Search Results

Search found 88224 results on 3529 pages for 'ora code'.

Page 45/3529 | < Previous Page | 41 42 43 44 45 46 47 48 49 50 51 52  | Next Page >

  • Code Reuse is (Damn) Hard

    - by James Michael Hare
    Being a development team lead, the task of interviewing new candidates was part of my job.  Like any typical interview, we started with some easy questions to get them warmed up and help calm their nerves before hitting the hard stuff. One of those easier questions was almost always: “Name some benefits of object-oriented development.”  Nearly every time, the candidate would chime in with a plethora of canned answers which typically included: “it helps ease code reuse.”  Of course, this is a gross oversimplification.  Tools only ease reuse, its developers that ultimately can cause code to be reusable or not, regardless of the language or methodology. But it did get me thinking…  we always used to say that as part of our mantra as to why Object-Oriented Programming was so great.  With polymorphism, inheritance, encapsulation, etc. we in essence set up the concepts to help facilitate reuse as much as possible.  And yes, as a developer now of many years, I unquestionably held that belief for ages before it really struck me how my views on reuse have jaded over the years.  In fact, in many ways Agile rightly eschews reuse as taking a backseat to developing what's needed for the here and now.  It used to be I was in complete opposition to that view, but more and more I've come to see the logic in it.  Too many times I've seen developers (myself included) get lost in design paralysis trying to come up with the perfect abstraction that would stand all time.  Nearly without fail, all of these pieces of code become obsolete in a matter of months or years. It’s not that I don’t like reuse – it’s just that reuse is hard.  In fact, reuse is DAMN hard.  Many times it is just a distraction that eats up architect and developer time, and worse yet can be counter-productive and force wrong decisions.  Now don’t get me wrong, I love the idea of reusable code when it makes sense.  These are in the few cases where you are designing something that is inherently reusable.  The problem is, most business-class code is inherently unfit for reuse! Furthermore, the code that is reusable will often fail to be reused if you don’t have the proper framework in place for effective reuse that includes standardized versioning, building, releasing, and documenting the components.  That should always be standard across the board when promoting reusable code.  All of this is hard, and it should only be done when you have code that is truly reusable or you will be exerting a large amount of development effort for very little bang for your buck. But my goal here is not to get into how to reuse (that is a topic unto itself) but what should be reused.  First, let’s look at an extension method.  There’s many times where I want to kick off a thread to handle a task, then when I want to reign that thread in of course I want to do a Join on it.  But what if I only want to wait a limited amount of time and then Abort?  Well, I could of course write that logic out by hand each time, but it seemed like a great extension method: 1: public static class ThreadExtensions 2: { 3: public static bool JoinOrAbort(this Thread thread, TimeSpan timeToWait) 4: { 5: bool isJoined = false; 6:  7: if (thread != null) 8: { 9: isJoined = thread.Join(timeToWait); 10:  11: if (!isJoined) 12: { 13: thread.Abort(); 14: } 15: } 16: return isJoined; 17: } 18: } 19:  When I look at this code, I can immediately see things that jump out at me as reasons why this code is very reusable.  Some of them are standard OO principles, and some are kind-of home grown litmus tests: Single Responsibility Principle (SRP) – The only reason this extension method need change is if the Thread class itself changes (one responsibility). Stable Dependencies Principle (SDP) – This method only depends on classes that are more stable than it is (System.Threading.Thread), and in itself is very stable, hence other classes may safely depend on it. It is also not dependent on any business domain, and thus isn't subject to changes as the business itself changes. Open-Closed Principle (OCP) – This class is inherently closed to change. Small and Stable Problem Domain – This method only cares about System.Threading.Thread. All-or-None Usage – A user of a reusable class should want the functionality of that class, not parts of that functionality.  That’s not to say they most use every method, but they shouldn’t be using a method just to get half of its result. Cost of Reuse vs. Cost to Recreate – since this class is highly stable and minimally complex, we can offer it up for reuse very cheaply by promoting it as “ready-to-go” and already unit tested (important!) and available through a standard release cycle (very important!). Okay, all seems good there, now lets look at an entity and DAO.  I don’t know about you all, but there have been times I’ve been in organizations that get the grand idea that all DAOs and entities should be standardized and shared.  While this may work for small or static organizations, it’s near ludicrous for anything large or volatile. 1: namespace Shared.Entities 2: { 3: public class Account 4: { 5: public int Id { get; set; } 6:  7: public string Name { get; set; } 8:  9: public Address HomeAddress { get; set; } 10:  11: public int Age { get; set;} 12:  13: public DateTime LastUsed { get; set; } 14:  15: // etc, etc, etc... 16: } 17: } 18:  19: ... 20:  21: namespace Shared.DataAccess 22: { 23: public class AccountDao 24: { 25: public Account FindAccount(int id) 26: { 27: // dao logic to query and return account 28: } 29:  30: ... 31:  32: } 33: } Now to be fair, I’m not saying there doesn’t exist an organization where some entites may be extremely static and unchanging.  But at best such entities and DAOs will be problematic cases of reuse.  Let’s examine those same tests: Single Responsibility Principle (SRP) – The reasons to change for these classes will be strongly dependent on what the definition of the account is which can change over time and may have multiple influences depending on the number of systems an account can cover. Stable Dependencies Principle (SDP) – This method depends on the data model beneath itself which also is largely dependent on the business definition of an account which can be very inherently unstable. Open-Closed Principle (OCP) – This class is not really closed for modification.  Every time the account definition may change, you’d need to modify this class. Small and Stable Problem Domain – The definition of an account is inherently unstable and in fact may be very large.  What if you are designing a system that aggregates account information from several sources? All-or-None Usage – What if your view of the account encompasses data from 3 different sources but you only care about one of those sources or one piece of data?  Should you have to take the hit of looking up all the other data?  On the other hand, should you have ten different methods returning portions of data in chunks people tend to ask for?  Neither is really a great solution. Cost of Reuse vs. Cost to Recreate – DAOs are really trivial to rewrite, and unless your definition of an account is EXTREMELY stable, the cost to promote, support, and release a reusable account entity and DAO are usually far higher than the cost to recreate as needed. It’s no accident that my case for reuse was a utility class and my case for non-reuse was an entity/DAO.  In general, the smaller and more stable an abstraction is, the higher its level of reuse.  When I became the lead of the Shared Components Committee at my workplace, one of the original goals we looked at satisfying was to find (or create), version, release, and promote a shared library of common utility classes, frameworks, and data access objects.  Now, of course, many of you will point to nHibernate and Entity for the latter, but we were looking at larger, macro collections of data that span multiple data sources of varying types (databases, web services, etc). As we got deeper and deeper in the details of how to manage and release these items, it quickly became apparent that while the case for reuse was typically a slam dunk for utilities and frameworks, the data access objects just didn’t “smell” right.  We ended up having session after session of design meetings to try and find the right way to share these data access components. When someone asked me why it was taking so long to iron out the shared entities, my response was quite simple, “Reuse is hard...”  And that’s when I realized, that while reuse is an awesome goal and we should strive to make code maintainable, often times you end up creating far more work for yourself than necessary by trying to force code to be reusable that inherently isn’t. Think about classes the times you’ve worked in a company where in the design session people fight over the best way to implement a class to make it maximally reusable, extensible, and any other buzzwordable.  Then think about how quickly that design became obsolete.  Many times I set out to do a project and think, “yes, this is the best design, I can extend it easily!” only to find out the business requirements change COMPLETELY in such a way that the design is rendered invalid.  Code, in general, tends to rust and age over time.  As such, writing reusable code can often be difficult and many times ends up being a futile exercise and worse yet, sometimes makes the code harder to maintain because it obfuscates the design in the name of extensibility or reusability. So what do I think are reusable components? Generic Utility classes – these tend to be small classes that assist in a task and have no business context whatsoever. Implementation Abstraction Frameworks – home-grown frameworks that try to isolate changes to third party products you may be depending on (like writing a messaging abstraction layer for publishing/subscribing that is independent of whether you use JMS, MSMQ, etc). Simplification and Uniformity Frameworks – To some extent this is similar to an abstraction framework, but there may be one chosen provider but a development shop mandate to perform certain complex items in a certain way.  Or, perhaps to simplify and dumb-down a complex task for the average developer (such as implementing a particular development-shop’s method of encryption). And what are less reusable? Application and Business Layers – tend to fluctuate a lot as requirements change and new features are added, so tend to be an unstable dependency.  May be reused across applications but also very volatile. Entities and Data Access Layers – these tend to be tuned to the scope of the application, so reusing them can be hard unless the abstract is very stable. So what’s the big lesson?  Reuse is hard.  In fact it’s damn hard.  And much of the time I’m not convinced we should focus too hard on it. If you’re designing a utility or framework, then by all means design it for reuse.  But you most also really set down a good versioning, release, and documentation process to maximize your chances.  For anything else, design it to be maintainable and extendable, but don’t waste the effort on reusability for something that most likely will be obsolete in a year or two anyway.

    Read the article

  • Five C# Code Snippets

    A snippet is a small section of text or source code that can be inserted into the code of a program. Snippets provide an easy way to implement commonly used code or functions into a larger section of code. Instead of rewriting the same code over and over again, a programmer can save the code [...] Related posts:How To Obtain Environment Details With .NET 3.5 How-to: Easily Send Emails With .NET Understanding SMTP Status Codes ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Good Scoop: The PeopleSoft/IBM Backstory

    - by [email protected]
    By Brian Dayton on April 12, 2010 11:15 AM Sometimes you're searching for something online and you find an unrelated, bonus nugget. Last week I stumbled across an interesting blog post from Chris Heller of a PeopleSoft consulting shop in San Ramon, CA called Grey Sparling. I don't know these guys. But Chris, who apparently used to work on the PeopleTools team, wrote a great article on a pre-acquisition, would-be deal between IBM and PeopleSoft that would have standardized PeopleSoft on IBM technology. The behind-the-scenes perspective is interesting. His commentary on the challenges that the company and PeopleSoft customers would have encountered if the deal had gone through was also interesting: · "No common ownership. It's hard enough to get large groups of people to work together when they work for the same company, but with two separate companies it is much, much harder. Even within Oracle, progress on Fusion applications was slow until Thomas Kurian took over Fusion applications in addition to Fusion middleware." · "No customer buy-in. PeopleSoft customers weren't asking for a conversion to WebSphere, so the fact that doing that could have helped PeopleSoft stay independent wouldn't have meant much to them, especially since the cost of moving to whatever a "PeopleSoft built on WebSphere" would have been significant." · "No executive buy-in. This is related to the previous point, but it's worth calling out separately. If Oracle had walked away and the deal with IBM had gone through, and PeopleSoft customers got put through the wringer as part of WebSphere move, all of the PeopleSoft project teams would be put in the awkward position of explaining to their management why these additional costs and headaches were happening. Essentially they would need to "sell" the partnership internally to their own management team. That's not a fun conversation to have." I'm not surprised that something like this was in the works. But I did find the inside scoop and Heller's perspective on the challenges particularly interesting. Especially the advantages of aligning development of applications and infrastructure development under one roof. Here's a link to the whole blog entry.

    Read the article

  • Does a prose to code compiler exist?

    - by Raynos
    I have seen some horrible code in my time including people virtually duplicating the code in comments // add 4 to x x+=4; // for each i in 0 to 9 for (int i = 0; i < 10; i++) { // multiply x by i x *= i; } Taking this concept further, I'm curious whether prose to code compilers exist. Is there a valid use case for English prose to code? Do compilers exist that do this? The distinction between this and auto generated code, is that auto generated code is generally always a subset of a project. Can we have complete projects auto generated from english prose? I realise that this might overlap with the concept of declarative languages.

    Read the article

  • why not use unmanaged safe code in c#

    - by user613326
    There is an option in c# to execute code unchecked. It's generally not advised to do so, as managed code is much safer and it overcomes a lot of problems. However I am wondering, if you're sure your code won't cause errors, and you know how to handle memory then why (if you like fast code) follow the general advice? I am wondering this since I wrote a program for a video camera, which required some extremely fast bitmap manipulation. I made some fast graphical algorithms myself, and they work excellent on the bitmaps using unmanaged code. Now I wonder in general, if you're sure you don't have memory leaks, or risks of crashes, why not use unmanaged code more often ? PS my background: I kinda rolled into this programming world and I work alone (I do so for a few years) and so I hope this software design question isn't that strange. I don't really have other people out there like a teacher to ask such things.

    Read the article

  • Releasing a project under GPL v2 or later without the source code of libraries

    - by Luciano Silveira
    I wrote a system in Java that I want to release under the terms of GPL v2 or later. I've used Apache Maven to deal with all the dependencies of the system, so I don't have the source code of any of the libraries used. I've already checked, all the libraries were released under GPL-compatible licenses (Apache v2, 3-clause BSD, MIT, LGPL v2 and v2.1). I have 3 questions about this scenario: 1) Can I release a package with only the binaries of code I wrote, not including the libraries, and distribute only the source code I wrote? 2) Can I release a package with all the binaries, including the libraries, and distribute only the source code I wrote? 3) Can I release a package with all the binaries, including the libraries, and distribute only the source code I wrote plus the source code of the libraries licensed under the LGPL license?

    Read the article

  • How do you handle measuring Code Coverage in JavaScript

    - by Dancrumb
    In order to measure Code Coverage for JavaScript unit tests, one needs to instrument the code, run the tests and then perform post-processing. My concern is that, as a result, you are unit testing code that will never be run in production. Since JavaScript isn't compiled, what you test should be precisely what you execute. So here's my question, how do you handle this? One thought I had was to run Unit Testing on the production code and use that for my pass fail. I would then create a shadow of my production code, with instrumentation and run my unit tests again; this would give me my code coverage stats. Has anyone come across a method that is a little more graceful than this?

    Read the article

  • What is testable code?

    - by Michael Freidgeim
    We are improving quality of code and trying to develop more unit tests. The question that developers asked  was  "How to make code testable ?"  From http://openmymind.net/2010/8/17/Write-testable-code-even-if-you-dont-write-tests/ First and foremost, its loosely coupled, taking advantage of dependency injection (and auto-wiring), composition and interface-programming. Testable code is also readable - meaning it leverages single responsibility principle and Liskov substitution principle.A few practical suggestions are listed in http://misko.hevery.com/code-reviewers-guide/More recommendations are in http://googletesting.blogspot.com/2008/08/by-miko-hevery-so-you-decided-to.htmlIt is slightly too theoretical - " the trick is translating these abstract concepts into concrete decisions in your code."

    Read the article

  • Un espace de revue de code a ouvert ses portes dans la rubrique Qt, venez participer

    Bonjour à tous, Suite à une certaine demande après le défi, il nous a semblé utile d'organiser quelque peu une revue de code Qt. En deux mots, de quoi s'agit-il ? Des développeurs plus expérimentés lisent le code d'autres développeurs et le commentent : ceci aurait été mieux d'une autre manière, ce commentaire ne veut rien dire, ce pavé de code devrait être réécrit, etc. Des remarques sur le fond et la forme du code, sur son organisation, les patrons de conception utilisés, les concepts inhérents à Qt et/ou au C++ mal compris ou mal appliqués, etc. L'objectif est de confronter les opinions sur un code pour qu'au final tout le monde y gagne. Pour l'organisation, autant faire simple : pour ceux qui souhaitent une revue de code, créez un ...

    Read the article

  • Top X tips to code & debug efficiently [closed]

    - by user1510230
    I'm starting a big Java project and I wanted to have some advices that could benefit us all. What are the X (X could be 5 / 10 / ... or even 100 :) most important tips to code and debug efficiently in general (and in particular with java / javascript) ? I'll start with some basic ones : Use functions everytime a portion of code is used more than twice. Try not to code features with more than 15 lines of code in one shot. Rather write 5 lines of code then check if they work correctly then write 5 more... and so on start with the outcome of the function and then code it backwards (bottom-top approach) ... Thanks everybody

    Read the article

  • Where to find GUI code

    - by muffinz
    I've been rummaging through Unity's source code (Shell Interface) and I was a little curious about something; where in the code are you supposed to find positional code? I'll clarify a bit with some examples. How do you find in the code what tells the Launcher to sit on the left side of the screen? Where in the code does it tell the "Session" button on the panel (top) to sit at the very right of the screen? I guess my real question is how do I find this out for myself? I've looked through a big portion of the source code and can't find anything related to the actual position of these items, only their sub-items like text-align. Any guidance on this would be much appreciated.

    Read the article

  • PL/SQL pre-compile and Code Quality checks in an automatted build environment?

    - by Lars Corneliussen
    We build software using Hudson and Maven. We have C#, java and last, but not least PL/SQL sources (sprocs, packages, DDL, crud) For C# and Java we do unit tests and code analysis, but we don't really know the health of our PL/SQL sources before we actually publish them to the target database. Requirements There are a couple of things we wan't to test in the following priority: Are the sources valid, hence "compilable"? For packages, with respect to a certain database, would they compile? Code Quality: Do we have code flaws like duplicates, too complex methods or other violations to a defined set of rules? Also, the tool must run head-less (commandline, ant, ...) we wan't to do analysis on a partial code base (changed sources only) Tools We did a little research and found the following tools that could potencially help: Cast Application Intelligence Platform (AIP): Seems to be a server that grasps information about "anything". Couldn't find a console version that would export in readable format. Toad for Oracle: The Professional version is said to include something called Xpert validates a set of rules against a code base. Sonar + PL/SQL-Plugin: Uses Toad for Oracle to display code-health the sonar-way. This is for browsing the current state of the code base. Semantic Designs DMSToolkit: Quite general analysis of source code base. Commandline available? Semantic Designs Clones Detector: Detects clones. But also via command line? Fortify Source Code Analyzer: Seems to be focussed on security issues. But maybe it is extensible? more... So far, Toad for Oracle together with Sonar seems to be an elegant solution. But may be we are missing something here? Any ideas? Other products? Experiences? Related Questions on SO: http://stackoverflow.com/questions/531430/any-static-code-analysis-tools-for-stored-procedures http://stackoverflow.com/questions/839707/any-code-quality-tool-for-pl-sql http://stackoverflow.com/questions/956104/is-there-a-static-analysis-tool-for-python-ruby-sql-cobol-perl-and-pl-sql

    Read the article

  • I want tell the VC++ Compiler to compile all code. Can it be done?

    - by KGB
    I am using VS2005 VC++ for unmanaged C++. I have VSTS and am trying to use the code coverage tool to accomplish two things with regards to unit tests: See how much of my referenced code under test is getting executed See how many methods of my code under test (if any) are not unit tested at all Setting up the VSTS code coverage tool (see the link text) and accomplishing task #1 was straightforward. However #2 has been a surprising challenge for me. Here is my test code. class CodeCoverageTarget { public: std::string ThisMethodRuns() { return "Running"; } std::string ThisMethodDoesNotRun() { return "Not Running"; } }; #include <iostream> #include "CodeCoverageTarget.h" using namespace std; int main() { CodeCoverageTarget cct; cout<<cct.ThisMethodRuns()<<endl; } When both methods are defined within the class as above the compiler automatically eliminates the ThisMethodDoesNotRun() from the obj file. If I move it's definition outside the class then it is included in the obj file and the code coverage tool shows it has not been exercised at all. Under most circumstances I want the compiler to do this elimination for me but for the code coverage tool it defeats a significant portion of the value (e.g. finding untested methods). I have tried a number of things to tell the compiler to stop being smart for me and compile everything but I am stumped. It would be nice if the code coverage tool compensated for this (I suppose by scanning the source and matching it up with the linker output) but I didn't find anything to suggest it has a special mode to be turned on. Am I totally missing something simple here or is this not possible with the VC++ compiler + VSTS code coverage tool? Thanks in advance, KGB

    Read the article

  • Are there any good resources for developing Entity Framework 4 code-first?

    - by KallDrexx
    I am trying to convert my model-first project to code-first, as I can see dealing with the models with the graphical designer will become hard. Unfortunately, with all my googling I can't find one good reference that describes how to do code-first development. Most resources are out of date (so out of date they refer to it as code-only), and the other references I can find seem to assume you understand the basics of context building and code-first (for example, they reference code to build contexts but don't describe where that code should actually go, and how it's actually run). Are there any decent resources for code-first development, that describe how to map your POCO entities into a database schema?

    Read the article

  • What should be done first: Code reviews or Unit tests?

    - by goldenmean
    Hello, If a developer implements code for some module and wants to get it reviewed. What should be the order : *First unit test the module after designing test cases for the module, debugging and fixing the bugs and then give the modified code for peer code review (Pros- Code to be reviewed is 'clean' to a good extent. Reduces some avoidable review comments and rework. Cons- Developer might spend large time debugging/fixing a bug which could have pointed/anticipated in peer code reviews) Or *First do the code review with peers and then go for unit testing. What are your thoughts/experience on this? I believe this approach for unit testing, code reviewing should be programming language agnostic, but it would be interesting to know otherwise(if applicable) with specific examples. -AD

    Read the article

  • What books help one to learn to read code?

    - by Daniel
    Lion's Commentary on Unix Sixth Edition with Source Code is a wonderful book to learn how to read code. Reading code is important -- how does one learn how to write excellent code without having read excellent code? But, sadly, while great writers, of fiction and non-fiction, all spend a great deal of time reading stuff, we, programmers, seem to avoid it like the plague. Worse still, programming books usually go the same way. They might show a pattern or a style, but they often avoid showing good, complex code, and helping one go through it. There are exceptions, of course. I hope. So, with that in mind, what books are to be found which help one learn how to read code?

    Read the article

  • Using the StopWatch class to calculate the execution time of a block of code

    - by vik20000in
      Many of the times while doing the performance tuning of some, class, webpage, component, control etc. we first measure the current time taken in the execution of that code. This helps in understanding the location in code which is actually causing the performance issue and also help in measuring the amount of improvement by making the changes. This measurement is very important as it helps us understand the problem in code, Helps us to write better code next time (as we have already learnt what kind of improvement can be made with different code) . Normally developers create 2 objects of the DateTime class. The exact time is collected before and after the code where the performance needs to be measured.  Next the difference between the two objects is used to know about the time spent in the code that is measured. Below is an example of the sample code.             DateTime dt1, dt2;             dt1 = DateTime.Now;             for (int i = 0; i < 1000000; i++)             {                 string str = "string";             }             dt2 = DateTime.Now;             TimeSpan ts = dt2.Subtract(dt1);             Console.WriteLine("Time Spent : " + ts.TotalMilliseconds.ToString());   The above code works great. But the dot net framework also provides for another way to capture the time spent on the code without doing much effort (creating 2 datetime object, timespan object etc..). We can use the inbuilt StopWatch class to get the exact time spent. Below is an example of the same work with the help of the StopWatch class.             Stopwatch sw = Stopwatch.StartNew();             for (int i = 0; i < 1000000; i++)             {                 string str = "string";             }             sw.Stop();             Console.WriteLine("Time Spent : " +sw.Elapsed.TotalMilliseconds.ToString());   [Note the StopWatch class resides in the System.Diagnostics namespace] If you use the StopWatch class the time taken for measuring the performance is much better, with very little effort. Vikram

    Read the article

  • Managing common code on Windows 7 (.NET) and Windows 8 (WinRT)

    - by ryanabr
    Recent announcements regarding Windows Phone 8 and the fact that it will have the WinRT behind it might make some of this less painful but I  discovered the "XmlDocument" object is in a new location in WinRT and is almost the same as it's brother in .NET System.Xml.XmlDocument (.NET) Windows.Data.Xml.Dom.XmlDocument (WinRT) The problem I am trying to solve is how to work with both types in the code that performs the same task on both Windows Phone 7 and Windows 8 platforms. The first thing I did was define my own XmlNode and XmlNodeList classes that wrap the actual Microsoft objects so that by using the "#if" compiler directive either work with the WinRT version of the type, or the .NET version from the calling code easily. public class XmlNode     { #if WIN8         public Windows.Data.Xml.Dom.IXmlNode Node { get; set; }         public XmlNode(Windows.Data.Xml.Dom.IXmlNode xmlNode)         {             Node = xmlNode;         } #endif #if !WIN8 public System.Xml.XmlNode Node { get; set ; } public XmlNode(System.Xml.XmlNode xmlNode)         {             Node = xmlNode;         } #endif     } public class XmlNodeList     { #if WIN8         public Windows.Data.Xml.Dom.XmlNodeList List { get; set; }         public int Count {get {return (int)List.Count;}}         public XmlNodeList(Windows.Data.Xml.Dom.XmlNodeList list)         {             List = list;         } #endif #if !WIN8 public System.Xml.XmlNodeList List { get; set ; } public int Count { get { return List.Count;}} public XmlNodeList(System.Xml.XmlNodeList list)         {             List = list;        } #endif     } From there I can then use my XmlNode and XmlNodeList in the calling code with out having to clutter the code with all of the additional #if switches. The challenge after this was the code that worked directly with the XMLDocument object needed to be seperate on both platforms since the method for populating the XmlDocument object is completly different on both platforms. To solve this issue. I made partial classes, one partial class for .NET and one for WinRT. Both projects have Links to the Partial Class that contains the code that is the same for the majority of the class, and the partial class contains the code that is unique to the version of the XmlDocument. The files with the little arrow in the lower left corner denotes 'linked files' and are shared in multiple projects but only exist in one location in source control. You can see that the _Win7 partial class is included directly in the project since it include code that is only for the .NET platform, where as it's cousin the _Win8 (not pictured above) has all of the code specific to the _Win8 platform. In the _Win7 partial class is this code: public partial class WUndergroundViewModel     { public static WUndergroundData GetWeatherData( double lat, double lng)         { WUndergroundData data = new WUndergroundData();             System.Net. WebClient c = new System.Net. WebClient(); string req = "http://api.wunderground.com/api/xxx/yesterday/conditions/forecast/q/[LAT],[LNG].xml" ;             req = req.Replace( "[LAT]" , lat.ToString());             req = req.Replace( "[LNG]" , lng.ToString()); XmlDocument doc = new XmlDocument();             doc.Load(c.OpenRead(req)); foreach (XmlNode item in doc.SelectNodes("/response/features/feature" ))             { switch (item.Node.InnerText)                 { case "yesterday" :                         ParseForecast( new FishingControls.XmlNodeList (doc.SelectNodes( "/response/forecast/txt_forecast/forecastdays/forecastday" )), new FishingControls.XmlNodeList (doc.SelectNodes( "/response/forecast/simpleforecast/forecastdays/forecastday" )), data); break ; case "conditions" :                         ParseCurrent( new FishingControls.XmlNode (doc.SelectSingleNode("/response/current_observation" )), data); break ; case "forecast" :                         ParseYesterday( new FishingControls.XmlNodeList (doc.SelectNodes( "/response/history/observations/observation" )),data); break ;                 }             } return data;         }     } in _win8 partial class is this code: public partial class WUndergroundViewModel     { public async static Task< WUndergroundData > GetWeatherData(double lat, double lng)         { WUndergroundData data = new WUndergroundData (); HttpClient c = new HttpClient (); string req = "http://api.wunderground.com/api/xxxx/yesterday/conditions/forecast/q/[LAT],[LNG].xml" ;             req = req.Replace( "[LAT]" , lat.ToString());             req = req.Replace( "[LNG]" , lng.ToString()); HttpResponseMessage msg = await c.GetAsync(req); string stream = await msg.Content.ReadAsStringAsync(); XmlDocument doc = new XmlDocument ();             doc.LoadXml(stream, null); foreach ( IXmlNode item in doc.SelectNodes("/response/features/feature" ))             { switch (item.InnerText)                 { case "yesterday" :                         ParseForecast( new FishingControls.XmlNodeList (doc.SelectNodes( "/response/forecast/txt_forecast/forecastdays/forecastday" )), new FishingControls.XmlNodeList (doc.SelectNodes( "/response/forecast/simpleforecast/forecastdays/forecastday" )), data); break; case "conditions" :                         ParseCurrent( new FishingControls.XmlNode (doc.SelectSingleNode("/response/current_observation" )), data); break; case "forecast" :                         ParseYesterday( new FishingControls.XmlNodeList (doc.SelectNodes( "/response/history/observations/observation")), data); break;                 }             } return data;         }     } Summary: This method allows me to have common 'business' code for both platforms that is pretty clean, and I manage the technology differences separately. Thank you tostringtheory for your suggestion, I was considering that approach.

    Read the article

  • C# 5 Async, Part 3: Preparing Existing code For Await

    - by Reed
    While the Visual Studio Async CTP provides a fantastic model for asynchronous programming, it requires code to be implemented in terms of Task and Task<T>.  The CTP adds support for Task-based asynchrony to the .NET Framework methods, and promises to have these implemented directly in the framework in the future.  However, existing code outside the framework will need to be converted to using the Task class prior to being usable via the CTP. Wrapping existing asynchronous code into a Task or Task<T> is, thankfully, fairly straightforward.  There are two main approaches to this. Code written using the Asynchronous Programming Model (APM) is very easy to convert to using Task<T>.  The TaskFactory class provides the tools to directly convert APM code into a method returning a Task<T>.  This is done via the FromAsync method.  This method takes the BeginOperation and EndOperation methods, as well as any parameters and state objects as arguments, and returns a Task<T> directly. For example, we could easily convert the WebRequest BeginGetResponse and EndGetResponse methods into a method which returns a Task<WebResponse> via: Task<WebResponse> task = Task.Factory .FromAsync<WebResponse>( request.BeginGetResponse, request.EndGetResponse, null); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Event-based Asynchronous Pattern (EAP) code can also be wrapped into a Task<T>, though this requires a bit more effort than the one line of code above.  This is handled via the TaskCompletionSource<T> class.  MSDN provides a detailed example of using this to wrap an EAP operation into a method returning Task<T>.  It demonstrates handling cancellation and exception handling as well as the basic operation of the asynchronous method itself. The basic form of this operation is typically: Task<YourResult> GetResultAsync() { var tcs = new TaskCompletionSource<YourResult>(); // Handle the event, and setup the task results... this.GetResultCompleted += (o,e) => { if (e.Error != null) tcs.TrySetException(e.Error); else if (e.Cancelled) tcs.TrySetCanceled(); else tcs.TrySetResult(e.Result); }; // Call the asynchronous method this.GetResult(); // Return the task from the TaskCompletionSource return tcs.Task; } We can easily use these methods to wrap our own code into a method that returns a Task<T>.  Existing libraries which cannot be edited can be extended via Extension methods.  The CTP uses this technique to add appropriate methods throughout the framework. The suggested naming for these methods is to define these methods as “Task<YourResult> YourClass.YourOperationAsync(…)”.  However, this naming often conflicts with the default naming of the EAP.  If this is the case, the CTP has standardized on using “Task<YourResult> YourClass.YourOperationTaskAsync(…)”. Once we’ve wrapped all of our existing code into operations that return Task<T>, we can begin investigating how the Async CTP can be used with our own code.

    Read the article

  • How to use wget to grab copy of Google Code site documents?

    - by Alex Reynolds
    I have a Google Code project which has a lot of wiki'ed documentation. I would like to create a copy of this documentation for offline browsing. I would like to use wget or a similar utility. I have tried the following: $ wget --no-parent \ --recursive \ --page-requisites \ --html-extension \ --base="http://code.google.com/p/myProject/" \ "http://code.google.com/p/myProject/" The problem is that links from within the mirrored copy have links like: file:///p/myProject/documentName This renaming of links in this way causes 404 (not found) errors, since the links point to nowhere valid on the filesystem. What options should I use instead with wget, so that I can make a local copy of the site's documentation and other pages?

    Read the article

  • Entity Framework Code-First to Provide Replacement for ASP.NET Profile Provider

    - by Ken Cox [MVP]
    A while back, I coordinated a project to add support for the SQL Table Profile Provider in ASP.NET 4 Web Applications.  We urged Microsoft to improve ASP.NET’s built-in Profile support so our workaround wouldn’t be necessary. Instead, Microsoft plans to provide a replacement for ASP.NET Profile in a forthcoming release. In response to my feature suggestion on Connect, Microsoft says we should look for something even better using Entity Framework: “When code-first is officially released the final piece of a full replacement of the ASP.NET Profile will have arrived. Once code-first for EF4 is released, developers will have a really easy and very approachable way to create any arbitrary class, and automatically have the .NET Framework create a table to provide storage for that class. Furthermore developer will also have full LINQ-query capabilities against code-first classes. “ The downside is that there won’t be a way to retrofit this Profile replacement to pre- ASP.NET 4 Web applications. At least there’ll still be the MVP workaround code. It looks like it’s time for me to dig into a CTP of EF Code-First to see what’s available.   Scott Guthrie has been blogging about Code-First Development with Entity Framework 4. It’s not clear when the EF Code-First is coming, but my guess is that it’ll be part of the VS 2010/.NET 4 service pack.

    Read the article

  • Deprecated Methods in Code Base

    - by Jamie Taylor
    A lot of the code I've been working on recently, both professionally (read: at work) and in other spheres (read: at home, for friends/family/etc, or NOT FOR WORK), has been worked on, redesigned and re-implemented several times - where possible/required. This has been in an effort to make things smaller, faster more efficient, better and closer to spec (when requirements have changed). A down side to this is that I now have several code bases that have deprecated method blocks (and in some places small objects). I'm looking at making this code maintainable and easy to roll back on changes. I'm already using version control software in both instances, but I'm left wondering if there are any specific techniques that have been used by others for keeping the superseded methods without increasing the size of compiled outputs? At the minute, I'm simply wrapping the old code in C style multi line comments. Here's an example of what I mean (C style, psuedo-code): void main () { //Do some work //Foo(); //Deprecated method call Bar(); //New method } /***** Deprecated code ***** /// Summary of Method void Foo() { //Do some work } ***** Deprecated Code *****/ /// Summary of method void Bar() { //Do some work } I've added a C style example, simply because I'm more confident with the C style languages. I'm trying to put this question across as language agnostic (hence the tag), and would prefer language agnostic answers, if possible - since I see this question as more of a techniques and design question. I'd like to keep the old methods and blocks for a bunch of reasons, chief amongst them being the ability to quickly restore an older working method in the case of some tests failing, or some unforeseen circumstance. Is there a better way to do this (that multi line comments)? Are there any tools that will allow me to store these old methods in separate files? Is that even a good idea?

    Read the article

  • C# 5.0 Async/Await Demo Code

    - by Paulo Morgado
    I’ve published the sample code I use to demonstrate the use of async/await in C# 5.0. You can find it here. Projects PauloMorgado.AyncDemo.WebServer This project is a simple web server implemented as a console application using Microsoft ASP.NET Web API self hosting and serves an image (with a delay) that is accessed by the other projects. This project has a dependency on Json.NET due to the fact the the Microsoft ASP.NET Web API hosting has a dependency on Json.NET. The application must be run on a command prompt with administrative privileges or a urlacl must be added to allow the use of the following command: netsh http add urlacl url=http://+:9090/ user=machine\username To remove the urlacl, just use the following command: netsh http delete urlacl url=http://+:9090/ PauloMorgado.AsyncDemo.WindowsForms This Windows Forms project contains three regions that must be uncommented one at a time: Sync with WebClient This code retrieves the image through a synchronous call using the WebClient class. Async with WebClient This code retrieves the image through an asynchronous call using the WebClient class. Async with HttpClient with cancelation This code retrieves the image through an asynchronous call with cancelation using the HttpClient class. PauloMorgado.AsyncDemo.Wpf This WPF project contains three regions that must be uncommented one at a time: Sync with WebClient This code retrieves the image through a synchronous call using the WebClient class. Async with WebClient This code retrieves the image through an asynchronous call using the WebClient class. Async with HttpClient with cancelation This code retrieves the image through an asynchronous call with cancelation using the HttpClient class.

    Read the article

< Previous Page | 41 42 43 44 45 46 47 48 49 50 51 52  | Next Page >