Search Results

Search found 1725 results on 69 pages for 'compute shader'.

Page 42/69 | < Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >

  • What is wrong with my specular phong shading

    - by Thijser
    I'm sorry if this should be placed on stackoverflow instead however seeing as this is graphics related I was hoping you guys could help me: I'm attempting to write a phong shader and currently working on the specular. I came acros the following formula: base*pow(dot(V,R),shininess) and attempted to implement it (V is the posion of the viewer and R the reflective vector). This gave the following result and code: Vec3Df phongSpecular(const Vec3Df & vertexPos, Vec3Df & normal, const Vec3Df & lightPos, const Vec3Df & cameraPos, unsigned int index) { Vec3Df relativeLightPos=(lightPos-vertexPos); relativeLightPos.normalize(); Vec3Df relativeCameraPos= (cameraPos-vertexPos); relativeCameraPos.normalize(); int DotOfNormalAndLight = Vec3Df::dotProduct(normal,relativeLightPos); Vec3Df reflective =(relativeLightPos-(2*DotOfNormalAndLight*normal))*-1; reflective.normalize(); float phongyness= Vec3Df::dotProduct(reflective,relativeCameraPos); if (phongyness<0){ phongyness=0; } float shininess= Shininess[index]; float speculair = powf(phongyness,shininess); return Ks[index]*speculair; } I'm looking for something more like this:

    Read the article

  • Orthographic unit translation mismatch on grid (e.g. 64 pixels translates incorrectly)

    - by Justin Van Horne
    I am looking for some insight into a small problem with unit translations on a grid. Setup 512x448 window 64x64 grid gl_Position = projection * world * position; projection is defined by ortho(-w/2.0f, w/2.0f, -h/2.0f, h/2.0f); This is a textbook orthogonal projection function. world is defined by a fixed camera position at (0, 0) position is defined by the sprite's position. Problem In the screenshot below (1:1 scaling) the grid spacing is 64x64 and I am drawing the unit at (64, 64), however the unit draws roughly ~10px in the wrong position. I've tried uniform window dimensions to prevent any distortion on the pixel size, but now I am a bit lost in the proper way in providing a 1:1 pixel-to-world-unit projection. Anyhow, here are some quick images to aide in the problem. I decided to super-impose a bunch of the sprites at what the engine believes is 64x offsets. When this seemed off place, I went about and did the base case of 1 unit. Which seemed to line up as expected. The yellow shows a 1px difference in the movement. Vertices It would appear that the vertices going into the vertex shader are correct. For example, in reference to the first image the data looks like this in the VBO: x y x y ---------------------------- tl | 0.0 24.0 64.0 24.0 bl | 0.0 0.0 -> 64.0 0.0 tr | 16.0 0.0 80.0 0.0 br | 16.0 24.0 80.0 24.0 With that said, all I am left to believe is that I am munging up my actual projection. So, I am looking for any insight into maintaining the 1:1 pixel-to-world-unit projection.

    Read the article

  • How to handle wildly varying rendering hardware / getting baseline

    - by edA-qa mort-ora-y
    I've recently started with mobile programming (cross-platform, also with desktop) and am encountering wildly differing hardware performance, in particular with OpenGL and the GPU. I know I'll basically have to adjust my rendering code but I'm uncertain of how to detect performance and what reasonable default settings are. I notice that certain shader functions are basically free in a desktop implemenation but can be unusable in a mobile device. The problem is I have no way of knowing what features will cause what performance issues on all the devices. So my first issue is that even if I allow configuring options I'm uncertain of which options I have to make configurable. I'm wondering also wheher one just writes one very configurable pipeline, or whether I should have 2 distinct options (high/low). I'm also unsure of where to set the default. If I set to the poorest performer the graphics will be so minimal that any user with a modern device would dismiss the game. If I set them even at some moderate point, the low end devices will basically become a slide-show. I was thinking perhaps that I just run some benchmarks when the user first installs and randomly guess what works, but I've not see a game do this before.

    Read the article

  • Possible SWITCH Optimization in DAX – #powerpivot #dax #tabular

    - by Marco Russo (SQLBI)
    In one of the Advanced DAX Workshop I taught this year, I had an interesting discussion about how to optimize a SWITCH statement (which could be frequently used checking a slicer, like in the Parameter Table pattern). Let’s start with the problem. What happen when you have such a statement? Sales :=     SWITCH (         VALUES ( Period[Period] ),         "Current", [Internet Total Sales],         "MTD", [MTD Sales],         "QTD", [QTD Sales],         "YTD", [YTD Sales],          BLANK ()     ) The SWITCH statement is in reality just syntax sugar for a nested IF statement. When you place such a measure in a pivot table, for every cell of the pivot table the IF options are evaluated. In order to optimize performance, the DAX engine usually does not compute cell-by-cell, but tries to compute the values in bulk-mode. However, if a measure contains an IF statement, every cell might have a different execution path, so the current implementation might evaluate all the possible IF branches in bulk-mode, so that for every cell the result from one of the branches will be already available in a pre-calculated dataset. The price for that could be high. If you consider the previous Sales measure, the YTD Sales measure could be evaluated for all the cells where it’s not required, and also when YTD is not selected at all in a Pivot Table. The actual optimization made by the DAX engine could be different in every build, and I expect newer builds of Tabular and Power Pivot to be better than older ones. However, we still don’t live in an ideal world, so it could be better trying to help the engine finding a better execution plan. One student (Niek de Wit) proposed this approach: Selection := IF (     HASONEVALUE ( Period[Period] ),     VALUES ( Period[Period] ) ) Sales := CALCULATE (     [Internet Total Sales],     FILTER (         VALUES ( 'Internet Sales'[Order Quantity] ),         'Internet Sales'[Order Quantity]             = IF (                 [Selection] = "Current",                 'Internet Sales'[Order Quantity],                 -1             )     ) )     + CALCULATE (         [MTD Sales],         FILTER (             VALUES ( 'Internet Sales'[Order Quantity] ),             'Internet Sales'[Order Quantity]                 = IF (                     [Selection] = "MTD",                     'Internet Sales'[Order Quantity],                     -1                 )         )     )     + CALCULATE (         [QTD Sales],         FILTER (             VALUES ( 'Internet Sales'[Order Quantity] ),             'Internet Sales'[Order Quantity]                 = IF (                     [Selection] = "QTD",                     'Internet Sales'[Order Quantity],                     -1                 )         )     )     + CALCULATE (         [YTD Sales],         FILTER (             VALUES ( 'Internet Sales'[Order Quantity] ),             'Internet Sales'[Order Quantity]                 = IF (                     [Selection] = "YTD",                     'Internet Sales'[Order Quantity],                     -1                 )         )     ) At first sight, you might think it’s impossible that this approach could be faster. However, if you examine with the profiler what happens, there is a different story. Every original IF’s execution branch is now a separate CALCULATE statement, which applies a filter that does not execute the required measure calculation if the result of the FILTER is empty. I used the ‘Internet Sales’[Order Quantity] column in this example just because in Adventure Works it has only one value (every row has 1): in the real world, you should use a column that has a very low number of distinct values, or use a column that has always the same value for every row (so it will be compressed very well!). Because the value –1 is never used in this column, the IF comparison in the filter discharge all the values iterated in the filter if the selection does not match with the desired value. I hope to have time in the future to write a longer article about this optimization technique, but in the meantime I’ve seen this optimization has been useful in many other implementations. Please write your feedback if you find scenarios (in both Power Pivot and Tabular) where you obtain performance improvements using this technique!

    Read the article

  • Static "LoD" hack opinions

    - by David Lively
    I've been playing with implementing dynamic level of detail for rendering a very large mesh in XNA. It occurred to me that (duh) the whole point of this is to generate small triangles close to the camera, and larger ones far away. Given that, rather than constantly modifying or swapping index buffers based on a feature's rendered size or distance from the camera, it would be a lot easier (and potentially quite a bit faster), to render a single "fan" or flat wedge/frustum-shaped planar mesh that is tessellated into small triangles close to the near or small end of the frustum and larger ones at the far end, sort of like this (overhead view) (Pardon the gap in the middle - I drew one side and mirrored it) The triangle sizes are chosen so that all are approximately the same size when projected. Then, that mesh would be transformed to track the camera so that the Z axis (center vertical in this image) is always aligned with the view direction projected into the XZ plane. The vertex shader would then read terrain heights from a height texture and adjust the Y coordinate of the mesh to match a height field that defines the terrain. This eliminates the need for culling (since the mesh is generated to match the viewport dimensions) and the need to modify the index and/or vertex buffers when drawing the terrain. Obviously this doesn't address terrain with overhangs, etc, but that could be handled to a certain extent by including a second mesh that defines a sort of "ceiling" via a different texture. The other LoD schemes I've seen aren't particularly difficult to implement and, in some cases, are a lot more flexible, but this seemed like a decent quick-and-dirty way to handle height map-based terrain without getting into geometry manipulation. Has anyone tried this? Opinions?

    Read the article

  • CodePlex Daily Summary for Monday, June 25, 2012

    CodePlex Daily Summary for Monday, June 25, 2012Popular ReleasesUmbraco CMS: Umbraco CMS 5.2: Development on Umbraco v5 discontinued After much discussion and consultation with leaders from the Umbraco community it was decided that work on the v5 branch would be discontinued with efforts being refocused on the stable and feature rich v4 branch. For full details as to why this decision was made please watch the CodeGarden 12 Keynote. What about all that hard work?!?? We are not binning everything and it does not mean that all work done on 5 is lost! we are taking all of the best and m...IIS Express Manager: IIS Express 0.31 B: V0.1B - 04 May, 2012 Initiated Project. V0.2B - 05May, 2012 1. Fixed small bug. Threw error when stop button was pressed in an already stopped application. 2. Removed start and stop button. Double clicking on list items will now stop / start the websites. 3. Improved code readability. 4. Changed Orientation of Buttons in UI. V0.3B - 06May, 2012 1. Complete modification of IISEM and process ID handling 2. IISEM is now capable of reflecting the existing IISExpress processes right from startup...SPMegaMenu 0.2.0.a: SPMegaMenu 0.2.0.a: SPMegaMenu 0.2.0.a - *Refined the menu to allow for sub category additions. *Release 0.1.0.a did not allow for sub categories. *Also added a Javascript Array Prototype to facilitate removal of duplicates in the sub category return. (the prototype is added as a workaround as I am not able to get the CAML GroupBy function to work correctly against a lookup column)CodeGenerate: CodeGenerate Alpha: The Project can auto generate C# code. Include BLL Layer、Domain Layer、IDAL Layer、DAL Layer. Support SqlServer And Oracle This is a alpha program,but which can run and generate code. Generate database table info into MS WordXDA ROM HUB: XDA ROM HUB v0.9: Kernel listing added -- Thanks to iONEx Added scripts installer button. Added "Nandroid On The Go" -- Perform a Nandroid backup without a PC! Added official Android app!ExtAspNet: ExtAspNet v3.1.8.1: +2012-06-24 v3.1.8 +????Grid???????(???????ExpandUnusedSpace????????)(??)。 -????MinColumnWidth(??????)。 -????AutoExpandColumn,???????????????(ColumnID)(?????ForceFitFirstTime??ForceFitAllTime,??????)。 -????AutoExpandColumnMax?AutoExpandColumnMin。 -????ForceFitFirstTime,????????????,??????????(????????????)。 -????ForceFitAllTime,????????????,??????????(??????????????????)。 -????VerticalScrollWidth,????????(??????????,0?????????????)。 -????grid/grid_forcefit.aspx。 -???????????En...AJAX Control Toolkit: June 2012 Release: AJAX Control Toolkit Release Notes - June 2012 Release Version 60623June 2012 release of the AJAX Control Toolkit. AJAX Control Toolkit .NET 4 – AJAX Control Toolkit for .NET 4 and sample site (Recommended). AJAX Control Toolkit .NET 3.5 – AJAX Control Toolkit for .NET 3.5 and sample site (Recommended). Notes: - The current version of the AJAX Control Toolkit is not compatible with ASP.NET 2.0. The latest version that is compatible with ASP.NET 2.0 can be found here: 11121. - Pages using ...WPF Application Framework (WAF): WPF Application Framework (WAF) 2.5.0.5: Version: 2.5.0.5 (Milestone 5): This release contains the source code of the WPF Application Framework (WAF) and the sample applications. Requirements .NET Framework 4.0 (The package contains a solution file for Visual Studio 2010) The unit test projects require Visual Studio 2010 Professional Changelog Legend: [B] Breaking change; [O] Marked member as obsolete WAF: Add IsInDesignMode property to the WafConfiguration class. WAF: Introduce the IModuleController interface. WAF: Add ...Windows 8 Metro RSS Reader: Metro RSS Reader.v7: Updated for Windows 8 Release Preview Changed background and foreground colors Used VariableSizeGrid layout to wrap blog posts with images Sort items with Images first, text-only last Enabled Caching to improve navigation between framesConfuser: Confuser 1.9: Change log: * Stable output (i.e. given the same seed & input assemblies, you'll get the same output assemblies) + Generate debug symbols, now it is possible to debug the output under a debugger! (Of course without enabling anti debug) + Generating obfuscation database, most of the obfuscation data in stored in it. + Two tools utilizing the obfuscation database (Database viewer & Stack trace decoder) * Change the protection scheme -----Please read Bug Report before you report a bug-----...XDesigner.Development: First release: First releaseBlackJumboDog: Ver5.6.5: 2012.06.22 Ver5.6.5  (1) FTP??????? EPSV ?? EPRT ???????DotNetNuke® Form and List: 06.00.01: DotNetNuke Form and List 06.00.01 Changes in 06.00.01 Icons are shown in module action buttons (workaraound to core issue with IconAPI) Fix to Token2XSL Editor, changing List type raised exception MakeTumbnail and ShowXml handlers had been missing in install package Updated help texts for better understanding of filter statement, token support in email subject and css style Major changes for fnL 6.0: DNN 6 Form Patterns including modal PopUps and Tabs http://www.dotnetnuke.com/Po...MVVM Light Toolkit: V4RTM (binaries only) including Windows 8 RP: This package contains all the latest DLLs for MVVM Light V4 RTM. It includes the DLLs for Windows 8 Release Preview. An updated Nuget package is also available at http://nuget.org/packages/MvvmLightLibs An installer with binaries, snippets and templates will follow ASAP.Weapsy - ASP.NET MVC CMS: 1.0.0: - Some changes to Layout and CSS - Changed version number to 1.0.0.0 - Solved Cache and Session items handler error in IIS 7 - Created the Modules, Plugins and Widgets Areas - Replaced CKEditor with TinyMCE - Created the System Info page - Minor changesAcDown????? - AcDown Downloader Framework: AcDown????? v3.11.7: ?? ●AcDown??????????、??、??????。????,????,?????????????????????????。???????????Acfun、????(Bilibili)、??、??、YouTube、??、???、??????、SF????、????????????。 ●??????AcPlay?????,??????、????????????????。 ● AcDown??????????????????,????????????????????????????。 ● AcDown???????C#??,????.NET Framework 2.0??。?????"Acfun?????"。 ????32??64? Windows XP/Vista/7/8 ??:????????Windows XP???,?????????.NET Framework 2.0???(x86),?????"?????????"??? ??????????????,??????????: ??"AcDown?????"????????? ...NShader - HLSL - GLSL - CG - Shader Syntax Highlighter AddIn for Visual Studio: NShader 1.3 - VS2010 + VS2012: This is a small maintenance release to support new VS2012 as well as VS2010. This release is also fixing the issue The "Comment Selection" include the first line after the selection If the new NShader version doesn't highlight your shader, you can try to: Remove the registry entry: HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\11.0\FontAndColors\Cache Remove all lines using "fx" or "hlsl" in file C:\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\CommonExtensions\Micr...3D Landmark Recognition: Landmark3D Dataset V1.0 (7z 1 of 3): Landmark3D Dataset Version 1.0Xenta Framework - extensible enterprise n-tier application framework: Xenta Framework 1.8.0: System Requirements OS Windows 7 Windows Vista Windows Server 2008 Windows Server 2008 R2 Web Server Internet Information Service 7.0 or above .NET Framework .NET Framework 4.0 WCF Activation feature HTTP Activation Non-HTTP Activation for net.pipe/net.tcp WCF bindings ASP.NET MVC ASP.NET MVC 3.0 Database Microsoft SQL Server 2005 Microsoft SQL Server 2008 Microsoft SQL Server 2008 R2 Additional Deployment Configuration Started Windows Process Activation service Start...MFCMAPI: June 2012 Release: Build: 15.0.0.1034 Full release notes at SGriffin's blog. If you just want to run the MFCMAPI or MrMAPI, get the executables. If you want to debug them, get the symbol files and the source. The 64 bit builds will only work on a machine with Outlook 2010 64 bit installed. All other machines should use the 32 bit builds, regardless of the operating system. Facebook BadgeNew ProjectsAudio-Gallery-Suite: Audio-Gallery-Suite is a complete audio gallery solution that includes a web audio gallery and a windows application for its complete management.caoliu_????????-????: ????????????Decanini: Teste de SummaryDevToolkit: placeholderdotCommand: dotCommand project explores various .NET implementations of Command design pattern, by providing and measuring those implementations.Engine Wars Chess Manager Service: EngineWars is Client/Server framework to host chess matches of humans vs humans, humans vs Chess Engines, and engines vs engines in casual play and tournaments.FsHtml: A tiny HTML parser in F#JAVALINKDotHandler: BÁSICO Sistema para avaliação de A5LP1 - IFSP - Campi SÃO PAULOKylinORM ????: KylinORM???????,??AOP?DDD???????????。LegendJS 2D: A 2D engine written in Javascript and Canvas. Aims to be easy learn and flexible enough to develop complex 2D game or other 2D application. LegendJS manages youMetroToolbox: A library of useful tools for developer metro apps on windows rt.M-i-c-r-o-S-o-f-t-W-M-S: M8i8c8r8o8S8o8f8t M8i8c8r8o8S8o8f8t M8i8c8r8o8S8o8f8tMineSweeping: 1234567890Multiplatform GTK Docking Panel in MONO: This is an open source project to develop a multiplatform dock-panel library in Gtk for Mono.MyAbcdefg_abcdefg: MyAbcdefg_abcdefgPlugin PagSeguro for NopCommerce 2.5: PagSeguro paymento module for nopcommerce 2.5 This is a brazilian payment method.Reckoning: Reckoning is a word counter that reports the frequencies of words in a piece of text. Seo Proxy: Seo Proxy is a proxy fetcher and checker. Project is intended to create ultimate tool to get proxies from websites and build quality lists.SharePoint Auriga blog: -SharpToolkit: placeholderShift2D: Shift2D????XNA?? Shift2D??????WPF、Silverlight????,????????,???????,?????????。Simple TFTP loader for Windows Embedded Compact EBOOT: Utility to download NK.BIN files to EBOOT without using PLatform Builder'SUMC Reader: SUMC reader - read info from http://m.sumc.bg I named SUMC, because that's the official nickname of Sofia public transport. t: tVertical Shooter RPG: Vertical Shooter RPG is an XNA open source game that will be an update to the vertical shooter genre by adding a world map and upgradable options.w___m___s___uupiwqewrqewypouyupqurpe: sdfasdfadsfafadsfsadfworkmanagesystem: This is the Course Project for School of E&M NCEPU owned by OLDBIG12. Now OLDBIG12 and Silent are develeoping it. It's just my first project on CodePlex.

    Read the article

  • UV Atlas Generation and Seam Removal

    - by P. Avery
    I'm generating light maps for scene mesh objects using DirectX's UV Atlas Tool( D3DXUVAtlasCreate() ). I've succeeded in generating an atlas, however, when I try to render the mesh object using the atlas the seams are visible on the mesh. Below are images of a lightmap generated for a cube. Here is the code I use to generate a uv atlas for a cube: struct sVertexPosNormTex { D3DXVECTOR3 vPos, vNorm; D3DXVECTOR2 vUV; sVertexPosNormTex(){} sVertexPosNormTex( D3DXVECTOR3 v, D3DXVECTOR3 n, D3DXVECTOR2 uv ) { vPos = v; vNorm = n; vUV = uv; } ~sVertexPosNormTex() { } }; // create a light map texture to fill programatically hr = D3DXCreateTexture( pd3dDevice, 128, 128, 1, 0, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, &pLightmap ); if( FAILED( hr ) ) { DebugStringDX( "Main", "Failed to D3DXCreateTexture( lightmap )", __LINE__, hr ); return hr; } // get the zero level surface from the texture IDirect3DSurface9 *pS = NULL; pLightmap->GetSurfaceLevel( 0, &pS ); // clear surface pd3dDevice->ColorFill( pS, NULL, D3DCOLOR_XRGB( 0, 0, 0 ) ); // load a sample mesh DWORD dwcMaterials = 0; LPD3DXBUFFER pMaterialBuffer = NULL; V_RETURN( D3DXLoadMeshFromX( L"cube3.x", D3DXMESH_MANAGED, pd3dDevice, &pAdjacency, &pMaterialBuffer, NULL, &dwcMaterials, &g_pMesh ) ); // generate adjacency DWORD *pdwAdjacency = new DWORD[ 3 * g_pMesh->GetNumFaces() ]; g_pMesh->GenerateAdjacency( 1e-6f, pdwAdjacency ); // create light map coordinates LPD3DXMESH pMesh = NULL; LPD3DXBUFFER pFacePartitioning = NULL, pVertexRemapArray = NULL; FLOAT resultStretch = 0; UINT numCharts = 0; hr = D3DXUVAtlasCreate( g_pMesh, 0, 0, 128, 128, 3.5f, 0, pdwAdjacency, NULL, NULL, NULL, NULL, NULL, 0, &pMesh, &pFacePartitioning, &pVertexRemapArray, &resultStretch, &numCharts ); if( SUCCEEDED( hr ) ) { // release and set mesh SAFE_RELEASE( g_pMesh ); g_pMesh = pMesh; // write mesh to file hr = D3DXSaveMeshToX( L"cube4.x", g_pMesh, 0, ( const D3DXMATERIAL* )pMaterialBuffer->GetBufferPointer(), NULL, dwcMaterials, D3DXF_FILEFORMAT_TEXT ); if( FAILED( hr ) ) { DebugStringDX( "Main", "Failed to D3DXSaveMeshToX() at OnD3D9CreateDevice()", __LINE__, hr ); } // fill the the light map hr = BuildLightmap( pS, g_pMesh ); if( FAILED( hr ) ) { DebugStringDX( "Main", "Failed to BuildLightmap()", __LINE__, hr ); } } else { DebugStringDX( "Main", "Failed to D3DXUVAtlasCreate() at OnD3D9CreateDevice()", __LINE__, hr ); } SAFE_RELEASE( pS ); SAFE_DELETE_ARRAY( pdwAdjacency ); SAFE_RELEASE( pFacePartitioning ); SAFE_RELEASE( pVertexRemapArray ); SAFE_RELEASE( pMaterialBuffer ); Here is code to fill lightmap texture: HRESULT BuildLightmap( IDirect3DSurface9 *pS, LPD3DXMESH pMesh ) { HRESULT hr = S_OK; // validate lightmap texture surface and mesh if( !pS || !pMesh ) return E_POINTER; // lock the mesh vertex buffer sVertexPosNormTex *pV = NULL; pMesh->LockVertexBuffer( D3DLOCK_READONLY, ( void** )&pV ); // lock the mesh index buffer WORD *pI = NULL; pMesh->LockIndexBuffer( D3DLOCK_READONLY, ( void** )&pI ); // get the lightmap texture surface description D3DSURFACE_DESC desc; pS->GetDesc( &desc ); // lock the surface rect to fill with color data D3DLOCKED_RECT rct; hr = pS->LockRect( &rct, NULL, 0 ); if( FAILED( hr ) ) { DebugStringDX( "main.cpp:", "Failed to IDirect3DTexture9::LockRect()", __LINE__, hr ); return hr; } // iterate the pixels of the lightmap texture // check each pixel to see if it lies between the uv coordinates of a cube face BYTE *pBuffer = ( BYTE* )rct.pBits; for( UINT y = 0; y < desc.Height; ++y ) { BYTE* pBufferRow = ( BYTE* )pBuffer; for( UINT x = 0; x < desc.Width * 4; x+=4 ) { // determine the pixel's uv coordinate D3DXVECTOR2 p( ( ( float )x / 4.0f ) / ( float )desc.Width + 0.5f / 128.0f, y / ( float )desc.Height + 0.5f / 128.0f ); // for each face of the mesh // check to see if the pixel lies within the face's uv coordinates for( UINT i = 0; i < 3 * pMesh->GetNumFaces(); i +=3 ) { sVertexPosNormTex v[ 3 ]; v[ 0 ] = pV[ pI[ i + 0 ] ]; v[ 1 ] = pV[ pI[ i + 1 ] ]; v[ 2 ] = pV[ pI[ i + 2 ] ]; if( TexcoordIsWithinBounds( v[ 0 ].vUV, v[ 1 ].vUV, v[ 2 ].vUV, p ) ) { // the pixel lies b/t the uv coordinates of a cube face // light contribution functions aren't needed yet //D3DXVECTOR3 vPos = TexcoordToPos( v[ 0 ].vPos, v[ 1 ].vPos, v[ 2 ].vPos, v[ 0 ].vUV, v[ 1 ].vUV, v[ 2 ].vUV, p ); //D3DXVECTOR3 vNormal = v[ 0 ].vNorm; // set the color of this pixel red( for demo ) BYTE ba[] = { 0, 0, 255, 255, }; //ComputeContribution( vPos, vNormal, g_sLight, ba ); // copy the byte array into the light map texture memcpy( ( void* )&pBufferRow[ x ], ( void* )ba, 4 * sizeof( BYTE ) ); } } } // go to next line of the texture pBuffer += rct.Pitch; } // unlock the surface rect pS->UnlockRect(); // unlock mesh vertex and index buffers pMesh->UnlockIndexBuffer(); pMesh->UnlockVertexBuffer(); // write the surface to file hr = D3DXSaveSurfaceToFile( L"LightMap.jpg", D3DXIFF_JPG, pS, NULL, NULL ); if( FAILED( hr ) ) DebugStringDX( "Main.cpp", "Failed to D3DXSaveSurfaceToFile()", __LINE__, hr ); return hr; } bool TexcoordIsWithinBounds( const D3DXVECTOR2 &t0, const D3DXVECTOR2 &t1, const D3DXVECTOR2 &t2, const D3DXVECTOR2 &p ) { // compute vectors D3DXVECTOR2 v0 = t1 - t0, v1 = t2 - t0, v2 = p - t0; float f00 = D3DXVec2Dot( &v0, &v0 ); float f01 = D3DXVec2Dot( &v0, &v1 ); float f02 = D3DXVec2Dot( &v0, &v2 ); float f11 = D3DXVec2Dot( &v1, &v1 ); float f12 = D3DXVec2Dot( &v1, &v2 ); // Compute barycentric coordinates float invDenom = 1 / ( f00 * f11 - f01 * f01 ); float fU = ( f11 * f02 - f01 * f12 ) * invDenom; float fV = ( f00 * f12 - f01 * f02 ) * invDenom; // Check if point is in triangle if( ( fU >= 0 ) && ( fV >= 0 ) && ( fU + fV < 1 ) ) return true; return false; } Screenshot Lightmap I believe the problem comes from the difference between the lightmap uv coordinates and the pixel center coordinates...for example, here are the lightmap uv coordinates( generated by D3DXUVAtlasCreate() ) for a specific face( tri ) within the mesh, keep in mind that I'm using the mesh uv coordinates to write the pixels for the texture: v[ 0 ].uv = D3DXVECTOR2( 0.003581, 0.295631 ); v[ 1 ].uv = D3DXVECTOR2( 0.003581, 0.003581 ); v[ 2 ].uv = D3DXVECTOR2( 0.295631, 0.003581 ); the lightmap texture size is 128 x 128 pixels. The upper-left pixel center coordinates are: float halfPixel = 0.5 / 128 = 0.00390625; D3DXVECTOR2 pixelCenter = D3DXVECTOR2( halfPixel, halfPixel ); will the mapping and sampling of the lightmap texture will require that an offset be taken into account or that the uv coordinates are snapped to the pixel centers..? ...Any ideas on the best way to approach this situation would be appreciated...What are the common practices?

    Read the article

  • Rendering different materials in a voxel terrain

    - by MaelmDev
    Each voxel datapoint in my terrain model is made up of two properties: density and material type. Each is stored as an unsigned integer value (but the density is interpreted as a decimal value between 0 and 1). My current idea for rendering these different materials on the terrain mesh is to store eleven extra attributes in each vertex: six material values corresponding to the materials of the voxels that the vertices lie between, three decimal values that correspond to the interpolation each vertex has between each voxel, and two decimal values that are used to determine where the fragment lies on the triangle. The material and interpolation attributes are the exact same for each vertex in the triangle. The fragment shader samples each texture that corresponds to each material and then uses the aforementioned couple of decimal values to interpolate between these samples and obtain the final textured color of the fragment. It should work fine, but it seems like a big memory hog. I won't be able to reuse vertices in the mesh with indexing, and each vertex will have a lot of data associated with it. It also seems pretty slow. What are some ways to improve or replace this technique for drawing materials on a voxel terrain mesh?

    Read the article

  • How to handle multiple effect files in XNA

    - by Adam 'Pi' Burch
    So I'm using ModelMesh and it's built in Effects parameter to draw a mesh with some shaders I'm playing with. I have a simple GUI that lets me change these parameters to my heart's desire. My question is, how do I handle shaders that have unique parameters? For example, I want a 'shiny' parameter that affects shaders with Phong-type specular components, but for an environment mapping shader such a parameter doesn't make a lot of sense. How I have it right now is that every time I call the ModelMesh's Draw() function, I set all the Effect parameters as so foreach (ModelMesh m in model.Meshes) { if (isDrawBunny == true)//Slightly change the way the world matrix is calculated if using the bunny object, since it is not quite centered in object space { world = boneTransforms[m.ParentBone.Index] * Matrix.CreateScale(scale) * rotation * Matrix.CreateTranslation(position + bunnyPositionTransform); } else //If not rendering the bunny, draw normally { world = boneTransforms[m.ParentBone.Index] * Matrix.CreateScale(scale) * rotation * Matrix.CreateTranslation(position); } foreach (Effect e in m.Effects) { Matrix ViewProjection = camera.ViewMatrix * camera.ProjectionMatrix; e.Parameters["ViewProjection"].SetValue(ViewProjection); e.Parameters["World"].SetValue(world); e.Parameters["diffuseLightPosition"].SetValue(lightPositionW); e.Parameters["CameraPosition"].SetValue(camera.Position); e.Parameters["LightColor"].SetValue(lightColor); e.Parameters["MaterialColor"].SetValue(materialColor); e.Parameters["shininess"].SetValue(shininess); //e.Parameters //e.Parameters["normal"] } m.Draw(); Note the prescience of the example! The solutions I've thought of involve preloading all the shaders, and updating the unique parameters as needed. So my question is, is there a best practice I'm missing here? Is there a way to pull the parameters a given Effect needs from that Effect? Thank you all for your time!

    Read the article

  • why is glVertexAttribDivisor crashing?

    - by 2am
    I am trying to render some trees with instancing. This is rather weird, but before sleeping yesterday night, I checked the code, and it was in a running state, when I got up this morning, it is crashing when I am calling glVertexAttribDivisor I haven't changed any code since yesterday. Here is how I am sending data to GPU for instancing. glGenBuffers(1, &iVBO); glBindBuffer(GL_ARRAY_BUFFER, iVBO); glBufferData(GL_ARRAY_BUFFER, (ml_instance->i_positions.size()*sizeof(glm::vec4)) , NULL, GL_STATIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, (ml_instance->i_positions.size()*sizeof(glm::vec4)), &ml_instance->i_positions[0]); And then in vertex specification-- glBindBuffer(GL_ARRAY_BUFFER, iVBO); glVertexAttribPointer(i_positions, 4, GL_FLOAT, GL_FALSE, 0, 0); glEnableVertexAttribArray(i_positions); glVertexAttribDivisor(i_positions,1); // **THIS IS WHERE THE PROGRAM CRASHES** glDrawElementsInstanced(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0,TREES_INSTANCE_COUNT); I have checked ml_instance->i_positions, it has all the data that needs to render. I have checked the value of i_positions in vertex shader, it is the same as whatever I have defined there. I am little out of ideas here, everything looks pretty much fine. What am I missing?

    Read the article

  • What calls trigger a new batch?

    - by sebf
    I am finding my project is starting to show performance degradation and I need to optimize it. The answer to my previous question and this presentation from NVidia have helped greatly in understanding the performance characteristics of code using the GPU but there are a couple of things that aren't clear that I need to know to optimize my drawing. Specifically, what calls make the distinction between batches. I know that any state changes cause a new batch, so that includes: Render State Changes Buffer Changes Shader Changes Render Target Changes Correct? What else counts as a 'state change'? Does each Draw**Primitive() call constitute a new batch? Even if I were to issue the same call twice, with no state changes, or call it once on on part of the buffer, then again on another? If I were to update a buffer, but not change the bindings, would that be a new batch? That presentation and a DX9 page suggest using all of the texture slots available, which I take to mean loading multiple objects in 'parallel' by mapping their buffers/shaders/textures to slots 1-16. But I am not sure how this works - surely to do this you would need to change the buffer binding and that would count as a state change? (or is it a case of you do but it saves 16 calls so its OK?)

    Read the article

  • Per-vertex animation with VBOs: Stream each frame or use index offset per frame?

    - by charstar
    Scenario Meshes are animated using either skeletons (skinned animation) or some form of morph targets (i.e. per-vertex key frames). However, in either case, the animations are known in full at load-time, that is, there is no physics, IK solving, or any other form of in-game pose solving. The number of character actions (animations) will be limited but rich (hand-animated). There may be multiple characters using a each mesh and its animations simultaneously in-game (they will be at different poses/keyframes at the same time). Assume color and texture coordinate buffers are static. Goal To leverage the richness of well vetted animation tools such as Blender to do the heavy lifting for a small but rich set of animations. I am aware of additive pose blending like that from Naughty Dog and similar techniques but I would prefer to expend a little RAM/VRAM to avoid implementing a thesis-ready pose solver. I would also like to avoid implementing a key-frame + interpolation curve solver (reinventing Blender vertex groups and IPOs). Current Considerations Much like a non-shader-powered pose solver, create a VBO for each character and copy vertex and normal data to each VBO on each frame (VBO in STREAMING). Create one VBO for each animation where each frame (interleaved vertex and normal data) is concatenated onto the VBO. Then each character simply has a buffer pointer offset based on its current animation frame (e.g. pointer offset = (numVertices+numNormals)*frameNumber). (VBO in STATIC) Known Trade-Offs In 1 above: Each VBO would be small but there would be many VBOs and therefore lots of buffer binding and vertex copying each frame. Both client and pipeline intensive. In 2 above: There would be few VBOs therefore insignificant buffer binding and no vertex data getting jammed down the pipe each frame, but each VBO would be quite large. Are there any pitfalls to number 2 (aside from finite memory)? Are there other methods that I am missing?

    Read the article

  • Architecture a for a central renderer rather than self-rendering

    - by The Communist Duck
    For the architectural side of rendering, there's two main ways: having each object render itself, and having a single renderer which renders everything. I'm currently aiming for the second idea, for the following reasons: The list can be sorted to only use shaders once. Else each object would have to bind the shader, because it's not sure if it's active. The objects could be sorted and grouped. Easier to swap APIs. With a few macro lines, it can be easy to swap between a DirectX renderer and an OpenGL renderer (not a reason for my project, but still a good point) Easier to manage rendering code Of course, if anyone has strong recommendations for the first method, I will listen to them. But I was wondering how make this work. First idea The renderer has a list of pointers to the renderable components of each entity, which register themselves on RenderCompoent creation. However, I'm worrying that this may end up as a lot of extra pointer weight. But I can sort the list of pointers every so often. Second idea The entire list of entities is passed to the renderer each render call. The renderer then sorts the list (each call, or maybe once?) and gets what it wants. That's a lot of passing and/or sorting, however. Other ideas ??? PROFIT Anyone got ideas? Thank you.

    Read the article

  • Transition from 2D to 3D Game development [closed]

    - by jakebird451
    I have been working in the 2D world for a long time from manual blitting in windows to SDL to Python (pygame, pyopengl) and a bunch in between. Needless to say I have been programming for a while. So a while ago I started to program in OpenGL via C++ on my Mac. I then got a little intricate with my work after a while (3D models with skeleton structure and terrain development). After a long time of tinkering, I stopped due to the heavy work just to yield a low level understanding of how OpenGL works. Still interested in Graphics and Game Development I went on a search for a stable game engine with some features to grow on. Licence Requirement: Anything other than GPL (LGPL will do) OS Requirement: Mac & Windows Shader: GLSL or CG (GLSL preferred due to experience) Models: Any model structure with rigging (bone) support & animation I am looking at http://www.ogre3d.org/ currently and am starting to meddle around with some examples. However I am a little reluctant to spend a lot of time on it only to yield another dead end. So instead of falling down a spiraling black pit, I am posting my question to you guys to lead me in the right direction based on my requirements. How was your experience with the engine you recommend? Is it well documented? Does it have well documented examples? Any library requirements (Boost, libpng, etc)?

    Read the article

  • Clouds Everywhere But not a Drop of Rain – Part 3

    - by sxkumar
    I was sharing with you how a broad-based transformation such as cloud will increase agility and efficiency of an organization if process re-engineering is part of the plan.  I have also stressed on the key enterprise requirements such as “broad and deep solutions, “running your mission critical applications” and “automated and integrated set of capabilities”. Let me walk you through some key cloud attributes such as “elasticity” and “self-service” and what they mean for an enterprise class cloud. I will also talk about how we at Oracle have taken a very enterprise centric view to developing cloud solutions and how our products have been specifically engineered to address enterprise cloud needs. Cloud Elasticity and Enterprise Applications Requirements Easy and quick scalability for a short-period of time is the signature of cloud based solutions. It is this elasticity that allows you to dynamically redistribute your resources according to business priorities, helps increase your overall resource utilization, and reduces operational costs by allowing you to get the most out of your existing investment. Most public clouds are offering a instant provisioning mechanism of compute power (CPU, RAM, Disk), customer pay for the instance-hours(and bandwidth) they use, adding computing resources at peak times and removing them when they are no longer needed. This type of “just-in-time” serving of compute resources is well known for mid-tiers “state less” servers such as web application servers and web servers that just need another machine to start and run on it but what does it really mean for an enterprise application and its underlying data? Most enterprise applications are not as quite as “state less” and justifiably so. As such, how do you take advantage of cloud elasticity and make it relevant for your enterprise apps? This is where Cloud meets Grid Computing. At Oracle, we have invested enormous amount of time, energy and resources in creating enterprise grid solutions. All our technology products offer built-in elasticity via clustering and dynamic scaling. With products like Real Application Clusters (RAC), Automatic Storage Management, WebLogic Clustering, and Coherence In-Memory Grid, we allow all your enterprise applications to benefit from Cloud elasticity –both vertically and horizontally - without requiring any application changes. A number of technology vendors take a rather simplistic route of starting up additional or removing unneeded VM as the "Cloud Scale-Out" solution. While this may work for stateless mid-tier servers where load balancers can handle the addition and remove of instances transparently but following a similar approach for the database tier - often called as "database sharding" - requires significant application modification and typically does not work with off the shelf packaged applications. Technologies like Oracle Database Real Application Clusters, Automatic Storage Management, etc. on the other hand bring the benefits of incremental scalability and on-demand elasticity to ANY application by providing a simplified abstraction layers where the application does not need deal with data spread over multiple database instances. Rather they just talk to a single database and the database software takes care of aggregating resources across multiple hardware components. It is the technologies like these that truly make a cloud solution relevant for enterprises.  For customers who are looking for a next generation hardware consolidation platform, our engineered systems (e.g. Exadata, Exalogic) not only provide incredible amount of performance and capacity, they also reduce the data center complexity and simplify operations. Assemble, Deploy and Manage Enterprise Applications for Cloud Products like Oracle Virtual assembly builder (OVAB) resolve the complex problem of bringing the cloud speed to complex multi-tier applications. With assemblies, you can not only provision all components of a multi-tier application and wire them together by push of a button, other aspects of application lifecycle, such as real-time application testing, scale-up/scale-down, performance and availability monitoring, etc., are also automated using Oracle Enterprise Manager.  An essential criteria for an enterprise cloud to succeed is the ability to ensure business service levels especially when business users have either full visibility on the usage cost with a “show back” or a “charge back”. With Oracle Enterprise Manager 12c, we have created the most comprehensive cloud management solution in the industry that is capable of managing business service levels “applications-to-disk” in a enterprise private cloud – all from a single console. It is the only cloud management platform in the industry that allows you to deliver infrastructure, platform and application cloud services out of the box. Moreover, it offers integrated and complete lifecycle management of the cloud - including planning and set up, service delivery, operations management, metering and chargeback, etc .  Sounds unbelievable? Well, just watch this space for more details on how Oracle Enterprise Manager 12c is the nerve center of Oracle Cloud! Our cloud solution portfolio is also the broadest and most deep in the industry  - covering public, private, hybrid, Infrastructure, platform and applications clouds. It is no coincidence therefore that the Oracle Cloud today offers the most comprehensive set of public cloud services in the industry.  And to a large part, this has been made possible thanks to our years on investment in creating cloud enabling technologies.  Summary  But the intent of this blog post isn't to dwell on how great our solutions are (these are just some examples to illustrate how we at Oracle have approached this problem space). Rather it is to help you ask the right questions before you embark on your cloud journey.  So to summarize, here are the key takeaways.       It is critical that you are clear on why you are building the cloud. Successful organizations keep business benefits as the first and foremost cloud objective. On the other hand, those who approach this purely as a technology project are more likely to fail. Think about where you want to be in 3-5 years before you get started. Your long terms objectives should determine what your first step ought to be. As obvious as it may seem, more people than not make the first move without knowing where they are headed.  Don’t make the mistake of equating cloud to virtualization and Infrastructure-as-a-Service (IaaS). Spinning a VM on-demand will give some short term relief to your IT staff but is unlikely to solve your larger business problems. As such, even if IaaS is your first step towards a more comprehensive cloud, plan the roadmap around those higher level services before you begin. And ask your vendors on how they are going to be your partners in this journey. Capabilities like self-service access and chargeback/showback are absolutely critical if you really expect your cloud to be transformational. Your business won't see the full benefits of the cloud until it empowers them with same kind of control and transparency that they are used to while using a public cloud service.  Evaluate the benefits of integration, as opposed to blindly following the best-of-breed strategy. Integration is a huge challenge and more so in a cloud environment. There are enormous costs associated with stitching a solution out of disparate components and even more in maintaining it. Hope you found these ideas helpful. Looking forward to hearing your thoughts and experiences.

    Read the article

  • How to use mount points in MilkShape models?

    - by vividos
    I have bought the Warriors & Commoners model pack from Frogames and the pack contains (among other formats) two animated models and several non-animated objects (axe, shield, pilosities, etc.) in MilkShape3D format. I looked at the official "MilkShape 3D Viewer v2.0" (msViewer2.zip at http://www.chumba.ch/chumbalum-soft/ms3d/download.html) source code and implemented loading the model, calculating the joint matrices and everything looks fine. In the model there are several joints that are designated as the "mount points" for the static objects like axe and shield. I now want to "put" the axe into the hand of the animated model, and I couldn't quite figure out how. I put the animated vertices in a VBO that gets updated every frame (I know I should do this with a shader, but I didn't have time to do this yet). I put the static vertices in another VBO that I want to keep static and not updated every frame. I now tried to render the animated vertices first, then use the joint matrix for the "mount joint" to calculate the location of the static object. I tried many things, and what about seems to be right is to transpose the joint matrix, then use glMatrixMult() to transform the modelview matrix. For some objects like the axe this is working, but not for others, e.g. the pilosities. Now my question: How is this generally implemented when using bone/joint models, and especially with MilkShape3D models? Am I on the right track?

    Read the article

  • New video card? [closed]

    - by TutorialPoint
    I ran into some problems with my ATI Radeon x1200. I want it to support vertex shader 3.0, but it only does 2.0. This is because Call of Duty: Modern Warfare 2 only works with 3.0. So, I want a new video card. Can someone help me, with a more clean look to it? I bet if I would stick to some seller, I would end up with a video card that does not support what I want, or is too expansive. I really do not want it to be above $75, if possible. Some info about my PC: Manufacter: XXODD Processor: AMD Athlon64 X2 DualCore 4000+ 2Ghz (but running currently 32 bit OS) ATI Radeon X1200 video card (the problem) 1 GB RAM DDR2 MS-7367 Motherboard Windows 7 Ultimate OS 32-Bit Build 7600 RTM

    Read the article

  • Could someone explain why my world reconstructed from depth position is incorrect?

    - by yuumei
    I am attempting to reconstruct the world position in the fragment shader from a depth texture. I pass in the 8 frustum points in world space and interpolate them across fragments and then interpolate from near to far by the depth: highp float depth = (2.0 * CameraPlanes.x) / (CameraPlanes.y + CameraPlanes.x - texture( depthTexture, textureCoord ).x * (CameraPlanes.y - CameraPlanes.x)); // Reconstruct the world position from the linear depth highp vec3 world = mix( nearWorldPos, farWorldPos, depth ); CameraPlanes.x is the near plane CameraPlanes.y is the far. Assuming that my frustum positions are correct, and my depth looks correct, why is my world position wrong? (My depth texture is of format GL_DEPTH_COMPONENT32F if that matters) Thanks! :D Update: Screenshot of world position http://imgur.com/sSlHd So you can see it looks nearly correct. However as the camera moves, the colours (positions) change, which they shouldnt. I can get this to work, if I do the following: Write this into the depth attachment in the previous pass: gl_FragDepth = gl_FragCoord.z / gl_FragCoord.w / CameraPlanes.y; and then read the depth texture like so: depth = texture( depthTexture, textureCoord ).x However this will kill the hardware z buffer optimizations.

    Read the article

  • Flickering problem with world matrix

    - by gnomgrol
    I do have a pretty wierd problem today. As soon as I try to change my translation- or rotationmatrix for an object to something else than (0,0,0), the object starts to flicker (scaling works fine). It rapid and randomly switches between the spot it should be in and a crippled something. I first thought that the problem would be z-fighting, but now Im pretty sure it isn't. I have now clue at all what it could be, here are two screenshots of the two states the plant is switching between. I already used PIX, but could find anything of use (Im not a very good debugger anyway) I would appreciate any help, thanks a lot! Important code: D3DXMatrixIdentity(&World); D3DXVECTOR3 rotaxisX = D3DXVECTOR3(1.0f, 0.0f, 0.0f); D3DXVECTOR3 rotaxisY = D3DXVECTOR3(0.0f, 1.0f, 0.0f); D3DXVECTOR3 rotaxisZ = D3DXVECTOR3(0.0f, 0.0f, 1.0f); D3DXMATRIX temprot1, temprot2, temprot3; D3DXMatrixRotationAxis(&temprot1, &rotaxisX, 0); D3DXMatrixRotationAxis(&temprot2, &rotaxisY, 0); D3DXMatrixRotationAxis(&temprot3, &rotaxisZ, 0); Rotation = temprot1 *temprot2 * temprot3; D3DXMatrixTranslation(&Translation, 0.0f, 10.0f, 0.0f); D3DXMatrixScaling(&Scale, 0.02f, 0.02f, 0.02f); //Set objs world space using the transformations World = Translation * Rotation * Scale; shader: cbuffer cbPerObject { matrix worldMatrix; matrix viewMatrix; matrix projectionMatrix; }; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; // Calculate the position of the vertex against the world, view, and projection matrices. output.position = mul(input.position, worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix);

    Read the article

  • LOD in modern games

    - by Firas Assaad
    I'm currently working on my master's thesis about LOD and mesh simplification, and I've been reading many academic papers and articles about the subject. However, I can't find enough information about how LOD is being used in modern games. I know many games use some sort of dynamic LOD for terrain, but what about elsewhere? Level of Detail for 3D Graphics for example points out that discrete LOD (where artists prepare several models in advance) is widely used because of the performance overhead of continuous LOD. That book was published in 2002 however, and I'm wondering if things are different now. There has been some research in performing dynamic LOD using the geometry shader (this paper for example, with its implementation in ShaderX6), would that be used in a modern game? To summarize, my question is about the state of LOD in modern video games, what algorithms are used and why? In particular, is view dependent continuous simplification used or does the runtime overhead make using discrete models with proper blending and impostors a more attractive solution? If discrete models are used, is an algorithm used (e.g. vertex clustering) to generate them offline, do artists manually create the models, or perhaps a combination of both methods is used?

    Read the article

  • HLSL What you get when you subtract world position from InvertViewProjection.Transform?

    - by cubrman
    In one of NVIDIA's Vertex shaders (the metal one) I found the following code: // transform object normals, tangents, & binormals to world-space: float4x4 WorldITXf : WorldInverseTranspose < string UIWidget="None"; >; // provide tranform from "view" or "eye" coords back to world-space: float4x4 ViewIXf : ViewInverse < string UIWidget="None"; >; ... float4 Po = float4(IN.Position.xyz,1); // homogeneous location coordinates float4 Pw = mul(Po,WorldXf); // convert to "world" space OUT.WorldView = normalize(ViewIXf[3].xyz - Pw.xyz); The term OUT.WorldView is subsequently used in a Pixel Shader to compute lighting: float3 Ln = normalize(IN.LightVec.xyz); float3 Nn = normalize(IN.WorldNormal); float3 Vn = normalize(IN.WorldView); float3 Hn = normalize(Vn + Ln); float4 litV = lit(dot(Ln,Nn),dot(Hn,Nn),SpecExpon); DiffuseContrib = litV.y * Kd * LightColor + AmbiColor; SpecularContrib = litV.z * LightColor; Can anyone tell me what exactly is WorldView here? And why do they add it to the normal?

    Read the article

  • Why does my VertexDeclaration apparently not contain Position0?

    - by Phil
    I'm trying to get my code from calling each individual draw call down to using at least a VertexBuffer, and preferably an indexBuffer, but now that I'm attempting to test my code, I'm getting the error: The current vertex declaration does not include all the elements required by the current vertex shader. Position0 is missing. Which makes absolutely no sense to me, as my VertexDeclaration is: public readonly static VertexDeclaration VertexDeclaration = new VertexDeclaration( new VertexElement(0, VertexElementFormat.Vector3, VertexElementUsage.Position, 0), new VertexElement(sizeof(float) * 3, VertexElementFormat.Color, VertexElementUsage.Color, 0), new VertexElement(sizeof(float) * 3 + 4, VertexElementFormat.Vector3, VertexElementUsage.Normal, 0) ); Which clearly contains the information. I am attempting to draw with the following lines: VertexBuffer vb = new VertexBuffer(GraphicsDevice, VertexPositionColorNormal.VertexDeclaration, c.VertexList.Count, BufferUsage.WriteOnly); IndexBuffer ib = new IndexBuffer(GraphicsDevice, typeof(int), c.IndexList.Count, BufferUsage.WriteOnly); vb.SetData<VertexPositionColorNormal>(c.VertexList.ToArray()); ib.SetData<int>(c.IndexList.ToArray()); GraphicsDevice.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, vb.VertexCount, 0, c.IndexList.Count/3); Where c is a Chunk class containing an 8x8x8 array of boxes. Full code is available at https://github.com/mrbaggins/Box/tree/ProperMeshing/box/box. Relevant locations are Chunk.cs (Contains the VertexDeclaration) and Game1.cs (Draw() is in Lines 230-250). Not much else of relevance to this problem anywhere else. Note that large commented sections are from old version of drawing.

    Read the article

  • Problems when rendering code on Nvidia GPU

    - by 2am
    I am following OpenGL GLSL cookbook 4.0, I have rendered a tesselated quad, as you see in the screenshot below, and i am moving Y coordinate of every vertex using a time based sin function as given in the code in the book. This program, as you see on the text in the image, runs perfectly on built in Intel HD graphics of my processor, but i have Nvidia GT 555m graphics in my laptop, (which by the way has switchable graphics) when I run the program on the graphic card, the OpenGL shader compilation fails. It fails on following instruction.. pos.y = sin.waveAmp * sin(u); giving error Error C1105 : Cannot call a non-function I know this error is coming on the sin(u) function which you see in the instruction. I am not able to understand why? When i removed sin(u) from the code, the program ran fine on Nvidia card. Its running with sin(u) fine on Intel HD 3000 graphics. Also, if you notice the program is almost unusable with intel HD 3000 graphics, I am getting only 9FPS, which is not enough. Its too much load for intel HD 3000. So, sin(X) function is not defined in the OpenGL specification given by Nvidia drivers or something else??

    Read the article

  • OpenGL Application displays only 1 frame

    - by Avi
    EDIT: I have verified that the problem is not the VBO class or the vertex array class, but rather something else. I have a problem where my vertex buffer class works the first time its called, but displays nothing any other time its called. I don't know why this is, and it's also the same in my vertex array class. I'm calling the functions in this order to set up the buffers: enable client states bind buffers set buffer / array data unbind buffers disable client states Then in the draw function, that's called every frame: enable client states bind buffers set pointers unbind buffers bind index buffer draw elements unbind index buffer disable client states Is there something wrong with the order in which I'm calling the functions, or is it a more specific code error? EDIT: here's some of the code Code for setting pointers: //element is the vertex attribute being drawn (e.g. normals, colors, etc.) static void makeElementPointer(VertexBufferElements::VBOElement element, Shader *shade, void *elementLocation) { //elementLocation is BUFFER_OFFSET(n) if a buffer is bound switch (element) { .... glVertexPointer(3, GL_FLOAT, 0, elementLocation); //changes based on element .... //but I'm only dealing with } //vertices for now } And that's basically all the code that isn't just a straight OpenGL function call.

    Read the article

  • OpenGL depth texture wrong

    - by CoffeeandCode
    I have been writing a game engine for a while now and have decided to reconstruct my positions from depth... but how I read the depth seems to be wrong :/ What is wrong in my rendering? How I init my depth texture in the FBO gl::BindTexture(gl::TEXTURE_2D, this->textures[0]); // Depth gl::TexImage2D( gl::TEXTURE_2D, 0, gl::DEPTH32F_STENCIL8, width, height, 0, gl::DEPTH_STENCIL, gl::FLOAT_32_UNSIGNED_INT_24_8_REV, nullptr ); gl::TexParameterf(gl::TEXTURE_2D, gl::TEXTURE_MAG_FILTER, gl::NEAREST); gl::TexParameterf(gl::TEXTURE_2D, gl::TEXTURE_MIN_FILTER, gl::NEAREST); gl::TexParameterf(gl::TEXTURE_2D, gl::TEXTURE_WRAP_S, gl::CLAMP_TO_EDGE); gl::TexParameterf(gl::TEXTURE_2D, gl::TEXTURE_WRAP_T, gl::CLAMP_TO_EDGE); gl::FramebufferTexture2D( gl::FRAMEBUFFER, gl::DEPTH_STENCIL_ATTACHMENT, gl::TEXTURE_2D, this->textures[0], 0 ); Linear depth readings in my shader Vertex #version 150 layout(location = 0) in vec3 position; layout(location = 1) in vec2 uv; out vec2 uv_f; void main(){ uv_f = uv; gl_Position = vec4(position, 1.0); } Fragment (where the issue probably is) #version 150\n uniform sampler2D depth_texture; in vec2 uv_f; out vec4 Screen; void main(){ float n = 0.00001; float f = 100.0; float z = texture(depth_texture, uv_f).x; float linear_depth = (n * z)/(f - z * (f - n)); Screen = vec4(linear_depth); // It ISN'T because I don't separate alpha } When Rendered so gamedev.stackexchange, what's wrong with my rendering/glsl?

    Read the article

< Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >