Search Results

Search found 2208 results on 89 pages for 'boost signals'.

Page 41/89 | < Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >

  • ld: symbol(s) not found with OpenSSL (libssl)

    - by Benjamin
    Hi all, I'm trying to build TorTunnel on my mac. I've successfully installed the Boost library and its development files. TorTunnel also requires the OpenSSL and its development files. I've got them installed in /usr/lib/libssl.dylib and /usr/include/openssl/. When I run the make command this is the error i'm getting: g++ -ggdb -g -O2 -lssl -lboost_system-xgcc42-mt-1_38 -o torproxy TorProxy.o HybridEncryption.o Connection.o Cell.o Directory.o ServerListing.o Util.o Circuit.o CellEncrypter.o RelayCellDispatcher.o CellConsumer.o ProxyShuffler.o CreateCell.o CreatedCell.o TorTunnel.o SocksConnection.o Network.o Undefined symbols: "_BN_hex2bn", referenced from: Circuit::initializeDhParameters() in Circuit.o "_BN_free", referenced from: Circuit::~Circuit()in Circuit.o Circuit::~Circuit()in Circuit.o CreatedCell::getKeyMaterial(unsigned char**, unsigned char**)in CreatedCell.o "_DH_generate_key", referenced from: Circuit::initializeDhParameters() in Circuit.o "_PEM_read_bio_RSAPublicKey", referenced from: ServerListing::getOnionKey() in ServerListing.o "_BIO_s_mem", referenced from: Connection::initializeSSL() in Connection.o Connection::initializeSSL() in Connection.o "_DH_free", referenced from: Circuit::~Circuit()in Circuit.o "_BIO_ctrl_pending", referenced from: Connection::writeFromBuffer(boost::function)in Connection.o "_RSA_size", referenced from: HybridEncryption::encryptInSingleChunk(unsigned char*, int, unsigned char**, int*, rsa_st*)in HybridEncryption.o HybridEncryption::encryptInHybridChunk(unsigned char*, int, unsigned char**, int*, rsa_st*)in HybridEncryption.o HybridEncryption::encrypt(unsigned char*, int, unsigned char**, int*, rsa_st*)in HybridEncryption.o "_RSA_public_encrypt", referenced from: HybridEncryption::encryptInSingleChunk(unsigned char*, int, unsigned char**, int*, rsa_st*)in HybridEncryption.o HybridEncryption::encryptInHybridChunk(unsigned char*, int, unsigned char**, int*, rsa_st*)in HybridEncryption.o "_BN_num_bits", referenced from: CreateCell::CreateCell(unsigned short, dh_st*, rsa_st*)in CreateCell.o CreatedCell::getKeyMaterial(unsigned char**, unsigned char**)in CreatedCell.o CreatedCell::getKeyMaterial(unsigned char**, unsigned char**)in CreatedCell.o CreatedCell::isValid() in CreatedCell.o "_SHA1", referenced from: CellEncrypter::expandKeyMaterial(unsigned char*, int, unsigned char*, int)in CellEncrypter.o "_BN_bn2bin", referenced from: CreateCell::CreateCell(unsigned short, dh_st*, rsa_st*)in CreateCell.o "_BN_bin2bn", referenced from: CreatedCell::getKeyMaterial(unsigned char**, unsigned char**)in CreatedCell.o "_DH_compute_key", referenced from: CreatedCell::getKeyMaterial(unsigned char**, unsigned char**)in CreatedCell.o "_BIO_new", referenced from: Connection::initializeSSL() in Connection.o Connection::initializeSSL() in Connection.o "_BIO_new_mem_buf", referenced from: ServerListing::getOnionKey() in ServerListing.o "_AES_ctr128_encrypt", referenced from: HybridEncryption::AES_encrypt(unsigned char*, int, unsigned char*, unsigned char*, int)in HybridEncryption.o CellEncrypter::aesOperate(Cell&, aes_key_st*, unsigned char*, unsigned char*, unsigned int*)in CellEncrypter.o "_BIO_read", referenced from: Connection::writeFromBuffer(boost::function)in Connection.o "_SHA1_Update", referenced from: CellEncrypter::calculateDigest(SHAstate_st*, RelayCell&, unsigned char*)in CellEncrypter.o CellEncrypter::initKeyMaterial(unsigned char*)in CellEncrypter.o CellEncrypter::initKeyMaterial(unsigned char*)in CellEncrypter.o "_SHA1_Final", referenced from: CellEncrypter::calculateDigest(SHAstate_st*, RelayCell&, unsigned char*)in CellEncrypter.o "_DH_size", referenced from: CreatedCell::getKeyMaterial(unsigned char**, unsigned char**)in CreatedCell.o "_DH_new", referenced from: Circuit::initializeDhParameters() in Circuit.o "_BIO_write", referenced from: Connection::readIntoBufferComplete(boost::function, boost::system::error_code const&, unsigned long)in Connection.o "_RSA_free", referenced from: Circuit::~Circuit()in Circuit.o "_BN_dup", referenced from: Circuit::initializeDhParameters() in Circuit.o Circuit::initializeDhParameters() in Circuit.o "_BN_new", referenced from: Circuit::initializeDhParameters() in Circuit.o Circuit::initializeDhParameters() in Circuit.o "_SHA1_Init", referenced from: CellEncrypter::CellEncrypter()in CellEncrypter.o CellEncrypter::CellEncrypter()in CellEncrypter.o "_RAND_bytes", referenced from: HybridEncryption::encryptInHybridChunk(unsigned char*, int, unsigned char**, int*, rsa_st*)in HybridEncryption.o Util::getRandomId() in Util.o "_AES_set_encrypt_key", referenced from: HybridEncryption::AES_encrypt(unsigned char*, int, unsigned char*, unsigned char*, int)in HybridEncryption.o CellEncrypter::initKeyMaterial(unsigned char*)in CellEncrypter.o CellEncrypter::initKeyMaterial(unsigned char*)in CellEncrypter.o "_BN_set_word", referenced from: Circuit::initializeDhParameters() in Circuit.o "_RSA_new", referenced from: ServerListing::getOnionKey() in ServerListing.o ld: symbol(s) not found collect2: ld returned 1 exit status make: *** [torproxy] Error 1 Any idea how I could fix it?

    Read the article

  • Who does non-decimal bignums with floating radix point?

    - by boost
    Nice as the Tcl libraries math::bignum and math::bigfloat are, the middle ground between the two needs to be addressed. Namely, bignums which are in different radices and have a radix point. At present math::bignum only handles integers (afaict) and math::bigfloat won't let you specify different radices to math::bigfloat::fromstr (ditto). Does anyone know of a library, for any of the major scripting languages (e.g. Tcl, Perl, Python, Ruby, Lua) or less major ones (newLISP for example), which implements bignums in different radices with handling for radix point?

    Read the article

  • How do you change the subdocument location in a Word 2007 master document programmatically?

    - by boost
    We have had the unenviable happen: various master documents refer to sub-documents that are no longer where they used to be due to a directory renaming. Is there a programmatic way of tweaking the HYPERLINK field without losing the master/sub-document relationship? I've got this far ... Sub FixyaLinks() Dim s 'As String Dim i As Long Dim bTrackRevFlag As Boolean Dim bShowRevFlag As Boolean bTrackRevFlag = ActiveDocument.TrackRevisions bShowRevFlag = ActiveDocument.ShowRevisions ActiveDocument.TrackRevisions = False ActiveDocument.ShowRevisions = False For i = 1 To ActiveDocument.Fields.Count s = ActiveDocument.Fields.Item(i).Code.Text If InStr(s, "CURRICULUM\\NEW") Then s = Replace(s, "NEW Foundation Units-in developing", "Foundation Programme Units") ActiveDocument.Fields.Item(i).Code.Text = s End If Next ActiveDocument.TrackRevisions = bTrackRevFlag ActiveDocument.ShowRevisions = bShowRevFlag End Sub It bombs on ActiveDocument.Fields.Item(i).Code.Text = s, with an error 5686 ("The operation cannot be completed because the Track Changes option in the master document does not match the option the the subdocument. Make the Track Changes option the same in the master document and subdocument.") However, I'm not entirely sure what that means. Ideas anyone?

    Read the article

  • What is wrong with this recursive Windows CMD script? It won't do Ackermann properly

    - by boost
    I've got this code that I'm trying to get to calculate the Ackermann function so that I can post it up on RosettaCode. It almost works. I thought maybe there'd be a few batch file wizards on StackOverflow. ::echo off set depth=0 :ack if %1==0 goto m0 if %2==0 goto n0 :else set /a n=%2-1 set /a depth+=1 call :ack %1 %n% set t=%errorlevel% set /a depth-=1 set /a m=%1-1 set /a depth+=1 call :ack %m% %t% set t=%errorlevel% set /a depth-=1 if %depth%==0 ( exit %t% ) else ( exit /b %t% ) :m0 set/a n=%2+1 if %depth%==0 ( exit %n% ) else ( exit /b %n% ) :n0 set /a m=%1-1 set /a depth+=1 call :ack %m% %2 set t=%errorlevel% set /a depth-=1 if %depth%==0 ( exit %t% ) else ( exit /b %t% ) I use this script to test it @echo off cmd/c ackermann.cmd %1 %2 echo Ackermann of %1 %2 is %errorlevel% A sample output, for Test 1 1, gives: >test 1 1 >set depth=0 >if 1 == 0 goto m0 >if 1 == 0 goto n0 >set /a n=1-1 >set /a depth+=1 >call :ack 1 0 >if 1 == 0 goto m0 >if 0 == 0 goto n0 >set /a m=1-1 >set /a depth+=1 >call :ack 0 0 >if 0 == 0 goto m0 >set/a n=0+1 >if 2 == 0 (exit 1 ) else (exit /b 1 ) >set t=1 >set /a depth-=1 >if 1 == 0 (exit 1 ) else (exit /b 1 ) >set t=1 >set /a depth-=1 >set /a m=1-1 >set /a depth+=1 >call :ack 0 1 >if 0 == 0 goto m0 >set/a n=1+1 >if 1 == 0 (exit 2 ) else (exit /b 2 ) >set t=2 >set /a depth-=1 >if 0 == 0 (exit 2 ) else (exit /b 2 ) Ackermann of 1 1 is 2

    Read the article

  • What tasks aren't easy for PHP, ColdFusion and ASP?

    - by boost
    PHP, ColdFusion, and ASP (among many others) are usually sold on their strengths. What are their weaknesses? If one were to develop a niche product to handle the things that these products weren't so good at, what should it focus on? EDIT I'm trying to figure out what things PHP etc are bad at. They're all good at doing the nuts and bolts stuff, if one is looking with a bottom-to-top mindset. I'm thinking a little more globally, more top-to-bottom; what's difficult to achieve in PHP/ASP/CF without thousands of lines of code and twenty minutes of server time? EDIT Suppose company A comes up to you and says, "We want you to do x in PHP." What values of x will cause you to say, "Forget it, buddy, no one in their right mind would use PHP for that"? (swap PHP in the above quote for your favourite tool) EDIT Have we got to the point where everyone's needs can be met with PHP frameworks, Rails and ... er ... Java?

    Read the article

  • How do you calculate div and mod of floating point numbers?

    - by boost
    In Perl, the % operator seems to assume integers. For instance: sub foo { my $n1 = shift; my $n2 = shift; print "perl's mod=" . $n1 % $n2, "\n"; my $res = $n1 / $n2; my $t = int($res); print "my div=$t", "\n"; $res = $res - $t; $res = $res * $n2; print "my mod=" . $res . "\n\n"; } foo( 3044.952963, 7.1 ); foo( 3044.952963, -7.1 ); foo( -3044.952963, 7.1 ); foo( -3044.952963, -7.1 ); gives perl's mod=6 my div=428 my mod=6.15296300000033 perl's mod=-1 my div=-428 my mod=6.15296300000033 perl's mod=1 my div=-428 my mod=-6.15296300000033 perl's mod=-6 my div=428 my mod=-6.15296300000033 Now as you can see, I've come up with a "solution" already for calculating div and mod. However, what I don't understand is what effect the sign of each argument should have on the result. Wouldn't the div always be positive, being the number of times n2 fits into n1? How's the arithmetic supposed to work in this situation?

    Read the article

  • Need help modifying C++ application to accept continuous piped input in Linux

    - by GreeenGuru
    The goal is to mine packet headers for URLs visited using tcpdump. So far, I can save a packet header to a file using: tcpdump "dst port 80 and tcp[13] & 0x08 = 8" -A -s 300 | tee -a ./Desktop/packets.txt And I've written a program to parse through the header and extract the URL when given the following command: cat ~/Desktop/packets.txt | ./packet-parser.exe But what I want to be able to do is pipe tcpdump directly into my program, which will then log the data: tcpdump "dst port 80 and tcp[13] & 0x08 = 8" -A -s 300 | ./packet-parser.exe Here is the script as it is. The question is: how do I need to change it to support continuous input from tcpdump? #include <boost/regex.hpp> #include <fstream> #include <cstdio> // Needed to define ios::app #include <string> #include <iostream> int main() { // Make sure to open the file in append mode std::ofstream file_out("/var/local/GreeenLogger/url.log", std::ios::app); if (not file_out) std::perror("/var/local/GreeenLogger/url.log"); else { std::string text; // Get multiple lines of input -- raw std::getline(std::cin, text, '\0'); const boost::regex pattern("GET (\\S+) HTTP.*?[\\r\\n]+Host: (\\S+)"); boost::smatch match_object; bool match = boost::regex_search(text, match_object, pattern); if(match) { std::string output; output = match_object[2] + match_object[1]; file_out << output << '\n'; std::cout << output << std::endl; } file_out.close(); } } Thank you ahead of time for the help!

    Read the article

  • Specializing a class template constructor

    - by SilverSun
    I'm messing around with template specialization and I ran into a problem with trying to specialize the constructor based on what policy is used. Here is the code I am trying to get to work. #include <cstdlib> #include <ctime> class DiePolicies { public: class RollOnConstruction { }; class CallMethod { }; }; #include <boost/static_assert.hpp> #include <boost/type_traits/is_same.hpp> template<unsigned sides = 6, typename RollPolicy = DiePolicies::RollOnConstruction> class Die { // policy type check BOOST_STATIC_ASSERT(( boost::is_same<RollPolicy, DiePolicies::RollOnConstruction>::value || boost::is_same<RollPolicy, DiePolicies::CallMethod>::value )); unsigned m_die; unsigned random() { return rand() % sides; } public: Die(); void roll() { m_die = random(); } operator unsigned () { return m_die + 1; } }; template<unsigned sides> Die<sides, DiePolicies::RollOnConstruction>::Die() : m_die(random()) { } template<unsigned sides> Die<sides, DiePolicies::CallMethod>::Die() : m_die(0) { } ...\main.cpp(29): error C3860: template argument list following class template name must list parameters in the order used in template parameter list ...\main.cpp(29): error C2976: 'Die' : too few template arguments ...\main.cpp(31): error C3860: template argument list following class template name must list parameters in the order used in template parameter list Those are the errors I get in Microsoft Visual Studio 2010. I'm thinking either I can't figure out the right syntax for the specialization, or maybe it isn't possible to do it this way.

    Read the article

  • Detecting const-ness of nested type

    - by Channel72
    Normally, if I need to detect whether a type is const I just use boost::is_const. However, I ran into trouble when trying to detect the const-ness of a nested type. Consider the following traits template, which is specialized for const types: template <class T> struct traits { typedef T& reference; }; template <class T> struct traits<const T> { typedef T const& reference; }; The problem is that boost::is_const doesn't seem to detect that traits<const T>::reference is a const type. For example: std::cout << std::boolalpha; std::cout << boost::is_const<traits<int>::reference>::value << " "; std::cout << boost::is_const<traits<const int>::reference>::value << std::endl; This outputs: false false Why doesn't it output false true?

    Read the article

  • What is the rationale to not allow overloading of C++ conversions operator with non-member function

    - by Vicente Botet Escriba
    C++0x has added explicit conversion operators, but they must always be defined as members of the Source class. The same applies to the assignment operator, it must be defined on the Target class. When the Source and Target classes of the needed conversion are independent of each other, neither the Source can define a conversion operator, neither the Target can define a constructor from a Source. Usually we get it by defining a specific function such as Target ConvertToTarget(Source& v); If C++0x allowed to overload conversion operator by non member functions we could for example define the conversion implicitly or explicitly between unrelated types. template < typename To, typename From > operator To(const From& val); For example we could specialize the conversion from chrono::time_point to posix_time::ptime as follows template < class Clock, class Duration> operator boost::posix_time::ptime( const boost::chrono::time_point<Clock, Duration>& from) { using namespace boost; typedef chrono::time_point<Clock, Duration> time_point_t; typedef chrono::nanoseconds duration_t; typedef duration_t::rep rep_t; rep_t d = chrono::duration_cast<duration_t>( from.time_since_epoch()).count(); rep_t sec = d/1000000000; rep_t nsec = d%1000000000; return posix_time::from_time_t(0)+ posix_time::seconds(static_cast<long>(sec))+ posix_time::nanoseconds(nsec); } And use the conversion as any other conversion. For a more complete description of the problem, see here or on my Boost.Conversion library.. So the question is: What is the rationale to non allow overloading of C++ conversions operator with non-member functions?

    Read the article

  • Visual C++ 2010, rvalue reference bug?

    - by Sergey Shandar
    Is it a bug in Visual C++ 2010 or right behaviour? template<class T> T f(T const &r) { return r; } template<class T> T f(T &&r) { static_assert(false, "no way"); return r; } int main() { int y = 4; f(y); } I thought, the function f(T &&) should never be called but it's called with T = int &. The output: main.cpp(10): error C2338: no way main.cpp(17) : see reference to function template instantiation 'T f<int&>(T)' being compiled with [ T=int & ] Update 1 Do you know any C++x0 compiler as a reference? I've tried comeau online test-drive but could not compile r-value reference. Update 2 Workaround (using SFINAE): #include <boost/utility/enable_if.hpp> #include <boost/type_traits/is_reference.hpp> template<class T> T f(T &r) { return r; } template<class T> typename ::boost::disable_if< ::boost::is_reference<T>, T>::type f(T &&r) { static_assert(false, "no way"); return r; } int main() { int y = 4; f(y); // f(5); // generates "no way" error, as expected. }

    Read the article

  • Should this work?

    - by Noah Roberts
    I am trying to specialize a metafunction upon a type that has a function pointer as one of its parameters. The code compiles just fine but it will simply not match the type. #include <iostream> #include <boost/mpl/bool.hpp> #include <boost/mpl/identity.hpp> template < typename CONT, typename NAME, typename TYPE, TYPE (CONT::*getter)() const, void (CONT::*setter)(TYPE const&) > struct metafield_fun {}; struct test_field {}; struct test { int testing() const { return 5; } void testing(int const&) {} }; template < typename T > struct field_writable : boost::mpl::identity<T> {}; template < typename CONT, typename NAME, typename TYPE, TYPE (CONT::*getter)() const > struct field_writable< metafield_fun<CONT,NAME,TYPE,getter,0> > : boost::mpl::false_ {}; typedef metafield_fun<test, test_field, int, &test::testing, 0> unwritable; int main() { std::cout << typeid(field_writable<unwritable>::type).name() << std::endl; std::cin.get(); } Output is always the type passed in, never bool_.

    Read the article

  • SQL Server and Hyper-V Dynamic Memory Part 2

    - by SQLOS Team
    Part 1 of this series was an introduction and overview of Hyper-V Dynamic Memory. This part looks at SQL Server memory management and how the SQL engine responds to changing OS memory conditions.   Part 2: SQL Server Memory Management As with any Windows process, sqlserver.exe has a virtual address space (VAS) of 4GB on 32-bit and 8TB in 64-bit editions. Pages in its VAS are mapped to pages in physical memory when the memory is committed and referenced for the first time. The collection of VAS pages that have been recently referenced is known as the Working Set. How and when SQL Server allocates virtual memory and grows its working set depends on the memory model it uses. SQL Server supports three basic memory models:   1. Conventional Memory Model   The Conventional model is the default SQL Server memory model and has the following properties: - Dynamic - can grow or shrink its working set in response to load and external (operating system) memory conditions. - OS uses 4K pages – (not to be confused with SQL Server “pages” which are 8K regions of committed memory).- Pageable - Can be paged out to disk by the operating system.   2. Locked Page Model The locked page memory model is set when SQL Server is started with "Lock Pages in Memory" privilege*. It has the following characteristics: - Dynamic - can grow or shrink its working set in the same way as the Conventional model.- OS uses 4K pages - Non-Pageable – When memory is committed it is locked in memory, meaning that it will remain backed by physical memory and will not be paged out by the operating system. A common misconception is to interpret "locked" as non-dynamic. A SQL Server instance using the locked page memory model will grow and shrink (allocate memory and release memory) in response to changing workload and OS memory conditions in the same way as it does with the conventional model.   This is an important consideration when we look at Hyper-V Dynamic Memory – “locked” memory works perfectly well with “dynamic” memory.   * Note in “Denali” (Standard Edition and above), and in SQL 2008 R2 64-bit (Enterprise and above editions) the Lock Pages in Memory privilege is all that is required to set this model. In 2008 R2 64-Bit standard edition it also requires trace flag 845 to be set, in 2008 R2 32-bit editions it requires sp_configure 'awe enabled' 1.   3. Large Page Model The Large page model is set using trace flag 834 and potentially offers a small performance boost for systems that are configured with large pages. It is characterized by: - Static - memory is allocated at startup and does not change. - OS uses large (>2MB) pages - Non-Pageable The large page model is supported with Hyper-V Dynamic Memory (and Hyper-V also supports large pages), but you get no benefit from using Dynamic Memory with this model since SQL Server memory does not grow or shrink. The rest of this article will focus on the locked and conventional SQL Server memory models.   When does SQL Server grow? For “dynamic” configurations (Conventional and Locked memory models), the sqlservr.exe process grows – allocates and commits memory from the OS – in response to a workload. As much memory is allocated as is required to optimally run the query and buffer data for future queries, subject to limitations imposed by:   - SQL Server max server memory setting. If this configuration option is set, the buffer pool is not allowed to grow to more than this value. In SQL Server 2008 this value represents single page allocations, and in “Denali” it represents any size page allocations and also managed CLR procedure allocations.   - Memory signals from OS. The operating system sets a signal on memory resource notification objects to indicate whether it has memory available or whether it is low on available memory. If there is only 32MB free for every 4GB of memory a low memory signal is set, which continues until 64MB/4GB is free. If there is 96MB/4GB free the operating system sets a high memory signal. SQL Server only allocates memory when the high memory signal is set.   To summarize, for SQL Server to grow you need three conditions: a workload, max server memory setting higher than the current allocation, high memory signals from the OS.    When does SQL Server shrink caches? SQL Server as a rule does not like to return memory to the OS, but it will shrink its caches in response to memory pressure. Memory pressure can be divided into “internal” and “external”.   - External memory pressure occurs when the operating system is running low on memory and low memory signals are set. The SQL Server Resource Monitor checks for low memory signals approximately every 5 seconds and it will attempt to free memory until the signals stop.   To free memory SQL Server does the following: ·         Frees unused memory. ·         Notifies Memory Manager Clients to release memory o   Caches – Free unreferenced cache objects. o   Buffer pool - Based on oldest access times.   The freed memory is released back to the operating system. This process continues until the low memory resource notifications stop.    - Internal memory pressure occurs when the size of different caches and allocations increase but the SQL Server process needs to keep its total memory within a target value. For example if max server memory is set and certain caches are growing large, it will cause SQL to free memory for re-use internally, but not to release memory back to the OS. If you lower the value of max server memory you will generate internal memory pressure that will cause SQL to release memory back to the OS.    Memory pressure handling has not changed much since SQL 2005 and it was described in detail in a blog post by Slava Oks.   Note that SQL Server Express is an exception to the above behavior. Unlike other editions it does not assume it is the most important process running on the system but tries to be more “desktop” friendly. It will empty its working set after a period of inactivity.   How does SQL Server respond to changing OS memory?    In SQL Server 2005 support for Hot-Add memory was introduced. This feature, available in Enterprise and above editions, allows the server to make use of any extra physical memory that was added after SQL Server started. Being able to add physical memory when the system is running is limited to specialized hardware, but with the Hyper-V Dynamic Memory feature, when new memory is allocated to a guest virtual machine, it looks like hot-add physical memory to the guest. What this means is that thanks to the hot-add memory feature, SQL Server 2005 and higher can dynamically grow if more “physical” memory is granted to a guest VM by Hyper-V dynamic memory.   SQL Server checks OS memory every second and dynamically adjusts its “target” (based on available OS memory and max server memory) accordingly.   In “Denali” Standard Edition will also have sqlserver.exe support for hot-add memory when running virtualized (i.e. detecting and acting on Hyper-V Dynamic Memory allocations).   How does a SQL Server workload in a guest VM impact Hyper-V dynamic memory scheduling?   When a SQL workload causes the sqlserver.exe process to grow its working set, the Hyper-V memory scheduler will detect memory pressure in the guest VM and add memory to it. SQL Server will then detect the extra memory and grow according to workload demand. In our tests we have seen this feedback process cause a guest VM to grow quickly in response to SQL workload - we are still working on characterizing this ramp-up.    How does SQL Server respond when Hyper-V removes memory from a guest VM through ballooning?   If pressure from other VM's cause Hyper-V Dynamic Memory to take memory away from a VM through ballooning (allocating memory with a virtual device driver and returning it to the host OS), Windows Memory Manager will page out unlocked portions of memory and signal low resource notification events. When SQL Server detects these events it will shrink memory until the low memory notifications stop (see cache shrinking description above).    This raises another question. Can we make SQL Server release memory more readily and hence behave more "dynamically" without compromising performance? In certain circumstances where the application workload is predictable it may be possible to have a job which varies "max server memory" according to need, lowering it when the engine is inactive and raising it before a period of activity. This would have limited applicaability but it is something we're looking into.   What Memory Management changes are there in SQL Server “Denali”?   In SQL Server “Denali” (aka SQL11) the Memory Manager has been re-written to be more efficient. The main changes are summarized in this post. An important change with respect to Hyper-V Dynamic Memory support is that now the max server memory setting includes any size page allocations and managed CLR procedure allocations it now represents a closer approximation to total sqlserver.exe memory usage. This makes it easier to calculate a value for max server memory, which becomes important when configuring virtual machines to work well with Hyper-V Dynamic Memory Startup and Maximum RAM settings.   Another important change is no more AWE or hot-add support for 32-bit edition. This means if you're running a 32-bit edition of Denali you're limited to a 4GB address space and will not be able to take advantage of dynamically added OS memory that wasn't present when SQL Server started (though Hyper-V Dynamic Memory is still a supported configuration).   In part 3 we’ll develop some best practices for configuring and using SQL Server with Dynamic Memory. Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • mysql 5.0.23 vs 5.5 performance benefits and upgrade issues ?

    - by WarDoGG
    I have been told that mysql 5.5 has a significant performanance boost compared to 5.0 Our server handles alot of data (around 30 million records processed per 5-10 seconds) and requires every drop of performance boost we can give. Will it be beneficial if we upgrade from 5.0.23 to mysql 5.5 ? Also, we have lots of database indexes setup on the tables and i've been told that sometimes the indexes become corrupt after a version upgrade and they have to be rebuilt. Is this true ?

    Read the article

  • /etc/security/limits.conf for setting program limits in Linux

    - by Flavius Akerele
    I have the following inside /etc/security/limits.conf (I have specified root separately because * will not include it.) user2 - core unlimited * - core 0 root - core 0 * - rss 512000 root - rss 512000 * - nproc 100 root - nproc 100 * - maxlogins 1 root - maxlogins 1 I run a program as user2 (./programname) but /proc/3498/limits says cores are disabled: Limit Soft Limit Hard Limit Units Max cpu time unlimited unlimited seconds Max file size unlimited unlimited bytes Max data size unlimited unlimited bytes Max stack size 8388608 unlimited bytes Max core file size 0 0 bytes Max resident set 524288000 524288000 bytes Max processes 100 100 processes Max open files 1024 1024 files Max locked memory 65536 65536 bytes Max address space unlimited unlimited bytes Max file locks unlimited unlimited locks Max pending signals 14001 14001 signals Max msgqueue size 819200 819200 bytes Max nice priority 0 0 Max realtime priority 0 0 Max realtime timeout unlimited unlimited us Both ulimit -Sa and ulimit -Ha output that cores are disabled: core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 14001 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) 512000 open files (-n) 1024 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) unlimited cpu time (seconds, -t) unlimited max user processes (-u) 100 virtual memory (kbytes, -v) unlimited file locks (-x) unlimited Why are cores disabled ?

    Read the article

  • /etc/security/limits.conf for setting program limits in Linux

    - by Flavius Akerele
    I have the following inside /etc/security/limits.conf (I have specified root separately because * will not include it.) user2 - core unlimited * - core 0 root - core 0 * - rss 512000 root - rss 512000 * - nproc 100 root - nproc 100 * - maxlogins 1 root - maxlogins 1 I run a program as user2 (./programname) but /proc/3498/limits says cores are disabled: Limit Soft Limit Hard Limit Units Max cpu time unlimited unlimited seconds Max file size unlimited unlimited bytes Max data size unlimited unlimited bytes Max stack size 8388608 unlimited bytes Max core file size 0 0 bytes Max resident set 524288000 524288000 bytes Max processes 100 100 processes Max open files 1024 1024 files Max locked memory 65536 65536 bytes Max address space unlimited unlimited bytes Max file locks unlimited unlimited locks Max pending signals 14001 14001 signals Max msgqueue size 819200 819200 bytes Max nice priority 0 0 Max realtime priority 0 0 Max realtime timeout unlimited unlimited us Both ulimit -Sa and ulimit -Ha output that cores are disabled: core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 14001 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) 512000 open files (-n) 1024 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) unlimited cpu time (seconds, -t) unlimited max user processes (-u) 100 virtual memory (kbytes, -v) unlimited file locks (-x) unlimited Why are cores disabled ?

    Read the article

  • Erratic WiFi 2.4 GHz channel spikes, what gives?

    - by Francis W. Usher
    Sorry guys, first a gripe about my neighbor's WiFi access point (it is related): they totally hog the center nine 2.4 GHz channels (3-11), centered right at 7! I know the outer regions of the signal don't make as much of a difference, and technically they're running channels 5 & 9. Anyway, their signal is clearly interfering with mine, which is necessarily centered at 3 or 11 to evade their interference. I guess it's somewhat a case of access point envy: they happen to have both a stronger signal and a higher data rate, while occupying twice the band width that I do. Getting to the point, I've noticed that they tend to sit nice and pretty centered at 7, but they definitely auto-select their channel, and I've noticed that the auto-selection algorithm tends to shift towards the higher channels; hence I decided to pick channel 3, and I don't get so many intermittent lag spikes any more. Anyway, the thing that weirded me out was the reason they have to auto-select sometimes: unexplained, powerful (talking order of 0dB here), giant spikes of 2.4 GHz activity in consistent regions of the spectrum. I don't think it's just noise, since my wireless monitoring software is registering a MAC address, a manufacturer, and usually a fairly coherent ascii name... and it seems to be a fairly well-confined signal. But these signals are fairly common, and they do some weird stuff to my signal. So my question is what are these signals? Where are they coming from? Where are they going? Why are they so ridiculously strong? Why don't they ever last very long? Here's an inSSIDer screenshot I took, for your perusal. I am labeled with "me", my greedy neighbor labeled with "neighbor", and the 2 quasar signals are labeled with "WTF?".

    Read the article

  • mysql 5.0.23 vs 5.5 performance benefits and upgrade issues?

    - by WarDoGG
    I have been told that mysql 5.5 has a significant performance boost compared to 5.0 Our server handles a lot of data (around 30 million records processed per 5-10 seconds) and requires every drop of performance boost we can give. Will it be beneficial if we upgrade from 5.0.23 to mysql 5.5? Also, we have lots of database indexes setup on the tables and I've been told that sometimes the indexes become corrupt after a version upgrade and they have to be rebuilt. Is this true?

    Read the article

  • CMake missing environment variables errors

    - by Ben Crowhurst
    Hello, I'm attempting to use cmake on Mac OSX i've installed both a binary version and then also from source. However i continue to receive the following errors when attempting to create a Makefile. cpc1-dumb4-2-0-cust166:build bcrowhurst$ cmake . CMake Error: Error required internal CMake variable not set, cmake may be not be built correctly. Missing variable is: CMAKE_On_COMPILER_ENV_VAR CMake Error: Error required internal CMake variable not set, cmake may be not be built correctly. Missing variable is: CMAKE_On_COMPILER CMake Error: Could not find cmake module file:/Users/bcrowhurst/NetBeansProjects/appon/build/CMakeFiles/CMakeOnCompiler.cmake CMake Error: Could not find cmake module file:CMakeOnInformation.cmake CMake Error: CMAKE_On_COMPILER not set, after EnableLanguage -- Boost version: 1.43.0 -- Found the following Boost libraries: -- system -- Configuring incomplete, errors occurred! My CMakeLists.txt is as follows: cmake_minimum_required( VERSION 2.6 ) project( Application On ) find_package( Boost COMPONENTS system REQUIRED ) link_directories( ${Boost_LIBRARY_DIRS} ) if(Boost_FOUND) include_directories( ${Boost_INCLUDE_DIRS} ) add_library( object ../source/object.cpp ../source/object.h ) target_link_libraries( object ${Boost_SYSTEM_LIBRARY} ) endif() Any help would be greatly appreciated. Thanks.

    Read the article

  • Start Codeblocks project from external code

    - by Dnaiel
    I have C++ code that depends on boost and other libraries, and therefore this code has a makefile that invokes boost. I am now trying to start developing this code in codeblocks in linux, so in order to do that I have two basic questions: (1) How can I import the code into codeblocks as a codeblocks new project? (2) How do I invoke the makefile with codeblocks instead of codeblocks trying to compile the code (which it would fail since codeblocks does not know that it needs to invoke boost). Sorry if it's too basic but I am quite new to C++ and codeblocks. Thanks!

    Read the article

  • VC7.1 C1204 internal compiler error

    - by Nathan Ernst
    I'm working on modifying Firaxis' Civilization 4 core game DLL. The host application is built using VC7, hence the constraint (source not provided for the host EXE). I've been working on rewriting a large chunk of the code (focusing on low-hanging performance issues & memory leaks). I recently ran into an internal compiler error when trying to mod the code to use an array class instead of dynamically allocated 2-d arrays, I was going to use matrices from the boost lib (Civ4 is already using boost, so why not?). Basically, the issue comes down to: if I include "boost/numeric/ublas/matrix.hpp", I run into an internal compiler error C1204. MSDN has this to say: MSDN C1204 KB has this to say: KB 883655 So, I'm curious, is it possible to solve this error without a KB/SP being applied and dramatically reducing the complexity of the code? Additionally, as VC7 is no longer "supported", does anyone have a valid (supported) link for a VC7 service pack?

    Read the article

< Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >