Search Results

Search found 15377 results on 616 pages for 'socket programming'.

Page 436/616 | < Previous Page | 432 433 434 435 436 437 438 439 440 441 442 443  | Next Page >

  • Help for choosing a cost effective game server for Flash client

    - by Sapots Thomas
    I am developing a flash-based game primarily for desktops, to be hosted on facebook platform (like cityville, sims social etc). The gameplay doesn't involve real-time communication between players unlike an mmorpg. Here each player plays in his own world without any knowledge of other online players. I've written almost 95% of the game logic in actionscript on the client side. I used Smartfox Server pro on the server side (mostly used for getting data from the DB) and the entire server code is an extension written in java. I'm using json as the protocol for communication. Although I love smartfox server, as an indie, its tough for me to afford the unlimited users license. Morever its limited just to one machine. So I'm looking for an alternative to smartfox server now. The reason for choosing smartfox server earlier was to use the server properties supported by it. Server properties on smartfox server take advantage of the socket connection and are essentially server side objects in java which store some data for the player which he can change frequently during the game. And when he logs out of the game, the extension can write out the final state in the DB (I'm using MySQL). This significantly reduces the number of DB UPDATE/INSERT calls made during the game. I love the way this works since the data is secure as its on the server side and smartfox server is known to be scalable. (although I'm not sure whether this approach is used widely by gaming industry or not, since this is not an mmorpg, I'm putting all player in the lobby). So my question is whether any of the free and community supported servers like reddwarf, firebase, BlazeDS etc can provide a similar architecture so that I can use server properties without many code changes? EDIT : I am not insisting on the exact same feature (thats asking too much!), but atleast a viable messaging system on the server so that I can send actionscript objects from the client using json/binary so that its fast. OR maybe some completely different way to implement what I need here. Thanks in advance.

    Read the article

  • Fraud Detection with the SQL Server Suite Part 2

    - by Dejan Sarka
    This is the second part of the fraud detection whitepaper. You can find the first part in my previous blog post about this topic. My Approach to Data Mining Projects It is impossible to evaluate the time and money needed for a complete fraud detection infrastructure in advance. Personally, I do not know the customer’s data in advance. I don’t know whether there is already an existing infrastructure, like a data warehouse, in place, or whether we would need to build one from scratch. Therefore, I always suggest to start with a proof-of-concept (POC) project. A POC takes something between 5 and 10 working days, and involves personnel from the customer’s site – either employees or outsourced consultants. The team should include a subject matter expert (SME) and at least one information technology (IT) expert. The SME must be familiar with both the domain in question as well as the meaning of data at hand, while the IT expert should be familiar with the structure of data, how to access it, and have some programming (preferably Transact-SQL) knowledge. With more than one IT expert the most time consuming work, namely data preparation and overview, can be completed sooner. I assume that the relevant data is already extracted and available at the very beginning of the POC project. If a customer wants to have their people involved in the project directly and requests the transfer of knowledge, the project begins with training. I strongly advise this approach as it offers the establishment of a common background for all people involved, the understanding of how the algorithms work and the understanding of how the results should be interpreted, a way of becoming familiar with the SQL Server suite, and more. Once the data has been extracted, the customer’s SME (i.e. the analyst), and the IT expert assigned to the project will learn how to prepare the data in an efficient manner. Together with me, knowledge and expertise allow us to focus immediately on the most interesting attributes and identify any additional, calculated, ones soon after. By employing our programming knowledge, we can, for example, prepare tens of derived variables, detect outliers, identify the relationships between pairs of input variables, and more, in only two or three days, depending on the quantity and the quality of input data. I favor the customer’s decision of assigning additional personnel to the project. For example, I actually prefer to work with two teams simultaneously. I demonstrate and explain the subject matter by applying techniques directly on the data managed by each team, and then both teams continue to work on the data overview and data preparation under our supervision. I explain to the teams what kind of results we expect, the reasons why they are needed, and how to achieve them. Afterwards we review and explain the results, and continue with new instructions, until we resolve all known problems. Simultaneously with the data preparation the data overview is performed. The logic behind this task is the same – again I show to the teams involved the expected results, how to achieve them and what they mean. This is also done in multiple cycles as is the case with data preparation, because, quite frankly, both tasks are completely interleaved. A specific objective of the data overview is of principal importance – it is represented by a simple star schema and a simple OLAP cube that will first of all simplify data discovery and interpretation of the results, and will also prove useful in the following tasks. The presence of the customer’s SME is the key to resolving possible issues with the actual meaning of the data. We can always replace the IT part of the team with another database developer; however, we cannot conduct this kind of a project without the customer’s SME. After the data preparation and when the data overview is available, we begin the scientific part of the project. I assist the team in developing a variety of models, and in interpreting the results. The results are presented graphically, in an intuitive way. While it is possible to interpret the results on the fly, a much more appropriate alternative is possible if the initial training was also performed, because it allows the customer’s personnel to interpret the results by themselves, with only some guidance from me. The models are evaluated immediately by using several different techniques. One of the techniques includes evaluation over time, where we use an OLAP cube. After evaluating the models, we select the most appropriate model to be deployed for a production test; this allows the team to understand the deployment process. There are many possibilities of deploying data mining models into production; at the POC stage, we select the one that can be completed quickly. Typically, this means that we add the mining model as an additional dimension to an existing DW or OLAP cube, or to the OLAP cube developed during the data overview phase. Finally, we spend some time presenting the results of the POC project to the stakeholders and managers. Even from a POC, the customer will receive lots of benefits, all at the sole risk of spending money and time for a single 5 to 10 day project: The customer learns the basic patterns of frauds and fraud detection The customer learns how to do the entire cycle with their own people, only relying on me for the most complex problems The customer’s analysts learn how to perform much more in-depth analyses than they ever thought possible The customer’s IT experts learn how to perform data extraction and preparation much more efficiently than they did before All of the attendees of this training learn how to use their own creativity to implement further improvements of the process and procedures, even after the solution has been deployed to production The POC output for a smaller company or for a subsidiary of a larger company can actually be considered a finished, production-ready solution It is possible to utilize the results of the POC project at subsidiary level, as a finished POC project for the entire enterprise Typically, the project results in several important “side effects” Improved data quality Improved employee job satisfaction, as they are able to proactively contribute to the central knowledge about fraud patterns in the organization Because eventually more minds get to be involved in the enterprise, the company should expect more and better fraud detection patterns After the POC project is completed as described above, the actual project would not need months of engagement from my side. This is possible due to our preference to transfer the knowledge onto the customer’s employees: typically, the customer will use the results of the POC project for some time, and only engage me again to complete the project, or to ask for additional expertise if the complexity of the problem increases significantly. I usually expect to perform the following tasks: Establish the final infrastructure to measure the efficiency of the deployed models Deploy the models in additional scenarios Through reports By including Data Mining Extensions (DMX) queries in OLTP applications to support real-time early warnings Include data mining models as dimensions in OLAP cubes, if this was not done already during the POC project Create smart ETL applications that divert suspicious data for immediate or later inspection I would also offer to investigate how the outcome could be transferred automatically to the central system; for instance, if the POC project was performed in a subsidiary whereas a central system is available as well Of course, for the actual project, I would repeat the data and model preparation as needed It is virtually impossible to tell in advance how much time the deployment would take, before we decide together with customer what exactly the deployment process should cover. Without considering the deployment part, and with the POC project conducted as suggested above (including the transfer of knowledge), the actual project should still only take additional 5 to 10 days. The approximate timeline for the POC project is, as follows: 1-2 days of training 2-3 days for data preparation and data overview 2 days for creating and evaluating the models 1 day for initial preparation of the continuous learning infrastructure 1 day for presentation of the results and discussion of further actions Quite frequently I receive the following question: are we going to find the best possible model during the POC project, or during the actual project? My answer is always quite simple: I do not know. Maybe, if we would spend just one hour more for data preparation, or create just one more model, we could get better patterns and predictions. However, we simply must stop somewhere, and the best possible way to do this, according to my experience, is to restrict the time spent on the project in advance, after an agreement with the customer. You must also never forget that, because we build the complete learning infrastructure and transfer the knowledge, the customer will be capable of doing further investigations independently and improve the models and predictions over time without the need for a constant engagement with me.

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • Say goodbye to System.Reflection.Emit (any dynamic proxy generation) in WinRT

    - by mbrit
    tl;dr - Forget any form of dynamic code emitting in Metro-style. It's not going to happen.Over the past week or so I've been trying to get Moq (the popular open source TDD mocking framework) to work on WinRT. Irritatingly, the day before Release Preview was released it was actually working on Consumer Preview. However in Release Preview (RP) the System.Reflection.Emit namespace is gone. Forget any form of dynamic code generation and/or MSIL injection.This kills off any project based on the popular Castle Project Dynamic Proxy component, of which Moq is one example. You can at this point in time not perform any form of mocking using dynamic injection in your Metro-style unit testing endeavours.So let me take you through my journey on this, so that other's don't have to...The headline fact is that you cannot load any assembly that you create at runtime. WinRT supports one Assembly.Load method, and that takes the name of an assembly. That has to be placed within the deployment folder of your app. You cannot give it a filename, or stream. The methods are there, but private. Try to invoke them using Reflection and you'll be met with a caspol exception.You can, in theory, use Rotor to replace SRE. It's all there, but again, you can't load anything you create.You can't write to your deployment folder from within your Metro-style app. But, can you use another service on the machine to move a file that you create into the deployment folder and load it? Not really.The networking stack in Metro-style is intentionally "damaged" to prevent socket communication from Metro-style to any end-point on the local machine. (It just times out.) This militates against an approach where your Metro-style app can signal a properly installed service on the machine to create proxies on its behalf. If you wanted to do this, you'd have to route the calls through a C&C server somewhere. The reason why Microsoft has done this is obvious - taking out SRE know means they don't have to do it in an emergency later. The collateral damage in removing SRE is that you can't do mocking in test mode, but you also can't do any form of injection in production mode. There are plenty of reasons why enterprise apps might want to do this last point particularly. At CP, the assumption was that their inspection tools would prevent SRE being used as a malware vector - it now seems they are less confident about that. (For clarity, the risk here is in allowing a nefarious program to download instructions from a C&C server and make up executable code on the fly to run, getting around the marketplace restrictions.)So, two things:- System.Reflection.Emit is gone in Metro-style/WinRT. Get over it - dynamic, on-the-fly code generation is not going to to happen.- I've more or less got a version of Moq working in Metro-style. This is based on the idea of "baking" the dynamic proxies before you use them. You can find more information here: https://github.com/mbrit/moqrt

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • Installing Yaws server on Ubuntu 12.04 (Using a cloud service)

    - by Lee Torres
    I'm trying to get a Yaws web server working on a cloud service (Amazon AWS). I've compilled and installed a local copy on the server. My problem is that I can't get Yaws to run while running on either port 8000 or port 80. I have the following configuration in yaws.conf: port = 8000 listen = 0.0.0.0 docroot = /home/ubuntu/yaws/www/test dir_listings = true This produces the following successful launch/result: Eshell V5.8.5 (abort with ^G) =INFO REPORT==== 16-Sep-2012::17:21:06 === Yaws: Using config file /home/ubuntu/yaws.conf =INFO REPORT==== 16-Sep-2012::17:21:06 === Ctlfile : /home/ubuntu/.yaws/yaws/default/CTL =INFO REPORT==== 16-Sep-2012::17:21:06 === Yaws: Listening to 0.0.0.0:8000 for <3> virtual servers: - http://domU-12-31-39-0B-1A-F6:8000 under /home/ubuntu/yaws/www/trial - =INFO REPORT==== 16-Sep-2012::17:21:06 === Yaws: Listening to 0.0.0.0:4443 for <1> virtual servers: - When I try to access the the url (http://ec2-72-44-47-235.compute-1.amazonaws.com), it never connects. I've tried using paping to check if port 80 or 8000 is open(http://code.google.com/p/paping/) and I get a "Host can not be resolved" error, so obviously something isn't working. I've also tried setting the yaws.conf so its at Port 80, appearing like this: port = 8000 listen = 0.0.0.0 docroot = /home/ubuntu/yaws/www/test dir_listings = true and I get the following error: =ERROR REPORT==== 16-Sep-2012::17:24:47 === Yaws: Failed to listen 0.0.0.0:80 : {error,eacces} =ERROR REPORT==== 16-Sep-2012::17:24:47 === Can't listen to socket: {error,eacces} =ERROR REPORT==== 16-Sep-2012::17:24:47 === Top proc died, terminate gserv =ERROR REPORT==== 16-Sep-2012::17:24:47 === Top proc died, terminate gserv =INFO REPORT==== 16-Sep-2012::17:24:47 === application: yaws exited: {shutdown,{yaws_app,start,[normal,[]]}} type: permanent {"Kernel pid terminated",application_controller," {application_start_failure,yaws,>>>>>>{shutdown,>{yaws_app,start,[normal,[]]}}}"} I've also opened up the port 80 using iptables. Running sudo iptables -L gives this output: Chain INPUT (policy ACCEPT) target prot opt source destination ACCEPT tcp -- ip-192-168-2-0.ec2.internal ip-192-168-2-16.ec2.internal tcp dpt:http ACCEPT tcp -- 0.0.0.0 anywhere tcp dpt:http ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED ACCEPT tcp -- anywhere anywhere tcp dpt:http ACCEPT tcp -- anywhere anywhere tcp dpt:http Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination In addition, I've gone to the security group panel in the Amazon AWS configuration area, and add ports 80, 8000, and 8080 to ip source 0.0.0.0 Please note: if you try to access the URL of the virtual server now, it likely won't connect because I'm not running currently running the yaws daemon. I've tested it when I've run yaws either through yaws or yaws -i Thanks for the patience

    Read the article

  • 13.04 Logitech bluetooth speaker adapter pairing but no mixer output

    - by user1455622
    I had to change [General] Enable = Socket in /etc/bluetooth/audio.conf to get it to pair. But now that they are I don't get an output in pavucontrol. D: [pulseaudio] bluetooth-util.c: Registering /MediaEndpoint/HFPAG on adapter /org/bluez/3855/hci0. D: [pulseaudio] bluetooth-util.c: Registering /MediaEndpoint/HFPHS on adapter /org/bluez/3855/hci0. D: [pulseaudio] bluetooth-util.c: Registering /MediaEndpoint/A2DPSource on adapter /org/bluez/3855/hci0. D: [pulseaudio] bluetooth-util.c: Registering /MediaEndpoint/A2DPSink on adapter /org/bluez/3855/hci0. E: [pulseaudio] bluetooth-util.c: org.bluez.Media.RegisterEndpoint() failed: org.bluez.Error.AlreadyExists: Already Exists E: [pulseaudio] bluetooth-util.c: org.bluez.Media.RegisterEndpoint() failed: org.bluez.Error.AlreadyExists: Already Exists E: [pulseaudio] bluetooth-util.c: org.bluez.Media.RegisterEndpoint() failed: org.bluez.Error.AlreadyExists: Already Exists E: [pulseaudio] bluetooth-util.c: org.bluez.Media.RegisterEndpoint() failed: org.bluez.Error.AlreadyExists: Already Exists D: [pulseaudio] bluetooth-util.c: dbus: property 'State' changed to value 'disconnected' D: [pulseaudio] bluetooth-util.c: dbus: property 'State' changed to value 'disconnected' D: [pulseaudio] bluetooth-util.c: dbus: property 'State' changed to value 'disconnected' D: [pulseaudio] bluetooth-util.c: dbus: property 'State' changed to value 'disconnected' D: [pulseaudio] bluetooth-util.c: dbus: property 'State' changed to value 'connected' D: [pulseaudio] bluetooth-util.c: dbus: property 'State' changed to value 'connected' D: [pulseaudio] bluetooth-util.c: Unknown Bluetooth minor device class 0 D: [pulseaudio] module-card-restore.c: Not restoring profile for card bluez_card.C8_84_47_15_B7_34, because already set. I: [pulseaudio] module-card-restore.c: Restoring port latency offsets for card bluez_card.C8_84_47_15_B7_34. I: [pulseaudio] card.c: Created 2 "bluez_card.C8_84_47_15_B7_34" W: [pulseaudio] module-bluetooth-device.c: Profile has no transport D: [pulseaudio] core-subscribe.c: Dropped redundant event due to change event. I: [pulseaudio] card.c: Changed profile of card 2 "bluez_card.C8_84_47_15_B7_34" to off I: [pulseaudio] module.c: Loaded "module-bluetooth-device" (index: #22; argument: "address=C8:84:47:15:B7:34 profile=a2dp"). I: [alsa-source] alsa-source.c: Scheduling delay of 10,06ms, you might want to investigate this to improve latency... I: [alsa-source] ratelimit.c: 5 events suppressed I: [alsa-source] alsa-source.c: Overrun! I: [alsa-source] alsa-source.c: Increasing minimal latency to 2,00 ms D: [alsa-source] alsa-source.c: latency set to 20,00ms D: [alsa-source] alsa-source.c: hwbuf_unused=62008 D: [alsa-source] alsa-source.c: setting avail_min=442 What can I do to get it working? Regards,

    Read the article

  • The Great Divorce

    - by BlackRabbitCoder
    I have a confession to make: I've been in an abusive relationship for more than 17 years now.  Yes, I am not ashamed to admit it, but I'm finally doing something about it. I met her in college, she was new and sexy and amazingly fast -- and I'd never met anything like her before.  Her style and her power captivated me and I couldn't wait to learn more about her.  I took a chance on her, and though I learned a lot from her -- and will always be grateful for my time with her -- I think it's time to move on. Her name was C++, and she so outshone my previous love, C, that any thoughts of going back evaporated in the heat of this new romance.  She promised me she'd be gentle and not hurt me the way C did.  She promised me she'd clean-up after herself better than C did.  She promised me she'd be less enigmatic and easier to keep happy than C was.  But I was deceived.  Oh sure, as far as truth goes, it wasn't a complete lie.  To some extent she was more fun, more powerful, safer, and easier to maintain.  But it just wasn't good enough -- or at least it's not good enough now. I loved C++, some part of me still does, it's my first-love of programming languages and I recognize its raw power, its blazing speed, and its improvements over its predecessor.  But with today's hardware, at speeds we could only dream to conceive of twenty years ago, that need for speed -- at the cost of all else -- has died, and that has left my feelings for C++ moribund. If I ever need to write an operating system or a device driver, then I might need that speed.  But 99% of the time I don't.  I'm a business-type programmer and chances are 90% of you are too, and even the ones who need speed at all costs may be surprised by how much you sacrifice for that.   That's not to say that I don't want my software to perform, and it's not to say that in the business world we don't care about speed or that our job is somehow less difficult or technical.  There's many times we write programs to handle millions of real-time updates or handle thousands of financial transactions or tracking trading algorithms where every second counts.  But if I choose to write my code in C++ purely for speed chances are I'll never notice the speed increase -- and equally true chances are it will be far more prone to crash and far less easy to maintain.  Nearly without fail, it's the macro-optimizations you need, not the micro-optimizations.  If I choose to write a O(n2) algorithm when I could have used a O(n) algorithm -- that can kill me.  If I choose to go to the database to load a piece of unchanging data every time instead of caching it on first load -- that too can kill me.  And if I cross the network multiple times for pieces of data instead of getting it all at once -- yes that can also kill me.  But choosing an overly powerful and dangerous mid-level language to squeeze out every last drop of performance will realistically not make stock orders process any faster, and more likely than not open up the system to more risk of crashes and resource leaks. And that's when my love for C++ began to die.  When I noticed that I didn't need that speed anymore.  That that speed was really kind of a lie.  Sure, I can be super efficient and pack bits in a byte instead of using separate boolean values.  Sure, I can use an unsigned char instead of an int.  But in the grand scheme of things it doesn't matter as much as you think it does.  The key is maintainability, and that's where C++ failed me.  I like to tell the other developers I work with that there's two levels of correctness in coding: Is it immediately correct? Will it stay correct? That is, you can hack together any piece of code and make it correct to satisfy a task at hand, but if a new developer can't come in tomorrow and make a fairly significant change to it without jeopardizing that correctness, it won't stay correct. Some people laugh at me when I say I now prefer maintainability over speed.  But that is exactly the point.  If you focus solely on speed you tend to produce code that is much harder to maintain over the long hall, and that's a load of technical debt most shops can't afford to carry and end up completely scrapping code before it's time.  When good code is written well for maintainability, though, it can be correct both now and in the future. And you know the best part is?  My new love is nearly as fast as C++, and in some cases even faster -- and better than that, I know C# will treat me right.  Her creators have poured hundreds of thousands of hours of time into making her the sexy beast she is today.  They made her easy to understand and not an enigmatic mess.  They made her consistent and not moody and amorphous.  And they made her perform as fast as I care to go by optimizing her both at compile time and a run-time. Her code is so elegant and easy on the eyes that I'm not worried where she will run to or what she'll pull behind my back.  She is powerful enough to handle all my tasks, fast enough to execute them with blazing speed, maintainable enough so that I can rely on even fairly new peers to modify my work, and rich enough to allow me to satisfy any need.  C# doesn't ask me to clean up her messes!  She cleans up after herself and she tries to make my life easier for me by taking on most of those optimization tasks C++ asked me to take upon myself.  Now, there are many of you who would say that I am the cause of my own grief, that it was my fault C++ didn't behave because I didn't pay enough attention to her.  That I alone caused the pain she inflicted on me.  And to some extent, you have a point.  But she was so high maintenance, requiring me to know every twist and turn of her vast and unrestrained power that any wrong term or bout of forgetfulness was met with painful reminders that she wasn't going to watch my back when I made a mistake.  But C#, she loves me when I'm good, and she loves me when I'm bad, and together we make beautiful code that is both fast and safe. So that's why I'm leaving C++ behind.  She says she's changing for me, but I have no interest in what C++0x may bring.  Oh, I'll still keep in touch, and maybe I'll see her now and again when she brings her problems to my door and asks for some attention -- for I always have a soft spot for her, you see.  But she's out of my house now.  I have three kids and a dog and a cat, and all require me to clean up after them, why should I have to clean up after my programming language as well?

    Read the article

  • Is there a language or design pattern that allows the *removal* of object behavior or properties in a class hierarchy?

    - by Sebastien Diot
    A well-know shortcoming of traditional class hierarchies is that they are bad when it comes to model the real world. As an example, trying to represent animals species with classes. There are actually several problems when doing that, but one that I never saw a solution to is when a sub-class "looses" a behavior or properties that was defined in a super-class, like a penguin not being able to fly (there are probably better examples, but that's the first one that comes to my mind, having seen "Madagascar 2" recently). On the one hand, you don't want to define for every property and behavior some flag that specifies if it is at all present, and check it every time before accessing that behavior or property. You would just like to say that birds can fly, simply and clearly, in the Bird class. But then it would be nice if one could define "exceptions" afterward, without having to use some horrible hacks everywhere. This often happens when a system has been productive for a while. You suddenly find an "exception" that doesn't fit in the original design at all, and you don't want to change a large portion of your code to accommodate it. So, is there some language or design patterns that can cleanly handle this problem, without requiring major changes to the "super-class", and all the code that uses it? Even if a solution only handle a specific case, several solutions might together form a complete strategy. [EDIT] Forgot about the Liskov Substitution Principle. That is why you can't do it. Assuming you define "traits/interfaces" for all major "feature groups", you can freely implement traits in different branches of the hierarchy, like the Flying trait could be implemented by Birds, and some special kind of squirrels and fish. So my question could amount to "How could I un-implement a trait?" If your super-class is a Java Serializable, you have to be one too, even if there is no way for you to serialize your state, for example if you contained a "Socket". So one way to do it is to always define all your traits in pair from the start: Flying and NotFlying (which would throw UnsupportedOperationExceiption, if not checked against). The Not-trait would not define any new interface, and could be simply checked for. Sounds like a "cheap" solution, in particular if used from the start.

    Read the article

  • Christmas in the Clouds

    - by andrewbrust
    I have been spending the last 2 weeks immersing myself in a number of Windows Azure and SQL Azure technologies.  And in setting up a new business (I’ll speak more about that in the future), I have also become a customer of Microsoft’s BPOS (Business Productivity Online Services).  In short, it has been a fortnight of Microsoft cloud computing. On the Azure side, I’ve looked, of course, at Web Roles and Worker Roles.  But I’ve also looked at Azure Storage’s REST API (including coding to it directly), I’ve looked at Azure Drive and the new VM Role; I’ve looked quite a bit at SQL Azure (including the project “Houston” Silverlight UI) and I’ve looked at SQL Azure labs’ OData service too. I’ve also looked at DataMarket and its integration with both PowerPivot and native Excel.  Then there’s AppFabric Caching, SQL Azure Reporting (what I could learn of it) and the Visual Studio tooling for Azure, including the storage of certificate-based credentials.  And to round it out with some user stuff, on the BPOS side, I’ve been working with Exchange Online, SharePoint Online and LiveMeeting. I have to say I like a lot of what I’ve been seeing.  Azure’s not perfect, and BPOS certainly isn’t either.  But there’s good stuff in all these products, and there’s a lot of value. Azure Goes Deep Most people know that Web and Worker roles put the platform in charge of spinning virtual machines up and down, and keeping them up to date. But you can go way beyond that now.  The still-in-beta VM Role gives you the power to craft the machine (much as does Amazon’s EC2), though it takes away the platform’s self-managing attributes.  It still spins instances up and down, making drive storage non-durable, but Azure Drive gives you the ability to store VHD files as blobs and mount them as virtual hard drives that are readable and writeable.  Whether with Azure Storage or SQL Azure, Azure does data.  And OData is everywhere.  Azure Table Storage supports an OData Interface.  So does SQL Azure and so does DataMarket (the former project “Dallas”).  That means that Azure data repositories aren’t just straightforward to provision and configure…they’re also easy to program against, from just about any programming environment, in a RESTful manner.  And for more .NET-centric implementations, Azure AppFabric caching takes the technology formerly known as “Velocity” and throws it up into the cloud, speeding data access even more. Snapping in Place Once you get the hang of it, this stuff just starts to work in a way that becomes natural to understand.  I wasn’t expecting that, and I was really happy to discover it. In retrospect, I am not surprised, because I think the various Azure teams are the center of gravity for Redmond’s innovation right now.  The products belie this and so do my observations of the product teams’ motivation and high morale.  It is really good to see this; Microsoft needs to lead somewhere, and they need to be seen as the underdog while doing so.  With Azure, both requirements are in place.   BPOS: Bad Acronym, Easy Setup BPOS is about products you already know; Exchange, SharePoint, Live Meeting and Office Communications Server.  As such, it’s hard not to be underwhelmed by BPOS.  Until you realize how easy it makes it to get all that stuff set up.  I would say that from sign-up to productive use took me about 45 minutes…and that included the time necessary to wrestle with my DNS provider, set up Outlook and my SmartPhone up to talk to the Exchange account, create my SharePoint site collection, and configure the Outlook Conferencing add-in to talk to the provisioned Live Meeting account. Never before did I think setting up my own Exchange mail could come anywhere close to the simplicity of setting up an SMTP/POP account, and yet BPOS actually made it faster.   What I want from my Azure Christmas Next Year Not everything about Microsoft’s cloud is good.  I close this post with a list of things I’d like to see addressed: BPOS offerings are still based on the 2007 Wave of Microsoft server technologies.  We need to get to 2010, and fast.  Arguably, the 2010 products should have been released to the off-premises channel before the on-premise sone.  Office 365 can’t come fast enough. Azure’s Internet tooling and domain naming, is scattered and confusing.  Deployed ASP.NET applications go to cloudapp.net; SQL Azure and Azure storage work off windows.net.  The Azure portal and Project Houston are at azure.com.  Then there’s appfabriclabs.com and sqlazurelabs.com.  There is a new Silverlight portal that replaces most, but not all of the HTML ones.  And Project Houston is Silvelright-based too, though separate from the Silverlight portal tooling. Microsoft is the king off tooling.  They should not make me keep an entire OneNote notebook full of portal links, account names, access keys, assemblies and namespaces and do so much CTRL-C/CTRL-V work.  I’d like to see more project templates, have them automatically reference the appropriate assemblies, generate the right using/Imports statements and prime my config files with the right markup.  Then I want a UI that lets me log in with my Live ID and pick the appropriate project, database, namespace and key string to get set up fast. Beta programs, if they’re open, should onboard me quickly.  I know the process is difficult and everyone’s going as fast as they can.  But I don’t know why it’s so difficult or why it takes so long.  Getting developers up to speed on new features quickly helps popularize the platform.  Make this a priority. Make Azure accessible from the simplicity platforms, i.e. ASP.NET Web Pages (Razor) and LightSwitch.  Support .NET 4 now.  Make WebMatrix, IIS Express and SQL Compact work with the Azure development fabric. Have HTML helpers make Azure programming easier.  Have LightSwitch work with SQL Azure and not require SQL Express.  LightSwitch has some promising Azure integration now.  But we need more.  WebMatrix has none and that’s just silly, now that the Extra Small Instance is being introduced. The Windows Azure Platform Training Kit is great.  But I want Microsoft to make it even better and I want them to evangelize it much more aggressively.  There’s a lot of good material on Azure development out there, but it’s scattered in the same way that the platform is.   The Training Kit ties a lot of disparate stuff together nicely.  Make it known. Should Old Acquaintance Be Forgot All in all, diving deep into Azure was a good way to end the year.  Diving deeper into Azure should a great way to spend next year, not just for me, but for Microsoft too.

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • Corsair Hackers Reboot

    It wasn't easy for me to attend but it was absolutely worth to go. The Linux User Group of Mauritius (LUGM) organised another get-together for any open source enthusiast here on the island. Strangely named "Corsair Hackers Reboot" but it stands for a positive cause: "Corsair Hackers Reboot Event A collaborative activity involving LUGM, UoM Computer Club, Fortune Way Shopping Mall and several geeks from around the island, striving to put FOSS into homes & offices. The public is invited to discover and explore Free Software & Open Source." And it was a good opportunity for me and the kids to visit the east coast of Mauritius, too. Perfect timing It couldn't have been better... Why? Well, for two important reasons (in terms of IT): End of support for Microsoft Windows XP - 08.04.2014 Release of Ubuntu 14.04 Long Term Support - 17.04.2014 Quite funnily, those two IT dates weren't the initial reasons and only during the weeks of preparations we put those together. And therefore it was even more positive to promote the use of Linux and open source software in general to a broader audience. Getting there ... Thanks to the new motor way M3 and all the additional road work which has been completed recently it was very simple to get across the island in a very quick and relaxed manner. Compared to my trips in the early days of living in Mauritius (and riding on a scooter) it was very smooth and within less than an hour we hit Centrale de Flacq. Well, being in the city doesn't necessarily mean that one has arrived at the destination. But thanks to modern technology I had a quick look on Google Maps, and we finally managed to get a parking behind the huge bus terminal in Flacq. From there it was just a short walk to Fortune Way. The children were trying to count the number of buses... Well, lots and lots of buses - really impressive actually. What was presented? There were different areas set up. Right at the entrance one's attention was directly drawn towards the elevated hacker's stage. Similar to rock stars performing their gig there was bunch of computers, laptops and networking equipment in order to cater the right working conditions for coding/programming challenge(s) on the one hand and for the pen-testing or system hacking competition on the other hand. Personally, I was very impresses that actually Nitin took care of the pen-testing competition. He hardly started one year back with Linux in general, and Kali Linux specifically. Seeing his personal development from absolute newbie to a decent Linux system administrator within such a short period of time, is really impressive. His passion to open source software made him a living. Next, clock-wise seen, was the Kid's Corner with face-painting as the main attraction. Additionally, there were numerous paper print outs to colour. Plus a decent workstation with the educational suite GCompris. Of course, my little ones were into that. They already know GCompris since a while as they are allowed to use it on an IGEL thin client terminal here at home. To simplify my life, I set up GCompris as full-screen guest session on the server, and they can pass the login screen without any further obstacles. And because it's a thin client hooked up to a XDMCP remote session I don't have to worry about the hardware on their desk, too. The next section was the main attraction of the event: BYOD - Bring Your Own Device Well, compared to the usual context of BYOD the corsairs had a completely different intention. Here, you could bring your own laptop and a team of knowledgeable experts - read: geeks and so on - offered to fully convert your system on any Linux distribution of your choice. And even though I came later, I was told that the USB pen drives had been in permanent use. From being prepared via dd command over launching LiveCD session to finally installing a fresh Linux system on bare metal. Most interestingly, I did a similar job already a couple of months ago, while upgrading an existing Windows XP system to Xubuntu 13.10. So far, the female owner is very happy and enjoys her system almost every evening to go shopping online, checking mails, and reading latest news from the Anime world. Back to the Hackers event, Ish told me that they managed approximately 20 conversion during the day. Furthermore, Ajay and others gladly assisted some visitors with some tricky issues and by the end of the day you can call is a success. While I was around, there was a elderly male visitor that got a full-fledged system conversion to a Linux system running completely in French language. A little bit more to the centre it was Yasir's turn to demonstrate his Arduino hardware that he hooked up with an experimental electrical circuit board connected to an LCD matrix display. That's the real spirit of hacking, and he showed some minor adjustments on the fly while demo'ing the system. Also, very interesting there was a thermal sensor around. Personally, I think that platforms like the Arduino as well as the Raspberry Pi have a great potential at a very affordable price in order to bring a better understanding of electronics as well as computer programming to a broader audience. It would be great to see more of those experiments during future activities. And last but not least there were a small number of vendors. Amongst them was Emtel - once again as sponsor of the general internet connectivity - and another hardware supplier from Riche Terre shopping mall. They had a good collection of Android related gimmicks, like a autonomous web cam that can convert any TV with HDMI connector into an online video chat system given WiFi. It's actually kind of awesome to have a Skype or Google hangout video session on the big screen rather than on the laptop. Some pictures of the event LUGM: Great conversations on Linux, open source and free software during the Corsair Hackers Reboot LUGM: Educational workstation running GCompris suite attracted the youngest attendees of the day. Of course, face painting had to be done prior to hacking... LUGM: Nadim demoing some Linux specifics to interested visitors. Everyone was pretty busy during the whole day LUGM: The hacking competition, here pen-testing a wireless connection and access point between multiple machines LUGM: Well prepared workstations to be able to 'upgrade' visitors' machines to any Linux operating system Final thoughts Gratefully, during the preparations of the event I was invited to leave some comments or suggestions, and the team of the LUGM did a great job. The outdoor banner was a eye-catcher, the various flyers and posters for the event were clearly written and as far as I understood from the quick chats I had with Ish, Nadim, Nitin, Ajay, and of course others all were very happy about the event execution. Great job, LUGM! And I'm already looking forward to the next Corsair Hackers Reboot event ... Crossing fingers: Very soon and hopefully this year again :) Update: In the media The event had been announced in local media, too. L'Express: Salon informatique: Hacking Challenge à Flacq

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • PostSharp, Obfuscation, and IL

    - by simonc
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day! Cross posted from Simple Talk.

    Read the article

  • Latency Matters

    - by Frederic P
    A lot of interest in low latencies has been expressed within the financial services segment, most especially in the stock trading applications where every millisecond directly influences the profitability of the trader. These days, much of the trading is executed by software applications which are trained to respond to each other almost instantaneously. In fact, you could say that we are in an arms race where traders are using any and all options to cut down on the delay in executing transactions, even by moving physically closer to the trading venue. The Solaris OS network stack has traditionally been engineered for high throughput, at the expense of higher latencies. Knowledge of tuning parameters to redress the imbalance is critical for applications that are latency sensitive. We are presenting in this blog how to configure further a default Oracle Solaris 10 installation to reduce network latency. There are many parameters in fact that can be altered, but the most effective ones are intr_blank_time and intr_blank_packets. These parameters affect on-board network throughput and latency on Solaris systems. If interrupt blanking is disabled, packets are processed by the driver as soon as they arrive, resulting in higher network throughput and lower latency, but with higher CPU utilization. With interrupt blanking disabled, processor utilization can be as high as 80–90% in some high-load web server environments. If interrupt blanking is enabled, packets are processed when the interrupt is issued. Enabling interrupt blanking can result in reduced processor utilization and network throughput, but higher network latency. Both parameters should be set at the same time. You can set these parameters by using the ndd command as follows: # ndd -set /dev/eri intr_blank_time 0 # ndd -set /dev/eri intr_blank_packets 0 You can add them to the /etc/system file as follows: set eri:intr_blank_time 0 set eri:intr_blank_packets 0 The value of the interrupt blanking parameter is a trade-off between network throughput and processor utilization. If higher processor utilization is acceptable for achieving higher network throughput, then disable interrupt blanking. If lower processor utilization is preferred and higher network latency is the penalty, then enable interrupt blanking. Our experience at ISV Engineering is that under controlled experiments the above settings result in reduction of network latency by at least 50%; on a two-socket 3GHz Sun Fire X4170 M2 running Solaris 10 Update 9, the above settings improved ping-pong latency from 60µs to 25-30µs with the on-board NIC.

    Read the article

  • Super constructor must be a first statement in Java constructor [closed]

    - by Val
    I know the answer: "we need rules to prevent shooting into your own foot". Ok, I make millions of programming mistakes every day. To be prevented, we need one simple rule: prohibit all JLS and do not use Java. If we explain everything by "not shooting your foot", this is reasonable. But there is not much reason is such reason. When I programmed in Delphy, I always wanted the compiler to check me if I read uninitializable. I have discovered myself that is is stupid to read uncertain variable because it leads unpredictable result and is errorenous obviously. By just looking at the code I could see if there is an error. I wished if compiler could do this job. It is also a reliable signal of programming error if function does not return any value. But I never wanted it do enforce me the super constructor first. Why? You say that constructors just initialize fields. Super fields are derived; extra fields are introduced. From the goal point of view, it does not matter in which order you initialize the variables. I have studied parallel architectures and can say that all the fields can even be assigned in parallel... What? Do you want to use the unitialized fields? Stupid people always want to take away our freedoms and break the JLS rules the God gives to us! Please, policeman, take away that person! Where do I say so? I'm just saying only about initializing/assigning, not using the fields. Java compiler already defends me from the mistake of accessing notinitialized. Some cases sneak but this example shows how this stupid rule does not save us from the read-accessing incompletely initialized in construction: public class BadSuper { String field; public String toString() { return "field = " + field; } public BadSuper(String val) { field = val; // yea, superfirst does not protect from accessing // inconstructed subclass fields. Subclass constr // must be called before super()! System.err.println(this); } } public class BadPost extends BadSuper { Object o; public BadPost(Object o) { super("str"); this. o = o; } public String toString() { // superconstructor will boom here, because o is not initialized! return super.toString() + ", obj = " + o.toString(); } public static void main(String[] args) { new BadSuper("test 1"); new BadPost(new Object()); } } It shows that actually, subfields have to be inilialized before the supreclass! Meantime, java requirement "saves" us from writing specializing the class by specializing what the super constructor argument is, public class MyKryo extends Kryo { class MyClassResolver extends DefaultClassResolver { public Registration register(Registration registration) { System.out.println(MyKryo.this.getDepth()); return super.register(registration); } } MyKryo() { // cannot instantiate MyClassResolver in super super(new MyClassResolver(), new MapReferenceResolver()); } } Try to make it compilable. It is always pain. Especially, when you cannot assign the argument later. Initialization order is not important for initialization in general. I could understand that you should not use super methods before initializing super. But, the requirement for super to be the first statement is different. It only saves you from the code that does useful things simply. I do not see how this adds safety. Actually, safety is degraded because we need to use ugly workarounds. Doing post-initialization, outside the constructors also degrades safety (otherwise, why do we need constructors?) and defeats the java final safety reenforcer. To conclude Reading not initialized is a bug. Initialization order is not important from the computer science point of view. Doing initalization or computations in different order is not a bug. Reenforcing read-access to not initialized is good but compilers fail to detect all such bugs Making super the first does not solve the problem as it "Prevents" shooting into right things but not into the foot It requires to invent workarounds, where, because of complexity of analysis, it is easier to shoot into the foot doing post-initialization outside the constructors degrades safety (otherwise, why do we need constructors?) and that degrade safety by defeating final access modifier When there was java forum alive, java bigots attecked me for these thoughts. Particularly, they dislaked that fields can be initialized in parallel, saying that natural development ensures correctness. When I replied that you could use an advanced engineering to create a human right away, without "developing" any ape first, and it still be an ape, they stopped to listen me. Cos modern technology cannot afford it. Ok, Take something simpler. How do you produce a Renault? Should you construct an Automobile first? No, you start by producing a Renault and, once completed, you'll see that this is an automobile. So, the requirement to produce fields in "natural order" is unnatural. In case of alarmclock or armchair, which are still chair and clock, you may need first develop the base (clock and chair) and then add extra. So, I can have examples where superfields must be initialized first and, oppositely, when they need to be initialized later. The order does not exist in advance. So, the compiler cannot be aware of the proper order. Only programmer/constructor knows is. Compiler should not take more responsibility and enforce the wrong order onto programmer. Saying that I cannot initialize some fields because I did not ininialized the others is like "you cannot initialize the thing because it is not initialized". This is a kind of argument we have. So, to conclude once more, the feature that "protects" me from doing things in simple and right way in order to enforce something that does not add noticeably to the bug elimination at that is a strongly negative thing and it pisses me off, altogether with the all the arguments to support it I've seen so far. It is "a conceptual question about software development" Should there be the requirement to call super() first or not. I do not know. If you do or have an idea, you have place to answer. I think that I have provided enough arguments against this feature. Lets appreciate the ones who benefit form it. Let it just be something more than simple abstract and stupid "write your own language" or "protection" kind of argument. Why do we need it in the language that I am going to develop?

    Read the article

  • 4.8M wasn't enough so we went for 5.055M tpmc with Unbreakable Enterprise Kernel r2 :-)

    - by wcoekaer
    We released a new set of benchmarks today. One is an updated tpc-c from a few months ago where we had just over 4.8M tpmc at $0.98 and we just updated it to go to 5.05M and $0.89. The other one is related to Java Middleware performance. You can find the press release here. Now, I don't want to talk about the actual relevance of the benchmark numbers, as I am not in the benchmark team. I want to talk about why these numbers and these efforts, unrelated to what they mean to your workload, matter to customers. The actual benchmark effort is a very big, long, expensive undertaking where many groups work together as a big virtual team. Having the virtual team be within a single company of course helps tremendously... We already start with a very big server setup with tons of storage, many disks, lots of ram, lots of cpu's, cores, threads, large database setups. Getting the whole setup going to start tuning, by itself, is no easy task, but then the real fun starts with tuning the system for optimal performance -and- stability. A benchmark is not just revving an engine at high rpm, it's actually hitting the circuit. The tests require long runs, require surviving availability tests, such as surviving crashes -and- recovery under load. In the TPC-C example, the x4800 system had 4TB ram, 160 threads (8 sockets, hyperthreaded, 10 cores/socket), tons of storage attached, tons of luns visible to the OS. flash storage, non flash storage... many things at high scale that all have to be perfectly synchronized. During this process, we find bugs, we fix bugs, we find performance issues, we fix performance issues, we find interesting potential features to investigate for the future, we start new development projects for future releases and all this goes back into the products. As more and more customers, for Oracle Linux, are running larger and larger, faster and faster, more mission critical, higher available databases..., these things are just absolutely critical. Unrelated to what anyone's specific opinion is about tpc-c or tpc-h or specjenterprise etc, there is a ton of effort that the customer benefits from. All this work makes Oracle Linux and/or Oracle Solaris better platforms. Whether it's faster, more stable, more scalable, more resilient. It helps. Another point that I always like to re-iterate around UEK and UEK2 : we have our kernel source git repository online. Complete changelog of the mainline kernel, and our changes, easy to pull, easy to dissect, easy to know what went in when, why and where. No need to go log into a website and manually click through pages to hopefully discover changes or patches. No need to untar 2 tar balls and run a diff.

    Read the article

  • Unable to ping inside or outside network with default gateway 0.0.0.0

    - by agentroadkill
    I've been around here before and I could usually piece together everything to more or less get myself up and running, but this time I'm truly stumped. I'm trying to connect my new 14.04 install to a network, and I'm forced to be behind my college's router. Now I've tested the vary cable that is right now plugged into my Ubuntu box on a Windows, Mac OS X, and even my friend's Ubuntu 14.04 box, and they all connect no problem. I've been trying to track this down for about two days, but every time I get close to it, the bug jumps to some other piece of my connection. Anyway, as it sits ifconfig -a gives: eth2 Lninkencap:Ethernet HWaddr:00:1f:bc:08:31:1d inet addr:10.32.51.51 Bcast:10.32.51.155 Mask: 255.255.255.0 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 RX bytes:0 TX bytes:0 as well as the local loopback, but I'm assuming that is not an issue here. sudo dhclient -v eth2 returns: Listening on LPF/<hardware address of my integrated NIC, above> Sending on <same> Sending on Socket/fallback DHCPREQUEST of 10.32.51.51 on eth2 to 255.255.255.255 port 67 (xid=0x6f4a66ba) <two more lines of same> DHCPDISCOVER on eth2 to 255.255.255.255 port 67 interval 3 (xid=0x156f9fb4) <many more of above with varying intervals> No DHCPOFFERS received. Trying recorded lease 10.32.51.51 RTNETLINK answers: File exists bound: renewal in <large number> seconds If I then try ping 8.8.8.8, I get: connect: Network is unreachable /etc/resolv.conf only contains the two lines telling you not to edit it, while /etc/network/interfaces only has the loopback interface block in it. I've tried commenting out the "option rfc3442" line in /etc/dhcp/dhclient.conf which seemed to fix this issue for many people, as well as adding the line send vendor-class-indentifier "MSFT5.0" to dhclient.conf as well to tell the router I'm a windows box, in case they don't like Linux. Finally, route -n reveals: Destination Gateway Genmask Flags Metric Ref Use Iface 10.32.51.0 0.0.0.0 255.255.255.0 U 0 0 0 eth2 I would like to apologize in advance for the doubtless butchered text alignment, but I'm obviously typing this all by hand, reading from the terminal as I type commands. I'm hoping this is an interesting problem, and not something I blithely stumbled past in my (apparent) over-confidence. TIA! Quick addendum before posting: The activity light on the ethernet port are lit and one blinks during boot, but they rarely (and seemingly randomly) do so afterwards (both are dark) even while running dhclient in the foreground. When I had the Ubuntu box tethered to my MacBook earlier, I got what looked like a normal power/uplink blinking pattern, but was unable to ping one from the other.

    Read the article

  • Wired connection not being recognized

    - by maxifick
    I'm on Ubuntu Maverick (10.10). I've read a few threads regarding wired connection problems, but haven't found a solution yet. The problem appears after I connect to a wireless network. When I disconnect wireless and plug in an internet cable, the wired connection is not recognized at all. Even the socket appears dead (there are no diodes flashing). The only solution so far seems to be restarting the computer. Network Manager then tries to connect to a Wi-Fi, but the wired connection is listed and working. I've tried sudo restart network-manager, but that doesn't solve anything. After a while, available wireless networks start appearing, but the wired still doesn't. Any ideas? Thanks in advance. Edit: Here is the dmesg output after switching off Wi-Fi and then plugging the internet cable. [18200.623543] Restarting tasks ... done. [18200.648422] video LNXVIDEO:00: Restoring backlight state [18200.707580] sky2 0000:02:00.0: eth0: phy I/O error [18200.707715] sky2 0000:02:00.0: eth0: phy I/O error [18200.707819] sky2 0000:02:00.0: eth0: phy I/O error [18200.707922] sky2 0000:02:00.0: eth0: phy I/O error [18200.708025] sky2 0000:02:00.0: eth0: phy I/O error [18200.708127] sky2 0000:02:00.0: eth0: phy I/O error [18200.708229] sky2 0000:02:00.0: eth0: phy I/O error [18200.708332] sky2 0000:02:00.0: eth0: phy I/O error [18200.708824] sky2 0000:02:00.0: eth0: enabling interface [18200.709587] ADDRCONF(NETDEV_UP): eth0: link is not ready [18202.662422] EXT4-fs (sda9): re-mounted. Opts: errors=remount-ro,user_xattr,commit=0 [18203.324061] EXT4-fs (sda9): re-mounted. Opts: errors=remount-ro,user_xattr,commit=0 [18211.193137] eth1: no IPv6 routers present [18212.844649] usb 5-1: new low speed USB device using ohci_hcd and address 5 [18213.017235] input: USB Optical Mouse as /devices/pci0000:00/0000:00:13.0/usb5/5-1/5-1:1.0/input/input16 [18213.017499] generic-usb 0003:0461:4D17.0004: input,hidraw0: USB HID v1.11 Mouse [USB Optical Mouse] on usb-0000:00:13.0-1/input0 After system restart, dmesg says this: [ 19.802126] sky2 0000:02:00.0: eth0: enabling interface [ 19.802394] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 20.812533] device eth0 entered promiscuous mode [ 21.495547] sky2 0000:02:00.0: eth0: Link is up at 100 Mbps, full duplex, flow control rx [ 21.495677] sky2 0000:02:00.0: eth0: Link is up at 100 Mbps, full duplex, flow control rx [ 21.496574] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready

    Read the article

  • Application stuck in TCP retransmit

    - by SandeepJ
    I am running Linux kernel 3.13 (Ubuntu 14.04) on two Virtual Machines each of which operates inside two different servers running ESXi 5.1. There is a zeromq client-server application running between the two VMs. After running for about 10-30 minutes, this application consistently hangs due to inability to retransmit a lost packet. When I run the same setup over Ubuntu 12.04 (Linux 3.11), the application never fails If you notice below, "ss" (socket statistics) shows 1 packet lost, sk_wmem_queued of 14110 (i.e. w14110) and a high rto (120000). State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 12350 192.168.2.122:41808 192.168.2.172:55550 timer:(on,16sec,10) uid:1000 ino:35042 sk:ffff880035bcb100 <- skmem:(r0,rb648720,t0,tb1164800,f2274,w14110,o0,bl0) ts sack cubic wscale:7,7 rto:120000 rtt:7.5/3 ato:40 mss:8948 cwnd:1 ssthresh:21 send 9.5Mbps unacked:1 retrans:1/10 lost:1 rcv_rtt:1476 rcv_space:37621 Since this has happened so consistently, I was able to capture the TCP log in wireshark. I found that the packet which is lost does get retransmitted and even acknowledged by the TCP in the other OS (the sequence number is seen in the ACK), but the sender doesn't seem to understand this ACK and continues retransmitting. MTU is 9000 on both virtual machines and througout the route. The packets being sent are large in size. As I said earlier, this does not happen on Ubuntu 12.04 (kernel 3.11). So I did a diff on the TCP config options (seen via "sysctl -a |grep tcp ") between 14.04 and 12.04 and found the following differences. I also noticed that net.ipv4.tcp_mtu_probing=0 in both configurations. Left side is 3.11, right side is 3.13 <<net.ipv4.tcp_abc = 0 <<net.ipv4.tcp_cookie_size = 0 <<net.ipv4.tcp_dma_copybreak = 4096 14c11 << net.ipv4.tcp_early_retrans = 2 --- >> net.ipv4.tcp_early_retrans = 3 17c14 << net.ipv4.tcp_fastopen = 0 >> net.ipv4.tcp_fastopen = 1 20d16 << net.ipv4.tcp_frto_response = 0 26,27c22 << net.ipv4.tcp_max_orphans = 16384 << net.ipv4.tcp_max_ssthresh = 0 >> net.ipv4.tcp_max_orphans = 4096 29,30c24,25 << net.ipv4.tcp_max_tw_buckets = 16384 << net.ipv4.tcp_mem = 94377 125837 188754 >> net.ipv4.tcp_max_tw_buckets = 4096 >> net.ipv4.tcp_mem = 23352 31138 46704 34a30 >> net.ipv4.tcp_notsent_lowat = -1 My question to the networking experts on this forum : Are there any other debugging tools or options I can install/enable to dig further into why this TCP retransmit failure is occurring so consistently ? Are there any configuration changes which might account for this weird behaviour.

    Read the article

  • ????Java EE????WebLogic Server???????????|WebLogic Channel|??????

    - by ???02
    20????????????????????????/???????????Java EE???WebLogic Server????????????????IT(????)?????????????????????????????????????/??????????????????????????????????????????/?????????????????????????2011?9?6???????????????????WebLogic & Java EE????????????????????????????Java EE?WebLogic Server????????????(???)?WebLogic Suite?????/?????????????????? ???Java????????????·?????????????????WebLogic & Java EE?????????????????????????? Fusion Middleware?????????????????Oracle WebLogic Server???????????????????????????WebLogic Server????????????????·?????????????????????? ???WebLogic Server??????????????Standard Edition?????????????Enterprise Edition??????????·??????·????????WebLogic Suite??3??????????????????????????WebLogic Suite??????????????WebLogic Server???????????/??????JRockit Flight Recorder????Mission Control???????·???·??????Oracle Coherence????????????????Java??????JRockit Real Time????????????????Oracle Enterprise Manager??????????????????????????????????????????????????????????·??????·??????????????????·???????? ????????????????????WebLogic Server?????????????????????????????·????????????????·??????2????????2??????????????IT???????????????????????????????????????·????????????????IT??????????????????????????????????·???????????????????IT??????????????????????????????????Java????????·????????????????????????????????????????????????????????? ??????????????????????????????????????????????"???"??????????????WebLogic Suite???????????????????????????????????????????????????????????????(???) ???????WebLogic Server?????????????????WebLogic Suite 11g?????????????????????????????????Oracle Database??????????????????4?????? ???????????????????Java EE 5????????????Java EE 6???????????????Eclipse????????????????FastSwap???????????????????????????????????????????????????????? ?????????????????????????JRockit Flight Recorder????????????·????????????????????????????????????????·??????????????????????????????????? Oracle Database?????????????Oracle Real Application Clusters(RAC)??????????Active GridLink for RAC?????????????????RAC???????????????????????·????????????????????????????·?????????????????????????????????RAC?????????WebLogic Server????????????????????????????????????????????????????????????????????????????????????????? ?????????????????·???????2011????????????????WebLogic Server 10.3.6???2012?????????????????WebLogic Server 12.1.1????????WebLogic Server 10.3.6???????·???????Oracle Exalogic Elastic Cloud???WebLogic Server 12.1.1?Java????????????????????????? WebLogic Server 10.3.6????????????Oracle Virtual Assembly Builder???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????WebLogic Server 10.3.6?????????????????InfiniBand????????Socket Direct Protocol??????????? ??????????·???????WebLogic Server 12.1.1???Java EE 6??????????????????Web?????????????????????Java EE 6?????????WebLogic Server????????????????????? ??????????????????????????????WebLogic Suite????????????????????????????????·??????·????????WebLogic Server????????????Java EE????6????????! ????????Java EE 6????-??????????????????????? Fusion Middleware?????? ???Java???????????????????Java??????????????????? ????????????????????????――?Java EE??????????????????????2000???????EJB??????Java EE?????????????????Web???????????????????Struts???Spring Framework??????????????????????????????????Java EE?"?"???????????????????????????????????????????????????????????????????????????????????XML??????????????????????????Java EE??????????(=??)??????? ??????????????????????????????????J2EE 1.4??????Java EE 5???????"??????"???????????????????????????Java EE 6??????????????"??????"???????????????????????????2009?12???????????????????????????(???) ?????????????????????????Java EE 6????????????????????????????????????????????????4?????? ?????????????Java EE???????????????????????????????????????????web.xml?????????????????Java EE 6??????????????????web.xml??????????????????????????????????????????????????????????????????????????????? ????Java EE????????????????????????????Java EE 6??????Web??????????????????Web????????????Java EE??????????????????????????????????????/????????Web???????????????????????? ????????????????????Java EE???????·??????????JavaServer Faces(JSF) 2.0???????????????????????????????????? JSF 2.0??????????????????·????????XHTML???????????????????????·???????(UI)??????????????JSF 1.2???Java Server Pages(JSP)????????????????????????????????????????JSF 2.0???Facelet??????XHTML?????????????????????????????????? ?????EJB??????????????????????????EJB 3.1?????????EJB???????????????????????????????????????·????????????????Java SE???EJB?????????????????????????? ??????????????????????????????????????????·???????????Java EE 5????????Java EE 6?????????Web??????????????????????·??????????Tomcat??????????????·??????????????(???)???????????????????Web?????????????Tomcat?????????????????????? ???????????????Tomcat???????Java Servlet?JSP?Expression Language?????????????????Struts???????????????Web????????????????????????????????????????Web??????????????????????????????????????????????????????????????Java EE 6????????????????????????????? ?Java EE 6?Web???????????Java EE?????????????????Web????????????????????Java EE 6???????WebLogic Server????????????????????????????????????????Web??????????????????????(???) ?????????????????????????????????????????????????????????Java EE 6?????????????????????Java EE 6???"??????"?????????????JRockit Flight Recorder/Mission Control?????????! ??????????????? Fusion Middleware?????????????????Oracle WebLogic Server 11g?????????-???????WebLogic??????!??????????????WebLogic Server?????????????????????????????????????????????????????????????????????????JRockit Flight Recorder?JRockit Mission Control????????????·??????????????? ????????JRockit Flight Recorder(JFR)??Java??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ??JFR????????????????????SLA???????????????????????????????? ????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????JRockit?????????????JRockit Mission Control(JMC)?????JFR??????????JFR????????·???????????????????? JFR?????????????????????????????????????????????????????????????????????????·????????????????????????????????????????·?????????????????????????????????????????????????????4???????????????????????JFR???????????????????????????????????????? ???JMC?Eclipse??????????????????????????????????????????·?????????????????????????????????????Eclipse??????JMC????????????????·???????????????????·?????????????????????????????????????? ??????JMC?Eclipse?????????????????????????????????????????UI????????????????????????????????????????????????????????????????????????????????????????????????: ?????????! ?????????????????JRockit Flight Recorder?????*   *   * ???????WebLogic & Java EE??????????????????Java?WebLogic Server????3??????????????????????????????????·?????????????????????????

    Read the article

  • PHP Startup: Unable to load dynamic library '/usr/lib64/php/modules/json.so' undefined symbol: ZVAL_DELREF

    - by crmpicco
    I have an issue where I am unable to use JSON, which would appear to be because of the following error. There is another thread on this forum this touches on a similar issue, but it's not quite the same. I am using CentOS 5.6 and have the following pear packages installed: [crmpicco@eq-www-php53 ~]$ pear list PHP Warning: PHP Startup: Unable to load dynamic library '/usr/lib64/php/modules/json.so' - /usr/lib64/php/modules/json.so: undefined symbol: ZVAL_DELREF in Unknown on line 0 Installed packages, channel pear.php.net: ========================================= Package Version State Archive_Tar 1.3.7 stable Auth_SASL 1.0.2 stable Console_Getopt 1.3.1 stable Image_Barcode 1.1.2 stable Mail 1.1.14 stable Net_SMTP 1.2.10 stable Net_Socket 1.0.8 stable PEAR 1.9.4 stable Structures_Graph 1.0.4 stable XML_RPC 1.5.4 stable XML_Util 1.2.1 stable json 1.2.1 stable and have the following PHP packages installed: [crmpicco@eq-www-php53 ~]$ yum list installed | grep php php.x86_64 5.3.10-1.w5 installed php-cli.x86_64 5.3.10-1.w5 installed php-common.x86_64 5.3.10-1.w5 installed php-devel.x86_64 5.3.10-1.w5 installed php-gd.x86_64 5.3.10-1.w5 installed php-ldap.x86_64 5.3.10-1.w5 installed php-mcrypt.x86_64 5.3.10-1.w5 installed php-mysql.x86_64 5.3.10-1.w5 installed php-pdo.x86_64 5.3.10-1.w5 installed php-pear.noarch 1:1.9.4-1.w5 installed php-pear-Net-Socket.noarch 1.0.8-1.el5.centos installed php-soap.x86_64 5.3.10-1.w5 installed php-xml.x86_64 5.3.10-1.w5 installed The error: [crmpicco@eq-www-php53 ~]$ php -v PHP Warning: PHP Startup: Unable to load dynamic library '/usr/lib64/php/modules/json.so' - /usr/lib64/php/modules/json.so: undefined symbol: ZVAL_DELREF in Unknown on line 0 PHP 5.3.10 (cli) (built: Feb 2 2012 23:23:12) Copyright (c) 1997-2012 The PHP Group Zend Engine v2.3.0, Copyright (c) 1998-2012 Zend Technologies My repolist reads as: [crmpicco@eq-www-php53 ~]$ yum repolist Loaded plugins: changelog, fastestmirror Excluding Packages in global exclude list Finished repo id repo name status base CentOS-5 - Base 3,548+43 epel Extra Packages for Enterprise Linux 5 - x86_64 6,815+156 extras CentOS-5 - Extras 245+23 rpmforge Red Hat Enterprise 5 - RPMforge.net - dag 11,016+67 updates CentOS-5 - Updates 233 webtatic Webtatic Repository 5 - x86_64 211+183 repolist: 22,068 I am getting HTTP 500 errors everywhere that I use JSON so my application is non functional right now.

    Read the article

  • ssh + tinyproxy: poor performance

    - by Paul
    I am currently in China and I would like to still visit some blocked websites (facebook, youtube). I have VPS in the USA and I have installed tinyproxy on it. I log in on my VPS with SSH port-forwarding and I have configured my browser appropriately. Everything works more or less: I can surf to those websites but everything is inusually slow and sometimes data transfer stops abruptly. This probably has to do with the fact that I see some errors in my shell on the VPS like : channel 6: open failed: connect failed: Also in the log-file of tinyproxy I see some bad things: ERROR Sep 06 14:52:14 [28150]: getpeer_information: getpeername() error: Transport endpoint is not connected ERROR Sep 06 14:52:15 [28153]: writebuff: write() error "Connection reset by peer" on file descriptor 7 ERROR Sep 06 14:52:15 [28168]: readbuff: recv() error "Connection reset by peer" on file descriptor 7 ERROR Sep 06 14:52:15 [28151]: readbuff: recv() error "Connection reset by peer" on file descriptor 7 ERROR Sep 06 14:52:15 [28143]: readbuff: recv() error "Connection reset by peer" on file descriptor 7 ERROR Sep 06 14:52:17 [28147]: writebuff: write() error "Connection reset by peer" on file descriptor 7 ERROR Sep 06 14:52:23 [28137]: writebuff: write() error "Connection reset by peer" on file descriptor 7 ERROR Sep 06 14:52:26 [28168]: getpeer_information: getpeername() error: Transport endpoint is not connected ERROR Sep 06 14:52:27 [28186]: read_request_line: Client (file descriptor: 7) closed socket before read. ERROR Sep 06 14:52:31 [28160]: getpeer_information: getpeername() error: Transport endpoint is not connected

    Read the article

  • uWSGI log file...permission denied to read file

    - by bkev
    I have a server running Django/Nginx/uWSGI with uWSGI in emperor mode, and the error log for it (the vassal-level error log, not the emperor-level log) has a continual permissions error every time it spawns a new worker, like so: Tue Jun 26 19:34:55 2012 - Respawned uWSGI worker 2 (new pid: 9334) Error opening file for reading: Permission denied Problem is, I don't know what file it's having trouble opening; it's not the log file, obviously, since I'm looking at it and it's writing to that without issue. Any way to find out? I'm running the apt-get version of uWSGI 1.0.3-debian through Upstart on Ubuntu 12.04. The site is working successfully, aside from what seems like a memory leak...hence my looking at the log file. My Upstart conf file description "uWSGI" start on runlevel [2345] stop on runlevel [06] respawn env UWSGI=/usr/bin/uwsgi env LOGTO=/var/log/uwsgi/emperor.log exec $UWSGI \ --master \ --emperor /etc/uwsgi/vassals \ --die-on-term \ --auto-procname \ --no-orphans \ --logto $LOGTO \ --logdate My Vassal ini file: [uwsgi] # Variables base = /srv/env/mysiteenv # Generic Config uid = uwsgi gid = uwsgi socket = 127.0.0.1:5050 master = true processes = 2 reload-on-as = 128 harakiri = 60 harakiri-verbose = true auto-procname = true plugins = http,python cache = 2000 home = %(base) pythonpath = %(base)/mysite module = wsgi logto = /srv/log/mysite/uwsgi_error.log logdate = true

    Read the article

  • Trying to run an ASP.NET MVC application using Mono on Apache with FastCGI.

    - by Arda Xi
    I have a hosting account with DreamHost, and I would like to use the same account to run ASP.NET applications. I have an application deployed in a subdomain, a .htaccess with a handler like this: # Define the FastCGI Mono launcher as an Apache handler and let # it manage this web-application (its files and subdirectories) SetHandler monoWrapper Action monoWrapper /home/arienh4/<domain>/cgi-bin/mono.fcgi virtual My mono.fcgi is set up as such: #!/bin/sh #umask 0077 exec >>/home/arienh4/tmp/mono-fcgi.log exec 2>>/home/arienh4/tmp/mono-fcgi.err echo $(date +"[%F %T]") Starting fastcgi-mono-server2 cd / chmod 0700 /home/arienh4/tmp/mono-fcgi.sock echo $$>/home/arienh4/tmp/mono-fcgi.pid # stdin is the socket handle export PATH="/home/arienh4/mono/bin:$PATH" export LD_LIBRARY_PATH="/home/arienh4/mono/lib:$LD_LIBRARY_PATH" export TMP="/home/arienh4/tmp" export MONO_SHARED_DIR="/home/arienh4/tmp" exec /home/arienh4/mono/bin/mono /home/arienh4/mono/lib/mono/2.0/fastcgi-mono-server2.exe \ /logfile=/home/arienh4/logs/fastcgi-mono-web.log /loglevels=All \ /applications=/:/home/arienh4/<domain> I took this from the Mono site for CGI, I'm not sure if I'm doing it correctly though. This code is resulting in this error: Request exceeded the limit of 10 internal redirects due to probable configuration error. Use 'LimitInternalRecursion' to increase the limit if necessary. Use 'LogLevel debug' to get a backtrace. I have no idea what's causing this. As far as I can see, Mono isn't even hit (no log files are created).

    Read the article

< Previous Page | 432 433 434 435 436 437 438 439 440 441 442 443  | Next Page >