Search Results

Search found 6426 results on 258 pages for 'double escaping'.

Page 41/258 | < Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >

  • Script or Utility to convert .nab to .csv without importing double entries in Outlook.

    - by Chris
    Currently our environment is migrating from Groupwise 7 to Outlook 2003 and we have multiple users with mission critical outside contacts in their frequent contacts that will have to be imported in Outlook. Currently our only solution is to export GW contacts to a .nab, import to excel to scrub out the contacts in our own domain (to avoid double entry) and convert to .csv. This current solution will require a lot of man hours for hand holding because most of our users are not technically savvy AT ALL and are frankly too busy to do this themselves. Anyone know of any kind of tool or script to assist with this?

    Read the article

  • Im getting fatal errors... can anyone help me edit my program!

    - by user350217
    The errors i am getting are: Error 1 error LNK2019: unresolved external symbol "double __cdecl getDollarAmt(void)" (? getDollarAmt@@YANXZ) referenced in function _main hid.obj Error 2 fatal error LNK1120: 1 unresolved externals this is my program: #include<iostream> #include<cmath> #include<string> using namespace std; double getDollarAmt(); void displayCurrencies(); char getCurrencySelection (float amtExchanged); bool isSelectionValid(char selection); double calcExchangeAmt (float amtExchanged, char selection); void displayResults(double newAmount, float amtExchanged, char selection, char yesNo); const double russianRubles = 31.168; const double northKoreanWon = .385; const double chineseYuan = 6.832; const double canadianDollar = 1.1137; const double cubanPeso = 1.0; const double ethiopianBirr = 9.09; const double egyptianPound = 5.6275; const double tunisianDinar = 1.3585; const double thaiBaht = 34.4; /****** I changed the variables to global variables so you don't have to worry about accidentally setting them to 0 or assigning over a value that you need ********/ float amtEchanged = 0.0; char selection; char yesNo; double newAmount; int main() { float amtExchanged = 0.0; selection = 'a'; yesNo = 'y'; newAmount = 0.0; getDollarAmt (); displayCurrencies(); getCurrencySelection (amtExchanged); isSelectionValid(selection);/**** you only need to use the selection variable ****/ calcExchangeAmt (amtExchanged, selection); displayResults(newAmount, amtExchanged, selection, yesNo); return 0; } double getDollarAmt (float amtExchanged) // promt user for eachange amount and return it to main { float amtExchanged0;//created temporary variable to set amtExchanged to cout<< "Please enter the total dollar amount to exchange: "; cin>> amtExchanged0; amtExchanged = amtExchanged0;//setting amtExchanged to the right value return amtExchanged; } void displayCurrencies() // display list of currencies { cout<<"A Russian Ruble"<<endl <<"B North Korean Won"<<endl <<"C Chinese Yuan"<<endl <<"D Cuban Peso"<<endl <<"E Ethiopian Birr"<<endl <<"F Thai Baht"<<endl <<"G Canadian Dollars"<<endl <<"H Tunisian Dinar"<<endl <<"I Egyptian Pound"<<endl; } char getCurrencySelection (float amtExchanged) // make a selection and return to main { char selection0;//again, created a temporary variable for selection cout<<"Please enter your selection: "; cin>>selection0; selection = selection0;//setting the temporary variable to the actual variable you use /***** we are now going to see if isSelectionValid returns false. if it returns false, that means that their selection was not character A-H. if it is false we keep calling getCurrencySelection *****/ if(isSelectionValid(selection)==false) { cout<<"Sorry, the selection you chose is invalid."<<endl; getCurrencySelection(amtExchanged); } return selection; } bool isSelectionValid(char selection) // this fuction is supposed to be called from getCurrencySelection, the selction // must be sent to isSelectionValid to determine if its valid // if selection is valid send it bac to getCurrencySelection // if it is false then it is returned to getCurrencySelection and prompted to // make another selection until the selection is valid, then it is returned to main. { /**** i'm not sure if this is what you mean, all i am doing is making sure that their selection is A-H *****/ if(selection=='A' || selection=='B' || selection=='C' || selection=='D' || selection=='E' || selection=='F' || selection=='G' || selection=='H' || selection=='I') return true; else return false; } double calcExchangeAmt (float amtExchanged,char selection) // function calculates the amount of money to be exchanged { switch (toupper(selection)) { case 'A': newAmount =(russianRubles) * (amtExchanged); break; case 'B': newAmount = (northKoreanWon) * (amtExchanged); break; case 'C': newAmount = (chineseYuan) * (amtExchanged); break; case 'D': newAmount = (canadianDollar) * (amtExchanged); break; case 'E': newAmount = (cubanPeso) * (amtExchanged); break; case 'F': newAmount = (ethiopianBirr) * (amtExchanged); break; case 'G': newAmount = (egyptianPound) * (amtExchanged); break; case 'H': newAmount = (tunisianDinar) * (amtExchanged); break; case 'I': newAmount = (thaiBaht) * (amtExchanged); break; } return newAmount; } void displayResults(double newAmount, float amtExchanged, char selection, char yesNo) // displays results and asked to repeat. IF they want to repeat it clears the screen and starts over. { switch(toupper(selection)) { case 'A': cout<<"$"<<amtExchanged<<" is "<<newAmount<<" Russian Rubles."<<endl<<endl; break; case 'B': cout<<"$"<<amtExchanged<<" is "<<newAmount<<" North Korean Won."<<endl<<endl; break; case 'C': cout<<"$"<<amtExchanged<<" is "<<newAmount<<" Chinese Yuan."<<endl<<endl; break; case 'D': cout<<"$"<<amtExchanged<<" is "<<newAmount<<" Cuban Pesos."<<endl<<endl; break; case 'E': cout<<"$"<<amtExchanged<<" is "<<newAmount<<" Ethiopian Birr."<<endl<<endl; break; case 'F': cout<<"$"<<amtExchanged<<" is "<<newAmount<<" Thai Baht."<<endl<<endl; break; case 'G': cout<<"$"<<amtExchanged<<" is "<<newAmount<<" Canadian Dollars."<<endl<<endl; break; case 'H': cout<<"$"<<amtExchanged<<" is "<<newAmount<<" Tunisian Dinar."<<endl<<endl; break; case 'I': cout<<"$"<<amtExchanged<<" is "<<newAmount<<" Egyptian Pound."<<endl<<endl; break; } cout<<"Do you wish to continue? (Y for Yes / N for No)"; cin>>yesNo; if(yesNo=='y' || yesNo=='Y') { getDollarAmt(); } else { system("cls"); } }

    Read the article

  • Simple C++ program on multidimensional arrays - Getting C2143 error among others. Not sure why?

    - by noobzilla
    Here is my simple multidimensional array program. The first error occurs where I declare the function addmatrices and then a second one where it is implemented. I am also getting an undefined variable error for bsize. What am I doing incorrectly? #include <iostream> #include <fstream> #include <string> #include <iomanip> using namespace std; //Function declarations void constmultiply (double matrixA[][4], int asize, double matrixC[][4], int bsize, double multiplier); //Pre: The address of the output file, the matrix to be multiplied by the constant, the matrix in which // the resultant values will be stored and the multiplier are passed in. //Post: The matrix is multiplied by the multiplier and the results are displayed on screen and written to the // output file. int addmatrices (double matrixA[][4], int asize, double matrixB[]4], int bsize, double matrixC[][4], int csize); //Pre: The addresses of three matrices are passed in //Post: The values in each of the two matrices are added together and put into a third matrix //Error Codes int INPUT_FILE_FAIL = 1; int UNEQUAL_MATRIX_SIZE = 2; //Constants const double multiplier = 2.5; const int rsize = 4; const int csize = 4; //Main Driver int main() { //Declare the two matrices double matrix1 [rsize][csize]; double matrix2 [rsize][csize]; double matrix3 [rsize][csize]; //Variables double temp; string filename; //Declare filestream object ifstream infile; //Ask the user for the name of the input file cout << "Please enter the name of the input file: "; cin >> filename; //Open the filestream object infile.open(filename.c_str()); //Verify that the input file opened correctly if (infile.fail()) { cout << "Input file failed to open" <<endl; exit(INPUT_FILE_FAIL); } //Begin reading in data from the first matrix for (int i = 0; i <= 3; i++)//i = row { for (int j = 0; j <= 3; j++)// j = column { infile >> temp; matrix1[i][j] = temp; } } //Begin reading in data from the second matrix for (int k = 0; k <= 3; k++)// k = row { for (int l = 0; l <= 3; l++)// l = column { infile >> temp; matrix2[k][l] = temp; } } //Notify user cout << "Input file open, reading matrices...Done!" << endl << "Read in 2 matrices..."<< endl; //Output the values read in for Matrix 1 for (int i = 0; i <= 3; i++) { for (int j = 0; j <= 3; j ++) { cout << setprecision(1) << matrix1[i][j] << setw(8); } cout << "\n"; } cout << setw(40)<< setfill('-') << "-" << endl ; //Output the values read in for Matrix 2 for (int i = 0; i <= 3; i++) { for (int j = 0; j <= 3; j ++) { cout << setfill(' ') << setprecision(2) << matrix2[i][j] << setw(8); } cout << "\n"; } cout << setw(40)<< setfill('-') << "-" << endl ; //Multiply matrix 1 by the multiplier value constmultiply (matrix1, rsize, matrix3, rsize, multiplier); //Output matrix 3 values to screen for (int i = 0; i <= 3; i++) { for (int j = 0; j <= 3; j ++) { cout << setfill(' ') << setprecision(2) << matrix3[i][j] << setw(8); } cout << "\n"; } cout << setw(40)<< setfill('-') << "-" << endl ; // //Add matrix1 and matrix2 // addmatrices (matrix1, 4, matrix2, 4, matrix3, 4); // //Finished adding. Now output matrix 3 values to screen // for (int i = 0; i <= 3; i++) // { //for (int j = 0; j <= 3; j ++) //{ // cout << setfill(' ') << setprecision(2) << matrix3[i][j] << setw(8); //} //cout << "\n"; // } // cout << setw(40)<< setfill('-') << "-" << endl ; //Close the input file infile.close(); return 0; } //Function implementation void constmultiply (double matrixA[][4], int asize, double matrixC[][4], int bsize, double multiplier) { //Loop through each row and multiply the value at that location with the multiplier for (int i = 0; i < asize; i++) { for (int j = 0; j < 4; j++) { matrixC[i][j] = matrixA[i][j] * multiplier; } } } int addmatrices (double matrixA[][4], int asize, double matrixB[]4], int bsize, double matrixC[][4], int csize) { //Remember that you can only add two matrices that have the same shape - i.e. They need to have an equal //number of rows and columns. Let's add some error checking for that: if(asize != bsize) { cout << "You are attempting to add two matrices that are not equal in shape. Program terminating!" << endl; return exit(UNEQUAL_MATRIX_SIZE); } //Confirmed that the matrices are of equal size, so begin adding elements for (int i = 0; i < asize; i++) { for (int j = 0; j < bsize; j++) { matrixC[i][j] = matrixA[i][j] + matrixB[i][j]; } } }

    Read the article

  • Where is the virtual function call overhead?

    - by Semen Semenych
    Hello everybody, I'm trying to benchmark the difference between a function pointer call and a virtual function call. To do this, I have written two pieces of code, that do the same mathematical computation over an array. One variant uses an array of pointers to functions and calls those in a loop. The other variant uses an array of pointers to a base class and calls its virtual function, which is overloaded in the derived classes to do absolutely the same thing as the functions in the first variant. Then I print the time elapsed and use a simple shell script to run the benchmark many times and compute the average run time. Here is the code: #include <iostream> #include <cstdlib> #include <ctime> #include <cmath> using namespace std; long long timespecDiff(struct timespec *timeA_p, struct timespec *timeB_p) { return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) - ((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec); } void function_not( double *d ) { *d = sin(*d); } void function_and( double *d ) { *d = cos(*d); } void function_or( double *d ) { *d = tan(*d); } void function_xor( double *d ) { *d = sqrt(*d); } void ( * const function_table[4] )( double* ) = { &function_not, &function_and, &function_or, &function_xor }; int main(void) { srand(time(0)); void ( * index_array[100000] )( double * ); double array[100000]; for ( long int i = 0; i < 100000; ++i ) { index_array[i] = function_table[ rand() % 4 ]; array[i] = ( double )( rand() / 1000 ); } struct timespec start, end; clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start); for ( long int i = 0; i < 100000; ++i ) { index_array[i]( &array[i] ); } clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end); unsigned long long time_elapsed = timespecDiff(&end, &start); cout << time_elapsed / 1000000000.0 << endl; } and here is the virtual function variant: #include <iostream> #include <cstdlib> #include <ctime> #include <cmath> using namespace std; long long timespecDiff(struct timespec *timeA_p, struct timespec *timeB_p) { return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) - ((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec); } class A { public: virtual void calculate( double *i ) = 0; }; class A1 : public A { public: void calculate( double *i ) { *i = sin(*i); } }; class A2 : public A { public: void calculate( double *i ) { *i = cos(*i); } }; class A3 : public A { public: void calculate( double *i ) { *i = tan(*i); } }; class A4 : public A { public: void calculate( double *i ) { *i = sqrt(*i); } }; int main(void) { srand(time(0)); A *base[100000]; double array[100000]; for ( long int i = 0; i < 100000; ++i ) { array[i] = ( double )( rand() / 1000 ); switch ( rand() % 4 ) { case 0: base[i] = new A1(); break; case 1: base[i] = new A2(); break; case 2: base[i] = new A3(); break; case 3: base[i] = new A4(); break; } } struct timespec start, end; clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start); for ( int i = 0; i < 100000; ++i ) { base[i]->calculate( &array[i] ); } clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end); unsigned long long time_elapsed = timespecDiff(&end, &start); cout << time_elapsed / 1000000000.0 << endl; } My system is LInux, Fedora 13, gcc 4.4.2. The code is compiled it with g++ -O3. The first one is test1, the second is test2. Now I see this in console: [Ignat@localhost circuit_testing]$ ./test2 && ./test2 0.0153142 0.0153166 Well, more or less, I think. And then, this: [Ignat@localhost circuit_testing]$ ./test2 && ./test2 0.01531 0.0152476 Where are the 25% which should be visible? How can the first executable be even slower than the second one? I'm asking this because I'm doing a project which involves calling a lot of small functions in a row like this in order to compute the values of an array, and the code I've inherited does a very complex manipulation to avoid the virtual function call overhead. Now where is this famous call overhead?

    Read the article

  • File Segmentation when trying to write in a file

    - by user1286390
    I am trying in C language to use the method of bisection to find the roots of some equation, however when I try to write every step of this process in a file I get the problem "Segmentation fault". This might be an idiot fault that I did, however I have been trying to solve this for a long time. I am compiling using gcc and that is the code: #include <stdio.h> #include <stdlib.h> #include <math.h> #define R 1.0 #define h 1.0 double function(double a); void attractor(double *a1, double *a2, double *epsilon); void attractor(double *a1, double *a2, double *epsilon) { FILE* bisection; double a2_copia, a3, fa1, fa2; bisection = fopen("bisection-part1.txt", "w"); fa1 = function(*a1); fa2 = function(*a2); if(function(*a1) - function(*a2) > 0.0) *epsilon = function(*a1) - function(*a2); else *epsilon = function(*a2) - function(*a1); fprintf(bisection, "a1 a2 fa1 fa2 epsilon\n"); a2_copia = 0.0; if(function(*a1) * function(*a2) < 0.0 && *epsilon >= 0.00001) { a3 = *a2 - (*a2 - *a1); a2_copia = *a2; *a2 = a3; if(function(*a1) - function(*a2) > 0.0) *epsilon = function(*a1) - function(*a2); else *epsilon = function(*a2) - function(*a1); if(function(*a1) * function(*a2) < 0.0 && *epsilon >= 0.00001) { fprintf(bisection, "%.4f %.4f %.4f %.4f %.4f\n", *a1, *a2, function(*a1), function(*a1), *epsilon); attractor(a1, a2, epsilon); } else { *a2 = a2_copia; *a1 = a3; if(function(*a1) - function(*a2) > 0) *epsilon = function(*a1) - function(*a2); else *epsilon = function(*a2) - function(*a1); if(function(*a1) * function(*a2) < 0.0 && *epsilon >= 0.00001) { fprintf(bisection, "%.4f %.4f %.4f %.4f %.4f\n", *a1, *a2, function(*a1), function(*a1), *epsilon); attractor(a1, a2, epsilon); } } } fa1 = function(*a1); fa2 = function(*a2); if(function(*a1) - function(*a2) > 0.0) *epsilon = function(*a1) - function(*a2); else *epsilon = function(*a2) - function(*a1); fprintf(bisection, "%.4f %.4f %.4f %.4f %.4f\n", a1, a2, fa1, fa2, epsilon); } double function(double a) { double fa; fa = (a * cosh(h / (2 * a))) - R; return fa; } int main() { double a1, a2, fa1, fa2, epsilon; a1 = 0.1; a2 = 0.5; fa1 = function(a1); fa2 = function(a2); if(fa1 - fa2 > 0.0) epsilon = fa1 - fa2; else epsilon = fa2 - fa1; if(epsilon >= 0.00001) { fa1 = function(a1); fa2 = function(a2); attractor(&a1, &a2, &epsilon); fa1 = function(a1); fa2 = function(a2); if(fa1 - fa2 > 0.0) epsilon = fa1 - fa2; else epsilon = fa2 - fa1; } if(epsilon < 0.0001) printf("Vanish at %f", a2); else printf("ERROR"); return 0; } Thanks anyway and sorry if this question is not suitable.

    Read the article

  • Parallelism in .NET – Part 4, Imperative Data Parallelism: Aggregation

    - by Reed
    In the article on simple data parallelism, I described how to perform an operation on an entire collection of elements in parallel.  Often, this is not adequate, as the parallel operation is going to be performing some form of aggregation. Simple examples of this might include taking the sum of the results of processing a function on each element in the collection, or finding the minimum of the collection given some criteria.  This can be done using the techniques described in simple data parallelism, however, special care needs to be taken into account to synchronize the shared data appropriately.  The Task Parallel Library has tools to assist in this synchronization. The main issue with aggregation when parallelizing a routine is that you need to handle synchronization of data.  Since multiple threads will need to write to a shared portion of data.  Suppose, for example, that we wanted to parallelize a simple loop that looked for the minimum value within a dataset: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This seems like a good candidate for parallelization, but there is a problem here.  If we just wrap this into a call to Parallel.ForEach, we’ll introduce a critical race condition, and get the wrong answer.  Let’s look at what happens here: // Buggy code! Do not use! double min = double.MaxValue; Parallel.ForEach(collection, item => { double value = item.PerformComputation(); min = System.Math.Min(min, value); }); This code has a fatal flaw: min will be checked, then set, by multiple threads simultaneously.  Two threads may perform the check at the same time, and set the wrong value for min.  Say we get a value of 1 in thread 1, and a value of 2 in thread 2, and these two elements are the first two to run.  If both hit the min check line at the same time, both will determine that min should change, to 1 and 2 respectively.  If element 1 happens to set the variable first, then element 2 sets the min variable, we’ll detect a min value of 2 instead of 1.  This can lead to wrong answers. Unfortunately, fixing this, with the Parallel.ForEach call we’re using, would require adding locking.  We would need to rewrite this like: // Safe, but slow double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach(collection, item => { double value = item.PerformComputation(); lock(syncObject) min = System.Math.Min(min, value); }); This will potentially add a huge amount of overhead to our calculation.  Since we can potentially block while waiting on the lock for every single iteration, we will most likely slow this down to where it is actually quite a bit slower than our serial implementation.  The problem is the lock statement – any time you use lock(object), you’re almost assuring reduced performance in a parallel situation.  This leads to two observations I’ll make: When parallelizing a routine, try to avoid locks. That being said: Always add any and all required synchronization to avoid race conditions. These two observations tend to be opposing forces – we often need to synchronize our algorithms, but we also want to avoid the synchronization when possible.  Looking at our routine, there is no way to directly avoid this lock, since each element is potentially being run on a separate thread, and this lock is necessary in order for our routine to function correctly every time. However, this isn’t the only way to design this routine to implement this algorithm.  Realize that, although our collection may have thousands or even millions of elements, we have a limited number of Processing Elements (PE).  Processing Element is the standard term for a hardware element which can process and execute instructions.  This typically is a core in your processor, but many modern systems have multiple hardware execution threads per core.  The Task Parallel Library will not execute the work for each item in the collection as a separate work item. Instead, when Parallel.ForEach executes, it will partition the collection into larger “chunks” which get processed on different threads via the ThreadPool.  This helps reduce the threading overhead, and help the overall speed.  In general, the Parallel class will only use one thread per PE in the system. Given the fact that there are typically fewer threads than work items, we can rethink our algorithm design.  We can parallelize our algorithm more effectively by approaching it differently.  Because the basic aggregation we are doing here (Min) is communitive, we do not need to perform this in a given order.  We knew this to be true already – otherwise, we wouldn’t have been able to parallelize this routine in the first place.  With this in mind, we can treat each thread’s work independently, allowing each thread to serially process many elements with no locking, then, after all the threads are complete, “merge” together the results. This can be accomplished via a different set of overloads in the Parallel class: Parallel.ForEach<TSource,TLocal>.  The idea behind these overloads is to allow each thread to begin by initializing some local state (TLocal).  The thread will then process an entire set of items in the source collection, providing that state to the delegate which processes an individual item.  Finally, at the end, a separate delegate is run which allows you to handle merging that local state into your final results. To rewriting our routine using Parallel.ForEach<TSource,TLocal>, we need to provide three delegates instead of one.  The most basic version of this function is declared as: public static ParallelLoopResult ForEach<TSource, TLocal>( IEnumerable<TSource> source, Func<TLocal> localInit, Func<TSource, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally ) The first delegate (the localInit argument) is defined as Func<TLocal>.  This delegate initializes our local state.  It should return some object we can use to track the results of a single thread’s operations. The second delegate (the body argument) is where our main processing occurs, although now, instead of being an Action<T>, we actually provide a Func<TSource, ParallelLoopState, TLocal, TLocal> delegate.  This delegate will receive three arguments: our original element from the collection (TSource), a ParallelLoopState which we can use for early termination, and the instance of our local state we created (TLocal).  It should do whatever processing you wish to occur per element, then return the value of the local state after processing is completed. The third delegate (the localFinally argument) is defined as Action<TLocal>.  This delegate is passed our local state after it’s been processed by all of the elements this thread will handle.  This is where you can merge your final results together.  This may require synchronization, but now, instead of synchronizing once per element (potentially millions of times), you’ll only have to synchronize once per thread, which is an ideal situation. Now that I’ve explained how this works, lets look at the code: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Although this is a bit more complicated than the previous version, it is now both thread-safe, and has minimal locking.  This same approach can be used by Parallel.For, although now, it’s Parallel.For<TLocal>.  When working with Parallel.For<TLocal>, you use the same triplet of delegates, with the same purpose and results. Also, many times, you can completely avoid locking by using a method of the Interlocked class to perform the final aggregation in an atomic operation.  The MSDN example demonstrating this same technique using Parallel.For uses the Interlocked class instead of a lock, since they are doing a sum operation on a long variable, which is possible via Interlocked.Add. By taking advantage of local state, we can use the Parallel class methods to parallelize algorithms such as aggregation, which, at first, may seem like poor candidates for parallelization.  Doing so requires careful consideration, and often requires a slight redesign of the algorithm, but the performance gains can be significant if handled in a way to avoid excessive synchronization.

    Read the article

  • C# Neural Networks with Encog

    - by JoshReuben
    Neural Networks ·       I recently read a book Introduction to Neural Networks for C# , by Jeff Heaton. http://www.amazon.com/Introduction-Neural-Networks-C-2nd/dp/1604390093/ref=sr_1_2?ie=UTF8&s=books&qid=1296821004&sr=8-2-spell. Not the 1st ANN book I've perused, but a nice revision.   ·       Artificial Neural Networks (ANNs) are a mechanism of machine learning – see http://en.wikipedia.org/wiki/Artificial_neural_network , http://en.wikipedia.org/wiki/Category:Machine_learning ·       Problems Not Suited to a Neural Network Solution- Programs that are easily written out as flowcharts consisting of well-defined steps, program logic that is unlikely to change, problems in which you must know exactly how the solution was derived. ·       Problems Suited to a Neural Network – pattern recognition, classification, series prediction, and data mining. Pattern recognition - network attempts to determine if the input data matches a pattern that it has been trained to recognize. Classification - take input samples and classify them into fuzzy groups. ·       As far as machine learning approaches go, I thing SVMs are superior (see http://en.wikipedia.org/wiki/Support_vector_machine ) - a neural network has certain disadvantages in comparison: an ANN can be overtrained, different training sets can produce non-deterministic weights and it is not possible to discern the underlying decision function of an ANN from its weight matrix – they are black box. ·       In this post, I'm not going to go into internals (believe me I know them). An autoassociative network (e.g. a Hopfield network) will echo back a pattern if it is recognized. ·       Under the hood, there is very little maths. In a nutshell - Some simple matrix operations occur during training: the input array is processed (normalized into bipolar values of 1, -1) - transposed from input column vector into a row vector, these are subject to matrix multiplication and then subtraction of the identity matrix to get a contribution matrix. The dot product is taken against the weight matrix to yield a boolean match result. For backpropogation training, a derivative function is required. In learning, hill climbing mechanisms such as Genetic Algorithms and Simulated Annealing are used to escape local minima. For unsupervised training, such as found in Self Organizing Maps used for OCR, Hebbs rule is applied. ·       The purpose of this post is not to mire you in technical and conceptual details, but to show you how to leverage neural networks via an abstraction API - Encog   Encog ·       Encog is a neural network API ·       Links to Encog: http://www.encog.org , http://www.heatonresearch.com/encog, http://www.heatonresearch.com/forum ·       Encog requires .Net 3.5 or higher – there is also a Silverlight version. Third-Party Libraries – log4net and nunit. ·       Encog supports feedforward, recurrent, self-organizing maps, radial basis function and Hopfield neural networks. ·       Encog neural networks, and related data, can be stored in .EG XML files. ·       Encog Workbench allows you to edit, train and visualize neural networks. The Encog Workbench can generate code. Synapses and layers ·       the primary building blocks - Almost every neural network will have, at a minimum, an input and output layer. In some cases, the same layer will function as both input and output layer. ·       To adapt a problem to a neural network, you must determine how to feed the problem into the input layer of a neural network, and receive the solution through the output layer of a neural network. ·       The Input Layer - For each input neuron, one double value is stored. An array is passed as input to a layer. Encog uses the interface INeuralData to hold these arrays. The class BasicNeuralData implements the INeuralData interface. Once the neural network processes the input, an INeuralData based class will be returned from the neural network's output layer. ·       convert a double array into an INeuralData object : INeuralData data = new BasicNeuralData(= new double[10]); ·       the Output Layer- The neural network outputs an array of doubles, wraped in a class based on the INeuralData interface. ·        The real power of a neural network comes from its pattern recognition capabilities. The neural network should be able to produce the desired output even if the input has been slightly distorted. ·       Hidden Layers– optional. between the input and output layers. very much a “black box”. If the structure of the hidden layer is too simple it may not learn the problem. If the structure is too complex, it will learn the problem but will be very slow to train and execute. Some neural networks have no hidden layers. The input layer may be directly connected to the output layer. Further, some neural networks have only a single layer. A single layer neural network has the single layer self-connected. ·       connections, called synapses, contain individual weight matrixes. These values are changed as the neural network learns. Constructing a Neural Network ·       the XOR operator is a frequent “first example” -the “Hello World” application for neural networks. ·       The XOR Operator- only returns true when both inputs differ. 0 XOR 0 = 0 1 XOR 0 = 1 0 XOR 1 = 1 1 XOR 1 = 0 ·       Structuring a Neural Network for XOR  - two inputs to the XOR operator and one output. ·       input: 0.0,0.0 1.0,0.0 0.0,1.0 1.0,1.0 ·       Expected output: 0.0 1.0 1.0 0.0 ·       A Perceptron - a simple feedforward neural network to learn the XOR operator. ·       Because the XOR operator has two inputs and one output, the neural network will follow suit. Additionally, the neural network will have a single hidden layer, with two neurons to help process the data. The choice for 2 neurons in the hidden layer is arbitrary, and often comes down to trial and error. ·       Neuron Diagram for the XOR Network ·       ·       The Encog workbench displays neural networks on a layer-by-layer basis. ·       Encog Layer Diagram for the XOR Network:   ·       Create a BasicNetwork - Three layers are added to this network. the FinalizeStructure method must be called to inform the network that no more layers are to be added. The call to Reset randomizes the weights in the connections between these layers. var network = new BasicNetwork(); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(1)); network.Structure.FinalizeStructure(); network.Reset(); ·       Neural networks frequently start with a random weight matrix. This provides a starting point for the training methods. These random values will be tested and refined into an acceptable solution. However, sometimes the initial random values are too far off. Sometimes it may be necessary to reset the weights again, if training is ineffective. These weights make up the long-term memory of the neural network. Additionally, some layers have threshold values that also contribute to the long-term memory of the neural network. Some neural networks also contain context layers, which give the neural network a short-term memory as well. The neural network learns by modifying these weight and threshold values. ·       Now that the neural network has been created, it must be trained. Training a Neural Network ·       construct a INeuralDataSet object - contains the input array and the expected output array (of corresponding range). Even though there is only one output value, we must still use a two-dimensional array to represent the output. public static double[][] XOR_INPUT ={ new double[2] { 0.0, 0.0 }, new double[2] { 1.0, 0.0 }, new double[2] { 0.0, 1.0 }, new double[2] { 1.0, 1.0 } };   public static double[][] XOR_IDEAL = { new double[1] { 0.0 }, new double[1] { 1.0 }, new double[1] { 1.0 }, new double[1] { 0.0 } };   INeuralDataSet trainingSet = new BasicNeuralDataSet(XOR_INPUT, XOR_IDEAL); ·       Training is the process where the neural network's weights are adjusted to better produce the expected output. Training will continue for many iterations, until the error rate of the network is below an acceptable level. Encog supports many different types of training. Resilient Propagation (RPROP) - general-purpose training algorithm. All training classes implement the ITrain interface. The RPROP algorithm is implemented by the ResilientPropagation class. Training the neural network involves calling the Iteration method on the ITrain class until the error is below a specific value. The code loops through as many iterations, or epochs, as it takes to get the error rate for the neural network to be below 1%. Once the neural network has been trained, it is ready for use. ITrain train = new ResilientPropagation(network, trainingSet);   for (int epoch=0; epoch < 10000; epoch++) { train.Iteration(); Debug.Print("Epoch #" + epoch + " Error:" + train.Error); if (train.Error > 0.01) break; } Executing a Neural Network ·       Call the Compute method on the BasicNetwork class. Console.WriteLine("Neural Network Results:"); foreach (INeuralDataPair pair in trainingSet) { INeuralData output = network.Compute(pair.Input); Console.WriteLine(pair.Input[0] + "," + pair.Input[1] + ", actual=" + output[0] + ",ideal=" + pair.Ideal[0]); } ·       The Compute method accepts an INeuralData class and also returns a INeuralData object. Neural Network Results: 0.0,0.0, actual=0.002782538818034049,ideal=0.0 1.0,0.0, actual=0.9903741937121177,ideal=1.0 0.0,1.0, actual=0.9836807956566187,ideal=1.0 1.0,1.0, actual=0.0011646072586172778,ideal=0.0 ·       the network has not been trained to give the exact results. This is normal. Because the network was trained to 1% error, each of the results will also be within generally 1% of the expected value.

    Read the article

  • Applications: The mathematics of movement, Part 1

    - by TechTwaddle
    Before you continue reading this post, a suggestion; if you haven’t read “Programming Windows Phone 7 Series” by Charles Petzold, go read it. Now. If you find 150+ pages a little too long, at least go through Chapter 5, Principles of Movement, especially the section “A Brief Review of Vectors”. This post is largely inspired from this chapter. At this point I assume you know what vectors are, how they are represented using the pair (x, y), what a unit vector is, and given a vector how you would normalize the vector to get a unit vector. Our task in this post is simple, a marble is drawn at a point on the screen, the user clicks at a random point on the device, say (destX, destY), and our program makes the marble move towards that point and stop when it is reached. The tricky part of this task is the word “towards”, it adds a direction to our problem. Making a marble bounce around the screen is simple, all you have to do is keep incrementing the X and Y co-ordinates by a certain amount and handle the boundary conditions. Here, however, we need to find out exactly how to increment the X and Y values, so that the marble appears to move towards the point where the user clicked. And this is where vectors can be so helpful. The code I’ll show you here is not ideal, we’ll be working with C# on Windows Mobile 6.x, so there is no built-in vector class that I can use, though I could have written one and done all the math inside the class. I think it is trivial to the actual problem that we are trying to solve and can be done pretty easily once you know what’s going on behind the scenes. In other words, this is an excuse for me being lazy. The first approach, uses the function Atan2() to solve the “towards” part of the problem. Atan2() takes a point (x, y) as input, Atan2(y, x), note that y goes first, and then it returns an angle in radians. What angle you ask. Imagine a line from the origin (0, 0), to the point (x, y). The angle which Atan2 returns is the angle the positive X-axis makes with that line, measured clockwise. The figure below makes it clear, wiki has good details about Atan2(), give it a read. The pair (x, y) also denotes a vector. A vector whose magnitude is the length of that line, which is Sqrt(x*x + y*y), and a direction ?, as measured from positive X axis clockwise. If you’ve read that chapter from Charles Petzold’s book, this much should be clear. Now Sine and Cosine of the angle ? are special. Cosine(?) divides x by the vectors length (adjacent by hypotenuse), thus giving us a unit vector along the X direction. And Sine(?) divides y by the vectors length (opposite by hypotenuse), thus giving us a unit vector along the Y direction. Therefore the vector represented by the pair (cos(?), sin(?)), is the unit vector (or normalization) of the vector (x, y). This unit vector has a length of 1 (remember sin2(?) + cos2(?) = 1 ?), and a direction which is the same as vector (x, y). Now if I multiply this unit vector by some amount, then I will always get a point which is a certain distance away from the origin, but, more importantly, the point will always be on that line. For example, if I multiply the unit vector with the length of the line, I get the point (x, y). Thus, all we have to do to move the marble towards our destination point, is to multiply the unit vector by a certain amount each time and draw the marble, and the marble will magically move towards the click point. Now time for some code. The application, uses a timer based frame draw method to draw the marble on the screen. The timer is disabled initially and whenever the user clicks on the screen, the timer is enabled. The callback function for the timer follows the standard Update and Draw cycle. private double totLenToTravelSqrd = 0; private double startPosX = 0, startPosY = 0; private double destX = 0, destY = 0; private void Form1_MouseUp(object sender, MouseEventArgs e) {     destX = e.X;     destY = e.Y;     double x = marble1.x - destX;     double y = marble1.y - destY;     //calculate the total length to be travelled     totLenToTravelSqrd = x * x + y * y;     //store the start position of the marble     startPosX = marble1.x;     startPosY = marble1.y;     timer1.Enabled = true; } private void timer1_Tick(object sender, EventArgs e) {     UpdatePosition();     DrawMarble(); } Form1_MouseUp() method is called when ever the user touches and releases the screen. In this function we save the click point in destX and destY, this is the destination point for the marble and we also enable the timer. We store a few more values which we will use in the UpdatePosition() method to detect when the marble has reached the destination and stop the timer. So we store the start position of the marble and the square of the total length to be travelled. I’ll leave out the term ‘sqrd’ when speaking of lengths from now on. The time out interval of the timer is set to 40ms, thus giving us a frame rate of about ~25fps. In the timer callback, we update the marble position and draw the marble. We know what DrawMarble() does, so here, we’ll only look at how UpdatePosition() is implemented; private void UpdatePosition() {     //the vector (x, y)     double x = destX - marble1.x;     double y = destY - marble1.y;     double incrX=0, incrY=0;     double distanceSqrd=0;     double speed = 6;     //distance between destination and current position, before updating marble position     distanceSqrd = x * x + y * y;     double angle = Math.Atan2(y, x);     //Cos and Sin give us the unit vector, 6 is the value we use to magnify the unit vector along the same direction     incrX = speed * Math.Cos(angle);     incrY = speed * Math.Sin(angle);     marble1.x += incrX;     marble1.y += incrY;     //check for bounds     if ((int)marble1.x < MinX + marbleWidth / 2)     {         marble1.x = MinX + marbleWidth / 2;     }     else if ((int)marble1.x > (MaxX - marbleWidth / 2))     {         marble1.x = MaxX - marbleWidth / 2;     }     if ((int)marble1.y < MinY + marbleHeight / 2)     {         marble1.y = MinY + marbleHeight / 2;     }     else if ((int)marble1.y > (MaxY - marbleHeight / 2))     {         marble1.y = MaxY - marbleHeight / 2;     }     //distance between destination and current point, after updating marble position     x = destX - marble1.x;     y = destY - marble1.y;     double newDistanceSqrd = x * x + y * y;     //length from start point to current marble position     x = startPosX - (marble1.x);     y = startPosY - (marble1.y);     double lenTraveledSqrd = x * x + y * y;     //check for end conditions     if ((int)lenTraveledSqrd >= (int)totLenToTravelSqrd)     {         System.Console.WriteLine("Stopping because destination reached");         timer1.Enabled = false;     }     else if (Math.Abs((int)distanceSqrd - (int)newDistanceSqrd) < 4)     {         System.Console.WriteLine("Stopping because no change in Old and New position");         timer1.Enabled = false;     } } Ok, so in this function, first we subtract the current marble position from the destination point to give us a vector. The first three lines of the function construct this vector (x, y). The vector (x, y) has the same length as the line from (marble1.x, marble1.y) to (destX, destY) and is in the direction pointing from (marble1.x, marble1.y) to (destX, destY). Note that marble1.x and marble1.y denote the center point of the marble. Then we use Atan2() to get the angle which this vector makes with the positive X axis and use Cosine() and Sine() of that angle to get the unit vector along that same direction. We multiply this unit vector with 6, to get the values which the position of the marble should be incremented by. This variable, speed, can be experimented with and determines how fast the marble moves towards the destination. After this, we check for bounds to make sure that the marble stays within the screen limits and finally we check for the end condition and stop the timer. The end condition has two parts to it. The first case is the normal case, where the user clicks well inside the screen. Here, we stop when the total length travelled by the marble is greater than or equal to the total length to be travelled. Simple enough. The second case is when the user clicks on the very corners of the screen. Like I said before, the values marble1.x and marble1.y denote the center point of the marble. When the user clicks on the corner, the marble moves towards the point, and after some time tries to go outside of the screen, this is when the bounds checking comes into play and corrects the marble position so that the marble stays inside the screen. In this case the marble will never travel a distance of totLenToTravelSqrd, because of the correction is its position. So here we detect the end condition when there is not much change in marbles position. I use the value 4 in the second condition above. After experimenting with a few values, 4 seemed to work okay. There is a small thing missing in the code above. In the normal case, case 1, when the update method runs for the last time, marble position over shoots the destination point. This happens because the position is incremented in steps (which are not small enough), so in this case too, we should have corrected the marble position, so that the center point of the marble sits exactly on top of the destination point. I’ll add this later and update the post. This has been a pretty long post already, so I’ll leave you with a video of how this program looks while running. Notice in the video that the marble moves like a bot, without any grace what so ever. And that is because the speed of the marble is fixed at 6. In the next post we will see how to make the marble move a little more elegantly. And also, if Atan2(), Sine() and Cosine() are a little too much to digest, we’ll see how to achieve the same effect without using them, in the next to next post maybe. Ciao!

    Read the article

  • Tile engine Texture not updating when numbers in array change

    - by Corey
    I draw my map from a txt file. I am using java with slick2d library. When I print the array the number changes in the array, but the texture doesn't change. public class Tiles { public Image[] tiles = new Image[5]; public int[][] map = new int[64][64]; public Image grass, dirt, fence, mound; private SpriteSheet tileSheet; public int tileWidth = 32; public int tileHeight = 32; public void init() throws IOException, SlickException { tileSheet = new SpriteSheet("assets/tiles.png", tileWidth, tileHeight); grass = tileSheet.getSprite(0, 0); dirt = tileSheet.getSprite(7, 7); fence = tileSheet.getSprite(2, 0); mound = tileSheet.getSprite(2, 6); tiles[0] = grass; tiles[1] = dirt; tiles[2] = fence; tiles[3] = mound; int x=0, y=0; BufferedReader in = new BufferedReader(new FileReader("assets/map.dat")); String line; while ((line = in.readLine()) != null) { String[] values = line.split(","); x = 0; for (String str : values) { int str_int = Integer.parseInt(str); map[x][y]=str_int; //System.out.print(map[x][y] + " "); x++; } //System.out.println(""); y++; } in.close(); } public void update(GameContainer gc) { } public void render(GameContainer gc) { for(int y = 0; y < map.length; y++) { for(int x = 0; x < map[0].length; x ++) { int textureIndex = map[x][y]; Image texture = tiles[textureIndex]; texture.draw(x*tileWidth,y*tileHeight); } } } } Mouse Picking Where I change the number in the array Input input = gc.getInput(); gc.getInput().setOffset(cameraX-400, cameraY-300); float mouseX = input.getMouseX(); float mouseY = input.getMouseY(); double mousetileX = Math.floor((double)mouseX/tiles.tileWidth); double mousetileY = Math.floor((double)mouseY/tiles.tileHeight); double playertileX = Math.floor(playerX/tiles.tileWidth); double playertileY = Math.floor(playerY/tiles.tileHeight); double lengthX = Math.abs((float)playertileX - mousetileX); double lengthY = Math.abs((float)playertileY - mousetileY); double distance = Math.sqrt((lengthX*lengthX)+(lengthY*lengthY)); if(input.isMousePressed(Input.MOUSE_LEFT_BUTTON) && distance < 4) { System.out.println("Clicked"); if(tiles.map[(int)mousetileX][(int)mousetileY] == 1) { tiles.map[(int)mousetileX][(int)mousetileY] = 0; } } I never ask a question until I have tried to figure it out myself. I have been stuck with this problem for two weeks. It's not like this site is made for asking questions or anything. So if you actually try to help me instead of telling me to use a debugger thank you. You either get told you have too much or too little code. Nothing is never enough for the people on here it's as bad as something like reddit. Idk what is wrong all my textures work when I render them it just doesn't update when the number in the array changes. I am obviously debugging when I say that I was printing the array and the number is changing like it should, so it's not a problem with my mouse picking code. It is a problem with my textures, but I don't know what because they all render correctly. That is why I need help.

    Read the article

  • Java - Tile engine changing number in array not changing texture

    - by Corey
    I draw my map from a txt file. Would I have to write to the text file to notice the changes I made? Right now it changes the number in the array but the tile texture doesn't change. Do I have to do more than just change the number in the array? public class Tiles { public Image[] tiles = new Image[5]; public int[][] map = new int[64][64]; private Image grass, dirt, fence, mound; private SpriteSheet tileSheet; public int tileWidth = 32; public int tileHeight = 32; Player player = new Player(); public void init() throws IOException, SlickException { tileSheet = new SpriteSheet("assets/tiles.png", tileWidth, tileHeight); grass = tileSheet.getSprite(0, 0); dirt = tileSheet.getSprite(7, 7); fence = tileSheet.getSprite(2, 0); mound = tileSheet.getSprite(2, 6); tiles[0] = grass; tiles[1] = dirt; tiles[2] = fence; tiles[3] = mound; int x=0, y=0; BufferedReader in = new BufferedReader(new FileReader("assets/map.dat")); String line; while ((line = in.readLine()) != null) { String[] values = line.split(","); for (String str : values) { int str_int = Integer.parseInt(str); map[x][y]=str_int; //System.out.print(map[x][y] + " "); y=y+1; } //System.out.println(""); x=x+1; y = 0; } in.close(); } public void update(GameContainer gc) { } public void render(GameContainer gc) { for(int x = 0; x < map.length; x++) { for(int y = 0; y < map.length; y ++) { int textureIndex = map[y][x]; Image texture = tiles[textureIndex]; texture.draw(x*tileWidth,y*tileHeight); } } } Mouse picking public void checkDistance(GameContainer gc) { Input input = gc.getInput(); float mouseX = input.getMouseX(); float mouseY = input.getMouseY(); double mousetileX = Math.floor((double)mouseX/tiles.tileWidth); double mousetileY = Math.floor((double)mouseY/tiles.tileHeight); double playertileX = Math.floor(playerX/tiles.tileWidth); double playertileY = Math.floor(playerY/tiles.tileHeight); double lengthX = Math.abs((float)playertileX - mousetileX); double lengthY = Math.abs((float)playertileY - mousetileY); double distance = Math.sqrt((lengthX*lengthX)+(lengthY*lengthY)); if(input.isMousePressed(Input.MOUSE_LEFT_BUTTON) && distance < 4) { System.out.println("Clicked"); if(tiles.map[(int)mousetileX][(int)mousetileY] == 1) { tiles.map[(int)mousetileX][(int)mousetileY] = 0; } } System.out.println(tiles.map[(int)mousetileX][(int)mousetileY]); }

    Read the article

  • wrong operator() overload called

    - by user313202
    okay, I am writing a matrix class and have overloaded the function call operator twice. The core of the matrix is a 2D double array. I am using the MinGW GCC compiler called from a windows console. the first overload is meant to return a double from the array (for viewing an element). the second overload is meant to return a reference to a location in the array (for changing the data in that location. double operator()(int row, int col) const ; //allows view of element double &operator()(int row, int col); //allows assignment of element I am writing a testing routine and have discovered that the "viewing" overload never gets called. for some reason the compiler "defaults" to calling the overload that returns a reference when the following printf() statement is used. fprintf(outp, "%6.2f\t", testMatD(i,j)); I understand that I'm insulting the gods by writing my own matrix class without using vectors and testing with C I/O functions. I will be punished thoroughly in the afterlife, no need to do it here. Ultimately I'd like to know what is going on here and how to fix it. I'd prefer to use the cleaner looking operator overloads rather than member functions. Any ideas? -Cal the matrix class: irrelevant code omitted class Matrix { public: double getElement(int row, int col)const; //returns the element at row,col //operator overloads double operator()(int row, int col) const ; //allows view of element double &operator()(int row, int col); //allows assignment of element private: //data members double **array; //pointer to data array }; double Matrix::getElement(int row, int col)const{ //transform indices into true coordinates (from sorted coordinates //only row needs to be transformed (user can only sort by row) row = sortedArray[row]; result = array[usrZeroRow+row][usrZeroCol+col]; return result; } //operator overloads double Matrix::operator()(int row, int col) const { //this overload is used when viewing an element return getElement(row,col); } double &Matrix::operator()(int row, int col){ //this overload is used when placing an element return array[row+usrZeroRow][col+usrZeroCol]; } The testing program: irrelevant code omitted int main(void){ FILE *outp; outp = fopen("test_output.txt", "w+"); Matrix testMatD(5,7); //construct 5x7 matrix //some initializations omitted fprintf(outp, "%6.2f\t", testMatD(i,j)); //calls the wrong overload }

    Read the article

  • How to find relation between change in latitudes at centre of map and top/bottom

    - by Imran
    Hi, Im having little trouble finding a relation between the movement at centre and edge of a circle, Im doing for panning world map,my map extent is 180,89:-180,-89, my map pans by adding change(dx,dY) to its extents and not its centre. Now a situation has arrrised where I have to move the map to a specific centre, to calculate the change in longitudes is very easy and simple, but its the change in lattitudes that has caused problem. It seems the change in centreY of map is more than the change at edge of the mapY, or simply if I have to move the map centre from 0long,0lat to 73long,33lat, for dX I simply get 73, but for dY apparently it looks 33 but if i add 33 to top of map that is 89 , it will be 122 which is incorrect since Latitudes are between 90 and -90 . It seems a case a projection of a circle on 2D plane where the edge of circle since is moving backward due to angle expereinces less change and the centre expereinces more change, now is there a relation between these two factors? I tried converting the difference between OriginY and destinationY into radians and then add to Top and Bottom of Map, but it did'nt really work for me. Please note that the map is project on a virtual canvas whose width starts from 256 and increases by 256*2^z , z=0 is default and whole world is visible at that extent of canvas code: public void moveMapTo(double destinationLongitude,double destinationLattitude) // moves map to the new centre { double dXLong=destinationLongitude-centreLongitude; double atanhsinO = atanh(Math.sin(destinationLattitude * Math.PI / 180.00)); double atanhsinD = atanh(Math.sin(centreLatitude * Math.PI / 180.00)); double atanhCentre = (atanhsinD + atanhsinO) / 2; double latitudeSpan =destinationLattitude - centreLatitude; double radianOfCentreLatitude = Math.atan(Math.sinh(atanhCentre)); double dXLat=latitudeSpan / Math.cos(radianOfCentreLatitude); dXLat*=getLattitudeSpan()*(Math.PI/180); <--- HERE IS THE PORBLEM System.out.println("dxLong:"+dXLong+"_dxLat:"+dXLat); mapLeft+=dXLong; mapRight+=dXLong; mapTop+=dXLat; mapBottom+=dXLat; } ////latitude span function private double getLattitudeSpan() { double latitudeSpan = mapTop - mapBottom; latitudeSpan = latitudeSpan / Math.cos(radianOfCentreLatitude); return Math.abs(latitudeSpan); } //ht

    Read the article

  • creating an array of objects in c++

    - by tim22
    I'm trying to create an array of objects in c++. I'm creating a employee object, from my constructor in my company class here: employee obj(int tempIdNum, double tempBase, double tempSales, double tempRate); emp[tempcount]=obj; (this doesn't work?) Emp is the name of the array which is defined here, located in my company h file. Employee emp[4]; more code: Company::Company(string name, string fileName){ string str; int tempcount; int tempIdnum; double tempBase; double tempSales; double tempRate; double num; double arr[16]; this->name=name; //Commission temp; ifstream readFile; readFile.open("fileName"); int inc=0; while(tempcount<4){ for(int i=0+inc; i<4+inc; i++){ readFile>>num; arr[i-inc]=num; } tempIdnum=(int)(arr[0]); tempBase=arr[1]; tempSales=arr[2]; tempRate=arr[3]; Employee obj(int tempIdNum, double tempBase, double tempSales, double tempRate); emp[tempcount]=obj; inc+=4; tempcount++; } readFile.close(); } Here is some more from my h file #include <string> include "Commission.h" using namespace std; ifndef Company_H define Company_H class Company{ private: string name; //name of company Employee emp[4]; //array of payrool info about 4 commission employees int numEmp; //number of employees public: Company(); Company(string name, string fileName); ~Company(); string getName(); Commission getEmployee(int element); int getNumEmp(); }; endif enter code here Does not compile: 46 E:\exercise2\Company.cpp no match for 'operator=' in '((Company*)this)-Company::emp[tempcount] = obj'

    Read the article

  • Flex: Double click event propagation on datagrid dependent on component order?

    - by MyMacAndMe
    I'd like to have a double click event on a datagrid in Flex3. The following example only works if the Accordion (id = "mustBeSecond") container comes after the DataGrid. Why is the order of the components important and what can I do to prevent this behavior? (The example does not work. If you change the order of "mustBeSecond" and "gridReportConversions" the example works fine) <mx:Script> <![CDATA[ import mx.controls.Alert; import mx.collections.ArrayCollection; [Bindable] private var dp:ArrayCollection = new ArrayCollection([ {qty:1,referer:'http://google.com'}, {qty:25,referer:'http://cnn.com'}, {qty:4,referer:'http:stackoverflow.com'}]); private function refererRowDoubleClicked(e:Event):void { Alert.show("double click"); } ]]> </mx:Script> <mx:HBox width="100%" height="100%"> <mx:Accordion width="200" height="200" id="mustBeSecond"> <mx:Canvas label="Navigation Box" width="100%" height="100%"> <mx:VBox> <mx:LinkButton label="First Link" /> <mx:LinkButton label="Second Link" /> </mx:VBox> </mx:Canvas> </mx:Accordion> <mx:DataGrid id="gridReportConversions" height="100%" width="100%" dataProvider="{this.dp}" mouseEnabled="true" doubleClickEnabled="true" itemDoubleClick="refererRowDoubleClicked(event)"> <mx:columns> <mx:DataGridColumn width="75" dataField="qty" headerText="Qty" /> <mx:DataGridColumn dataField="referer" headerText="URL" /> </mx:columns> </mx:DataGrid> </mx:HBox>

    Read the article

  • How to I get rid of these double quotes?

    - by Danger Angell
    I'm using ym4r to render a Google Map. Relevant portion of Controller code: @event.checkpoints.each do |checkpoint| unless checkpoint.lat.blank? current_checkpoint = GMarker.new([checkpoint.lat, checkpoint.long], :title => checkpoint.name, :info_window => checkpoint.name, :icon => checkpoint.discipline.icon, :draggable => false ) @map.overlay_init(current_checkpoint) end It's this line that is hanging me up: :icon => checkpoint.discipline.icon, Using this to render the map in the view: <%= @map.to_html %> <%= @map.div(:width => 735, :height => 450, :position => 'relative') %> The javascript that is puking looks like this: icon : "mtn_biking" and I need it looking like this: icon : mtn_biking This is the HTML generated: <script type="text/javascript"> var mtn_bike = addOptionsToIcon(new GIcon(),{image : "/images/map/mtn_bike.png",iconSize : new GSize(32,32),iconAnchor : new GPoint(16,32),infoWindowAnchor : new GPoint(16,0)});var map; window.onload = addCodeToFunction(window.onload,function() { if (GBrowserIsCompatible()) { map = new GMap2(document.getElementById("map")); map.setCenter(new GLatLng(37.7,-97.3),4);map.addOverlay(addInfoWindowToMarker(new GMarker(new GLatLng(34.9,-82.22),{icon : "mtn_bike",draggable : false,title : "CP1"}),"CP1",{})); map.addOverlay(addInfoWindowToMarker(new GMarker(new GLatLng(35.9,-83.22),{icon : "flat_water",draggable : false,title : "CP2"}),"CP2",{})); map.addOverlay(addInfoWindowToMarker(new GMarker(new GLatLng(36.9,-84.22),{icon : "white_water",draggable : false,title : "CP3"}),"CP3",{}));map.addControl(new GLargeMapControl()); map.addControl(new GMapTypeControl()); } }); </script> the issue is the double quotes in: icon : "mtn_bike" icon : "flat_water" icon : "white_water" I need a way to get rid of those double quotes in the generated HTML

    Read the article

  • Double Slash at end of URL when going to HTTPS?

    - by J M 4
    My site currently uses http and https sections based on the data being collected on the site (form data uses https). On my index page, I have the PHP code at the top: <?php session_start(); ob_start(); if( $_SERVER['SERVER_PORT'] == 443) { header('Location:http://'.$_SERVER['HTTP_HOST'].dirname($_SERVER['PHP_SELF'])); die(); } ?> However, the page will not load and I get a 404 error. Similarly, when i visit the sections with https security using the head code: <?php session_start(); ob_start(); if( $_SERVER['SERVER_PORT'] == 80) { header('Location:https://'.$_SERVER['HTTP_HOST'].dirname($_SERVER['PHP_SELF']).'/'.basename($_SERVER['PHP_SELF'])); die(); } ?> The site does not respond AND for some reason creates a double slash when switching from http to https. Example: http://www.abc.com/, then clicking button which should route to enroll.php shows http://www.abc.com//enroll.php why the need for the double slash and can anybody help with the 404 errors?

    Read the article

  • Nginx fastcgi problems with django (double slashes in url?)

    - by wizard
    I'm deploying my first django app. I'm familiar with nginx and fastcgi from deploying php-fpm. I can't get python to recognize the urls. I'm also at a loss on how to debug this further. I'd welcome solutions to this problem and tips on debugging fastcgi problems. Currently I get a 404 page regardless of the url and for some reason a double slash For http://www.site.com/admin/ Page not found (404) Request Method: GET Request URL: http://www.site.com/admin// My urls.py from the debug output - which work in the dev server. Using the URLconf defined in ahrlty.urls, Django tried these URL patterns, in this order: ^listings/ ^admin/ ^accounts/login/$ ^accounts/logout/$ my nginx config server { listen 80; server_name beta.ahrlty.com; access_log /home/ahrlty/ahrlty/logs/access.log; error_log /home/ahrlty/ahrlty/logs/error.log; location /static/ { alias /home/ahrlty/ahrlty/ahrlty/static/; break; } location /media/ { alias /usr/lib/python2.6/dist-packages/django/contrib/admin/media/; break; } location / { include /etc/nginx/fastcgi_params; fastcgi_pass 127.0.0.1:8001; break; } } and my fastcgi_params fastcgi_param QUERY_STRING $query_string; fastcgi_param REQUEST_METHOD $request_method; fastcgi_param CONTENT_TYPE $content_type; fastcgi_param CONTENT_LENGTH $content_length; fastcgi_param SCRIPT_NAME $fastcgi_script_name; fastcgi_param REQUEST_URI $request_uri; fastcgi_param DOCUMENT_URI $document_uri; fastcgi_param DOCUMENT_ROOT $document_root; fastcgi_param SERVER_PROTOCOL $server_protocol; fastcgi_param GATEWAY_INTERFACE CGI/1.1; fastcgi_param SERVER_SOFTWARE nginx/$nginx_version; fastcgi_param REMOTE_ADDR $remote_addr; fastcgi_param REMOTE_PORT $remote_port; fastcgi_param SERVER_ADDR $server_addr; fastcgi_param SERVER_PORT $server_port; fastcgi_param SERVER_NAME $server_name; fastcgi_param PATH_INFO $fastcgi_script_name; # PHP only, required if PHP was built with --enable-force-cgi-redirect fastcgi_param REDIRECT_STATUS 200; And lastly I'm running fastcgi from the commandline with django's manage.py. python manage.py runfcgi method=threaded host=127.0.0.1 port=8080 pidfile=mysite.pid minspare=4 maxspare=30 daemonize=false I'm having a hard time debugging this one. Does anything jump out at anybody? Notes nginx version: nginx/0.7.62 Django svn trunk rev 13013

    Read the article

  • C# performance analysis- how to count CPU cycles?

    - by Lirik
    Is this a valid way to do performance analysis? I want to get nanosecond accuracy and determine the performance of typecasting: class PerformanceTest { static double last = 0.0; static List<object> numericGenericData = new List<object>(); static List<double> numericTypedData = new List<double>(); static void Main(string[] args) { double totalWithCasting = 0.0; double totalWithoutCasting = 0.0; for (double d = 0.0; d < 1000000.0; ++d) { numericGenericData.Add(d); numericTypedData.Add(d); } Stopwatch stopwatch = new Stopwatch(); for (int i = 0; i < 10; ++i) { stopwatch.Start(); testWithTypecasting(); stopwatch.Stop(); totalWithCasting += stopwatch.ElapsedTicks; stopwatch.Start(); testWithoutTypeCasting(); stopwatch.Stop(); totalWithoutCasting += stopwatch.ElapsedTicks; } Console.WriteLine("Avg with typecasting = {0}", (totalWithCasting/10)); Console.WriteLine("Avg without typecasting = {0}", (totalWithoutCasting/10)); Console.ReadKey(); } static void testWithTypecasting() { foreach (object o in numericGenericData) { last = ((double)o*(double)o)/200; } } static void testWithoutTypeCasting() { foreach (double d in numericTypedData) { last = (d * d)/200; } } } The output is: Avg with typecasting = 468872.3 Avg without typecasting = 501157.9 I'm a little suspicious... it looks like there is nearly no impact on the performance. Is casting really that cheap?

    Read the article

  • Should business objects be able to create their own DTOs?

    - by Sam
    Suppose I have the following class: class Camera { public Camera( double exposure, double brightness, double contrast, RegionOfInterest regionOfInterest) { this.exposure = exposure; this.brightness = brightness; this.contrast = contrast; this.regionOfInterest = regionOfInterest; } public void ConfigureAcquisitionFifo(IAcquisitionFifo acquisitionFifo) { // do stuff to the acquisition FIFO } readonly double exposure; readonly double brightness; readonly double contrast; readonly RegionOfInterest regionOfInterest; } ... and a DTO to transport the camera info across a service boundary (WCF), say, for viewing in a WinForms/WPF/Web app: using System.Runtime.Serialization; [DataContract] public class CameraData { [DataMember] public double Exposure { get; set; } [DataMember] public double Brightness { get; set; } [DataMember] public double Contrast { get; set; } [DataMember] public RegionOfInterestData RegionOfInterest { get; set; } } Now I can add a method to Camera to expose its data: class Camera { // blah blah public CameraData ToData() { var regionOfInterestData = regionOfInterest.ToData(); return new CameraData() { Exposure = exposure, Brightness = brightness, Contrast = contrast, RegionOfInterestData = regionOfInterestData }; } } or, I can create a method that requires a special IReporter to be passed in for the Camera to expose its data to. This removes the dependency on the Contracts layer (Camera no longer has to know about CameraData): class Camera { // beep beep I'm a jeep public void ExposeToReporter(IReporter reporter) { reporter.GetCameraInfo(exposure, brightness, contrast, regionOfInterest); } } So which should I do? I prefer the second, but it requires the IReporter to have a CameraData field (which gets changed by GetCameraInfo()), which feels weird. Also, if there is any even better solution, please share with me! I'm still an object-oriented newb.

    Read the article

  • Implementing Operator Overloading with Logarithms in C++

    - by Jacob Relkin
    Hello my friends, I'm having some issues with implementing a logarithm class with operator overloading in C++. My first goal is how I would implement the changeBase method, I've been having a tough time wrapping my head around it. My secoond goal is to be able to perform an operation where the left operand is a double and the right operand is a logarithm object. Here's a snippet of my log class: // coefficient: double // base: unsigned int // number: double class _log { double coefficient, number; unsigned int base; public: _log() { base = rand(); coefficient = rand(); number = rand(); } _log operator+ ( const double b ) const; _log operator* ( const double b ) const; _log operator- ( const double b ) const; _log operator/ ( const double b ) const; _log operator<< ( const _log &b ); double getValue() const; bool changeBase( unsigned int base ); }; You guys are awesome, thank you for your time.

    Read the article

  • What are the alternatives to public fields?

    - by James
    I am programming a game in java, and as the question title suggestions i am using public fields in my classes. (for the time being) From what i have seen public fields are bad and i have some understanding why. (but if someone could clarify why you should not use them, that would be appreciated) The thing is that also from what i have seen, (and it seems logical) is that using private fields, but using getters and setters to access them is also not good as it defeats the point of using private fields in the first place. So, my question is, what are the alternatives? or do i really have to use private fields with getters and setters? For reference here is one of my classes, and some of its methods. I will elaborate more if needs be. //The player's fields. public double health; public String name; public double goldCount; public double maxWeight; public double currentWeight; public double maxBackPckSlts; public double usedBackPckSlts; // The current back pack slots in use public double maxHealth; // Maximum amount of health public ArrayList<String> backPack = new ArrayList<String>(); //This method happens when ever the player dynamically takes damage(i.e. when it is not scripted for the player to take damage. //Parameters will be added to make it dynamic so the player can take any spread of damage. public void beDamaged(double damage) { this.health -= damage; if (this.health < 0) { this.health = 0; } } public void gainHealth(double gainedHp) { this.health += gainedHp; if (this.health > this.maxHealth) { this.health = this.maxHealth; } }

    Read the article

  • Using OpenGL vertex buffers in C++.

    - by Ren
    I've loaded a Wavefront .obj file and drawn it in immediate mode, and it works fine. I'm now trying to draw the same model with a vertex buffer, but I have a question. My model data is organized in the following structures: struct Vert { double x; double y; double z; }; struct Norm { double x; double y; double z; }; struct Texcoord { double u; double v; double w; }; struct Face { unsigned int v[3]; unsigned int n[3]; unsigned int t[3]; }; struct Model { unsigned int vertNumber; unsigned int normNumber; unsigned int texcoordNumber; unsigned int faceNumber; Vert * vertArray; Norm * normArray; Texcoord * texcoordArray; Face * faceArray; }; As it is now, I don't think there is any redundant data, since multiple face structures can point to the same vertex, normal, or texture coordinate. When I make vbo's for the vertex positions, normals, and texture coordinates, and assign data to them with glBufferData, do I have to have make arrays with redundant data so that they will all have the same number of elements in the same order? I'd like to know if there is a simpler way to fill the buffers with the way I already have the model's data organized.

    Read the article

  • C struct written in file, open with Java

    - by DaunnC
    For example in C I have structure: typedef struct { int number; double x1; double y1; double x2; double y2; double x3; double y3; } CTRstruct;` Then I write it to file fwrite(&tr, 1, sizeof(tr), fp); (tr - its CTRstruct var, fp - File pointer); Then I need to read it with Java! I really don't know how to read struct from file... I tried to read it with ObjectInputStream(), last idea is to read with RandomAccessFile() but I also don't know how to... (readLong(), readDouble() also doesn't work, it works ofcource but doesn't read correct data). So, any idea how to read C struct from binary file with Java? If it's interesting, my version to read integer (but it's ugly, & I don't know what to do with double): public class MyDataInputStream extends DataInputStream{ public MyDataInputStream(InputStream AIs) { super(AIs); } public int readInt1() throws IOException{ int ch1 = in.read(); int ch2 = in.read(); int ch3 = in.read(); int ch4 = in.read(); if ((ch1 | ch2 | ch3 | ch4) < 0) throw new EOFException(); return ((ch4 << 24) + (ch3 << 16) + (ch2 << 8) + (ch1 << 0)); } with double we can deal the same way (like with int or with long (8bytes) & then convert to double with native func).

    Read the article

  • C#: An object reference is required for the non-static field, method, or Property

    - by Omin
    I feel bad for asking this when there are so many questions that are related but I was not able to find/understand the answer I am looking for. // 2. Develop a program to convert currency X to currency Y and visa versa. using System; class Problem2 { static void Main (string[] args) { while (true) { Console.WriteLine ("1. Currency Conversion from CAD to Won"); Console.WriteLine ("2. Currency Conversion from Won to Cad"); Console.Write ("Choose from the Following: (1 or 2)? "); int option = int.Parse( Console.ReadLine() ); //double x; if (option == 1) { Console.WriteLine ("Type in the amount you would like to Convert CAD to Won: "); //double y =double.Parse( Console.ReadLine()); //Console.WriteLine( cadToWon( y ) ); Console.WriteLine( cadToWon( double.Parse( Console.ReadLine() ) )); } if (option == 2) { Console.WriteLine ("Type in the amount you would like to Convert Won to CAD: "); Console.WriteLine( wonToCad (double.Parse( Console.ReadLine()))); } } } double cadToWon( double x ) { return x * 1113.26; } double wonToCad( double x) { return x / 1113.26; } } This give me the Error messgae "An object reference is required for the non-static field, method, or property 'Problem2..." I know that I'll be able to run the program if I add static infront of the methods but I'm wondering why I need it (I think it's because Main is static?) and what do I need to change in order to use these methods without adding static to them? Thank you

    Read the article

  • [C++] Trouble declaring and recognizing global functions

    - by Sarah
    I've created some mathematical functions that will be used in main() and by member functions in multiple host classes. I was thinking it would be easiest to make these math functions global in scope, but I'm not sure how to do this. I've currently put all the functions in a file called Rdraws.cpp, with the prototypes in Rdraws.h. Even with all the #includes and externs, I'm getting a "symbol not found" error at the first function call in main(). Here's what I have: // Rdraws.cpp #include <cstdlib> using namespace std; #include <cmath> #include "Rdraws.h" #include "rng.h" extern RNG rgen // this is the PRNG used in the simulation; global scope void rmultinom( double p_trans[], int numTrials, int numTrans, int numEachTrans[] ) { // function 1 def } void rmultinom( const double p_trans[], const int numTrials, int numTrans, int numEachTrans[]) { // function 2 def } int rbinom( int nTrials, double pLeaving ) { // function 3 def } // Rdraws.h #ifndef RDRAWS #define RDRAWS void rmultinom( double[], int, int, int[] ); void rmultinom( const double[], const int, int, int[] ); int rbinom( int, double ); #endif // main.cpp ... #include "Rdraws.h" ... extern void rmultinom(double p_trans[], int numTrials, int numTrans, int numEachTrans[]); extern void rmultinom(const double p_trans[], const int numTrials, int numTrans, int numEachTrans[]); extern int rbinom( int n, double p ); ... int main() { ... } I'm pretty new to programming. If there's a dramatically smarter way to do this, I'd love to know.

    Read the article

< Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >