Search Results

Search found 5221 results on 209 pages for 'low latency'.

Page 43/209 | < Previous Page | 39 40 41 42 43 44 45 46 47 48 49 50  | Next Page >

  • dynamic char array sizing

    - by droseman
    Hello, In my application, I have a char array defined which can take one of three options: "okay", "high", "low" which are then sent down a serial port to a remote device. I currently have the array sized to take the 4 character words plus carriage return and line feed, but when I have to send "low" I get a null character in the strings, which I am concerned would confuse the host terminal. array definition char mod1_status_char[6] = {'0','0','0','0','0','0'}; char mod2_status_char[6] = {'0','0','0','0','0','0'}; char mod3_status_char[6] = {'0','0','0','0','0','0'}; sample of switch case statement: void DCOKStatus(uint8_t *ptr_status) { uint8_t status = *ptr_status; switch (status) { case 0x00: strcpy(mod1_status_char, "okay"); strcpy(mod2_status_char, "okay"); strcpy(mod3_status_char, "okay"); break; case 0x10: strcpy(mod1_status_char, "okay"); strcpy(mod2_status_char, "okay"); strcpy(mod3_status_char, "low"); break; } This is the struct which makes the message string to send strcpy(MsgStatus_on.descriptor_msg, "$psu_"); MsgStatus_on.address01 = hex_addr[0]; MsgStatus_on.address02 = hex_addr[1]; MsgStatus_on.space01 = 0x20; strcpy(MsgStatus_on.cmdmsg01, "op_en op1_"); strcpy(MsgStatus_on.statusmsg01, mod1_status_char); MsgStatus_on.space02 = 0x20; strcpy(MsgStatus_on.cmdmsg02, "op2_"); strcpy(MsgStatus_on.statusmsg02, mod2_status_char); MsgStatus_on.space03 = 0x20; strcpy(MsgStatus_on.cmdmsg03, "op3_"); strcpy(MsgStatus_on.statusmsg03, mod3_status_char); MsgStatus_on.CR = 0x0D; MsgStatus_on.LF = 0x0A; and this sends the message void USARTWrite(char *object, uint32_t size) { GPIO_SetBits(GPIOB, GPIO_Pin_1); char *byte; for (byte = object; size--; ++byte) { USART_SendData(USART1,*byte); } Would anyone be able to suggest a good approach to dynamically size the array to one character shorter when I need to send "low"? Thanks

    Read the article

  • Grouping records from while loop | PHP

    - by Wayne
    I'm trying to group down records by their priority levels, e.g. --- Priority: High --- Records... --- Priority: Medium --- Records... --- Priority: Low --- Records... Something like that, how do I do that in PHP? The while loop orders records by the priority column which has int value (high = 3, medium = 2, low = 1). e.g. WHERE priority = '1' The label: "Priority: [priority level]" has to be set above the grouped records regarding their level

    Read the article

  • ClassCastExcpetion Linq to SQL

    - by BitFiddler
    I have a column definition in my generated Dbml file: <Column(Storage:="_Low", DbType:="Decimal(18,2)", UpdateCheck:=UpdateCheck.WhenChanged)> Public Property Low() As System.Nullable(Of Decimal) When I try to assign: With someObject .Low = 21.33D End With I get a ClassCastException when I call db_context.SubmitChanges(). Anyone have an idea why this is? Thanks

    Read the article

  • Suggestions for interesting Fortran adventure?

    - by Gnatz
    I've been listening to some pod-casts lately that have sparked my interest in revisiting a low level procedural programming language like Fortran. However, after downloading a compiler and doing basic language exploration I've been unable to think of a fun interesting application to compose. Does anybody have or know of a resource that I could tap into for some fun and interesting programming scenarios for a low level language like Fortran?

    Read the article

  • Is there a version of the .Net Redistributable bundled with all supported versions of Windows?

    - by Tom the Junglist
    Hi there, Is there a specific version of .Net that I can target that is bundled with all versions of Windows of XP SP2 and higher? We are trying to create a simple setup stub without having to resort to a low-level C/C++ app... currently something is cooked up in VB6, but there's a fair amount of low-level network code that I would much rather rewrite in .Net -- which would be trivial if only we could rely on the presence of a given version.

    Read the article

  • Webmail system script

    - by panidarapu
    Hello, I am planning to launch a free webmail service at mail(dot)com(dot)es where users can signup and have their free webmail account (for example like www.email.gr). I am looking for a free or low cost webmail system script to install on my website. Do you know any free or low cost scripts which would be suitable for this? Thanks

    Read the article

  • Free Offline Map Provider (and not OpenStreetMaps)

    - by Radian
    I am making for my Graduation Project a low price Navigation device, using Android as Operating System I tried the Native Google's Map-view Control, but it works only Online .. and of-course I want to store maps for offline navigation So.. I want a map provider (like OpenStreetMaps) that : I can use offline Contain Searchable Street names (not only a rendered image) for commercial use Free or at low price The problem with OpenStreetMaps that it doesn't provide detailed map for most cities in Egypt.

    Read the article

  • Financial Charts / Graphs in Ruby or Python

    - by Eric the Red
    What are my best options for creating a financial open-high-low-close (OHLC) chart in a high level language like Ruby or Python? While there seem to be a lot of options for graphing, I haven't seen any gems or eggs with this kind of chart. http://en.wikipedia.org/wiki/Open-high-low-close_chart (but I don't need the moving average or Bollinger bands) JFreeChart can do this in Java, but I'd like to make my codebase as small and simple as possible. Thanks!

    Read the article

  • VB6 Serial port programming

    - by commodus86
    I'm not much experienced in VB6 serial port programming. I need to control another circuit through serial port. (I have heard that pin 4 and pin 7 are used for that purpose. If these pins are incorrect please tell me what pins are used for such purposes) My requirement is to set those pins to high or low and read their levels(high or low) through VB6 program. How to do the task?? Thanx,

    Read the article

  • how to display fixed dropdown in django admin?

    - by FurtiveFelon
    Hi all, I would like to display priority information in a drop down. Currently i am using a integer field to store the priority, but i would like to display high/medium/low instead of letting user type in a priority. A way to approximate this is to use a Priority database which stores 3 elements, 1:high, 2:medium, 3:low, but it seems like an overkill. Any easier way would be much appreciated! Jason

    Read the article

  • Keeping DB Table sorted using multi-field formula (Microsoft SQL Server)

    - by user298167
    I have a JOB table, with two interesting columns: Creation Date Importance (high - 3, medium 2, low - 1). A JOB record's priority calculated like this: Priority = Importance * (time passed since creation) The problem is, every time I would like to pick 200 jobs with highest priority, and I don't want to resort the table. Is there a way to keep rows sorted? I was also thinking about having three tables one for High, Medium and Low and then sort those by Creation Date.

    Read the article

  • Has anyone tried the "objectify" library for Google App Engine?

    - by Spines
    I was using JDO for my google app engine project but got fed up with the additional 5 seconds it adds to my cold start time. I was planning on just writing stuff directly to the database with the low level datastore api, but then I came accross the objectify project ( http://code.google.com/p/objectify-appengine/ ). Apparently its a super light wrapper above the low level api. Does anyone have experiences with this library that they could share?

    Read the article

  • How to return something in Matlab?

    - by Ben Fossen
    I have a simple function function increase(percent, number) low = number- number*percent; end I want to return low so I can use it as an argument for another function mitoGen(asp, arg, increase(.2,234), glu) Is there a way to do this?

    Read the article

  • Loading Huge Image

    - by japs
    Hi, I Want to load Image size 2550X3300 (i.e 1.7 Mb size), i have loaded the image into UIImageView and application gets crash due to low memory, Now i have loaded into uiWebview it works fine but i have to save this image into an PDF file in local resource. While iam saving UIImage in background same app gets crash due to low memory. Anyone has some suggestion or help to solve this issue. Thank You.

    Read the article

  • Memcached Lagging

    - by Brad Dwyer
    Let me preface this by saying that this is a followup question to this topic. That was "solved" by switching from Solaris (SmartOS) to Ubuntu for the memcached server. Now we've multiplied load by about 5x and are running into problems again. We are running a site that is doing about 1000 requests/minute, each request hits Memcached with approximately 3 reads and 1 write. So load is approximately 65 requests per second. Total data in the cache is about 37M, and each key contains a very small amount of data (a JSON-encoded array of integers amounting to less than 1K). We have setup a benchmarking script on these pages and fed the data into StatsD for logging. The problem is that there are spikes where Memcached takes a very long time to respond. These do not appear to correlate with spikes in traffic. What could be causing these spikes? Why would memcached take over a second to reply? We just booted up a second server to put in the pool and it didn't make any noticeable difference in the frequency or severity of the spikes. This is the output of getStats() on the servers: Array ( [-----------] => Array ( [pid] => 1364 [uptime] => 3715684 [threads] => 4 [time] => 1336596719 [pointer_size] => 64 [rusage_user_seconds] => 7924 [rusage_user_microseconds] => 170000 [rusage_system_seconds] => 187214 [rusage_system_microseconds] => 190000 [curr_items] => 12578 [total_items] => 53516300 [limit_maxbytes] => 943718400 [curr_connections] => 14 [total_connections] => 72550117 [connection_structures] => 165 [bytes] => 2616068 [cmd_get] => 450388258 [cmd_set] => 53493365 [get_hits] => 450388258 [get_misses] => 2244297 [evictions] => 0 [bytes_read] => 2138744916 [bytes_written] => 745275216 [version] => 1.4.2 ) [-----------:11211] => Array ( [pid] => 8099 [uptime] => 4687 [threads] => 4 [time] => 1336596719 [pointer_size] => 64 [rusage_user_seconds] => 7 [rusage_user_microseconds] => 170000 [rusage_system_seconds] => 290 [rusage_system_microseconds] => 990000 [curr_items] => 2384 [total_items] => 225964 [limit_maxbytes] => 943718400 [curr_connections] => 7 [total_connections] => 588097 [connection_structures] => 91 [bytes] => 562641 [cmd_get] => 1012562 [cmd_set] => 225778 [get_hits] => 1012562 [get_misses] => 125161 [evictions] => 0 [bytes_read] => 91270698 [bytes_written] => 350071516 [version] => 1.4.2 ) ) Edit: Here is the result of a set and retrieve of 10,000 values. Normal: Stored 10000 values in 5.6118 seconds. Average: 0.0006 High: 0.1958 Low: 0.0003 Fetched 10000 values in 5.1215 seconds. Average: 0.0005 High: 0.0141 Low: 0.0003 When Spiking: Stored 10000 values in 16.5074 seconds. Average: 0.0017 High: 0.9288 Low: 0.0003 Fetched 10000 values in 19.8771 seconds. Average: 0.0020 High: 0.9478 Low: 0.0003

    Read the article

  • Strange Recurrent Excessive I/O Wait

    - by Chris
    I know quite well that I/O wait has been discussed multiple times on this site, but all the other topics seem to cover constant I/O latency, while the I/O problem we need to solve on our server occurs at irregular (short) intervals, but is ever-present with massive spikes of up to 20k ms a-wait and service times of 2 seconds. The disk affected is /dev/sdb (Seagate Barracuda, for details see below). A typical iostat -x output would at times look like this, which is an extreme sample but by no means rare: iostat (Oct 6, 2013) tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.00 0.00 156.00 9.75 21.89 288.12 36.00 57.60 5.50 0.00 44.00 8.00 48.79 2194.18 181.82 100.00 2.00 0.00 16.00 8.00 46.49 3397.00 500.00 100.00 4.50 0.00 40.00 8.89 43.73 5581.78 222.22 100.00 14.50 0.00 148.00 10.21 13.76 5909.24 68.97 100.00 1.50 0.00 12.00 8.00 8.57 7150.67 666.67 100.00 0.50 0.00 4.00 8.00 6.31 10168.00 2000.00 100.00 2.00 0.00 16.00 8.00 5.27 11001.00 500.00 100.00 0.50 0.00 4.00 8.00 2.96 17080.00 2000.00 100.00 34.00 0.00 1324.00 9.88 1.32 137.84 4.45 59.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.00 44.00 204.00 11.27 0.01 0.27 0.27 0.60 Let me provide you with some more information regarding the hardware. It's a Dell 1950 III box with Debian as OS where uname -a reports the following: Linux xx 2.6.32-5-amd64 #1 SMP Fri Feb 15 15:39:52 UTC 2013 x86_64 GNU/Linux The machine is a dedicated server that hosts an online game without any databases or I/O heavy applications running. The core application consumes about 0.8 of the 8 GBytes RAM, and the average CPU load is relatively low. The game itself, however, reacts rather sensitive towards I/O latency and thus our players experience massive ingame lag, which we would like to address as soon as possible. iostat: avg-cpu: %user %nice %system %iowait %steal %idle 1.77 0.01 1.05 1.59 0.00 95.58 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sdb 13.16 25.42 135.12 504701011 2682640656 sda 1.52 0.74 20.63 14644533 409684488 Uptime is: 19:26:26 up 229 days, 17:26, 4 users, load average: 0.36, 0.37, 0.32 Harddisk controller: 01:00.0 RAID bus controller: LSI Logic / Symbios Logic MegaRAID SAS 1078 (rev 04) Harddisks: Array 1, RAID-1, 2x Seagate Cheetah 15K.5 73 GB SAS Array 2, RAID-1, 2x Seagate ST3500620SS Barracuda ES.2 500GB 16MB 7200RPM SAS Partition information from df: Filesystem 1K-blocks Used Available Use% Mounted on /dev/sdb1 480191156 30715200 425083668 7% /home /dev/sda2 7692908 437436 6864692 6% / /dev/sda5 15377820 1398916 13197748 10% /usr /dev/sda6 39159724 19158340 18012140 52% /var Some more data samples generated with iostat -dx sdb 1 (Oct 11, 2013) Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util sdb 0.00 15.00 0.00 70.00 0.00 656.00 9.37 4.50 1.83 4.80 33.60 sdb 0.00 0.00 0.00 2.00 0.00 16.00 8.00 12.00 836.00 500.00 100.00 sdb 0.00 0.00 0.00 3.00 0.00 32.00 10.67 9.96 1990.67 333.33 100.00 sdb 0.00 0.00 0.00 4.00 0.00 40.00 10.00 6.96 3075.00 250.00 100.00 sdb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 100.00 sdb 0.00 0.00 0.00 2.00 0.00 16.00 8.00 2.62 4648.00 500.00 100.00 sdb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 100.00 sdb 0.00 0.00 0.00 1.00 0.00 16.00 16.00 1.69 7024.00 1000.00 100.00 sdb 0.00 74.00 0.00 124.00 0.00 1584.00 12.77 1.09 67.94 6.94 86.00 Characteristic charts generated with rrdtool can be found here: iostat plot 1, 24 min interval: http://imageshack.us/photo/my-images/600/yqm3.png/ iostat plot 2, 120 min interval: http://imageshack.us/photo/my-images/407/griw.png/ As we have a rather large cache of 5.5 GBytes, we thought it might be a good idea to test if the I/O wait spikes would perhaps be caused by cache miss events. Therefore, we did a sync and then this to flush the cache and buffers: echo 3 > /proc/sys/vm/drop_caches and directly afterwards the I/O wait and service times virtually went through the roof, and everything on the machine felt like slow motion. During the next few hours the latency recovered and everything was as before - small to medium lags in short, unpredictable intervals. Now my question is: does anybody have any idea what might cause this annoying behaviour? Is it the first indication of the disk array or the raid controller dying, or something that can be easily mended by rebooting? (At the moment we're very reluctant to do this, however, because we're afraid that the disks might not come back up again.) Any help is greatly appreciated. Thanks in advance, Chris. Edited to add: we do see one or two processes go to 'D' state in top, one of which seems to be kjournald rather frequently. If I'm not mistaken, however, this does not indicate the processes causing the latency, but rather those affected by it - correct me if I'm wrong. Does the information about uninterruptibly sleeping processes help us in any way to address the problem? @Andy Shinn requested smartctl data, here it is: smartctl -a -d megaraid,2 /dev/sdb yields: smartctl 5.40 2010-07-12 r3124 [x86_64-unknown-linux-gnu] (local build) Copyright (C) 2002-10 by Bruce Allen, http://smartmontools.sourceforge.net Device: SEAGATE ST3500620SS Version: MS05 Serial number: Device type: disk Transport protocol: SAS Local Time is: Mon Oct 14 20:37:13 2013 CEST Device supports SMART and is Enabled Temperature Warning Disabled or Not Supported SMART Health Status: OK Current Drive Temperature: 20 C Drive Trip Temperature: 68 C Elements in grown defect list: 0 Vendor (Seagate) cache information Blocks sent to initiator = 1236631092 Blocks received from initiator = 1097862364 Blocks read from cache and sent to initiator = 1383620256 Number of read and write commands whose size <= segment size = 531295338 Number of read and write commands whose size > segment size = 51986460 Vendor (Seagate/Hitachi) factory information number of hours powered up = 36556.93 number of minutes until next internal SMART test = 32 Error counter log: Errors Corrected by Total Correction Gigabytes Total ECC rereads/ errors algorithm processed uncorrected fast | delayed rewrites corrected invocations [10^9 bytes] errors read: 509271032 47 0 509271079 509271079 20981.423 0 write: 0 0 0 0 0 5022.039 0 verify: 1870931090 196 0 1870931286 1870931286 100558.708 0 Non-medium error count: 0 SMART Self-test log Num Test Status segment LifeTime LBA_first_err [SK ASC ASQ] Description number (hours) # 1 Background short Completed 16 36538 - [- - -] # 2 Background short Completed 16 36514 - [- - -] # 3 Background short Completed 16 36490 - [- - -] # 4 Background short Completed 16 36466 - [- - -] # 5 Background short Completed 16 36442 - [- - -] # 6 Background long Completed 16 36420 - [- - -] # 7 Background short Completed 16 36394 - [- - -] # 8 Background short Completed 16 36370 - [- - -] # 9 Background long Completed 16 36364 - [- - -] #10 Background short Completed 16 36361 - [- - -] #11 Background long Completed 16 2 - [- - -] #12 Background short Completed 16 0 - [- - -] Long (extended) Self Test duration: 6798 seconds [113.3 minutes] smartctl -a -d megaraid,3 /dev/sdb yields: smartctl 5.40 2010-07-12 r3124 [x86_64-unknown-linux-gnu] (local build) Copyright (C) 2002-10 by Bruce Allen, http://smartmontools.sourceforge.net Device: SEAGATE ST3500620SS Version: MS05 Serial number: Device type: disk Transport protocol: SAS Local Time is: Mon Oct 14 20:37:26 2013 CEST Device supports SMART and is Enabled Temperature Warning Disabled or Not Supported SMART Health Status: OK Current Drive Temperature: 19 C Drive Trip Temperature: 68 C Elements in grown defect list: 0 Vendor (Seagate) cache information Blocks sent to initiator = 288745640 Blocks received from initiator = 1097848399 Blocks read from cache and sent to initiator = 1304149705 Number of read and write commands whose size <= segment size = 527414694 Number of read and write commands whose size > segment size = 51986460 Vendor (Seagate/Hitachi) factory information number of hours powered up = 36596.83 number of minutes until next internal SMART test = 28 Error counter log: Errors Corrected by Total Correction Gigabytes Total ECC rereads/ errors algorithm processed uncorrected fast | delayed rewrites corrected invocations [10^9 bytes] errors read: 610862490 44 0 610862534 610862534 20470.133 0 write: 0 0 0 0 0 5022.480 0 verify: 2861227413 203 0 2861227616 2861227616 100872.443 0 Non-medium error count: 1 SMART Self-test log Num Test Status segment LifeTime LBA_first_err [SK ASC ASQ] Description number (hours) # 1 Background short Completed 16 36580 - [- - -] # 2 Background short Completed 16 36556 - [- - -] # 3 Background short Completed 16 36532 - [- - -] # 4 Background short Completed 16 36508 - [- - -] # 5 Background short Completed 16 36484 - [- - -] # 6 Background long Completed 16 36462 - [- - -] # 7 Background short Completed 16 36436 - [- - -] # 8 Background short Completed 16 36412 - [- - -] # 9 Background long Completed 16 36404 - [- - -] #10 Background short Completed 16 36401 - [- - -] #11 Background long Completed 16 2 - [- - -] #12 Background short Completed 16 0 - [- - -] Long (extended) Self Test duration: 6798 seconds [113.3 minutes]

    Read the article

  • Avoid copying of data between user and kernel space and vice-versa

    - by bala1486
    Hello, I am developing a active messaging protocol for parallel computation that replaces TCP/IP. My goal is to decrease the latency of a packet. Since the environment is a LAN, i can replace TCP/IP with simpler protocol to reduce the packet latency. I am not writing any device driver and i am just trying to replace the TCP/IP stack with something simpler. Now I wanted to avoid copying of a packet's data from user space to kernel space and vice-versa. I heard of the mmap(). Is it the best way to do this? If yes, it will be nice if you can give links to some examples. I am a linux newbie and i really appreciate your help.. Thank you... Thanks, Bala

    Read the article

  • can you use proxies to do load/stress testing on a server, with proxy serving as a sort of mirror?

    - by EndangeringSpecies
    suppose I want to test a server's and its web application's ability to handle many simultaneous connections well and show decent latency. So ideally I would want a thousand machines to bombard it with usage requests, but that's not practicable. So instead, can I just make a testing script with a thousand threads to run on the same server and have them perform the testing, connecting to the server via a geographically far-away proxy? My reasoning here is that the signal will have to travel realistically big distances to the proxy and back, so that sort of emulates the reality of real clients accessing the server. Then again, to take this one step further, are there prepackaged emulators/frameworks that could perform a similar test without using internet at all, just simulating the latency of the network, realistically creating all the socket connections and other resource intensive stuff etc?

    Read the article

  • What grid distributed computing frameworks are currently favoured for trading systems

    - by Rich
    There seems to a quite a few grid computing frameworks out there, but which ones are actually being used to any great extent by the investment banks for purposes of low latency distributing calculation? I'd be interested to hear answers covering both windows,Linux and cross platform. Also, what RPC mechanisms seem to be favoured most? I've heard that for reason of low latency and speed, the calculations themselves are quite often written in C++/C as calculations running on VMs are several orders of magnitude slower than native code. Does this seem to be a common scenario in practice? e.g distributed .NET grid framework running calculations written in native c++/c?

    Read the article

  • Google App Engine - About how much quota does a single datastore put use?

    - by Spines
    The latency for a datastore put is about 150ms (http://code.google.com/status/appengine/detail/datastore/2010/03/11#ae-trust-detail-datastore-put-latency). About how much CPUTime is used by a single datastore put with data size of 100 bytes, into an entity that has only 2 columns, and no indexes? I plan to do some testing with this later today to figure it out, but if anyone already knows that would help me out :). Also, does anyone know about how much extra overhead in CPUTime doing this datastore put through the task queue would be? Note: This is kind of a follow up to this question: http://stackoverflow.com/questions/2421075/google-app-engine-how-reliable-are-the-logs.

    Read the article

  • LSI 9285-8e and Supermicro SC837E26-RJBOD1 duplicate enclosure ID and slot numbers

    - by Andy Shinn
    I am working with 2 x Supermicro SC837E26-RJBOD1 chassis connected to a single LSI 9285-8e card in a Supermicro 1U host. There are 28 drives in each chassis for a total of 56 drives in 28 RAID1 mirrors. The problem I am running in to is that there are duplicate slots for the 2 chassis (the slots list twice and only go from 0 to 27). All the drives also show the same enclosure ID (ID 36). However, MegaCLI -encinfo lists the 2 enclosures correctly (ID 36 and ID 65). My question is, why would this happen? Is there an option I am missing to use 2 enclosures effectively? This is blocking me rebuilding a drive that failed in slot 11 since I can only specify enclosure and slot as parameters to replace a drive. When I do this, it picks the wrong slot 11 (device ID 46 instead of device ID 19). Adapter #1 is the LSI 9285-8e, adapter #0 (which I removed due to space limitations) is the onboard LSI. Adapter information: Adapter #1 ============================================================================== Versions ================ Product Name : LSI MegaRAID SAS 9285-8e Serial No : SV12704804 FW Package Build: 23.1.1-0004 Mfg. Data ================ Mfg. Date : 06/30/11 Rework Date : 00/00/00 Revision No : 00A Battery FRU : N/A Image Versions in Flash: ================ BIOS Version : 5.25.00_4.11.05.00_0x05040000 WebBIOS Version : 6.1-20-e_20-Rel Preboot CLI Version: 05.01-04:#%00001 FW Version : 3.140.15-1320 NVDATA Version : 2.1106.03-0051 Boot Block Version : 2.04.00.00-0001 BOOT Version : 06.253.57.219 Pending Images in Flash ================ None PCI Info ================ Vendor Id : 1000 Device Id : 005b SubVendorId : 1000 SubDeviceId : 9285 Host Interface : PCIE ChipRevision : B0 Number of Frontend Port: 0 Device Interface : PCIE Number of Backend Port: 8 Port : Address 0 5003048000ee8e7f 1 5003048000ee8a7f 2 0000000000000000 3 0000000000000000 4 0000000000000000 5 0000000000000000 6 0000000000000000 7 0000000000000000 HW Configuration ================ SAS Address : 500605b0038f9210 BBU : Present Alarm : Present NVRAM : Present Serial Debugger : Present Memory : Present Flash : Present Memory Size : 1024MB TPM : Absent On board Expander: Absent Upgrade Key : Absent Temperature sensor for ROC : Present Temperature sensor for controller : Absent ROC temperature : 70 degree Celcius Settings ================ Current Time : 18:24:36 3/13, 2012 Predictive Fail Poll Interval : 300sec Interrupt Throttle Active Count : 16 Interrupt Throttle Completion : 50us Rebuild Rate : 30% PR Rate : 30% BGI Rate : 30% Check Consistency Rate : 30% Reconstruction Rate : 30% Cache Flush Interval : 4s Max Drives to Spinup at One Time : 2 Delay Among Spinup Groups : 12s Physical Drive Coercion Mode : Disabled Cluster Mode : Disabled Alarm : Enabled Auto Rebuild : Enabled Battery Warning : Enabled Ecc Bucket Size : 15 Ecc Bucket Leak Rate : 1440 Minutes Restore HotSpare on Insertion : Disabled Expose Enclosure Devices : Enabled Maintain PD Fail History : Enabled Host Request Reordering : Enabled Auto Detect BackPlane Enabled : SGPIO/i2c SEP Load Balance Mode : Auto Use FDE Only : No Security Key Assigned : No Security Key Failed : No Security Key Not Backedup : No Default LD PowerSave Policy : Controller Defined Maximum number of direct attached drives to spin up in 1 min : 10 Any Offline VD Cache Preserved : No Allow Boot with Preserved Cache : No Disable Online Controller Reset : No PFK in NVRAM : No Use disk activity for locate : No Capabilities ================ RAID Level Supported : RAID0, RAID1, RAID5, RAID6, RAID00, RAID10, RAID50, RAID60, PRL 11, PRL 11 with spanning, SRL 3 supported, PRL11-RLQ0 DDF layout with no span, PRL11-RLQ0 DDF layout with span Supported Drives : SAS, SATA Allowed Mixing: Mix in Enclosure Allowed Mix of SAS/SATA of HDD type in VD Allowed Status ================ ECC Bucket Count : 0 Limitations ================ Max Arms Per VD : 32 Max Spans Per VD : 8 Max Arrays : 128 Max Number of VDs : 64 Max Parallel Commands : 1008 Max SGE Count : 60 Max Data Transfer Size : 8192 sectors Max Strips PerIO : 42 Max LD per array : 16 Min Strip Size : 8 KB Max Strip Size : 1.0 MB Max Configurable CacheCade Size: 0 GB Current Size of CacheCade : 0 GB Current Size of FW Cache : 887 MB Device Present ================ Virtual Drives : 28 Degraded : 0 Offline : 0 Physical Devices : 59 Disks : 56 Critical Disks : 0 Failed Disks : 0 Supported Adapter Operations ================ Rebuild Rate : Yes CC Rate : Yes BGI Rate : Yes Reconstruct Rate : Yes Patrol Read Rate : Yes Alarm Control : Yes Cluster Support : No BBU : No Spanning : Yes Dedicated Hot Spare : Yes Revertible Hot Spares : Yes Foreign Config Import : Yes Self Diagnostic : Yes Allow Mixed Redundancy on Array : No Global Hot Spares : Yes Deny SCSI Passthrough : No Deny SMP Passthrough : No Deny STP Passthrough : No Support Security : No Snapshot Enabled : No Support the OCE without adding drives : Yes Support PFK : Yes Support PI : No Support Boot Time PFK Change : Yes Disable Online PFK Change : No PFK TrailTime Remaining : 0 days 0 hours Support Shield State : Yes Block SSD Write Disk Cache Change: Yes Supported VD Operations ================ Read Policy : Yes Write Policy : Yes IO Policy : Yes Access Policy : Yes Disk Cache Policy : Yes Reconstruction : Yes Deny Locate : No Deny CC : No Allow Ctrl Encryption: No Enable LDBBM : No Support Breakmirror : No Power Savings : Yes Supported PD Operations ================ Force Online : Yes Force Offline : Yes Force Rebuild : Yes Deny Force Failed : No Deny Force Good/Bad : No Deny Missing Replace : No Deny Clear : No Deny Locate : No Support Temperature : Yes Disable Copyback : No Enable JBOD : No Enable Copyback on SMART : No Enable Copyback to SSD on SMART Error : Yes Enable SSD Patrol Read : No PR Correct Unconfigured Areas : Yes Enable Spin Down of UnConfigured Drives : Yes Disable Spin Down of hot spares : No Spin Down time : 30 T10 Power State : Yes Error Counters ================ Memory Correctable Errors : 0 Memory Uncorrectable Errors : 0 Cluster Information ================ Cluster Permitted : No Cluster Active : No Default Settings ================ Phy Polarity : 0 Phy PolaritySplit : 0 Background Rate : 30 Strip Size : 64kB Flush Time : 4 seconds Write Policy : WB Read Policy : Adaptive Cache When BBU Bad : Disabled Cached IO : No SMART Mode : Mode 6 Alarm Disable : Yes Coercion Mode : None ZCR Config : Unknown Dirty LED Shows Drive Activity : No BIOS Continue on Error : No Spin Down Mode : None Allowed Device Type : SAS/SATA Mix Allow Mix in Enclosure : Yes Allow HDD SAS/SATA Mix in VD : Yes Allow SSD SAS/SATA Mix in VD : No Allow HDD/SSD Mix in VD : No Allow SATA in Cluster : No Max Chained Enclosures : 16 Disable Ctrl-R : Yes Enable Web BIOS : Yes Direct PD Mapping : No BIOS Enumerate VDs : Yes Restore Hot Spare on Insertion : No Expose Enclosure Devices : Yes Maintain PD Fail History : Yes Disable Puncturing : No Zero Based Enclosure Enumeration : No PreBoot CLI Enabled : Yes LED Show Drive Activity : Yes Cluster Disable : Yes SAS Disable : No Auto Detect BackPlane Enable : SGPIO/i2c SEP Use FDE Only : No Enable Led Header : No Delay during POST : 0 EnableCrashDump : No Disable Online Controller Reset : No EnableLDBBM : No Un-Certified Hard Disk Drives : Allow Treat Single span R1E as R10 : No Max LD per array : 16 Power Saving option : Don't Auto spin down Configured Drives Max power savings option is not allowed for LDs. Only T10 power conditions are to be used. Default spin down time in minutes: 30 Enable JBOD : No TTY Log In Flash : No Auto Enhanced Import : No BreakMirror RAID Support : No Disable Join Mirror : No Enable Shield State : Yes Time taken to detect CME : 60s Exit Code: 0x00 Enclosure information: # /opt/MegaRAID/MegaCli/MegaCli64 -encinfo -a1 Number of enclosures on adapter 1 -- 3 Enclosure 0: Device ID : 36 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port B Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 65 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11820 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 48 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 1: Device ID : 65 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port A Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 36 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11760 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 47 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 2: Device ID : 252 Number of Slots : 8 Number of Power Supplies : 0 Number of Fans : 0 Number of Temperature Sensors : 0 Number of Alarms : 0 Number of SIM Modules : 1 Number of Physical Drives : 0 Status : Normal Position : 1 Connector Name : Unavailable Enclosure type : SGPIO Failed in first Inquiry commnad FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : Unavailable Inquiry data : Vendor Identification : LSI Product Identification : SGPIO Product Revision Level : N/A Vendor Specific : Exit Code: 0x00 Now, notice that each slot 11 device shows an enclosure ID of 36, I think this is where the discrepancy happens. One should be 36. But the other should be on enclosure 65. Drives in slot 11: Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 5, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 48 WWN: Sequence Number: 11 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : YES Device Firmware Level: A5C0 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8a53 Connected Port Number: 1(path0) Inquiry Data: MJ1311YNG6YYXAHitachi HDS5C3030ALA630 MEAOA5C0 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 19, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 19 WWN: Sequence Number: 4 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : NO Device Firmware Level: A580 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8e53 Connected Port Number: 0(path0) Inquiry Data: MJ1313YNG1VA5CHitachi HDS5C3030ALA630 MEAOA580 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Update 06/28/12: I finally have some new information about (what we think) the root cause of this problem so I thought I would share. After getting in contact with a very knowledgeable Supermicro tech, they provided us with a tool called Xflash (doesn't appear to be readily available on their FTP). When we gathered some information using this utility, my colleague found something very strange: root@mogile2 test]# ./xflash.dat -i get avail Initializing Interface. Expander: SAS2X36 (SAS2x36) 1) SAS2X36 (SAS2x36) (50030480:00EE917F) (0.0.0.0) 2) SAS2X36 (SAS2x36) (50030480:00E9D67F) (0.0.0.0) 3) SAS2X36 (SAS2x36) (50030480:0112D97F) (0.0.0.0) This lists the connected enclosures. You see the 3 connected (we have since added a 3rd and a 4th which is not yet showing up) with their respective SAS address / WWN (50030480:00EE917F). Now we can use this address to get information on the individual enclosures: [root@mogile2 test]# ./xflash.dat -i 5003048000EE917F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00EE917F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 5003048000E9D67F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00E9D67F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 500304800112D97F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:0112D97F Enclosure Logical Id: 50030480:0112D97F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 Did you catch it? The first 2 enclosures logical ID is partially masked out where the 3rd one (which has a correct unique enclosure ID) is not. We pointed this out to Supermicro and were able to confirm that this address is supposed to be set during manufacturing and there was a problem with a certain batch of these enclosures where the logical ID was not set. We believe that the RAID controller is determining the ID based on the logical ID and since our first 2 enclosures have the same logical ID, they get the same enclosure ID. We also confirmed that 0000007F is the default which comes from LSI as an ID. The next pointer that helps confirm this could be a manufacturing problem with a run of JBODs is the fact that all 6 of the enclosures that have this problem begin with 00E. I believe that between 00E8 and 00EE Supermicro forgot to program the logical IDs correctly and neglected to recall or fix the problem post production. Fortunately for us, there is a tool to manage the WWN and logical ID of the devices from Supermicro: ftp://ftp.supermicro.com/utility/ExpanderXtools_Lite/. Our next step is to schedule a shutdown of these JBODs (after data migration) and reprogram the logical ID and see if it solves the problem. Update 06/28/12 #2: I just discovered this FAQ at Supermicro while Google searching for "lsi 0000007f": http://www.supermicro.com/support/faqs/faq.cfm?faq=11805. I still don't understand why, in the last several times we contacted Supermicro, they would have never directed us to this article :\

    Read the article

  • How to read oom-killer syslog messages?

    - by Grant
    I have a Ubuntu 12.04 server which sometimes dies completely - no SSH, no ping, nothing until it is physically rebooted. After the reboot, I see in syslog that the oom-killer killed, well, pretty much everything. There's a lot of detailed memory usage information in them. How do I read these logs to see what caused the OOM issue? The server has far more memory than it needs, so it shouldn't be running out of memory. Oct 25 07:28:04 nldedip4k031 kernel: [87946.529511] oom_kill_process: 9 callbacks suppressed Oct 25 07:28:04 nldedip4k031 kernel: [87946.529514] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529516] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529518] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:04 nldedip4k031 kernel: [87946.529519] Call Trace: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529525] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529528] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529530] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529532] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529535] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529537] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529541] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529543] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529546] [] vfs_read+0x8c/0x160 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529548] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529550] [] sys_read+0x3d/0x70 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529554] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529555] Mem-Info: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529556] DMA per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529557] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529558] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529560] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529561] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529562] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529563] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529564] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529565] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529566] Normal per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529567] CPU 0: hi: 186, btch: 31 usd: 179 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529568] CPU 1: hi: 186, btch: 31 usd: 182 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529569] CPU 2: hi: 186, btch: 31 usd: 132 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529570] CPU 3: hi: 186, btch: 31 usd: 175 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529571] CPU 4: hi: 186, btch: 31 usd: 91 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529572] CPU 5: hi: 186, btch: 31 usd: 173 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529573] CPU 6: hi: 186, btch: 31 usd: 159 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529574] CPU 7: hi: 186, btch: 31 usd: 164 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529575] HighMem per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529576] CPU 0: hi: 186, btch: 31 usd: 165 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529577] CPU 1: hi: 186, btch: 31 usd: 183 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529578] CPU 2: hi: 186, btch: 31 usd: 185 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529579] CPU 3: hi: 186, btch: 31 usd: 138 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529580] CPU 4: hi: 186, btch: 31 usd: 155 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529581] CPU 5: hi: 186, btch: 31 usd: 104 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529582] CPU 6: hi: 186, btch: 31 usd: 133 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529583] CPU 7: hi: 186, btch: 31 usd: 170 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529586] active_anon:5523 inactive_anon:354 isolated_anon:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529586] active_file:2815 inactive_file:6849119 isolated_file:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529587] unevictable:0 dirty:449 writeback:10 unstable:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529587] free:1304125 slab_reclaimable:104672 slab_unreclaimable:3419 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529588] mapped:2661 shmem:138 pagetables:313 bounce:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529591] DMA free:4252kB min:780kB low:972kB high:1168kB active_anon:0kB inactive_anon:0kB active_file:4kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15756kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11564kB slab_unreclaimable:4kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1 all_unreclaimable? yes Oct 25 07:28:04 nldedip4k031 kernel: [87946.529594] lowmem_reserve[]: 0 869 32460 32460 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529599] Normal free:44052kB min:44216kB low:55268kB high:66324kB active_anon:0kB inactive_anon:0kB active_file:616kB inactive_file:568kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:890008kB mlocked:0kB dirty:0kB writeback:0kB mapped:4kB shmem:0kB slab_reclaimable:407124kB slab_unreclaimable:13672kB kernel_stack:992kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:2083 all_unreclaimable? yes Oct 25 07:28:04 nldedip4k031 kernel: [87946.529602] lowmem_reserve[]: 0 0 252733 252733 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529606] HighMem free:5168196kB min:512kB low:402312kB high:804112kB active_anon:22092kB inactive_anon:1416kB active_file:10640kB inactive_file:27395920kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:32349872kB mlocked:0kB dirty:1796kB writeback:40kB mapped:10640kB shmem:552kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:1252kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Oct 25 07:28:04 nldedip4k031 kernel: [87946.529609] lowmem_reserve[]: 0 0 0 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529611] DMA: 6*4kB 6*8kB 6*16kB 5*32kB 5*64kB 4*128kB 2*256kB 1*512kB 0*1024kB 1*2048kB 0*4096kB = 4232kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529616] Normal: 297*4kB 180*8kB 119*16kB 73*32kB 67*64kB 47*128kB 35*256kB 13*512kB 5*1024kB 1*2048kB 1*4096kB = 44052kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529622] HighMem: 1*4kB 6*8kB 27*16kB 11*32kB 2*64kB 1*128kB 0*256kB 0*512kB 4*1024kB 1*2048kB 1260*4096kB = 5168196kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529627] 6852076 total pagecache pages Oct 25 07:28:04 nldedip4k031 kernel: [87946.529628] 0 pages in swap cache Oct 25 07:28:04 nldedip4k031 kernel: [87946.529629] Swap cache stats: add 0, delete 0, find 0/0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529630] Free swap = 3998716kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529631] Total swap = 3998716kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.571914] 8437743 pages RAM Oct 25 07:28:04 nldedip4k031 kernel: [87946.571916] 8209409 pages HighMem Oct 25 07:28:04 nldedip4k031 kernel: [87946.571917] 159556 pages reserved Oct 25 07:28:04 nldedip4k031 kernel: [87946.571917] 6862034 pages shared Oct 25 07:28:04 nldedip4k031 kernel: [87946.571918] 123540 pages non-shared Oct 25 07:28:04 nldedip4k031 kernel: [87946.571919] [ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name Oct 25 07:28:04 nldedip4k031 kernel: [87946.571927] [ 421] 0 421 709 152 3 0 0 upstart-udev-br Oct 25 07:28:04 nldedip4k031 kernel: [87946.571929] [ 429] 0 429 773 326 5 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571931] [ 567] 0 567 772 224 4 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571932] [ 568] 0 568 772 231 7 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571934] [ 764] 0 764 712 103 1 0 0 upstart-socket- Oct 25 07:28:04 nldedip4k031 kernel: [87946.571936] [ 772] 103 772 815 164 5 0 0 dbus-daemon Oct 25 07:28:04 nldedip4k031 kernel: [87946.571938] [ 785] 0 785 1671 600 1 -17 -1000 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571940] [ 809] 101 809 7766 380 1 0 0 rsyslogd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571942] [ 869] 0 869 1158 213 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571943] [ 873] 0 873 1158 214 6 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571945] [ 911] 0 911 1158 215 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571947] [ 912] 0 912 1158 214 2 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571949] [ 914] 0 914 1158 213 1 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571950] [ 916] 0 916 618 86 1 0 0 atd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571952] [ 917] 0 917 655 226 3 0 0 cron Oct 25 07:28:04 nldedip4k031 kernel: [87946.571954] [ 948] 0 948 902 159 3 0 0 irqbalance Oct 25 07:28:04 nldedip4k031 kernel: [87946.571956] [ 993] 0 993 1145 363 3 0 0 master Oct 25 07:28:04 nldedip4k031 kernel: [87946.571957] [ 1002] 104 1002 1162 333 1 0 0 qmgr Oct 25 07:28:04 nldedip4k031 kernel: [87946.571959] [ 1016] 0 1016 730 149 2 0 0 mdadm Oct 25 07:28:04 nldedip4k031 kernel: [87946.571961] [ 1057] 0 1057 6066 2160 3 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571963] [ 1086] 0 1086 1158 213 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571965] [ 1088] 33 1088 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571967] [ 1089] 33 1089 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571969] [ 1090] 33 1090 6175 1451 3 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571971] [ 1091] 33 1091 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571972] [ 1092] 33 1092 6191 1451 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571974] [ 1109] 33 1109 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571976] [ 1151] 33 1151 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571978] [ 1201] 104 1201 1803 652 1 0 0 tlsmgr Oct 25 07:28:04 nldedip4k031 kernel: [87946.571980] [ 2475] 0 2475 2435 812 0 0 0 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571982] [ 2494] 0 2494 1745 839 1 0 0 bash Oct 25 07:28:04 nldedip4k031 kernel: [87946.571984] [ 2573] 0 2573 3394 1689 0 0 0 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571986] [ 2589] 0 2589 5014 457 3 0 0 rsync Oct 25 07:28:04 nldedip4k031 kernel: [87946.571988] [ 2590] 0 2590 7970 522 1 0 0 rsync Oct 25 07:28:04 nldedip4k031 kernel: [87946.571990] [ 2652] 104 2652 1150 326 5 0 0 pickup Oct 25 07:28:04 nldedip4k031 kernel: [87946.571992] Out of memory: Kill process 421 (upstart-udev-br) score 1 or sacrifice child Oct 25 07:28:04 nldedip4k031 kernel: [87946.572407] Killed process 421 (upstart-udev-br) total-vm:2836kB, anon-rss:156kB, file-rss:452kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.573107] init: upstart-udev-bridge main process (421) killed by KILL signal Oct 25 07:28:04 nldedip4k031 kernel: [87946.573126] init: upstart-udev-bridge main process ended, respawning Oct 25 07:28:34 nldedip4k031 kernel: [87976.461570] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461573] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461576] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:34 nldedip4k031 kernel: [87976.461578] Call Trace: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461585] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461588] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461591] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461595] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461599] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461602] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461606] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461609] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461613] [] vfs_read+0x8c/0x160 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461616] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461619] [] sys_read+0x3d/0x70 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461624] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461626] Mem-Info: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461628] DMA per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461629] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461631] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461633] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461634] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461636] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461638] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461639] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461641] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461642] Normal per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461644] CPU 0: hi: 186, btch: 31 usd: 61 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461646] CPU 1: hi: 186, btch: 31 usd: 49 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461647] CPU 2: hi: 186, btch: 31 usd: 8 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461649] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461651] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461652] CPU 5: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461654] CPU 6: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461656] CPU 7: hi: 186, btch: 31 usd: 30 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461657] HighMem per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461658] CPU 0: hi: 186, btch: 31 usd: 4 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461660] CPU 1: hi: 186, btch: 31 usd: 204 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461662] CPU 2: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461663] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461665] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461667] CPU 5: hi: 186, btch: 31 usd: 31 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461668] CPU 6: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461670] CPU 7: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461674] active_anon:5441 inactive_anon:412 isolated_anon:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461674] active_file:2668 inactive_file:6922842 isolated_file:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461675] unevictable:0 dirty:836 writeback:0 unstable:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461676] free:1231664 slab_reclaimable:105781 slab_unreclaimable:3399 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461677] mapped:2649 shmem:138 pagetables:313 bounce:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461682] DMA free:4248kB min:780kB low:972kB high:1168kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15756kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11560kB slab_unreclaimable:4kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:5687 all_unreclaimable? yes Oct 25 07:28:34 nldedip4k031 kernel: [87976.461686] lowmem_reserve[]: 0 869 32460 32460 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461693] Normal free:44184kB min:44216kB low:55268kB high:66324kB active_anon:0kB inactive_anon:0kB active_file:20kB inactive_file:1096kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:890008kB mlocked:0kB dirty:4kB writeback:0kB mapped:4kB shmem:0kB slab_reclaimable:411564kB slab_unreclaimable:13592kB kernel_stack:992kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1816 all_unreclaimable? yes Oct 25 07:28:34 nldedip4k031 kernel: [87976.461697] lowmem_reserve[]: 0 0 252733 252733 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461703] HighMem free:4878224kB min:512kB low:402312kB high:804112kB active_anon:21764kB inactive_anon:1648kB active_file:10652kB inactive_file:27690268kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:32349872kB mlocked:0kB dirty:3340kB writeback:0kB mapped:10592kB shmem:552kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:1252kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Oct 25 07:28:34 nldedip4k031 kernel: [87976.461708] lowmem_reserve[]: 0 0 0 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461711] DMA: 8*4kB 7*8kB 6*16kB 5*32kB 5*64kB 4*128kB 2*256kB 1*512kB 0*1024kB 1*2048kB 0*4096kB = 4248kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461719] Normal: 272*4kB 178*8kB 76*16kB 52*32kB 42*64kB 36*128kB 23*256kB 20*512kB 7*1024kB 2*2048kB 1*4096kB = 44176kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461727] HighMem: 1*4kB 45*8kB 31*16kB 24*32kB 5*64kB 3*128kB 1*256kB 2*512kB 4*1024kB 2*2048kB 1188*4096kB = 4877852kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461736] 6925679 total pagecache pages Oct 25 07:28:34 nldedip4k031 kernel: [87976.461737] 0 pages in swap cache Oct 25 07:28:34 nldedip4k031 kernel: [87976.461739] Swap cache stats: add 0, delete 0, find 0/0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461740] Free swap = 3998716kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461741] Total swap = 3998716kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.524951] 8437743 pages RAM Oct 25 07:28:34 nldedip4k031 kernel: [87976.524953] 8209409 pages HighMem Oct 25 07:28:34 nldedip4k031 kernel: [87976.524954] 159556 pages reserved Oct 25 07:28:34 nldedip4k031 kernel: [87976.524955] 6936141 pages shared Oct 25 07:28:34 nldedip4k031 kernel: [87976.524956] 124602 pages non-shared Oct 25 07:28:34 nldedip4k031 kernel: [87976.524957] [ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name Oct 25 07:28:34 nldedip4k031 kernel: [87976.524966] [ 429] 0 429 773 326 5 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524968] [ 567] 0 567 772 224 4 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524971] [ 568] 0 568 772 231 7 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524973] [ 764] 0 764 712 103 3 0 0 upstart-socket- Oct 25 07:28:34 nldedip4k031 kernel: [87976.524976] [ 772] 103 772 815 164 2 0 0 dbus-daemon Oct 25 07:28:34 nldedip4k031 kernel: [87976.524979] [ 785] 0 785 1671 600 1 -17 -1000 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524981] [ 809] 101 809 7766 380 1 0 0 rsyslogd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524983] [ 869] 0 869 1158 213 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524986] [ 873] 0 873 1158 214 6 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524988] [ 911] 0 911 1158 215 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524990] [ 912] 0 912 1158 214 2 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524992] [ 914] 0 914 1158 213 1 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524995] [ 916] 0 916 618 86 1 0 0 atd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524997] [ 917] 0 917 655 226 3 0 0 cron Oct 25 07:28:34 nldedip4k031 kernel: [87976.524999] [ 948] 0 948 902 159 5 0 0 irqbalance Oct 25 07:28:34 nldedip4k031 kernel: [87976.525002] [ 993] 0 993 1145 363 3 0 0 master Oct 25 07:28:34 nldedip4k031 kernel: [87976.525004] [ 1002] 104 1002 1162 333 1 0 0 qmgr Oct 25 07:28:34 nldedip4k031 kernel: [87976.525007] [ 1016] 0 1016 730 149 2 0 0 mdadm Oct 25 07:28:34 nldedip4k031 kernel: [87976.525009] [ 1057] 0 1057 6066 2160 3 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525012] [ 1086] 0 1086 1158 213 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.525014] [ 1088] 33 1088 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525017] [ 1089] 33 1089 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525019] [ 1090] 33 1090 6175 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525021] [ 1091] 33 1091 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525024] [ 1092] 33 1092 6191 1451 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525026] [ 1109] 33 1109 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525029] [ 1151] 33 1151 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525031] [ 1201] 104 1201 1803 652 1 0 0 tlsmgr Oct 25 07:28:34 nldedip4k031 kernel: [87976.525033] [ 2475] 0 2475 2435 812 0 0 0 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.525036] [ 2494] 0 2494 1745 839 1 0 0 bash Oct 25 07:28:34 nldedip4k031 kernel: [87976.525038] [ 2573] 0 2573 3394 1689 3 0 0 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.525040] [ 2589] 0 2589 5014 457 3 0 0 rsync Oct 25 07:28:34 nldedip4k031 kernel: [87976.525043] [ 2590] 0 2590 7970 522 1 0 0 rsync Oct 25 07:28:34 nldedip4k031 kernel: [87976.525045] [ 2652] 104 2652 1150 326 5 0 0 pickup Oct 25 07:28:34 nldedip4k031 kernel: [87976.525048] [ 2847] 0 2847 709 89 0 0 0 upstart-udev-br Oct 25 07:28:34 nldedip4k031 kernel: [87976.525050] Out of memory: Kill process 764 (upstart-socket-) score 1 or sacrifice child Oct 25 07:28:34 nldedip4k031 kernel: [87976.525484] Killed process 764 (upstart-socket-) total-vm:2848kB, anon-rss:204kB, file-rss:208kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.526161] init: upstart-socket-bridge main process (764) killed by KILL signal Oct 25 07:28:34 nldedip4k031 kernel: [87976.526180] init: upstart-socket-bridge main process ended, respawning Oct 25 07:28:44 nldedip4k031 kernel: [87986.439671] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439674] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439676] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:44 nldedip4k031 kernel: [87986.439678] Call Trace: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439684] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439686] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439688] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439691] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439694] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439696] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439699] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439702] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439704] [] vfs_read+0x8c/0x160 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439707] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439709] [] sys_read+0x3d/0x70 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439712] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439714] Mem-Info: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439714] DMA per-cpu: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439716] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439717] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439718] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439719] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439720] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439721] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439722] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439723] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439724] Normal per-cpu: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439725] CPU 0: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439726] CPU 1: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439727] CPU 2: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439728] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439729] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:33:48 nldedip4k031 kernel: imklog 5.8.6, log source = /proc/kmsg started. Oct 25 07:33:48 nldedip4k031 rsyslogd: [origin software="rsyslogd" swVersion="5.8.6" x-pid="2880" x-info="http://www.rsyslog.com"] start Oct 25 07:33:48 nldedip4k031 rsyslogd: rsyslogd's groupid changed to 103 Oct 25 07:33:48 nldedip4k031 rsyslogd: rsyslogd's userid changed to 101 Oct 25 07:33:48 nldedip4k031 rsyslogd-2039: Could not open output pipe '/dev/xconsole' [try http://www.rsyslog.com/e/2039 ]

    Read the article

  • How do I determine if my controller is in IDE or AHCI mode in Linux?

    - by philcolbourn
    I have an old MacBook Pro 4,1 (early 2008) - but I suspect an answer would apply to many MacBook Pros. It has an Intel IDE/SATA controller (ICH8M/ICH8M-E). I have installed a patched MBR that is supposed to put my controller into AHCI mode. It does this by setting some controller port value that I don't understand. This seems to work as I get this from lspci: 00:1f.1 IDE interface: Intel Corporation 82801HM/HEM (ICH8M/ICH8M-E) IDE Controller (rev 03) 00:1f.2 IDE interface: Intel Corporation 82801HM/HEM (ICH8M/ICH8M-E) SATA Controller [AHCI mode] (rev 03) Now most, perhaps all, sites that provide a solution (enabling AHCI) suggest that after a sleep/wake cycle that a controller will revert to IDE mode due to how Apple support Windows. They recommend disabling sleep. From author of patchedcode.bin I think Enabling AHCI for Windows on MacBooks NB: I do not have bootcamp installed and I do not have Windows installed. Is there a way to prove that my controller is in IDE or AHCI mode? Background Data Using patchedcode.bin MBR I get this in syslog: Jun 12 22:33:22 max kernel: [ 1.860955] ahci 0000:00:1f.2: version 3.0 Jun 12 22:33:22 max kernel: [ 1.861052] ahci 0000:00:1f.2: irq 45 for MSI/MSI-X Jun 12 22:33:22 max kernel: [ 1.861117] ahci 0000:00:1f.2: AHCI 0001.0100 32 slots 3 ports 1.5 Gbps 0x1 impl SATA mode Jun 12 22:33:22 max kernel: [ 1.861120] ahci 0000:00:1f.2: flags: 64bit ncq sntf pm led clo pio slum part ccc ems Jun 12 22:33:22 max kernel: [ 1.861130] ahci 0000:00:1f.2: setting latency timer to 64 Jun 12 22:33:22 max kernel: [ 1.880880] ACPI: Video Device [GFX0] (multi-head: yes rom: no post: no) Jun 12 22:33:22 max kernel: [ 1.880983] scsi2 : ahci Jun 12 22:33:22 max kernel: [ 1.884552] scsi3 : ahci Jun 12 22:33:22 max kernel: [ 1.886932] scsi4 : ahci Jun 12 22:33:22 max kernel: [ 1.886998] ata3: SATA max UDMA/133 abar m2048@0xdb504000 port 0xdb504100 irq 45 Jun 12 22:33:22 max kernel: [ 1.887000] ata4: DUMMY Jun 12 22:33:22 max kernel: [ 1.887002] ata5: DUMMY Jun 12 22:33:22 max kernel: [ 2.204103] ata3: SATA link up 1.5 Gbps (SStatus 113 SControl 300) Jun 12 22:33:22 max kernel: [ 2.204656] ata3.00: ATA-8: FUJITSU MHY2200BH, 0081000D, max UDMA/100 Jun 12 22:33:22 max kernel: [ 2.204662] ata3.00: 390721968 sectors, multi 16: LBA48 NCQ (depth 31/32), AA Jun 12 22:33:22 max kernel: [ 2.205324] ata3.00: configured for UDMA/100 Jun 12 22:33:22 max kernel: [ 2.205554] scsi 2:0:0:0: Direct-Access ATA FUJITSU MHY2200B 0081 PQ: 0 ANSI: 5 Using my original MBR I get this from syslog: Jun 13 18:07:13 max kernel: [ 0.622861] ata_piix 0000:00:1f.1: version 2.13 Jun 13 18:07:13 max kernel: [ 0.622869] ata_piix 0000:00:1f.1: power state changed by ACPI to D0 Jun 13 18:07:13 max kernel: [ 0.622924] ata_piix 0000:00:1f.1: setting latency timer to 64 Jun 13 18:07:13 max kernel: [ 0.623339] scsi0 : ata_piix Jun 13 18:07:13 max kernel: [ 0.623730] scsi1 : ata_piix Jun 13 18:07:13 max kernel: [ 0.623765] ata1: PATA max UDMA/100 cmd 0x8108 ctl 0x811c bmdma 0x80e0 irq 21 Jun 13 18:07:13 max kernel: [ 0.623767] ata2: PATA max UDMA/100 cmd 0x8100 ctl 0x8118 bmdma 0x80e8 irq 21 Jun 13 18:07:13 max kernel: [ 0.623810] ata_piix 0000:00:1f.2: MAP [ Jun 13 18:07:13 max kernel: [ 0.623811] P0 -- -- -- ] Jun 13 18:07:13 max kernel: [ 0.623866] ata_piix 0000:00:1f.2: setting latency timer to 64 Jun 13 18:07:13 max kernel: [ 0.624241] scsi2 : ata_piix Jun 13 18:07:13 max kernel: [ 0.624558] scsi3 : ata_piix Jun 13 18:07:13 max kernel: [ 0.624862] ata3: SATA max UDMA/133 cmd 0x80f8 ctl 0x8114 bmdma 0x8020 irq 18 Jun 13 18:07:13 max kernel: [ 0.624865] ata4: SATA max UDMA/133 cmd 0x80f0 ctl 0x8110 bmdma 0x8028 irq 18 Jun 13 18:07:13 max kernel: [ 1.208879] ata3.00: ATA-8: FUJITSU MHY2200BH, 0081000D, max UDMA/100 Jun 13 18:07:13 max kernel: [ 1.208882] ata3.00: 390721968 sectors, multi 16: LBA48 NCQ (depth 0/32) Jun 13 18:07:13 max kernel: [ 1.208961] ata1.01: ATAPI: MATSHITA DVD+/-RW UJ-867S, 1.00, max UDMA/33 Jun 13 18:07:13 max kernel: [ 1.216186] ata3.00: configured for UDMA/100 Jun 13 18:07:13 max kernel: [ 1.224396] ata1.01: configured for UDMA/33

    Read the article

  • Network config / gear question

    - by mcgee1234
    I have been tasked with setting up a fairly straightforward rack in a data center (we do not even need a whole rack, but this is the smallest allotment available). In a nutshell, 4 to 6 servers need to be able to reach 2 (maybe 3) vendors. The servers needs to be reachable over the internet. A little more detail - the networks the servers need to reach are inside of the data center, and are "trusted". Connections to these networks will be achieved through intra data center cross connects. It is kind of like a manufacturing line where we receive data from one vendor (burst-able up to 200 Mbits), churn through it on the servers, and then send out data to another vendor (bursts up to 20 Mbits). This series of events is very latency sensitive, so much so that it is common practice not to use NAT or a firewall on these segments (or so I hear). To reach the servers over the internet, I plan to use a site to site VPN. (This part is only relevant as far as hardware selection goes). I have 2 configurations in mind: Cisco 2911 (2921) (with the additional wan ports module) and a layer 2 switch - in this scenario, I would use the router also for VPN. Cisco 3560 layer 3 switch to interconnect the networks inside of the data center and an ASA 5510 (which is total overkill, but the 5505 is not rack mountable) as a firewall for the Wan side (internet) and VPN. I envision the setup to be as follows: Internet - ASA - 3560 Vendors - 3560 - Servers The general idea is that the ASA acts as a firewall and VPN device and the 3560 does all the heavy lifting. The first is a fairly traditional setup but my concern is performance. The second is somewhat unorthodox in that the vendors are directly connected to the layer 3 switch without passing through a firewall. Based on my understanding however, a layer 3 switch will perform substantially better as it will do hardware (ASIC) vs. software switching. (Note that number 2 is a little over the budget, but not unworkable (double negative, ugh)) Since this is my first time dealing with a data center, I am not sure what the IP space is going to look like. I suspect I will retain a block(s) of public IPs, vlan them to individual interfaces for the vendor connections and the servers (which will not reachable from the wan side of course) and setup routing on the switch. So here are my questionss: Is there a substantial performance difference between 1 and 2, i.e. hardware based switching on a layer 3 vs a software base on the 2911? I have trolled the internet and found a lot of Cisco literature, but nothing that I could really use to get a good handle. The vendors we connect to are secure and trusted (famous last words) and as I understand it, it is common practice not to NAT or firewall these connections (because of the aforementioned latency sensitivity). But what what kind of latency are we really talking about if I push the data through a router (or even ASA for that matter)? For our purposes, 5 ms will not kill us, 20 or 30 can be very costly. Others measure in microseconds, but they are out of our league. Is there any issues with using public IPs on a layer 3 switch? I am certainly not married to either of these configs, and I am totally open to any ideas. My knowledge (and I use the term loosely) is largely from books so I welcome any advice / insight. Thanks in advance.

    Read the article

< Previous Page | 39 40 41 42 43 44 45 46 47 48 49 50  | Next Page >