Search Results

Search found 1621 results on 65 pages for 'cout'.

Page 41/65 | < Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >

  • What's the fastest lookup algorithm for a key, pair data structure (i.e, a map)?

    - by truncheon
    In the following example a std::map structure is filled with 26 values from A - Z (for key) and 0 – 26 for value. The time taken (on my system) to lookup the last entry (10000000 times) is roughly 250 ms for the vector, and 125 ms for the map. (I compiled using release mode, with O3 option turned on for g++ 4.4) But if for some odd reason I wanted better performance than the std::map, what data structures and functions would I need to consider using? I apologize if the answer seems obvious to you, but I haven't had much experience in the performance critical aspects of C++ programming. #include <ctime> #include <map> #include <vector> #include <iostream> struct mystruct { char key; int value; mystruct(char k = 0, int v = 0) : key(k), value(v) { } }; int find(const std::vector<mystruct>& ref, char key) { for (std::vector<mystruct>::const_iterator i = ref.begin(); i != ref.end(); ++i) if (i->key == key) return i->value; return -1; } int main() { std::map<char, int> mymap; std::vector<mystruct> myvec; for (int i = 'a'; i < 'a' + 26; ++i) { mymap[i] = i - 'a'; myvec.push_back(mystruct(i, i - 'a')); } int pre = clock(); for (int i = 0; i < 10000000; ++i) { find(myvec, 'z'); } std::cout << "linear scan: milli " << clock() - pre << "\n"; pre = clock(); for (int i = 0; i < 10000000; ++i) { mymap['z']; } std::cout << "map scan: milli " << clock() - pre << "\n"; return 0; }

    Read the article

  • C++ Class Construction and Member Initialization

    - by anachoret
    The first print shows the member value to be false, and the other two prints show it as true. Why does the first output differ from the last two? #include #include using namespace std; class MyClass { public: bool value; bool stuff; }; class Container { public: vector my_classes; Container() { MyClass c; cout

    Read the article

  • C++ Euler-Problem 14 Program Freezing

    - by Tim
    I'm working on Euler Problem 14: http://projecteuler.net/index.php?section=problems&id=14 I figured the best way would be to create a vector of numbers that kept track of how big the series was for that number... for example from 5 there are 6 steps to 1, so if ever reach the number 5 in a series, I know I have 6 steps to go and I have no need to calculate those steps. With this idea I coded up the following: #include <iostream> #include <vector> #include <iomanip> using namespace std; int main() { vector<int> sizes(1); sizes.push_back(1); sizes.push_back(2); int series, largest = 0, j; for (int i = 3; i <= 1000000; i++) { series = 0; j = i; while (j > (sizes.size()-1)) { if (j%2) { j=(3*j+1)/2; series+=2; } else { j=j/2; series++; } } series+=sizes[j]; sizes.push_back(series); if (series>largest) largest=series; cout << setw(7) << right << i << "::" << setw(5) << right << series << endl; } cout << largest << endl; return 0; } It seems to work relatively well for smaller numbers but this specific program stalls at the number 113382. Can anyone explain to me how I would go about figuring out why it freezes at this number? Is there some way I could modify my algorithim to be better? I realize that I am creating duplicates with the current way I'm doing it: for example, the series of 3 is 3,10,5,16,8,4,2,1. So I already figured out the sizes for 10,5,16,8,4,2,1 but I will duplicate those solutions later. Thanks for your help!

    Read the article

  • Binary Search Tree Contains Function

    - by Suede
    I am trying to write a "contains" function for a binary search tree. I receive the following error at compile "Unhandled exception at 0x77291CB3 (ntdll.dll) in BST.exe: 0xC00000FD: Stack overflow (parameters: 0x00000001, 0x001E2FFC)." The following is my code. struct Node { int data; Node* leftChild; Node* rightChild; Node() : leftChild(NULL), rightChild(NULL) {} }; struct BST { Node* root; BST() : root(NULL) {} void insert(int value); bool contains(int value); }; void BST::insert(int value) { Node* temp = new Node(); temp->data = value; if(root == NULL) { root = temp; return; } Node* current; current = root; Node* parent; parent = root; current = (temp->data < current->data ? (current->leftChild) : (current->rightChild) while(current != NULL) { parent = current; current = (temp->data < current->data) ? (current->leftChild) : (current->rightChild) } if(temp->data < parent->data) { parent->leftChild = temp; } if(temp->data > parent->data) { parent->rightChild = temp; } } bool BST::contains(int value) { Node* temp = new Node(); temp->data = value; Node* current; current = root; if(temp->data == current->data) { // base case for when node with value is found std::cout << "true" << std::endl; return true; } if(current == NULL) { // base case if BST is empty or if a leaf is reached before value is found std::cout << "false" << std::endl; return false; } else { // recursive step current = (temp->data < current->data) ? (current->leftChild) : (current->rightChild); return contains(temp->data); } } int main() { BST bst; bst.insert(5); bst.contains(4); system("pause"); } As it stands, I would insert a single node with value '5' and I would search the binary search tree for a node with value '4' - thus, I would expect the result to be false.

    Read the article

  • int ** vs int [ROWS][COLS]

    - by user355638
    I have a 2D array declared like this: int arr[2][2]={ {1,2},{3,4}}; Now if I do: int ** ptr=(int**) arr; and: cout<<**ptr; I am getting a segmentation fault (using g++-4.0). Why so? Shouldn't it be printing the value 1 (equal to arr[0][0])?

    Read the article

  • pointer to preallocated memory as an input parameter and have the function fill it

    - by djones2010
    test code: void modify_it(char * mystuff) { char test[7] = "123456"; //last element is null i presume for c style strings here. //static char test[] = "123123"; //when i do this i thought i should be able to gain access to this bit of memory when the function is destroyed but that does not seem to be the case. //char * test = new char[7]; //this is also creating memory on stack and not the heap i reckon and gets destroyed once the function is done with. strcpy_s(mystuff,7,test); //this does the job as long as memory for mystuff has been allocated outside the function. mystuff = test; //this does not work. I know with c style strings you can't just do string assignments they have to be actually copied. in this case I was using this in conjunction with static char test thinking by having it as static the memory would not get destroyed and i can then simply point mystuff to test and be done with it. i would later have address the memory cleanup in the main function. but anyway this never worked. } int main(void) { char * mystuff = new char [7]; //allocate memory on heap where the pointer will point cool(mystuff); std::string test_case(mystuff); std::cout<<test_case.c_str(); //this is the only way i know how to use cout by making it into a string c++ string. delete [] mystuff; return 0; } in the case, of a static array in the function why would it not work. in the case, when i allocated memory using new in the function does it get created on the stack or heap? in the case, i have string which needs to be copied into a char * form. everything i see usually requires const char* instead of just char*. I know i could use reference to take care of this easy. Or char ** to send in the pointer and do it that way. But i just wanted to know if I could do it with just char *. Anyway your thoughts and comments plus any examples would be very helpful.

    Read the article

  • fill an array with Int like a Char; C++, cin object

    - by Duknov007
    This is a pretty simple question; first time poster and long time looker. Here is my binary to decimal converter I wrote: #include <iostream> #include <cmath> using namespace std; const int MAX = 6; int conv(int z[MAX], int l[6], int MAX); int main() { int zelda[MAX]; const int d = 6; int link[d]; cout << "Enter a binary number: \n"; int i = 0; while (i < MAX && (cin >> zelda[i]).get()) //input loop { ++i; } cout << conv(zelda, link, MAX); cin.get(); return 0; } int conv(int zelda[MAX], int link[6], int MAX) { int sum = 0; for (int t = 0; t < MAX; t++) { long int h, i; for (int h = 5, i = 0; h >= 0; --h, ++i) if (zelda[t] == 1) link[h] = pow(2.0, i); else link[h] = 0; sum += link[t]; } return sum; } With the way the input loop is being handled, I have to press enter after each input of a number. I haven't added any error correction yet either (and some of my variables are vague), but would like to enter a binary say 111111 instead of 1 enter, 1 enter, 1 enter, etc to fill the array. I am open to any technique and other suggestions. Maybe input it as a string and convert it to an int? I will keep researching. Thanks.

    Read the article

  • c++ Function pointer inlining

    - by wb
    I know I can pass a function pointer as a template parameter and get a call to it inlined but I wondered if any compilers these days can inline an 'obvious' inline-able function like: inline static void Print() { std::cout << "Hello\n"; } .... void (*func)() = Print; func(); Under Visual Studio 2008 its clever enough to get it down to a direct call instruction so it seems a shame it can't take it a step further?

    Read the article

  • Can I Have Polymorphic Containers With Value Semantics in C++11?

    - by John Dibling
    This is a sequel to a related post which asked the eternal question: Can I have polymorphic containers with value semantics in C++? The question was asked slightly incorrectly. It should have been more like: Can I have STL containers of a base type stored by-value in which the elements exhibit polymorphic behavior? If you are asking the question in terms of C++, the answer is "no." At some point, you will slice objects stored by-value. Now I ask the question again, but strictly in terms of C++11. With the changes to the language and the standard libraries, is it now possible to store polymorphic objects by value in an STL container? I'm well aware of the possibility of storing a smart pointer to the base class in the container -- this is not what I'm looking for, as I'm trying to construct objects on the stack without using new. Consider if you will (from the linked post) as basic C++ example: #include <iostream> using namespace std; class Parent { public: Parent() : parent_mem(1) {} virtual void write() { cout << "Parent: " << parent_mem << endl; } int parent_mem; }; class Child : public Parent { public: Child() : child_mem(2) { parent_mem = 2; } void write() { cout << "Child: " << parent_mem << ", " << child_mem << endl; } int child_mem; }; int main(int, char**) { // I can have a polymorphic container with pointer semantics vector<Parent*> pointerVec; pointerVec.push_back(new Parent()); pointerVec.push_back(new Child()); pointerVec[0]->write(); pointerVec[1]->write(); // Output: // // Parent: 1 // Child: 2, 2 // But I can't do it with value semantics vector<Parent> valueVec; valueVec.push_back(Parent()); valueVec.push_back(Child()); // gets turned into a Parent object :( valueVec[0].write(); valueVec[1].write(); // Output: // // Parent: 1 // Parent: 2 }

    Read the article

  • C++: Unitialized variables garbage

    - by Hardware Problem
    int myInt; cout << myInt; // Garbage like 429948, etc If I output and/or work with unitialized variables in C++, what are their assumed values? Actual values in the memory from the "last user"? e.g.: Program A is closed, it had an int with the value 1234 at 0x1234 - I run my program, myInt gets the address 0x1234, I output it like above - 1234 Is it just random garbage?

    Read the article

  • hash table with chaining method program freezing

    - by Justin Carrey
    I am implementing hash table in C using linked list chaining method. The program compiles but when inserting a string in hash table, the program freezes and gets stuck. The program is below: struct llist{ char *s; struct llist *next; }; struct llist *a[100]; void hinsert(char *str){ int strint, hashinp; strint = 0; hashinp = 0; while(*str){ strint = strint+(*str); } hashinp = (strint%100); if(a[hashinp] == NULL){ struct llist *node; node = (struct llist *)malloc(sizeof(struct llist)); node->s = str; node->next = NULL; a[hashinp] = node; } else{ struct llist *node, *ptr; node = (struct llist *)malloc(sizeof(struct llist)); node->s = str; node->next = NULL; ptr = a[hashinp]; while(ptr->next != NULL){ ptr = ptr->next; } ptr->next = node; } } void hsearch(char *strsrch){ int strint1, hashinp1; strint1 = 0; hashinp1 = 0; while(*strsrch){ strint1 = strint1+(*strsrch); } hashinp1 = (strint1%100); struct llist *ptr1; ptr1 = a[hashinp1]; while(ptr1 != NULL){ if(ptr1->s == strsrch){ cout << "Element Found\n"; break; } else{ ptr1 = ptr1->next; } } if(ptr1 == NULL){ cout << "Element Not Found\n"; } } hinsert() is to insert elements into hash and hsearch is to search an element in the hash. Hash function is written inside hinsert() itself. In the main(), what i am initializing all the elements in a[] to be NULL like this: for(int i = 0;i < 100; i++){ a[i] = NULL; } Help is very much appreciated. Thanks !

    Read the article

  • How to get proper text name of typeid()

    - by Vincenzo
    My code: namespace test { class MyTest { }; } MyTest a; cout << typeid(a).name(); This is what I see (i686-apple-darwin10-gcc-4.2.1 (GCC) 4.2.1 (Apple Inc. build 5659)): N4test6MyTestE Is there any platform-independent way to get something like test::MyTest instead of this string?

    Read the article

  • something about C++ unnamed namespace.

    - by Javran
    #include <iostream> namespace { int a=1; } int a=2,b=3; int main(void) { std::cout<<::a<<::b; return 0; } I complie it with my g++,but the output is 23, who can explain it? is that a way to get access to the <unnamed> namespace ::a?

    Read the article

  • C++ help and questions

    - by user267237
    I need help making an c++ program with a function that uses int Disc(int A, int B, int C) and calculates returns B*B-4*A*C and use the function Disc in the program..... i have this so far. void main(){ cout << Disc(a,b,c); }

    Read the article

< Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >