*c2.real - c1.real*c2.img)/d; return c3; } .h file: #include <string.h> /* struct for holding a complex number */ typedef struct { double real; double img; } complex; /* define the return type of FLEX */ #define YYSTYPE complex Script for compiling the file: bison -d -v complex_cal.y flex -ocomplex_cal.lex.yy.c complex_cal.lex gcc -o complex_cal complex_cal.lex.yy.c complex_cal.tab.c ./complex_cal Some correct sample run of the program: input:(5+6i)*(6+1i) output:24.000000+41.000000i input:(7+8i)/(-3-4i)*(5+7i) output:-11.720000-14.040000i input:(7+8i)/((-3-4i)*(5+7i)) output:-0.128108+0.211351i But when I run this program, the program only give an output which is identical to my input. For example, when I input (5+6i)(6+1i), it just gives (5+6i)(6+1i). Even if I input any other things, for example, input "abc" it just gives "abc" and is not syntax error. I don't know where the problem is and I hope to know how to solve it.

    Read the article

  • Handling android player errors

    - by stack hoss
    I am anew android developer and i made ashoutcast radio player and work good but when i open app it work for afew time but suddenly stop and need to press stop and play again but i need Handling android player errors to automatic restart on errors package com.test.test; import java.io.IOException; import android.app.Notification; import android.app.NotificationManager; import android.app.PendingIntent; import android.app.Service; import android.content.Context; import android.content.Intent; import android.content.SharedPreferences; import android.media.AudioManager; import android.media.AudioManager.OnAudioFocusChangeListener; import android.media.MediaPlayer; import android.os.IBinder; import android.preference.PreferenceManager; import android.util.Log; public class StreamService extends Service { private static final String TAG = "StreamService"; MediaPlayer mp; boolean isPlaying; Intent MainActivity; SharedPreferences prefs; SharedPreferences.Editor editor; Notification n; NotificationManager notificationManager; // Change this int to some number specifically for this app int notifId = 85; private OnAudioFocusChangeListener focusChangeListener = new OnAudioFocusChangeListener() { public void onAudioFocusChange(int focusChange) { switch (focusChange) { case (AudioManager.AUDIOFOCUS_LOSS_TRANSIENT_CAN_DUCK) : // Lower the volume while ducking. mp.setVolume(0.2f, 0.2f); break; case (AudioManager.AUDIOFOCUS_LOSS_TRANSIENT) : mp.pause(); break; case (AudioManager.AUDIOFOCUS_LOSS) : mp.stop(); break; case (AudioManager.AUDIOFOCUS_GAIN) : // Return the volume to normal and resume if paused. mp.setVolume(1f, 1f); mp.start(); break; default: break; } } }; @Override public IBinder onBind(Intent arg0) { // TODO Auto-generated method stub return null; } @SuppressWarnings("deprecation") @Override public void onCreate() { super.onCreate(); Log.d(TAG, "onCreate"); // Init the SharedPreferences and Editor prefs = PreferenceManager.getDefaultSharedPreferences(getApplicationContext()); editor = prefs.edit(); // Set up the buffering notification notificationManager = (NotificationManager) getApplicationContext() .getSystemService(NOTIFICATION_SERVICE); Context context = getApplicationContext(); String notifTitle = context.getResources().getString(R.string.app_name); String notifMessage = context.getResources().getString(R.string.buffering); n = new Notification(); n.icon = R.drawable.ic_launcher; n.tickerText = "Buffering"; n.when = System.currentTimeMillis(); Intent nIntent = new Intent(context, MainActivity.class); nIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK | Intent.FLAG_ACTIVITY_SINGLE_TOP); PendingIntent pIntent = PendingIntent.getActivity(context, 0, nIntent, 0); n.setLatestEventInfo(context, notifTitle, notifMessage, pIntent); notificationManager.notify(notifId, n); // It's very important that you put the IP/URL of your ShoutCast stream here // Otherwise you'll get Webcom Radio String url = "http://47.182.19.93:9888/"; mp = new MediaPlayer(); mp.setAudioStreamType(AudioManager.STREAM_MUSIC); try { mp.reset(); mp.setDataSource(url); mp.prepare(); mp.start(); } catch (IllegalArgumentException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (SecurityException e) { // TODO Auto-generated catch block Log.e(TAG, "SecurityException"); } catch (IllegalStateException e) { // TODO Auto-generated catch block Log.e(TAG, "IllegalStateException"); } catch (IOException e) { // TODO Auto-generated catch block Log.e(TAG, "IOException"); } } @SuppressWarnings("deprecation") @Override public void onStart(Intent intent, int startId) { Log.d(TAG, "onStart"); mp.start(); // Set the isPlaying preference to true editor.putBoolean("isPlaying", true); editor.commit(); Context context = getApplicationContext(); String notifTitle = context.getResources().getString(R.string.app_name); String notifMessage = context.getResources().getString(R.string.now_playing); n.icon = R.drawable.ic_launcher; n.tickerText = notifMessage; n.flags = Notification.FLAG_NO_CLEAR; n.when = System.currentTimeMillis(); Intent nIntent = new Intent(context, MainActivity.class); PendingIntent pIntent = PendingIntent.getActivity(context, 0, nIntent, 0); n.setLatestEventInfo(context, notifTitle, notifMessage, pIntent); // Change 5315 to some nother number notificationManager.notify(notifId, n); AudioManager am = (AudioManager)getSystemService(Context.AUDIO_SERVICE); // Request audio focus for playback int result = am.requestAudioFocus(focusChangeListener, // Use the music stream. AudioManager.STREAM_MUSIC, // Request permanent focus. AudioManager.AUDIOFOCUS_GAIN); if (result == AudioManager.AUDIOFOCUS_REQUEST_GRANTED) { // other app had stopped playing song now , so u can do u stuff now . } } @Override public void onDestroy() { Log.d(TAG, "onDestroy"); mp.stop(); mp.release(); mp = null; editor.putBoolean("isPlaying", false); editor.commit(); notificationManager.cancel(notifId); AudioManager am = (AudioManager)getSystemService(Context.AUDIO_SERVICE); am.abandonAudioFocus(focusChangeListener); } }

    Read the article

  • Different ways to query this search in SQL?

    - by Bart Terrell
    I am teaching myself MS-SQL and I am trying to find different ways to find the Count of Paid and Unpaid Claims for 2012 grouped by Region from these 3 tables. If there is a returned date, the claim is unpaid if the returned date is null then the claim is paid. I will attach the code I have ran, but I am not sure if there are better ways to do it. Thanks. Here is the code: SET dateformat ymd; CREATE TABLE Claims ( ClaimID INT, SubID INT, [Claim Date] DATETIME ); CREATE TABLE Phoneship ( ClaimID INT, [Shipping Number] INT, [Claim Date] DATETIME, [Ship Date] DATETIME, [Returned Date] DATETIME ); CREATE TABLE Enrollment ( SubID INT, Enrollment_Date DATETIME, Channel NVARCHAR(255), Region NVARCHAR(255), Status FLOAT, Drop_Date DATETIME ); INSERT INTO [Phoneship] ([ClaimID], [Shipping Number], [Claim Date], [Ship Date], [Returned Date]) VALUES (102, 201, '2011-10-13 00:00:00', '2011-10-14 00:00:00', NULL); INSERT INTO [Phoneship] ([ClaimID], [Shipping Number], [Claim Date], [Ship Date], [Returned Date]) VALUES (103, 202, '2011-11-02 00:00:00', '2011-11-03 00:00:00', '2011-11-20 00:00:00'); INSERT INTO [Phoneship] ([ClaimID], [Shipping Number], [Claim Date], [Ship Date], [Returned Date]) VALUES (103, 203, '2011-11-02 00:00:00', '2011-11-22 00:00:00', NULL); INSERT INTO [Phoneship] ([ClaimID], [Shipping Number], [Claim Date], [Ship Date], [Returned Date]) VALUES (105, 204, '2012-01-16 00:00:00', '2012-01-17 00:00:00', NULL); INSERT INTO [Phoneship] ([ClaimID], [Shipping Number], [Claim Date], [Ship Date], [Returned Date]) VALUES (106, 205, '2012-02-15 00:00:00', '2012-02-16 00:00:00', '2012-02-26 00:00:00'); INSERT INTO [Phoneship] ([ClaimID], [Shipping Number], [Claim Date], [Ship Date], [Returned Date]) VALUES (106, 206, '2012-02-15 00:00:00', '2012-02-27 00:00:00', '2012-03-06 00:00:00'); INSERT INTO [Phoneship] ([ClaimID], [Shipping Number], [Claim Date], [Ship Date], [Returned Date]) VALUES (107, 207, '2012-03-12 00:00:00', '2012-03-13 00:00:00', NULL); INSERT INTO [Phoneship] ([ClaimID], [Shipping Number], [Claim Date], [Ship Date], [Returned Date]) VALUES (108, 208, '2012-05-11 00:00:00', '2012-05-12 00:00:00', NULL); INSERT INTO [Phoneship] ([ClaimID], [Shipping Number], [Claim Date], [Ship Date], [Returned Date]) VALUES (109, 209, '2012-05-13 00:00:00', '2012-05-14 00:00:00', '2012-05-28 00:00:00'); INSERT INTO [Phoneship] ([ClaimID], [Shipping Number], [Claim Date], [Ship Date], [Returned Date]) VALUES (109, 210, '2012-05-13 00:00:00', '2012-05-30 00:00:00', NULL); INSERT INTO [Claims] ([ClaimID], [SubID], [Claim Date]) VALUES (101, 12345678, '2011-03-06 00:00:00'); INSERT INTO [Claims] ([ClaimID], [SubID], [Claim Date]) VALUES (102, 12347190, '2011-10-13 00:00:00'); INSERT INTO [Claims] ([ClaimID], [SubID], [Claim Date]) VALUES (103, 12348723, '2011-11-02 00:00:00'); INSERT INTO [Claims] ([ClaimID], [SubID], [Claim Date]) VALUES (104, 12349745, '2011-11-09 00:00:00'); INSERT INTO [Claims] ([ClaimID], [SubID], [Claim Date]) VALUES (105, 12347190, '2012-01-16 00:00:00'); INSERT INTO [Claims] ([ClaimID], [SubID], [Claim Date]) VALUES (106, 12349234, '2012-02-15 00:00:00'); INSERT INTO [Claims] ([ClaimID], [SubID], [Claim Date]) VALUES (107, 12350767, '2012-03-12 00:00:00'); INSERT INTO [Claims] ([ClaimID], [SubID], [Claim Date]) VALUES (108, 12350256, '2012-05-11 00:00:00'); INSERT INTO [Claims] ([ClaimID], [SubID], [Claim Date]) VALUES (109, 12347701, '2012-05-13 00:00:00'); INSERT INTO [Claims] ([ClaimID], [SubID], [Claim Date]) VALUES (110, 12350256, '2012-05-15 00:00:00'); INSERT INTO [Claims] ([ClaimID], [SubID], [Claim Date]) VALUES (111, 12350767, '2012-06-30 00:00:00'); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12345678, '2011-01-05 00:00:00', 'Retail', 'Southeast', 1, NULL); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12346178, '2011-03-13 00:00:00', 'Indirect Dealers', 'West', 1, NULL); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12346679, '2011-05-19 00:00:00', 'Indirect Dealers', 'Southeast', 0, '2012-03-15 00:00:00'); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12347190, '2011-07-25 00:00:00', 'Retail', 'Northeast', 0, '2012-05-21 00:00:00'); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12347701, '2011-08-14 00:00:00', 'Indirect Dealers', 'West', 1, NULL); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12348212, '2011-09-30 00:00:00', 'Retail', 'West', 1, NULL); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12348723, '2011-10-20 00:00:00', 'Retail', 'Southeast', 1, NULL); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12349234, '2012-01-06 00:00:00', 'Indirect Dealers', 'West', 0, '2012-02-14 00:00:00'); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12349745, '2012-01-26 00:00:00', 'Retail', 'Northeast', 0, '2012-04-15 00:00:00'); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12350256, '2012-02-11 00:00:00', 'Retail', 'Southeast', 1, NULL); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12350767, '2012-03-02 00:00:00', 'Indirect Dealers', 'West', 1, NULL); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12351278, '2012-04-18 00:00:00', 'Retail', 'Midwest', 1, NULL); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12351789, '2012-05-08 00:00:00', 'Indirect Dealers', 'West', 0, '2012-07-04 00:00:00'); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12352300, '2012-06-24 00:00:00', 'Retail', 'Midwest', 1, NULL); INSERT INTO [Enrollment] ([SubID], [Enrollment_Date], [Channel], [Region], [Status], [Drop_Date]) VALUES (12352811, '2012-06-25 00:00:00', 'Retail', 'Southeast', 1, NULL); And Query1 SELECT Count(ClaimID) AS 'Paid Claim', (SELECT Count(ClaimID) FROM dbo.phoneship WHERE [returned date] IS NOT NULL) AS 'Unpaid Claim' FROM dbo.Phoneship WHERE [Returned Date] IS NULL GROUP BY claimid Query2 SELECT Count(*) AS 'Paid Claims', (SELECT Count(*) FROM dbo.Phoneship WHERE [Returned Date] IS NOT NULL) AS 'Unpaid Claims' FROM dbo.Phoneship WHERE [Returned Date] IS NULL; Query3 Select Distinct(C.[Shipping Number]), Count(C.ClaimID) AS 'COUNT ClaimID', A.Region, A.SubID From dbo.HSEnrollment A Inner Join dbo.Claims B On A.SubId = B.SubId Inner Join dbo.Phoneship C On B.ClaimID = C.ClaimID Where C.[Returned Date] IS NULL Group By A.Region, A.Subid, C.ClaimID, C.[Shipping Number] Order By A.Region

    Read the article

  • Approaches for generic, compile-time safe lazy-load methods

    - by Aaronaught
    Suppose I have created a wrapper class like the following: public class Foo : IFoo { private readonly IFoo innerFoo; public Foo(IFoo innerFoo) { this.innerFoo = innerFoo; } public int? Bar { get; set; } public int? Baz { get; set; } } The idea here is that the innerFoo might wrap data-access methods or something similarly expensive, and I only want its GetBar and GetBaz methods to be invoked once. So I want to create another wrapper around it, which will save the values obtained on the first run. It's simple enough to do this, of course: int IFoo.GetBar() { if ((Bar == null) && (innerFoo != null)) Bar = innerFoo.GetBar(); return Bar ?? 0; } int IFoo.GetBaz() { if ((Baz == null) && (innerFoo != null)) Baz = innerFoo.GetBaz(); return Baz ?? 0; } But it gets pretty repetitive if I'm doing this with 10 different properties and 30 different wrappers. So I figured, hey, let's make this generic: T LazyLoad<T>(ref T prop, Func<IFoo, T> loader) { if ((prop == null) && (innerFoo != null)) prop = loader(innerFoo); return prop; } Which almost gets me where I want, but not quite, because you can't ref an auto-property (or any property at all). In other words, I can't write this: int IFoo.GetBar() { return LazyLoad(ref Bar, f => f.GetBar()); // <--- Won't compile } Instead, I'd have to change Bar to have an explicit backing field and write explicit getters and setters. Which is fine, except for the fact that I end up writing even more redundant code than I was writing in the first place. Then I considered the possibility of using expression trees: T LazyLoad<T>(Expression<Func<T>> propExpr, Func<IFoo, T> loader) { var memberExpression = propExpr.Body as MemberExpression; if (memberExpression != null) { // Use Reflection to inspect/set the property } } This plays nice with refactoring - it'll work great if I do this: return LazyLoad(f => f.Bar, f => f.GetBar()); But it's not actually safe, because someone less clever (i.e. myself in 3 days from now when I inevitably forget how this is implemented internally) could decide to write this instead: return LazyLoad(f => 3, f => f.GetBar()); Which is either going to crash or result in unexpected/undefined behaviour, depending on how defensively I write the LazyLoad method. So I don't really like this approach either, because it leads to the possibility of runtime errors which would have been prevented in the first attempt. It also relies on Reflection, which feels a little dirty here, even though this code is admittedly not performance-sensitive. Now I could also decide to go all-out and use DynamicProxy to do method interception and not have to write any code, and in fact I already do this in some applications. But this code is residing in a core library which many other assemblies depend on, and it seems horribly wrong to be introducing this kind of complexity at such a low level. Separating the interceptor-based implementation from the IFoo interface by putting it into its own assembly doesn't really help; the fact is that this very class is still going to be used all over the place, must be used, so this isn't one of those problems that could be trivially solved with a little DI magic. The last option I've already thought of would be to have a method like: T LazyLoad<T>(Func<T> getter, Action<T> setter, Func<IFoo, T> loader) { ... } This option is very "meh" as well - it avoids Reflection but is still error-prone, and it doesn't really reduce the repetition that much. It's almost as bad as having to write explicit getters and setters for each property. Maybe I'm just being incredibly nit-picky, but this application is still in its early stages, and it's going to grow substantially over time, and I really want to keep the code squeaky-clean. Bottom line: I'm at an impasse, looking for other ideas. Question: Is there any way to clean up the lazy-loading code at the top, such that the implementation will: Guarantee compile-time safety, like the ref version; Actually reduce the amount of code repetition, like the Expression version; and Not take on any significant additional dependencies? In other words, is there a way to do this just using regular C# language features and possibly a few small helper classes? Or am I just going to have to accept that there's a trade-off here and strike one of the above requirements from the list?

    Read the article

  • Refactoring Part 1 : Intuitive Investments

    - by Wes McClure
    Fear, it’s what turns maintaining applications into a nightmare.  Technology moves on, teams move on, someone is left to operate the application, what was green is now perceived brown.  Eventually the business will evolve and changes will need to be made.  The approach to those changes often dictates the long term viability of the application.  Fear of change, lack of passion and a lack of interest in understanding the domain often leads to a paranoia to do anything that doesn’t involve duct tape and bailing twine.  Don’t get me wrong, those have a place in the short term viability of a project but they don’t have a place in the long term.  Add to it “us versus them” in regards to the original team and those that maintain it, internal politics and other factors and you have a recipe for disaster.  This results in code that quickly becomes unmanageable.  Even the most clever of designs will eventually become sub optimal and debt will amount that exponentially makes changes difficult.  This is where refactoring comes in, and it’s something I’m very passionate about.  Refactoring is about improving the process whereby we make change, it’s an exponential investment in the process of change. Without it we will incur exponential complexity that halts productivity. Investments, especially in the long term, require intuition and reflection.  How can we tackle new development effectively via evolving the original design and paying off debt that has been incurred? The longer we wait to ask and answer this question, the more it will cost us.  Small requests don’t warrant big changes, but realizing when changes now will pay off in the long term, and especially in the short term, is valuable. I have done my fair share of maintaining applications and continuously refactoring as needed, but recently I’ve begun work on a project that hasn’t had much debt, if any, paid down in years.  This is the first in a series of blog posts to try to capture the process which is largely driven by intuition of smaller refactorings from other projects. Signs that refactoring could help: Testability How can decreasing test time not pay dividends? One of the first things I found was that a very important piece often takes 30+ minutes to test.  I can only imagine how much time this has cost historically, but more importantly the time it might cost in the coming weeks: I estimate at least 10-20 hours per person!  This is simply unacceptable for almost any situation.  As it turns out, about 6 hours of working with this part of the application and I was able to cut the time down to under 30 seconds!  In less than the lost time of one week, I was able to fix the problem for all future weeks! If we can’t test fast then we can’t change fast, nor with confidence. Code is used by end users and it’s also used by developers, consider your own needs in terms of the code base.  Adding logic to enable/disable features during testing can help decouple parts of an application and lead to massive improvements.  What exactly is so wrong about test code in real code?  Often, these become features for operators and sometimes end users.  If you cannot run an integration test within a test runner in your IDE, it’s time to refactor. Readability Are variables named meaningfully via a ubiquitous language? Is the code segmented functionally or behaviorally so as to minimize the complexity of any one area? Are aspects properly segmented to avoid confusion (security, logging, transactions, translations, dependency management etc) Is the code declarative (what) or imperative (how)?  What matters, not how.  LINQ is a great abstraction of the what, not how, of collection manipulation.  The Reactive framework is a great example of the what, not how, of managing streams of data. Are constants abstracted and named, or are they just inline? Do people constantly bitch about the code/design? If the code is hard to understand, it will be hard to change with confidence.  It’s a large undertaking if the original designers didn’t pay much attention to readability and as such will never be done to “completion.”  Make sure not to go over board, instead use this as you change an application, not in lieu of changes (like with testability). Complexity Simplicity will never be achieved, it’s highly subjective.  That said, a lot of code can be significantly simplified, tidy it up as you go.  Refactoring will often converge upon a simplification step after enough time, keep an eye out for this. Understandability In the process of changing code, one often gains a better understanding of it.  Refactoring code is a good way to learn how it works.  However, it’s usually best in combination with other reasons, in effect killing two birds with one stone.  Often this is done when readability is poor, in which case understandability is usually poor as well.  In the large undertaking we are making with this legacy application, we will be replacing it.  Therefore, understanding all of its features is important and this refactoring technique will come in very handy. Unused code How can deleting things not help? This is a freebie in refactoring, it’s very easy to detect with modern tools, especially in statically typed languages.  We have VCS for a reason, if in doubt, delete it out (ok that was cheesy)! If you don’t know where to start when refactoring, this is an excellent starting point! Duplication Do not pray and sacrifice to the anti-duplication gods, there are excellent examples where consolidated code is a horrible idea, usually with divergent domains.  That said, mediocre developers live by copy/paste.  Other times features converge and aren’t combined.  Tools for finding similar code are great in the example of copy/paste problems.  Knowledge of the domain helps identify convergent concepts that often lead to convergent solutions and will give intuition for where to look for conceptual repetition. 80/20 and the Boy Scouts It’s often said that 80% of the time 20% of the application is used most.  These tend to be the parts that are changed.  There are also parts of the code where 80% of the time is spent changing 20% (probably for all the refactoring smells above).  I focus on these areas any time I make a change and follow the philosophy of the Boy Scout in cleaning up more than I messed up.  If I spend 2 hours changing an application, in the 20%, I’ll always spend at least 15 minutes cleaning it or nearby areas. This gives a huge productivity edge on developers that don’t. Ironically after a short period of time the 20% shrinks enough that we don’t have to spend 80% of our time there and can move on to other areas.   Refactoring is highly subjective, never attempt to refactor to completion!  Learn to be comfortable with leaving one part of the application in a better state than others.  It’s an evolution, not a revolution.  These are some simple areas to look into when making changes and can help get one started in the process.  I’ve often found that refactoring is a convergent process towards simplicity that sometimes spans a few hours but often can lead to massive simplifications over the timespan of weeks and months of regular development.

    Read the article

  • Normal map applied as diffuse textures looks wrong

    - by KaiserJohaan
    Diffuse textures works fine, but I am having problem with normal maps, so I thought I'd tried to apply the normal maps as the diffuse map in my fragment shader so I could see everything is OK. I comment-out my normal map code and just set the diffuse map to the normal map and I get this: http://postimg.org/image/j9gudjl7r/ Looks like a smurf! This is the actual normal map of the main body: http://postimg.org/image/sbkyr6fg9/ Here is my fragment shader, notice I commented out normal map code so I could debug the normal map as a diffuse texture "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Here is my wrapper around a texture OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureFormat textureFormat, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); GLint glTextureFormat = (textureFormat == TextureFormat::TEXTURE_FORMAT_RGB ? GL_RGB : textureFormat == TextureFormat::TEXTURE_FORMAT_RGBA ? GL_RGBA : GL_RED); glTexImage2D(GL_TEXTURE_2D, 0, glTextureFormat, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } OpenGLTexture::~OpenGLTexture() { glDeleteBuffers(1, &mTexture); CHECK_GL_ERROR(mLogger); } And here is the sampler I create which is shared between Diffuse and normal textures // texture sampler setup glGenSamplers(1, &mTextureSampler); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_S, GL_REPEAT); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_T, GL_REPEAT); CHECK_GL_ERROR(mLogger); glSamplerParameterf(mTextureSampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, mCurrentAnisotropy); CHECK_GL_ERROR(mLogger); glUniform1i(glGetUniformLocation(mDefaultProgram.GetHandle(), "unifDiffuseTexture"), OpenGLTexture::TEXTURE_UNIT_DIFFUSE); CHECK_GL_ERROR(mLogger); glUniform1i(glGetUniformLocation(mDefaultProgram.GetHandle(), "unifNormalTexture"), OpenGLTexture::TEXTURE_UNIT_NORMAL); CHECK_GL_ERROR(mLogger); glBindSampler(OpenGLTexture::TEXTURE_UNIT_DIFFUSE, mTextureSampler); CHECK_GL_ERROR(mLogger); glBindSampler(OpenGLTexture::TEXTURE_UNIT_NORMAL, mTextureSampler); CHECK_GL_ERROR(mLogger); SetAnisotropicFiltering(mCurrentAnisotropy); The diffuse textures looks like they should, but the normal looks so wierd. Why is this?

    Read the article

< Previous Page | 398 399 400 401 402 403 404 405 406 407 408 409  | Next Page >