Search Results

Search found 45852 results on 1835 pages for 'event id 861'.

Page 454/1835 | < Previous Page | 450 451 452 453 454 455 456 457 458 459 460 461  | Next Page >

  • wget-ing protected content with exported cookies

    - by XXL
    I have exported a pair of cookies from Firefox that are valid for the URL in question and tried accessing/downloading the protected content off that address, but the end result is a return to the login page. I have tried doing the same thing for 3 other websites with similar outcome. Any clues as to what I might be doing wrong? The syntax I'm using: wget --load--cookies=FILE URL ----------------------------------------------- DEBUG output created by Wget 1.12 on linux-gnu. Stored cookie www.x.org -1 (ANY) / <permanent> <insecure> [expiry 1901-12-13 22:25:44] c_secure_login lz8xZQ%3D%3D Stored cookie www.x.org -1 (ANY) / <permanent> <insecure> [expiry 1901-12-13 22:25:44] c_secure_pass 2fd4e1c67a2d28fced849ee1bb76e74a Stored cookie www.x.org -1 (ANY) / <permanent> <insecure> [expiry 1901-12-13 22:25:44] c_secure_uid GZX4TDA%3D --2011-01-14 13:57:02-- www.x.org/download.php?id=397003 Resolving www.x.org... 1.1.1.1 Caching www.x.org => 1.1.1.1 Connecting to www.x.org|1.1.1.1|:80... connected. Created socket 5. Releasing 0x0943ef20 (new refcount 1). ---request begin--- GET /download.php?id=397003 HTTP/1.0 User-Agent: Wget/1.12 (linux-gnu) Accept: */* Host: www.x.org Connection: Keep-Alive ---request end--- HTTP request sent, awaiting response... ---response begin--- HTTP/1.1 302 Found Date: Fri, 14 Jan 2011 11:26:19 GMT Server: Apache X-Powered-By: PHP/5.2.6-1+lenny8 Set-Cookie: PHPSESSID=5f2fd97103f8988554394f23c5897765; path=/ Expires: Thu, 19 Nov 1981 08:52:00 GMT Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0 Pragma: no-cache Location: www.x.org/login.php?returnto=download.php%3Fid%3D397003 Vary: Accept-Encoding Content-Length: 0 Keep-Alive: timeout=15, max=100 Connection: Keep-Alive Content-Type: text/html ---response end--- 302 Found Stored cookie www.x.org -1 (ANY) / <session> <insecure> [expiry none] PHPSESSID 5f2fd97103f8988554394f23c5897765 Registered socket 5 for persistent reuse. Location: www.x.org/login.php?returnto=download.php%3Fid%3D397003 [following] Skipping 0 bytes of body: [] done. --2011-01-14 13:57:02-- www.x.org/login.php?returnto=download.php%3Fid%3D397003 Reusing existing connection to www.x.org:80. Reusing fd 5. ---request begin--- GET /login.php?returnto=download.php%3Fid%3D397003 HTTP/1.0 User-Agent: Wget/1.12 (linux-gnu) Accept: */* Host: www.x.org Connection: Keep-Alive Cookie: PHPSESSID=5f2fd97103f8988554394f23c5897765 ---request end--- HTTP request sent, awaiting response... ---response begin--- HTTP/1.1 200 OK Date: Fri, 14 Jan 2011 11:26:20 GMT Server: Apache X-Powered-By: PHP/5.2.6-1+lenny8 Expires: Thu, 19 Nov 1981 08:52:00 GMT Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0 Pragma: no-cache Vary: Accept-Encoding Content-Length: 2171 Keep-Alive: timeout=15, max=99 Connection: Keep-Alive Content-Type: text/html ---response end--- 200 OK Length: 2171 (2.1K) [text/html] Saving to: `x.out' 0K .. 100% 18.7M=0s 2011-01-14 13:57:02 (18.7 MB/s) - `x.out' saved [2171/2171]

    Read the article

  • Server 2008 SMTP service error

    - by Daolsky
    When i right click on SMTP (in IIS 6.0) and click start i get the following error "The service has returned a service-specific error code. Check the windows event viewer for details" When i look at the event viewer i get this message... "The service could not bind instance 1. The data is the error code."

    Read the article

  • How do I automatically copy data when attaching external storage?

    - by Iceking007
    If I am correct to assume that once I place a DVD/disk in my optical drive (or use a USB flash drive or external HDD for that matter; for arguments sake) that this action would in effect trigger an 'event' in Windows. I would like to use this 'triggered event' to enable an entire copy of that device. Example: if my optical H: reads a disk OR the user closes the tray OR ... then xcopy /S H: "F:\Copy of H"

    Read the article

  • List of events to track for Desired Configuration Management (DCM) in SCCM

    - by user69952
    Hi everyone, I can't seem to find a list of all event IDs related to DCM in SCCM. I managed to find the common ones by testing but I'm sure there are tons of scenarios I haven't seen yet. I'm interested in events related to compliance status, errors, etc in particular such as these: 11854 - Policy is now compliant 11856 - Previously compliant is now non compliant.. Please post any other event IDs you know of related to this.. Thank you

    Read the article

  • Adding the New HTML Editor Extender to a Web Forms Application using NuGet

    - by Stephen Walther
    The July 2011 release of the Ajax Control Toolkit includes a new, lightweight, HTML5 compatible HTML Editor extender. In this blog entry, I explain how you can take advantage of NuGet to quickly add the new HTML Editor control extender to a new or existing ASP.NET Web Forms application. Installing the Latest Version of the Ajax Control Toolkit with NuGet NuGet is a package manager. It enables you to quickly install new software directly from within Visual Studio 2010. You can use NuGet to install additional software when building any type of .NET application including ASP.NET Web Forms and ASP.NET MVC applications. If you have not already installed NuGet then you can install NuGet by navigating to the following address and clicking the giant install button: http://nuget.org/ After you install NuGet, you can add the Ajax Control Toolkit to a new or existing ASP.NET Web Forms application by selecting the Visual Studio menu option Tools, Library Package Manager, Package Manager Console: Selecting this menu option opens the Package Manager Console. You can enter the command Install-Package AjaxControlToolkit in the console to install the Ajax Control Toolkit: After you install the Ajax Control Toolkit with NuGet, your application will include an assembly reference to the AjaxControlToolkit.dll and SanitizerProviders.dll assemblies: Furthermore, your Web.config file will be updated to contain a new tag prefix for the Ajax Control Toolkit controls: <configuration> <system.web> <compilation debug="true" targetFramework="4.0" /> <pages> <controls> <add tagPrefix="ajaxToolkit" assembly="AjaxControlToolkit" namespace="AjaxControlToolkit" /> </controls> </pages> </system.web> </configuration> The configuration file installed by NuGet adds the prefix ajaxToolkit for all of the Ajax Control Toolkit controls. You can type ajaxToolkit: in source view to get auto-complete in Source view. You can, of course, change this prefix to anything you want. Using the HTML Editor Extender After you install the Ajax Control Toolkit, you can use the HTML Editor Extender with the standard ASP.NET TextBox control to enable users to enter rich formatting such as bold, underline, italic, different fonts, and different background and foreground colors. For example, the following page can be used for entering comments. The page contains a standard ASP.NET TextBox, Button, and Label control. When you click the button, any text entered into the TextBox is displayed in the Label control. It is a pretty boring page: Let’s make this page fancier by extending the standard ASP.NET TextBox with the HTML Editor extender control: Notice that the ASP.NET TextBox now has a toolbar which includes buttons for performing various kinds of formatting. For example, you can change the size and font used for the text. You also can change the foreground and background color – and make many other formatting changes. You can customize the toolbar buttons which the HTML Editor extender displays. To learn how to customize the toolbar, see the HTML Editor Extender sample page here: http://www.asp.net/ajaxLibrary/AjaxControlToolkitSampleSite/HTMLEditorExtender/HTMLEditorExtender.aspx Here’s the source code for the ASP.NET page: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs" Inherits="WebApplication1.Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title>Add Comments</title> </head> <body> <form id="form1" runat="server"> <div> <ajaxToolkit:ToolkitScriptManager ID="TSM1" runat="server" /> <asp:TextBox ID="txtComments" TextMode="MultiLine" Columns="50" Rows="8" Runat="server" /> <ajaxToolkit:HtmlEditorExtender ID="hee" TargetControlID="txtComments" Runat="server" /> <br /><br /> <asp:Button ID="btnSubmit" Text="Add Comment" Runat="server" onclick="btnSubmit_Click" /> <hr /> <asp:Label ID="lblComment" Runat="server" /> </div> </form> </body> </html> Notice that the page above contains 5 controls. The page contains a standard ASP.NET TextBox, Button, and Label control. However, the page also contains an Ajax Control Toolkit ToolkitScriptManager control and HtmlEditorExtender control. The HTML Editor extender control extends the standard ASP.NET TextBox control. The HTML Editor TargetID attribute points at the TextBox control. Here’s the code-behind for the page above:   using System; namespace WebApplication1 { public partial class Default : System.Web.UI.Page { protected void btnSubmit_Click(object sender, EventArgs e) { lblComment.Text = txtComments.Text; } } }   Preventing XSS/JavaScript Injection Attacks If you use an HTML Editor -- any HTML Editor -- in a public facing web page then you are opening your website up to Cross-Site Scripting (XSS) attacks. An evil hacker could submit HTML using the HTML Editor which contains JavaScript that steals private information such as other user’s passwords. Imagine, for example, that you create a web page which enables your customers to post comments about your website. Furthermore, imagine that you decide to redisplay the comments so every user can see them. In that case, a malicious user could submit JavaScript which displays a dialog asking for a user name and password. When an unsuspecting customer enters their secret password, the script could transfer the password to the hacker’s website. So how do you accept HTML content without opening your website up to JavaScript injection attacks? The Ajax Control Toolkit HTML Editor supports the Anti-XSS library. You can use the Anti-XSS library to sanitize any HTML content. The Anti-XSS library, for example, strips away all JavaScript automatically. You can download the Anti-XSS library from NuGet. Open the Package Manager Console and execute the command Install-Package AntiXSS: Adding the Anti-XSS library to your application adds two assemblies to your application named AntiXssLibrary.dll and HtmlSanitizationLibrary.dll. After you install the Anti-XSS library, you can configure the HTML Editor extender to use the Anti-XSS library your application’s web.config file: <?xml version="1.0" encoding="utf-8"?> <configuration> <configSections> <sectionGroup name="system.web"> <section name="sanitizer" requirePermission="false" type="AjaxControlToolkit.Sanitizer.ProviderSanitizerSection, AjaxControlToolkit"/> </sectionGroup> </configSections> <system.web> <sanitizer defaultProvider="AntiXssSanitizerProvider"> <providers> <add name="AntiXssSanitizerProvider" type="AjaxControlToolkit.Sanitizer.AntiXssSanitizerProvider"></add> </providers> </sanitizer> <compilation debug="true" targetFramework="4.0" /> <pages> <controls> <add tagPrefix="ajaxToolkit" assembly="AjaxControlToolkit" namespace="AjaxControlToolkit" /> </controls> </pages> </system.web> </configuration> Summary In this blog entry, I described how you can quickly get started using the new HTML Editor extender – included with the July 2011 release of the Ajax Control Toolkit – by installing the Ajax Control Toolkit with NuGet. If you want to learn more about the HTML Editor then please take a look at the Ajax Control Toolkit sample site: http://www.asp.net/ajaxLibrary/AjaxControlToolkitSampleSite/HTMLEditorExtender/HTMLEditorExtender.aspx

    Read the article

  • Communication between Outlook addin and Program Automating Outlook

    - by Chris Kinsman
    I have an application that uses the automation interfaces to Microsoft Outlook to create a mail message and then after it is sent save an archive of that email message in my application. I am hitting issues with a number of the third party encryption addins because by the time the Sent event fires what is passed to me is the already encrypted message. I would like to somehow have them fire the event directly without sending a message to pass me the unencrypted version or I would like them to be able to somehow fire an event to me that passes the unencrypted message in a loosely coupled fashion. I can't seem to find a way to define new events on the Outlook application object so I am looking for other ideas. Thanks!

    Read the article

  • Acrobat Reader ActiveX in WebBrowser stealing focus [C#]

    - by Maciej
    I'm using webBrowser.Navigate(url) control to display page. I noticed this action steals focus from current control (grid) and than I have problem to focus grid back (tired myGrid.Focus, .Select etc...) This is really annoying behaviour of browser... Does anyone knows how to prevent focus stealing by Browser or (if not) hot to force to focus control back ? EDIT: I've also tried webBrowser.DocumentCompleted event to focus back to grid EDIT 2 Good case to test this is openning PDF files webBrowser.Navigate(@"C:\TEMP\test.pdf") I believe this is ActiveX issue. On first glance it looks that this is not problem with focusing control but loosing entire Form focus... EDIT 3 I tried another approach: Form keyPress event: I thought I can capture form's keyPress and move focus from WebBrowser / AdobeReader ActiveX to my control. But surprisingly event is not fired! Looks Reader taken all control and there is no way to do anything programically until you do mouse click on (at least) form's caption Any advice (s) ?

    Read the article

  • Validating form dropdown in CodeIgniter

    - by Gaz
    Hi, I am using CodeIgniter's form helper and form validation library to build my forms. I'm having trouble making the dropdown 'sticky' and also finding appropriate validation rules. This is how I'm populating the drodown: foreach($events as $event){ $options[$event->event_title] = $event->event_title; } $firstItem = '<option>Please select one...</option>'; echo form_dropdown('events', $options, '', $firstItem); This is building the options from events stored in the database. The form looks fine and is populating tall the fields correctly. Hwoever, when I come to submit the form, the dropdown isn't holding onto the value selected? Also, how should I validate it, I want to make it required but I also want to make sure that I dont except the first option in the dropdown 'Please select one...' Thanks in advance. Cheers, Gaz

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • About unit testing a function in the zend framework and unit testing in general

    - by sanders
    Hello people, I am diving into the world of unit testing. And i am sort of lost. I learned today that unit testing is testing if a function works. I wanted to test the following function: public function getEventById($id) { return $this->getResource('Event')->getEventById($id); } So i wanted to test this function as follows: public function test_Event_Get_Event_By_Id_Returns_Event_Item() { $p = $this->_model->getEventById(42); $this->assertEquals(42, EventManager_Resource_Event_Item_Interface); $this->assertType('EventManager_Resource_Event_Item_Interface', $p); } But then I got the error: 1) EventTest::test_Event_Get_Event_By_Id_Returns_Event_Item Zend_Db_Table_Exception: No adapter found for EventManager_Resource_Event /home/user/Public/ZendFramework-1.10.1/library/SF/Model/Abstract.php:101 /var/www/nrka2/application/modules/eventManager/models/Event.php:25 But then someone told me that i am currently unit testing and not doing an integration test. So i figured that i have to test the function getEventById on a different way. But I don't understand how. What this function does it just cals a resource and returns the event by id.

    Read the article

  • ASPxGridView Pager disappears

    - by Jo Asakura
    Hello all, I use the ASPxGridView with paging, pager settings is next: <SettingsPager Mode="ShowPager" Position="Bottom" Visible="true"> Also I have a CustomButtonInitialize event: protected void gridViewInvoices_CustomButtonInitialize(object sender, ASPxGridViewCustomButtonEventArgs e) { if (!e.IsEditingRow) { Invoice invoice = (Invoice)gridViewInvoices.GetRow(e.VisibleIndex); if (invoice != null) { if (e.ButtonID == "btnConfirmPayment") { e.Visible = invoice.PaymentConfirmedDate.HasValue ? DefaultBoolean.False : DefaultBoolean.Default; } } } } When I open the page with this grid the pager disappears but if I comment my CustomButtonInitialize event: protected void gridViewInvoices_CustomButtonInitialize(object sender, ASPxGridViewCustomButtonEventArgs e) { /*if (!e.IsEditingRow) { Invoice invoice = (Invoice)gridViewInvoices.GetRow(e.VisibleIndex); if (invoice != null) { if (e.ButtonID == "btnConfirmPayment") { e.Visible = invoice.PaymentConfirmedDate.HasValue ? DefaultBoolean.False : DefaultBoolean.Default; } } }*/ } Pager appears again, how can I fix it and how is pager depend on this event (CustomButtonInitialize)? Best regards, Alex.

    Read the article

  • UserControl Focus Issue - Focus() sometimes returns false

    - by Craigger
    I have a user control that behaves similar to a tab control. The tab headers are UserControls that override Paint events to make them look custom. In order to leverage the Validating events on various controls on our tab pages, when the user clicks on the tab headers, we set the Focus to the TabHeader user control. I've noticed that Control.Focus() returns false sometimes but the documentation does not say why Control.Focus() will ever return false other than that the control can't receive focus. But I don't know why. Here's what i see. If my TabHeader UserControl does not contain any subcontrols, and I call myControl.Focus() from the MouseClick event, focus returns true. If my TabHeader UserControl contains a subcontrol, and I call myControl.Focus() from the MouseClick event, focus returns false. If my TabHeader UserControl contains a subcontrol, and I call myControl.subControl.Focus() from the myControl.MouseClick event, focus returns true. Can someone explain this?

    Read the article

  • How to get the value of a SELECT HtmlElement in C# webBrowser control

    - by AndrewW
    Hi, In a C# WebBrowser control, I have generated a SELECT HtmlElement with a number of OPTION elements using w.RenderBeginTag(HtmlTextWriterTag.Select). I need to get the value of the select when the user changes it, and so added an event handler in the WebBrowser DocumentCompleted event. private void webBrowser1_DocumentCompleted(object sender, WebBrowserDocumentCompletedEventArgs e) { .... webBrowser1.Document.GetElementById("id_select_0").AttachEventHandler("onchange", new EventHandler(ddSelectedIndexChanged)); .... } protected void ddSelectedIndexChanged(object sender, EventArgs e) { .... } The event handler does get called, but the sender parameter is null and e is empty. Does anyone know how to overcome this problem? Andrew

    Read the article

  • New HTML 5 input types in ASP.Net 4.5 Developer Preview

    - by sreejukg
    Microsoft has released developer previews for Visual Studio 2011 and .Net framework 4.5. There are lots of new features available in the developer preview. One of the most interested things for web developers is the support introduced for new HTML 5 form controls. The following are the list of new controls available in HTML 5 email url number range Date pickers (date, month, week, time, datetime, datetime-local) search color Describing the functionality for these controls is not in the scope of this article. If you want to know about these controls, refer the below URLs http://msdn.microsoft.com/en-us/magazine/hh547102.aspx http://www.w3schools.com/html5/html5_form_input_types.asp ASP.Net 4.5 introduced more possible values to the Text Mode attribute to cater the above requirements. Let us evaluate these. I have created a project in Visual Studio 2011 developer preview, and created a page named “controls.aspx”. In the page I placed on Text box control from the toolbox Now select the control and go to the properties pane, look at the TextMode attribute. Now you can see more options are added here than prior versions of ASP.Net. I just selected Email as TextMode. I added one button to submit my page. The screen shot of the page in Visual Studio 2011 designer is as follows See the corresponding markup <form id="form1" runat="server">     <div>         Enter your email:         <asp:TextBox ID="TextBox1" runat="server" TextMode="Email"></asp:TextBox     </div>     <asp:Button ID="Button1" runat="server" Text="Submit" /> </form> Now let me run this page, IE 9 do not have the support for new form fields. I browsed the page using Firefox and the page appears as below. From the source of the rendered page, I saw the below markup for my email textbox <input name="TextBox1" type="email" id="TextBox1" /> Try to enter an invalid email and you will see the browser will ask you to enter a valid one by default. When rendered in non-supported browsers, these fields are behaving just as normal text boxes. So make sure you are using validation controls with these fields. See the browser support compatability matrix with these controls with various browser vendors. ASP.Net 4.5 introduced the support for these new form controls. You can build interactive forms using the newly added controls, keeping in mind that you need to validate the data for non-supported browsers.

    Read the article

  • Partitioning Webcast Details - 17/03/2010

    - by Alex Blyth
    Hi AllHere are the details for Wednesday's (17th March 2010) webcast on Partitioning:Webcast is at http://strtc.oracle.com (IE6, 7 & 8 supported only)Conference ID for the webcast is 6168728There is no conference keyPlease use your real name in the name field (just makes it easier for us to help you out if we can't answer your questions on the call)Audio details:NZ Toll Free - 0800888157 orAU Toll Free - 1800420354Meeting ID: 7914841Meeting Passcode: 17032010Talk to you all WednesdayAlex

    Read the article

  • libevent, windows and .NET programming

    - by Chris
    I experiment with a lot of open source software and I've noticed a fair amount of server type applications in the open source world use libevent to facilitate event-based processing rather than spawn multiple threads to handle requests. I also do a lot of .NET programming (it's my core job function), and I'm interested in learning how libevent relates to the .NET event model. Are events in .NET the equivalent of libevent for C programs? Should I try to learn libevent and attempt to use it in custom .NET server applications or is using the standard .NET event model basically the same thing?

    Read the article

  • jQuery Sortable - Limit number of items in list.

    - by Adam
    I have a schedule table I'm using jQuiry Sortable for editing. Each day is a UL, and each event is an LI. My jQuery is: $("#colSun, #colMon, #colTue, #colWed, #colThu").sortable({ connectWith: '.timePieces', items: 'li:not(.lith)' }).disableSelection(); To make all LI's sortable except those with class "lith" (day names). User can drag an event from day to day, or add new events by clicking a button, which appends a new dragable event (LI) to the fist UL (Sunday). I want to make each day accept only up to 10 events. How do I do this? Thanks in advance!

    Read the article

  • Difficulty accessing Google Search API with Flex

    - by CM
    Hi - I am trying to get the number of incoming links to a page through the Google Search API. It is not working (just returning Null) Here is the code <?xml version="1.0" encoding="utf-8"?> <mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute" creationComplete="init();" width="320" height="480" backgroundGradientColors="115115" backgroundGradientAlphas=".2" backgroundAlpha=".2" dropShadowEnabled="false"> <mx:Script> <![CDATA[ // // Author: Wayne IV Mike // Project: JSwoof - The Flex JSON library. // Description: Formated JSON loaded from txt file. // Date: 31st March 2009. // Contact: [email protected] , [email protected] // import json.*; import mx.controls.Alert; public function loadFile4(urlLink:String):void { var request:URLRequest = new URLRequest(urlLink); var urlLoad:URLLoader = new URLLoader(); urlLoad.addEventListener(Event.COMPLETE, fileLoaded4); urlLoad.load(request); } private function fileLoaded4(event:Event):void { var jObj:Object = JParser.decode(event.target.data); //Decode JSON from text file here. var jStr:String = JParser.encode(jObj); if(jStr != null && jStr != "") { var LinkTemp:String = jObj.estimatedResultCount; txtLinks.text = "Google Links " + LinkTemp; trace(event.target.data); } } /********************************************************************/ private function LinkLookup():void { loadFile4("http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=link:twitter.com/" + NameSearch.text); } ]]> </mx:Script> <mx:TextInput x="17" y="86" id="NameSearch" text="cnnbrk" width="229" height="30" fontSize="16" fontWeight="bold" cornerRadius="10" shadowDirection="center" shadowDistance="5"/> <mx:Button x="253" y="85" label="Find" id="GoSearch" click="LinkLookup()" height="31"/> <mx:Label text="Links" id="txtLinks" width="233" textAlign="left" color="#FFFFFF" fontSize="14" height="21"/> </mx:Application> Sorry for the ugly format. I added a trace(event.target.data); and updated the code above. This is the result - [SWF] C:/Documents and Settings/Robert/My Documents/Flex Builder 3/.metadata/.plugins/com.adobe.flash.profiler/ProfilerAgent.swf - 17,508 bytes after decompression [SWF] C:\Documents and Settings\Robert\My Documents\Flex Builder 3\Formated\bin-debug\Formated.swf - 781,950 bytes after decompression [Unload SWF] C:/Documents and Settings/Robert/My Documents/Flex Builder 3/.metadata/.plugins/com.adobe.flash.profiler/ProfilerAgent.swf {"responseData": {"results":[{"GsearchResultClass":"GwebSearch","unescapedUrl":"http://twitter.com/britishredneck","url":"http://twitter.com/britishredneck","visibleUrl":"twitter.com","cacheUrl":"http://www.google.com/search?q\u003dcache:4pQXnMQCZA4J:twitter.com","title":"Martyn Jones (BritishRedneck) on Twitter","titleNoFormatting":"Martyn Jones (BritishRedneck) on Twitter","content":"Finally found a free and simple way to expand my reach on Twitter. A nice 20 second process. http://tpq.me/5gbrg #twpq 3:13 PM Jul 18th, 2009 from API \u003cb\u003e...\u003c/b\u003e"},{"GsearchResultClass":"GwebSearch","unescapedUrl":"http://twitter.com/dshlian/favorites","url":"http://twitter.com/dshlian/favorites","visibleUrl":"twitter.com","cacheUrl":"http://www.google.com/search?q\u003dcache:79qm5Pz7O5QJ:twitter.com","title":"Twitter","titleNoFormatting":"Twitter","content":"Twitter is without a doubt the best way to share and discover what is happening right now."},{"GsearchResultClass":"GwebSearch","unescapedUrl":"http://twitter.com/rosannepeterson","url":"http://twitter.com/rosannepeterson","visibleUrl":"twitter.com","cacheUrl":"http://www.google.com/search?q\u003dcache:q11IcnW9l30J:twitter.com","title":"Rosanne Peterson (rosannepeterson) on Twitter","titleNoFormatting":"Rosanne Peterson (rosannepeterson) on Twitter","content":"Tx.All is well. Looking forward to the holday. Perhaps after will be time for certification! 8:14 AM Dec 23rd, 2009 from txt; I am also reading \u0026quot;How I \u003cb\u003e...\u003c/b\u003e"},{"GsearchResultClass":"GwebSearch","unescapedUrl":"http://twitter.com/MRSalesTraining","url":"http://twitter.com/MRSalesTraining","visibleUrl":"twitter.com","cacheUrl":"http://www.google.com/search?q\u003dcache:uBNGhud0vfEJ:twitter.com","title":"Medrep (MRSalesTraining) on Twitter","titleNoFormatting":"Medrep (MRSalesTraining) on Twitter","content":"Working away on Cardiovascular Medicine Module - heavy stuff for a Sunday evening!! 11:09 AM Nov 8th, 2009 from web; Today\u0026#39;s Student is tomorrow\u0026#39;s Medical \u003cb\u003e...\u003c/b\u003e"}],"cursor":{"pages":[{"start":"0","label":1},{"start":"4","label":2},{"start":"8","label":3},{"start":"12","label":4},{"start":"16","label":5},{"start":"20","label":6},{"start":"24","label":7},{"start":"28","label":8}],"estimatedResultCount":"64","currentPageIndex":0,"moreResultsUrl":"http://www.google.com/search?oe\u003dutf8\u0026ie\u003dutf8\u0026source\u003duds\u0026start\u003d0\u0026hl\u003den\u0026q\u003dlink%3Atwitter.com%2Fgenericmedlist"}}, "responseDetails": null, "responseStatus": 200} So the data return from the query is correct, and the difficulty lies in accessing the "estimatedResultCount" near the end of the JSON data. Any help would be greatly appreciated!

    Read the article

  • Monitor files similar to System Internal's/Microsoft's FileMon/Process Monitor

    - by Tom1952
    I need to generate an event when a file is closed by another app. Unfortunately, ReadDirectoryChangesW doesn't report the close event. It would be possible for me to poll (with a TTimer) any file that reported by ReadDirectoryChangesW as modified, waiting for it to be closed (using CreateFile to detect this). However, what I'd prefer is a completely event driven solution. Is there a way to hook system calls and detect all file closing events? I simply want to know the path & name of any file that has just been closed.

    Read the article

  • Basic Spatial Data with SQL Server and Entity Framework 5.0

    - by Rick Strahl
    In my most recent project we needed to do a bit of geo-spatial referencing. While spatial features have been in SQL Server for a while using those features inside of .NET applications hasn't been as straight forward as could be, because .NET natively doesn't support spatial types. There are workarounds for this with a few custom project like SharpMap or a hack using the Sql Server specific Geo types found in the Microsoft.SqlTypes assembly that ships with SQL server. While these approaches work for manipulating spatial data from .NET code, they didn't work with database access if you're using Entity Framework. Other ORM vendors have been rolling their own versions of spatial integration. In Entity Framework 5.0 running on .NET 4.5 the Microsoft ORM finally adds support for spatial types as well. In this post I'll describe basic geography features that deal with single location and distance calculations which is probably the most common usage scenario. SQL Server Transact-SQL Syntax for Spatial Data Before we look at how things work with Entity framework, lets take a look at how SQL Server allows you to use spatial data to get an understanding of the underlying semantics. The following SQL examples should work with SQL 2008 and forward. Let's start by creating a test table that includes a Geography field and also a pair of Long/Lat fields that demonstrate how you can work with the geography functions even if you don't have geography/geometry fields in the database. Here's the CREATE command:CREATE TABLE [dbo].[Geo]( [id] [int] IDENTITY(1,1) NOT NULL, [Location] [geography] NULL, [Long] [float] NOT NULL, [Lat] [float] NOT NULL ) Now using plain SQL you can insert data into the table using geography::STGeoFromText SQL CLR function:insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.527200 45.712113)', 4326), -121.527200, 45.712113 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.517265 45.714240)', 4326), -121.517265, 45.714240 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.511536 45.714825)', 4326), -121.511536, 45.714825) The STGeomFromText function accepts a string that points to a geometric item (a point here but can also be a line or path or polygon and many others). You also need to provide an SRID (Spatial Reference System Identifier) which is an integer value that determines the rules for how geography/geometry values are calculated and returned. For mapping/distance functionality you typically want to use 4326 as this is the format used by most mapping software and geo-location libraries like Google and Bing. The spatial data in the Location field is stored in binary format which looks something like this: Once the location data is in the database you can query the data and do simple distance computations very easily. For example to calculate the distance of each of the values in the database to another spatial point is very easy to calculate. Distance calculations compare two points in space using a direct line calculation. For our example I'll compare a new point to all the points in the database. Using the Location field the SQL looks like this:-- create a source point DECLARE @s geography SET @s = geography:: STGeomFromText('POINT(-121.527200 45.712113)' , 4326); --- return the ids select ID, Location as Geo , Location .ToString() as Point , @s.STDistance( Location) as distance from Geo order by distance The code defines a new point which is the base point to compare each of the values to. You can also compare values from the database directly, but typically you'll want to match a location to another location and determine the difference for which you can use the geography::STDistance function. This query produces the following output: The STDistance function returns the straight line distance between the passed in point and the point in the database field. The result for SRID 4326 is always in meters. Notice that the first value passed was the same point so the difference is 0. The other two points are two points here in town in Hood River a little ways away - 808 and 1256 meters respectively. Notice also that you can order the result by the resulting distance, which effectively gives you results that are ordered radially out from closer to further away. This is great for searches of points of interest near a central location (YOU typically!). These geolocation functions are also available to you if you don't use the Geography/Geometry types, but plain float values. It's a little more work, as each point has to be created in the query using the string syntax, but the following code doesn't use a geography field but produces the same result as the previous query.--- using float fields select ID, geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326), geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326). ToString(), @s.STDistance( geography::STGeomFromText ('POINT(' + STR(long ,15, 7) + ' ' + Str(lat ,15, 7) + ')' , 4326)) as distance from geo order by distance Spatial Data in the Entity Framework Prior to Entity Framework 5.0 on .NET 4.5 consuming of the data above required using stored procedures or raw SQL commands to access the spatial data. In Entity Framework 5 however, Microsoft introduced the new DbGeometry and DbGeography types. These immutable location types provide a bunch of functionality for manipulating spatial points using geometry functions which in turn can be used to do common spatial queries like I described in the SQL syntax above. The DbGeography/DbGeometry types are immutable, meaning that you can't write to them once they've been created. They are a bit odd in that you need to use factory methods in order to instantiate them - they have no constructor() and you can't assign to properties like Latitude and Longitude. Creating a Model with Spatial Data Let's start by creating a simple Entity Framework model that includes a Location property of type DbGeography: public class GeoLocationContext : DbContext { public DbSet<GeoLocation> Locations { get; set; } } public class GeoLocation { public int Id { get; set; } public DbGeography Location { get; set; } public string Address { get; set; } } That's all there's to it. When you run this now against SQL Server, you get a Geography field for the Location property, which looks the same as the Location field in the SQL examples earlier. Adding Spatial Data to the Database Next let's add some data to the table that includes some latitude and longitude data. An easy way to find lat/long locations is to use Google Maps to pinpoint your location, then right click and click on What's Here. Click on the green marker to get the GPS coordinates. To add the actual geolocation data create an instance of the GeoLocation type and use the DbGeography.PointFromText() factory method to create a new point to assign to the Location property:[TestMethod] public void AddLocationsToDataBase() { var context = new GeoLocationContext(); // remove all context.Locations.ToList().ForEach( loc => context.Locations.Remove(loc)); context.SaveChanges(); var location = new GeoLocation() { // Create a point using native DbGeography Factory method Location = DbGeography.PointFromText( string.Format("POINT({0} {1})", -121.527200,45.712113) ,4326), Address = "301 15th Street, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.714240, -121.517265), Address = "The Hatchery, Bingen" }; context.Locations.Add(location); location = new GeoLocation() { // Create a point using a helper function (lat/long) Location = CreatePoint(45.708457, -121.514432), Address = "Kaze Sushi, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.722780, -120.209227), Address = "Arlington, OR" }; context.Locations.Add(location); context.SaveChanges(); } As promised, a DbGeography object has to be created with one of the static factory methods provided on the type as the Location.Longitude and Location.Latitude properties are read only. Here I'm using PointFromText() which uses a "Well Known Text" format to specify spatial data. In the first example I'm specifying to create a Point from a longitude and latitude value, using an SRID of 4326 (just like earlier in the SQL examples). You'll probably want to create a helper method to make the creation of Points easier to avoid that string format and instead just pass in a couple of double values. Here's my helper called CreatePoint that's used for all but the first point creation in the sample above:public static DbGeography CreatePoint(double latitude, double longitude) { var text = string.Format(CultureInfo.InvariantCulture.NumberFormat, "POINT({0} {1})", longitude, latitude); // 4326 is most common coordinate system used by GPS/Maps return DbGeography.PointFromText(text, 4326); } Using the helper the syntax becomes a bit cleaner, requiring only a latitude and longitude respectively. Note that my method intentionally swaps the parameters around because Latitude and Longitude is the common format I've seen with mapping libraries (especially Google Mapping/Geolocation APIs with their LatLng type). When the context is changed the data is written into the database using the SQL Geography type which looks the same as in the earlier SQL examples shown. Querying Once you have some location data in the database it's now super easy to query the data and find out the distance between locations. A common query is to ask for a number of locations that are near a fixed point - typically your current location and order it by distance. Using LINQ to Entities a query like this is easy to construct:[TestMethod] public void QueryLocationsTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 kilometers ordered by distance var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) < 5000) .OrderBy( loc=> loc.Location.Distance(sourcePoint) ) .Select( loc=> new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n0} meters)", location.Address, location.Distance); } } This example produces: 301 15th Street, Hood River (0 meters)The Hatchery, Bingen (809 meters)Kaze Sushi, Hood River (1,074 meters)   The first point in the database is the same as my source point I'm comparing against so the distance is 0. The other two are within the 5 mile radius, while the Arlington location which is 65 miles or so out is not returned. The result is ordered by distance from closest to furthest away. In the code, I first create a source point that is the basis for comparison. The LINQ query then selects all locations that are within 5km of the source point using the Location.Distance() function, which takes a source point as a parameter. You can either use a pre-defined value as I'm doing here, or compare against another database DbGeography property (say when you have to points in the same database for things like routes). What's nice about this query syntax is that it's very clean and easy to read and understand. You can calculate the distance and also easily order by the distance to provide a result that shows locations from closest to furthest away which is a common scenario for any application that places a user in the context of several locations. It's now super easy to accomplish this. Meters vs. Miles As with the SQL Server functions, the Distance() method returns data in meters, so if you need to work with miles or feet you need to do some conversion. Here are a couple of helpers that might be useful (can be found in GeoUtils.cs of the sample project):/// <summary> /// Convert meters to miles /// </summary> /// <param name="meters"></param> /// <returns></returns> public static double MetersToMiles(double? meters) { if (meters == null) return 0F; return meters.Value * 0.000621371192; } /// <summary> /// Convert miles to meters /// </summary> /// <param name="miles"></param> /// <returns></returns> public static double MilesToMeters(double? miles) { if (miles == null) return 0; return miles.Value * 1609.344; } Using these two helpers you can query on miles like this:[TestMethod] public void QueryLocationsMilesTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 miles ordered by distance var fiveMiles = GeoUtils.MilesToMeters(5); var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) <= fiveMiles) .OrderBy(loc => loc.Location.Distance(sourcePoint)) .Select(loc => new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n1} miles)", location.Address, GeoUtils.MetersToMiles(location.Distance)); } } which produces: 301 15th Street, Hood River (0.0 miles)The Hatchery, Bingen (0.5 miles)Kaze Sushi, Hood River (0.7 miles) Nice 'n simple. .NET 4.5 Only Note that DbGeography and DbGeometry are exclusive to Entity Framework 5.0 (not 4.4 which ships in the same NuGet package or installer) and requires .NET 4.5. That's because the new DbGeometry and DbGeography (and related) types are defined in the 4.5 version of System.Data.Entity which is a CLR assembly and is only updated by major versions of .NET. Why this decision was made to add these types to System.Data.Entity rather than to the frequently updated EntityFramework assembly that would have possibly made this work in .NET 4.0 is beyond me, especially given that there are no native .NET framework spatial types to begin with. I find it also odd that there is no native CLR spatial type. The DbGeography and DbGeometry types are specific to Entity Framework and live on those assemblies. They will also work for general purpose, non-database spatial data manipulation, but then you are forced into having a dependency on System.Data.Entity, which seems a bit silly. There's also a System.Spatial assembly that's apparently part of WCF Data Services which in turn don't work with Entity framework. Another example of multiple teams at Microsoft not communicating and implementing the same functionality (differently) in several different places. Perplexed as a I may be, for EF specific code the Entity framework specific types are easy to use and work well. Working with pre-.NET 4.5 Entity Framework and Spatial Data If you can't go to .NET 4.5 just yet you can also still use spatial features in Entity Framework, but it's a lot more work as you can't use the DbContext directly to manipulate the location data. You can still run raw SQL statements to write data into the database and retrieve results using the same TSQL syntax I showed earlier using Context.Database.ExecuteSqlCommand(). Here's code that you can use to add location data into the database:[TestMethod] public void RawSqlEfAddTest() { string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT({0} {1})', 4326),@p0 )"; var sql = string.Format(sqlFormat,-121.527200, 45.712113); Console.WriteLine(sql); var context = new GeoLocationContext(); Assert.IsTrue(context.Database.ExecuteSqlCommand(sql,"301 N. 15th Street") > 0); } Here I'm using the STGeomFromText() function to add the location data. Note that I'm using string.Format here, which usually would be a bad practice but is required here. I was unable to use ExecuteSqlCommand() and its named parameter syntax as the longitude and latitude parameters are embedded into a string. Rest assured it's required as the following does not work:string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT(@p0 @p1)', 4326),@p2 )";context.Database.ExecuteSqlCommand(sql, -121.527200, 45.712113, "301 N. 15th Street") Explicitly assigning the point value with string.format works however. There are a number of ways to query location data. You can't get the location data directly, but you can retrieve the point string (which can then be parsed to get Latitude and Longitude) and you can return calculated values like distance. Here's an example of how to retrieve some geo data into a resultset using EF's and SqlQuery method:[TestMethod] public void RawSqlEfQueryTest() { var sqlFormat = @" DECLARE @s geography SET @s = geography:: STGeomFromText('POINT({0} {1})' , 4326); SELECT Address, Location.ToString() as GeoString, @s.STDistance( Location) as Distance FROM GeoLocations ORDER BY Distance"; var sql = string.Format(sqlFormat, -121.527200, 45.712113); var context = new GeoLocationContext(); var locations = context.Database.SqlQuery<ResultData>(sql); Assert.IsTrue(locations.Count() > 0); foreach (var location in locations) { Console.WriteLine(location.Address + " " + location.GeoString + " " + location.Distance); } } public class ResultData { public string GeoString { get; set; } public double Distance { get; set; } public string Address { get; set; } } Hopefully you don't have to resort to this approach as it's fairly limited. Using the new DbGeography/DbGeometry types makes this sort of thing so much easier. When I had to use code like this before I typically ended up retrieving data pks only and then running another query with just the PKs to retrieve the actual underlying DbContext entities. This was very inefficient and tedious but it did work. Summary For the current project I'm working on we actually made the switch to .NET 4.5 purely for the spatial features in EF 5.0. This app heavily relies on spatial queries and it was worth taking a chance with pre-release code to get this ease of integration as opposed to manually falling back to stored procedures or raw SQL string queries to return spatial specific queries. Using native Entity Framework code makes life a lot easier than the alternatives. It might be a late addition to Entity Framework, but it sure makes location calculations and storage easy. Where do you want to go today? ;-) Resources Download Sample Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in ADO.NET  Sql Server  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Initiating UserControl via MVVM in WPF / focus issue.

    - by benndev
    Hi there I have a few usercontrols loaded into a tabcontrol via MVVM in WPF. Within the XAML for the usercontrol I am setting focus to a textbox using the FocusManager, however this appears to only work when the first instance of the usercontrol is created. Just to test I added a loaded event handler to the usercontrol - this is only called on the first instance. I'm using data templates for the user controls as follows: <DataTemplate DataType="{x:Type local:UserTypeViewModel}"> <local:UserTypeView /> </DataTemplate> The textbox is focused as follows: FocusManager.FocusedElement="{Binding ElementName=txtName}" Additionally I'm using a global event handler (for the textbox GotFocus event) which selects all the text using a dispatcher. If anyone has any tips on how to achieve focus with every usercontrol I'd be very grateful. Thanks, Ben.

    Read the article

  • Hiding/ Showing UIPickerView

    - by aahrens
    I Have an a touchesEnded event that checks for when a UITextField is pressed. What I would like it to do is is hide/show a UIPickerView. How can this be done? - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event{ UITouch *touch = [[event allTouches] anyObject]; if (CGRectContainsPoint([self.textField frame], [touch locationInView:self.view])) { NSString * error = @"Touched the TextField"; UIAlertView * errorAlert = [[UIAlertView alloc] initWithTitle:@"Selection!" message:error delegate:self cancelButtonTitle:@"OK" otherButtonTitles:nil]; [errorAlert show]; //Want to show or hide UIPickerView } } I already have an allocated UIPickerView when touches occur @interface ThirdViewController : UIViewController <UITextFieldDelegate,UIPickerViewDelegate> { IBOutlet UIPickerView *pickerView; }

    Read the article

  • FAQ: GridView Calculation with JavaScript

    - by Vincent Maverick Durano
    In my previous post I wrote a simple demo on how to Calculate Totals in GridView and Display it in the Footer. Basically what it does is it calculates the total amount by typing into the TextBox and display the grand total in the footer of the GridView and basically it was a server side implemenation.  Many users in the forums are asking how to do the same thing without postbacks and how to calculate both amount and total amount together. In this post I will demonstrate how to do this using JavaScript. To get started let's go ahead and set up the form. Just for the simplicity of this demo I just set up the form like this:   <asp:gridview ID="GridView1" runat="server" ShowFooter="true" AutoGenerateColumns="false"> <Columns> <asp:BoundField DataField="RowNumber" HeaderText="Row Number" /> <asp:BoundField DataField="Description" HeaderText="Item Description" /> <asp:TemplateField HeaderText="Item Price"> <ItemTemplate> <asp:Label ID="LBLPrice" runat="server" Text='<%# Eval("Price") %>'></asp:Label> </ItemTemplate> </asp:TemplateField> <asp:TemplateField HeaderText="Quantity"> <ItemTemplate> <asp:TextBox ID="TXTQty" runat="server"></asp:TextBox> </ItemTemplate> <FooterTemplate> <b>Total Amount:</b> </FooterTemplate> </asp:TemplateField> <asp:TemplateField HeaderText="Sub-Total"> <ItemTemplate> <asp:Label ID="LBLSubTotal" runat="server"></asp:Label> </ItemTemplate> <FooterTemplate> <asp:Label ID="LBLTotal" runat="server" ForeColor="Green"></asp:Label> </FooterTemplate> </asp:TemplateField> </Columns> </asp:gridview>   As you can see there's no fancy about the mark up above. It just a standard GridView with BoundFields and TemplateFields on it. Now just for the purpose of this demo I just use a dummy data for populating the GridView. Here's the code below:   public partial class GridCalculation : System.Web.UI.Page { private void BindDummyDataToGrid() { DataTable dt = new DataTable(); DataRow dr = null; dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); dt.Columns.Add(new DataColumn("Description", typeof(string))); dt.Columns.Add(new DataColumn("Price", typeof(string))); dr = dt.NewRow(); dr["RowNumber"] = 1; dr["Description"] = "Nike"; dr["Price"] = "1000"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 2; dr["Description"] = "Converse"; dr["Price"] = "800"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 3; dr["Description"] = "Adidas"; dr["Price"] = "500"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 4; dr["Description"] = "Reebok"; dr["Price"] = "750"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 5; dr["Description"] = "Vans"; dr["Price"] = "1100"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 6; dr["Description"] = "Fila"; dr["Price"] = "200"; dt.Rows.Add(dr); //Bind the Gridview GridView1.DataSource = dt; GridView1.DataBind(); } protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { BindDummyDataToGrid(); } } }   Now try to run the page. The output should look something like below: The Client-Side Calculation Here's the code for the GridView calculation:   <script type="text/javascript"> function CalculateTotals() { var gv = document.getElementById("<%= GridView1.ClientID %>"); var tb = gv.getElementsByTagName("input"); var lb = gv.getElementsByTagName("span"); var sub = 0; var total = 0; var indexQ = 1; var indexP = 0; for (var i = 0; i < tb.length; i++) { if (tb[i].type == "text") { sub = parseFloat(lb[indexP].innerHTML) * parseFloat(tb[i].value); if (isNaN(sub)) { lb[i + indexQ].innerHTML = ""; sub = 0; } else { lb[i + indexQ].innerHTML = sub; } indexQ++; indexP = indexP + 2; total += parseFloat(sub); } } lb[lb.length -1].innerHTML = total; } </script>   The code above calculates the sub-total by multiplying the price and the quantity and at the same time calculates the total amount  by adding the sub-total values. Now you can simply call the JavaScript function above like this:   <ItemTemplate> <asp:TextBox ID="TXTQty" runat="server" onkeyup="CalculateTotals();"></asp:TextBox> </ItemTemplate>   Running the code above will display something like below: That's it! I hope someone find this post useful! Technorati Tags: ASP.NET,JavaScript,GridView,TipsTricks

    Read the article

< Previous Page | 450 451 452 453 454 455 456 457 458 459 460 461  | Next Page >