Search Results

Search found 5015 results on 201 pages for 'compiler construction'.

Page 46/201 | < Previous Page | 42 43 44 45 46 47 48 49 50 51 52 53  | Next Page >

  • Compiler issues on VC++ 2008 Express, Seemingly correct code throws errors.

    - by Anthony Clever
    Hi there, I've been trying to get back into coding for a while, so I figured I'd start with some simple SDL, now, without the file i/o, this compiles fine, but when I throw in the stdio code, it starts throwing errors. This I'm not sure about, I don't see any problem with the code itself, however, like I said, I might as well be a newbie, and figured I'd come here to get someone with a little more experience with this type of thing to look at it. I guess my question boils down to: "Why doesn't this compile under Microsoft's Visual C++ 2008 Express?" I've attached the error log at the bottom of the code snippet. Thanks in advance for any help. #include "SDL/SDL.h" #include "stdio.h" int main(int argc, char *argv[]) { FILE *stderr; FILE *stdout; stderr = fopen("stderr", "wb"); stdout = fopen("stdout", "wb"); SDL_Init(SDL_INIT_EVERYTHING); fprintf(stdout, "SDL INITIALIZED SUCCESSFULLY\n"); SDL_Quit(); fprintf(stderr, "SDL QUIT.\n"); fclose(stderr); fclose(stdout); return 0; } /* 1>------ Build started: Project: opengl_crap, Configuration: Debug Win32 ------ 1>Compiling... 1>main.cpp 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(6) : error C2090: function returns array 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(6) : error C2528: '__iob_func' : pointer to reference is illegal 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(6) : error C2556: 'FILE ***__iob_func(void)' : overloaded function differs only by return type from 'FILE *__iob_func(void)' 1> c:\program files\microsoft visual studio 9.0\vc\include\stdio.h(132) : see declaration of '__iob_func' 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(7) : error C2090: function returns array 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(7) : error C2528: '__iob_func' : pointer to reference is illegal 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(9) : error C2440: '=' : cannot convert from 'FILE *' to 'FILE ***' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(10) : error C2440: '=' : cannot convert from 'FILE *' to 'FILE ***' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(13) : error C2664: 'fprintf' : cannot convert parameter 1 from 'FILE ***' to 'FILE *' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(15) : error C2664: 'fprintf' : cannot convert parameter 1 from 'FILE ***' to 'FILE *' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(17) : error C2664: 'fclose' : cannot convert parameter 1 from 'FILE ***' to 'FILE *' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1>c:\documents and settings\owner\my documents\visual studio 2008\projects\opengl_crap\opengl_crap\main.cpp(18) : error C2664: 'fclose' : cannot convert parameter 1 from 'FILE ***' to 'FILE *' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1>Build log was saved at "file://c:\Documents and Settings\Owner\My Documents\Visual Studio 2008\Projects\opengl_crap\opengl_crap\Debug\BuildLog.htm" 1>opengl_crap - 11 error(s), 0 warning(s) ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ========== */

    Read the article

  • The Return Of __FILE__ And __LINE__ In .NET 4.5

    - by Alois Kraus
    Good things are hard to kill. One of the most useful predefined compiler macros in C/C++ were __FILE__ and __LINE__ which do expand to the compilation units file name and line number where this value is encountered by the compiler. After 4.5 versions of .NET we are on par with C/C++ again. It is of course not a simple compiler expandable macro it is an attribute but it does serve exactly the same purpose. Now we do get CallerLineNumberAttribute  == __LINE__ CallerFilePathAttribute        == __FILE__ CallerMemberNameAttribute  == __FUNCTION__ (MSVC Extension)   The most important one is CallerMemberNameAttribute which is very useful to implement the INotifyPropertyChanged interface without the need to hard code the name of the property anymore. Now you can simply decorate your change method with the new CallerMemberName attribute and you get the property name as string directly inserted by the C# compiler at compile time.   public string UserName { get { return _userName; } set { _userName=value; RaisePropertyChanged(); // no more RaisePropertyChanged(“UserName”)! } } protected void RaisePropertyChanged([CallerMemberName] string member = "") { var copy = PropertyChanged; if(copy != null) { copy(new PropertyChangedEventArgs(this, member)); } } Nice and handy. This was obviously the prime reason to implement this feature in the C# 5.0 compiler. You can repurpose this feature for tracing to get your hands on the method name of your caller along other stuff very fast now. All infos are added during compile time which is much faster than other approaches like walking the stack. The example on MSDN shows the usage of this attribute with an example public static void TraceMessage(string message, [CallerMemberName] string memberName = "", [CallerFilePath] string sourceFilePath = "", [CallerLineNumber] int sourceLineNumber = 0) { Console.WriteLine("Hi {0} {1} {2}({3})", message, memberName, sourceFilePath, sourceLineNumber); }   When I do think of tracing I do usually want to have a API which allows me to Trace method enter and leave Trace messages with a severity like Info, Warning, Error When I do print a trace message it is very useful to print out method and type name as well. So your API must either be able to pass the method and type name as strings or extract it automatically via walking back one Stackframe and fetch the infos from there. The first glaring deficiency is that there is no CallerTypeAttribute yet because the C# compiler team was not satisfied with its performance.   A usable Trace Api might therefore look like   enum TraceTypes { None = 0, EnterLeave = 1 << 0, Info = 1 << 1, Warn = 1 << 2, Error = 1 << 3 } class Tracer : IDisposable { string Type; string Method; public Tracer(string type, string method) { Type = type; Method = method; if (IsEnabled(TraceTypes.EnterLeave,Type, Method)) { } } private bool IsEnabled(TraceTypes traceTypes, string Type, string Method) { // Do checking here if tracing is enabled return false; } public void Info(string fmt, params object[] args) { } public void Warn(string fmt, params object[] args) { } public void Error(string fmt, params object[] args) { } public static void Info(string type, string method, string fmt, params object[] args) { } public static void Warn(string type, string method, string fmt, params object[] args) { } public static void Error(string type, string method, string fmt, params object[] args) { } public void Dispose() { // trace method leave } } This minimal trace API is very fast but hard to maintain since you need to pass in the type and method name as hard coded strings which can change from time to time. But now we have at least CallerMemberName to rid of the explicit method parameter right? Not really. Since any acceptable usable trace Api should have a method signature like Tracexxx(… string fmt, params [] object args) we not able to add additional optional parameters after the args array. If we would put it before the format string we would need to make it optional as well which would mean the compiler would need to figure out what our trace message and arguments are (not likely) or we would need to specify everything explicitly just like before . There are ways around this by providing a myriad of overloads which in the end are routed to the very same method but that is ugly. I am not sure if nobody inside MS agrees that the above API is reasonable to have or (more likely) that the whole talk about you can use this feature for diagnostic purposes was not a core feature at all but a simple byproduct of making the life of INotifyPropertyChanged implementers easier. A way around this would be to allow for variable argument arrays after the params keyword another set of optional arguments which are always filled by the compiler but I do not know if this is an easy one. The thing I am missing much more is the not provided CallerType attribute. But not in the way you would think of. In the API above I did add some filtering based on method and type to stay as fast as possible for types where tracing is not enabled at all. It should be no more expensive than an additional method call and a bool variable check if tracing for this type is enabled at all. The data is tightly bound to the calling type and method and should therefore become part of the static type instance. Since extending the CLR type system for tracing is not something I do expect to happen I have come up with an alternative approach which allows me basically to attach run time data to any existing type object in super fast way. The key to success is the usage of generics.   class Tracer<T> : IDisposable { string Method; public Tracer(string method) { if (TraceData<T>.Instance.Enabled.HasFlag(TraceTypes.EnterLeave)) { } } public void Dispose() { if (TraceData<T>.Instance.Enabled.HasFlag(TraceTypes.EnterLeave)) { } } public static void Info(string fmt, params object[] args) { } /// <summary> /// Every type gets its own instance with a fresh set of variables to describe the /// current filter status. /// </summary> /// <typeparam name="T"></typeparam> internal class TraceData<UsingType> { internal static TraceData<UsingType> Instance = new TraceData<UsingType>(); public bool IsInitialized = false; // flag if we need to reinit the trace data in case of reconfigured trace settings at runtime public TraceTypes Enabled = TraceTypes.None; // Enabled trace levels for this type } } We do not need to pass the type as string or Type object to the trace Api. Instead we define a generic Api that accepts the using type as generic parameter. Then we can create a TraceData static instance which is due to the nature of generics a fresh instance for every new type parameter. My tests on my home machine have shown that this approach is as fast as a simple bool flag check. If you have an application with many types using tracing you do not want to bring the app down by simply enabling tracing for one special rarely used type. The trace filter performance for the types which are not enabled must be therefore the fasted code path. This approach has the nice side effect that if you store the TraceData instances in one global list you can reconfigure tracing at runtime safely by simply setting the IsInitialized flag to false. A similar effect can be achieved with a global static Dictionary<Type,TraceData> object but big hash tables have random memory access semantics which is bad for cache locality and you always need to pay for the lookup which involves hash code generation, equality check and an indexed array access. The generic version is wicked fast and allows you to add more features to your tracing Api with minimal perf overhead. But it is cumbersome to write the generic type argument always explicitly and worse if you do refactor code and move parts of it to other classes it might be that you cannot configure tracing correctly. I would like therefore to decorate my type with an attribute [CallerType] class Tracer<T> : IDisposable to tell the compiler to fill in the generic type argument automatically. class Program { static void Main(string[] args) { using (var t = new Tracer()) // equivalent to new Tracer<Program>() { That would be really useful and super fast since you do not need to pass any type object around but you do have full type infos at hand. This change would be breaking if another non generic type exists in the same namespace where now the generic counterpart would be preferred. But this is an acceptable risk in my opinion since you can today already get conflicts if two generic types of the same name are defined in different namespaces. This would be only a variation of this issue. When you do think about this further you can add more features like to trace the exception in your Dispose method if the method is left with an exception with that little trick I did write some time ago. You can think of tracing as a super fast and configurable switch to write data to an output destination or to execute alternative actions. With such an infrastructure you can e.g. Reconfigure tracing at run time. Take a memory dump when a specific method is left with a specific exception. Throw an exception when a specific trace statement is hit (useful for testing error conditions). Execute a passed delegate which e.g. dumps additional state when enabled. Write data to an in memory ring buffer and dump it when specific events do occur (e.g. method is left with an exception, triggered from outside). Write data to an output device. …. This stuff is really useful to have when your code is in production on a mission critical server and you need to find the root cause of sporadic crashes of your application. It could be a buggy graphics card driver which throws access violations into your application (ok with .NET 4 not anymore except if you enable a compatibility flag) where you would like to have a minidump or you have reached after two weeks of operation a state where you need a full memory dump at a specific point in time in the middle of an transaction. At my older machine I do get with this super fast approach 50 million traces/s when tracing is disabled. When I do know that tracing is enabled for this type I can walk the stack by using StackFrameHelper.GetStackFramesInternal to check further if a specific action or output device is configured for this method which is about 2-3 times faster than the regular StackTrace class. Even with one String.Format I am down to 3 million traces/s so performance is not so important anymore since I do want to do something now. The CallerMemberName feature of the C# 5 compiler is nice but I would have preferred to get direct access to the MethodHandle and not to the stringified version of it. But I really would like to see a CallerType attribute implemented to fill in the generic type argument of the call site to augment the static CLR type data with run time data.

    Read the article

  • Skanska Builds Global Workforce Insight with Cloud-Based HCM System

    - by HCM-Oracle
    By David Baum - Originally posted on Profit Peter Bjork grew up building things. He started his work life learning all sorts of trades at his father’s construction company in the northern part of Sweden. So in college, it was natural for him to pursue a bachelor’s degree in construction engineering—but he broke new ground when he added a master’s degree in finance to his curriculum vitae. Written on a traditional résumé, Bjork’s current title (vice president of information systems strategies) doesn’t reveal the diversity of his experience—that he’s adept with hammer and nails as well as rows and columns. But a big part of his current job is to work with his counterparts in human resources (HR) designing, building, and deploying the systems needed to get a complete view of the skills and potential of Skanska’s 22,000-strong white-collar workforce. And Bjork believes that complete view is essential to Skanska’s success. “Our business is really all about people,” says Bjork, who has worked with Skanska for 16 years. “You can have equipment and financial resources, but to truly succeed in a business like ours you need to have the right people in the right places. That’s what this system is helping us accomplish.” In a global HR environment that suffers from a paradox of high unemployment and a scarcity of skilled labor, managers need to have a complete understanding of workforce capabilities to develop management skills, recruit for open positions, ensure that staff is getting the training they need, and reduce attrition. Skanska’s human capital management (HCM) systems, based on Oracle Talent Management Cloud, play a critical role delivering that understanding. “Skanska’s philosophy of having great people, encouraging their development, and giving them the chance to move across business units has nurtured a culture of collaboration, but managing a diverse workforce spread across the globe is a monumental challenge,” says Annika Lindholm, global human resources system owner in the HR department at Skanska’s headquarters just outside of Stockholm, Sweden. “We depend heavily on Oracle’s cloud technology to support our HCM function.” Construction, Workers For Skanska’s more than 60,000 employees and contractors, managing huge construction projects is an everyday job. Beyond erecting signature buildings, management’s goal is to build a corporate culture where valuable talent can be sought out and developed, bringing in the right mix of people to support and grow the business. “Of all the companies in our space, Skanska is probably one of the strongest ones, with a laser focus on people and people development,” notes Tom Crane, chief HR and communications officer for Skanska in the United States. “Our business looks like equipment and material, but all we really have at the end of the day are people and their intellectual capital. Without them, second only to clients, of course, you really can’t achieve great things in the high-profile environment in which we work.” During the 1990s, Skanska entered an expansive growth phase. A string of successful acquisitions paved the way for the company’s transformation into a global enterprise. “Today the company’s focus is on profitable growth,” continues Crane. “But you can’t really achieve growth unless you are doing a very good job of developing your people and having the right people in the right places and driving a culture of growth.” In the United States alone, Skanska has more than 8,000 employees in four distinct business units: Skanska USA Building, also known as the Construction Manager, builds everything at ground level and above—hospitals, educational facilities, stadiums, airport terminals, and other massive projects. Skanska USA Civil does everything at ground level and below, such as light rail, water treatment facilities, power plants or power industry facilities, highways, and bridges. Skanska Infrastructure Development develops public-private partnerships—projects in which Skanska adds equity and also arranges for outside financing. Skanska Commercial Development acts like a commercial real estate developer, acquiring land and building offices on spec or build-to-suit for its clients. Skanska's international portfolio includes construction of the new Meadowlands Stadium. Getting the various units to operate collaboratatively helps Skanska deliver high value to clients and shareholders. “When we have this collaboration among units, it allows us to enrich each of the business units and, at the same time, develop our future leaders to be more facile in operating across business units—more accepting of a ‘one Skanska’ approach,” explains Crane. Workforce Worldwide But HR needs processes and tools to support managers who face such business dynamics. Oracle Talent Management Cloud is helping Skanska implement world-class recruiting strategies and generate the insights needed to drive quality hiring practices, internal mobility, and a proactive approach to building talent pipelines. With their new cloud system in place, Skanska HR leaders can manage everything from recruiting, compensation, and goal and performance management to employee learning and talent review—all as part of a single, cohesive software-as-a-service (SaaS) environment. Skanska has successfully implemented two modules from Oracle Talent Management Cloud—the recruiting and performance management modules—and is in the process of implementing the learn module. Internally, they call the systems Skanska Recruit, Skanska Talent, and Skanska Learn. The timing is apropos. With high rates of unemployment in recent years, there have been many job candidates on the market. However, talent scarcity continues to frustrate recruiters. Oracle Taleo Recruiting Cloud Service, one of the applications in the Oracle Talent Management cloud portfolio, enables Skanska managers to create more-intelligent recruiting strategies, pulling high-performer profile statistics to create new candidate profiles and using multitiered screening and assessments to ensure that only the best-suited candidate applications make it to the recruiter’s desk. Tools such as applicant tracking, interview management, and requisition management help recruiters and hiring managers streamline the hiring process. Oracle’s cloud-based software system automates and streamlines many other HR processes for Skanska’s multinational organization and delivers insight into the success of recruiting and talent-management efforts. “The Oracle system is definitely helping us to construct global HR processes,” adds Bjork. “It is really important that we have a business model that is decentralized, so we can effectively serve our local markets, and interact with our global ERP [enterprise resource planning] systems as well. We would not be able to do this without a really good, well-integrated HCM system that could support these efforts.” A key piece of this effort is something Skanska has developed internally called the Skanska Leadership Profile. Core competencies, on which all employees are measured, are used in performance reviews to determine weak areas but also to discover talent, such as those who will be promoted or need succession plans. This global profiling system brings consistency to the way HR professionals evaluate and review talent across the company, with a consistent set of ratings and a consistent definition of competencies. All salaried employees in Skanska are tied to a talent management process that gives opportunity for midyear and year-end reviews. Using the performance management module, managers can align individual goals with corporate goals; provide clear visibility into how each employee contributes to the success of the organization; and drive a strategic, end-to-end talent management strategy with a single, integrated system for all talent-related activities. This is critical to a company that is highly focused on ensuring that every employee has a development plan linked to his or her succession potential. “Our approach all along has been to deploy software applications that are seamless to end users,” says Crane. “The beauty of a cloud-based system is that much of the functionality takes place behind the scenes so we can focus on making sure users can access the data when they need it. This model greatly improves their efficiency.” The employee profile not only sets a competency baseline for new employees but is also integrated with Skanska’s other back-office Oracle systems to ensure consistency in the way information is used to support other business functions. “Since we have about a dozen different HR systems that are providing us with information, we built a master database that collects all the information,” explains Lindholm. “That data is sent not only to Oracle Talent Management Cloud, but also to other systems that are dependent on this information.” Collaboration to Scale Skanska is poised to launch a new Oracle module to link employee learning plans to the review process and recruitment assessments. According to Crane, connecting these processes allows Skanska managers to see employees’ progress and produce an updated learning program. For example, as employees take classes, supervisors can consult the Oracle Talent Management Cloud portal to monitor progress and align it to each individual’s training and development plan. “That’s a pretty compelling solution for an organization that wants to manage its talent on a real-time basis and see how the training is working,” Crane says. Rolling out Oracle Talent Management Cloud was a joint effort among HR, IT, and a global group that oversaw the worldwide implementation. Skanska deployed the solution quickly across all markets at once. In the United States, for example, more than 35 offices quickly got up to speed on the new system via webinars for employees and face-to-face training for the HR group. “With any migration, there are moments when you hold your breath, but in this case, we had very few problems getting the system up and running,” says Crane. Lindholm adds, “There has been very little resistance to the system as users recognize its potential. Customizations are easy, and a lasting partnership has developed between Skanska and Oracle when help is needed. They listen to us.” Bjork elaborates on the implementation process from an IT perspective. “Deploying a SaaS system removes a lot of the complexity,” he says. “You can downsize the IT part and focus on the business part, which increases the probability of a successful implementation. If you want to scale the system, you make a quick phone call. That’s all it took recently when we added 4,000 users. We didn’t have to think about resizing the servers or hiring more IT people. Oracle does that for us, and they have provided very good support.” As a result, Skanska has been able to implement a single, cost-effective talent management solution across the organization to support its strategy to recruit and develop a world-class staff. Stakeholders are confident that they are providing the most efficient recruitment system possible for competent personnel at all levels within the company—from skilled workers at construction sites to top management at headquarters. And Skanska can retain skilled employees and ensure that they receive the development opportunities they need to grow and advance.

    Read the article

  • Can I use Visual Studio 2010's compiler with Visual Studio 2008's Runtime Library?

    - by BillyONeal
    Hello everyone :) I have an application that needs to operate on Windows 2000. I'd also like to use Visual Studio 2010 (mainly because of the change in the definition of the auto keyword). However, I'm in a bit of a bind because I need the app to be able to operate on older OS's, namely: Windows 2000 Windows XP RTM Windows XP SP1 Visual Studio 2010's runtime library depends on the EncodePointer / DecodePointer API which was introduced in Windows XP SP2. If using the alternate runtime library is possible, will this break code that relies on C++0x features added in VS2010, like std::regex?

    Read the article

  • Why is this exception thrown in the visual studio C compiler?

    - by Shane Larson
    Hello. I am trying to get more adept and my C programming and I was attempting to test out displaying a character from the input stream while inside of the loop that is getting the character. I am using the getchar() method. I am getting an exception thrown at the time that the printf statement in my code is present. (If I comment out the printf line in this function, the exception is not thrown). Exception: Unhandled exception at 0x611c91ad (msvcr90d.dll) in firstOS.exe: 0xC0000005: Access violation reading location 0x00002573. Here is the code... Any thoughts? Thank you. PS. I am using the stdio.h library. /*getCommandPromptNew - obtains a string command prompt.*/ void getCommandPromptNew(char s[], int lim){ int i, c; for(i=0; i < lim-1 && (c=getchar())!=EOF && c!='\n'; ++i){ s[i] = c; printf('%s', c); } }

    Read the article

  • How to generate GIR files from the Vala compiler?

    - by celil
    I am trying to create python bindings to a vala library using pygi with gobject introspection. However, I am having trouble generating the GIR files (that I am planning to compile to typelib files subsequently). According to the documentation valac should support generating GIR files. Compiling the following helloworld.vala public struct Point { public double x; public double y; } public class Person { public int age = 32; public Person(int age) { this.age = age; } } public int main() { var p = Point() { x=0.0, y=0.1 }; stdout.printf("%f %f\n", p.x, p.y); var per = new Person(22); stdout.printf("%d\n", per.age); return 0; } with the command valac helloworld.vala --gir=Hello-1.0.gir doesn't create the Hello-1.0.gir file as one would expect. How can I generate the gir file?

    Read the article

  • Questions about linking libraries in C

    - by james
    I am learning C (still very much a beginner) on Linux using the GCC compiler. I have noticed that some libraries, such as the library used with the math.h header, need to be linked in manually when included. I have been linking in the libraries using various flags of the form -l[library-name], such as -lm for the above-mentioned math library. However, after switching from the command line and/or Geany to Code::Blocks, I noticed that Code::Blocks uses g++ to compile the programs instead of the gcc that I am used to (even though the project is definitely specified as C). Also, Code::Blocks does not require the libraries to be manually linked in when compiling - libraries such as the math library just work. I have two questions: Firstly, is it "bad" to compile C programs with the g++ compiler? So far it seems to work, but after all, C++ is not C and I am quite sure that the g++ compiler is meant for C++. Secondly, is it the g++ compiler that is doing the automatic linking of the libraries in Code::Blocks?

    Read the article

  • What language/compiler for native running of application in any windows platform?

    - by Xinxua
    Hi, I want to develop an application that runs on any windows platform (XP, Vista, 7) but does not require a dependency like .NET Framework or JVM. I have given the other requirements below: Runs in any windows platform Must have GUI libraries to create windows/primitive controls I also want the output file size of the application to be minimal (So cannot include .net frameword etc in the exe file) Any suggestions for this requirement?

    Read the article

  • Can I use Visual Studio 2010's C++ compiler with Visual Studio 2008's C++ Runtime Library?

    - by BillyONeal
    I have an application that needs to operate on Windows 2000. I'd also like to use Visual Studio 2010 (mainly because of the change in the definition of the auto keyword). However, I'm in a bit of a bind because I need the app to be able to operate on older OS's, namely: Windows 2000 Windows XP RTM Windows XP SP1 Visual Studio 2010's runtime library depends on the EncodePointer / DecodePointer API which was introduced in Windows XP SP2. If using the alternate runtime library is possible, will this break code that relies on C++0x features added in VS2010, like std::regex?

    Read the article

  • Any C/C++ to non-native bytecode compiler/interpreters?

    - by Matt
    As the title indicates, are there any C/C++ bytecode compilers/interpreters? I'm writing an application in an interpreted language that depends on certain libraries that are fully cross-compilable (there are no special flags to indicate code changes during compilation for a certain platform) but are written in C and C++. Rather than shipping n-platform-specific-libs with each platform, it would be nice to ship one set of libs which are interpreted by one platform specific interpreter. Possible and/or available?

    Read the article

  • Compiling for T4

    - by Darryl Gove
    I've recently had quite a few queries about compiling for T4 based systems. So it's probably a good time to review what I consider to be the best practices. Always use the latest compiler. Being in the compiler team, this is bound to be something I'd recommend But the serious points are that (a) Every release the tools get better and better, so you are going to be much more effective using the latest release (b) Every release we improve the generated code, so you will see things get better (c) Old releases cannot know about new hardware. Always use optimisation. You should use at least -O to get some amount of optimisation. -xO4 is typically even better as this will add within-file inlining. Always generate debug information, using -g. This allows the tools to attribute information to lines of source. This is particularly important when profiling an application. The default target of -xtarget=generic is often sufficient. This setting is designed to produce a binary that runs well across all supported platforms. If the binary is going to be deployed on only a subset of architectures, then it is possible to produce a binary that only uses the instructions supported on these architectures, which may lead to some performance gains. I've previously discussed which chips support which architectures, and I'd recommend that you take a look at the chart that goes with the discussion. Crossfile optimisation (-xipo) can be very useful - particularly when the hot source code is distributed across multiple source files. If you're allowed to have something as geeky as favourite compiler optimisations, then this is mine! Profile feedback (-xprofile=[collect: | use:]) will help the compiler make the best code layout decisions, and is particularly effective with crossfile optimisations. But what makes this optimisation really useful is that codes that are dominated by branch instructions don't typically improve much with "traditional" compiler optimisation, but often do respond well to being built with profile feedback. The macro flag -fast aims to provide a one-stop "give me a fast application" flag. This usually gives a best performing binary, but with a few caveats. It assumes the build platform is also the deployment platform, it enables floating point optimisations, and it makes some relatively weak assumptions about pointer aliasing. It's worth investigating. SPARC64 processor, T3, and T4 implement floating point multiply accumulate instructions. These can substantially improve floating point performance. To generate them the compiler needs the flag -fma=fused and also needs an architecture that supports the instruction (at least -xarch=sparcfmaf). The most critical advise is that anyone doing performance work should profile their application. I cannot overstate how important it is to look at where the time is going in order to determine what can be done to improve it. I also presented at Oracle OpenWorld on this topic, so it might be helpful to review those slides.

    Read the article

  • What does the C# compiler mean when it prints "an explicit conversion exists"?

    - by Wim Coenen
    If I make an empty test class: public class Foo { } And I try to compile code with this statement: Foo foo = "test"; Then I get this error as expected: Cannot implicitly convert type 'string' to 'ConsoleApplication1.Foo' However, if I change the declaration of Foo from class to interface, the error changes to this (emphasis mine): Cannot implicitly convert type 'string' to 'ConsoleApplication1.Foo'. An explicit conversion exists (are you missing a cast?) What is this "explicit conversion" which is supposed to exist?

    Read the article

  • What language/compiler for native running of application in any windows(XP/Vista/7) platform?

    - by Xinxua
    Hi, I want to develop an application that runs on any windows platform (XP, Vista, 7) but does not require a dependency like .NET Framework or JVM. I have given the other requirements below: Runs in any windows platform Must have GUI libraries to create windows/primitive controls I also want the output file size of the application to be minimal (So cannot include .net frameword etc in the exe file) Any suggestions for this requirement?

    Read the article

  • What is a de-compiler how does it work?

    - by thyrgle
    So is a decompiler really a thing that gives gives the source of a compiled/interpreted piece of code? Because to me that sounds impossible. How would you get the names of the functions, variables, classes, etc if it is compiled. Or am I misinterpreting the definition? How does it work? And what is the general principal behind making one?

    Read the article

  • Why do all procedures have to be defined before the compiler sees them?

    - by incrediman
    For example, take a look at this code (from tspl4): (define proc1 (lambda (x y) (proc2 y x))) If I run this as my program in scheme... #!r6rs (import (rnrs)) (define proc1 (lambda (x y) (proc2 y x))) I get this error: expand: unbound identifier in module in: proc2 ...This code works fine though: #!r6rs (import (rnrs)) (define proc2 +) (define proc1 (lambda (x y) (proc2 y x))) (display (proc1 2 3)) ;output: 5

    Read the article

  • unit testing on ARM

    - by NomadAlien
    We are developing application level code that runs on an ARM processor. The BSP (low level code) is being delivered by a 3d party so our code sits just on top of this abstraction layer (code is written in c++). To do unit testing, I assume we will have to mock/stub out the BSP library(essentially abstracting out the HW), but what I'm not sure of is if I write/run the unit test on my pc, do I compile it with for example GCC? Normally we use Realview compiler to compile our code for the ARM. Can I assume that if I compile and run the code with x86 compiler and the unit tests pass that it will also pass when compiled with RealView compiler? I'm not sure how much difference the compiler makes and if you can trust that if the x86 compiled code pass the unit tests that you can also be confident that the Realview compiled code is ok.

    Read the article

  • Is there a IDE/compiler PC benchmark I can use to compare my PCs performance?

    - by RickL
    I'm looking for a benchmark (and results on other PCs) which would give me an idea of the development performance gain I could get by upgrading my PC, also the benchmark could be used to justify the upgrade to my boss. I use Visual Studio 2008 for my development, so I'd like to get an idea of by what factor the build times would be improved, and also it would be good if the benchmark could incorporate IDE performance (i.e. when editing, using intellisense, opening code files etc) into its result. I currently have an AMD 3800x2, with 2GB RAM on Vista 32. For example, I'd like to know what kind of performance gain I'd see in Visual Studio 2008 with a Q6600, 4GB RAM on Vista 64. And also with other processors, and other RAM sizes... also see whether hard disk performance is a big factor. EDIT: I mentioned Vista 64 because I'm aware that Vista 32 can only use 3GB RAM maximum. So I'd presume that wanting to use more RAM would require Vista 64, but perhaps it could still be slower overall there is a large overhead in using the 32 bit VS 2008 on 64 bit OS.

    Read the article

  • Why is it that I can include a header file in multiple cpp files that contains const int and not have a compiler error?

    - by tree
    Let's assume that I have files a.cpp b.cpp and file c.h. Both of the cpp files include the c.h file. The header file contains a bunch of const int definitions and when I compile them I get no errors and yet I can access those const as if they were global variables. So the question, why don't I get any compilation errors if I have multiple const definitions as well as these const int's having global-like scope?

    Read the article

< Previous Page | 42 43 44 45 46 47 48 49 50 51 52 53  | Next Page >