Search Results

Search found 4015 results on 161 pages for 'packet capture'.

Page 46/161 | < Previous Page | 42 43 44 45 46 47 48 49 50 51 52 53  | Next Page >

  • Tools and Utilities for the .NET Developer

    - by mbcrump
    Tweet this list! Add a link to my site to your bookmarks to quickly find this page again! Add me to twitter! This is a list of the tools/utilities that I use to do my job/hobby. I wanted this page to load fast and contain information that only you care about. If I have missed a tool that you like, feel free to contact me and I will add it to the list. Also, this list took a lot of time to complete. Please do not steal my work, if you like the page then please link back to my site. I will keep the links/information updated as new tools/utilities are created.  Windows/.NET Development – This is a list of tools that any Windows/.NET developer should have in his bag. I have used at some point in my career everything listed on this page and below is the tools worth keeping. Name Description License AnkhSVN Subversion support for Visual Studio. It also works with VS2010. Free Aurora XAML Designer One of the best XAML creation tools available. Has a ton of built in templates that you can copy/paste into VS2010. COST/Trial BeyondCompare Beyond Compare 3 is the ideal tool for comparing files and folders on your Windows or Linux system. Visualize changes in your code and carefully reconcile them. COST/Trial BuildIT Automated Task Tool Its main purpose is to automate tasks, whether it is the final packaging of a product, an automated daily build, maybe sending out a mailing list, even backing-up files. Free C Sharper for VB Convert VB to C#. COST CLRProfiler Analyze and improve the behavior of your .NET app. Free CodeRush Direct competitor to ReSharper, contains similar feature. This is one of those decide for yourself. COST/Trial Disk2VHD Disk2vhd is a utility that creates VHD (Virtual Hard Disk - Microsoft's Virtual Machine disk format) versions of physical disks for use in Microsoft Virtual PC or Microsoft Hyper-V virtual machines (VMs). Free Eazfuscator.NET Is a free obfuscator for .NET. The main purpose is to protect intellectual property of software. Free EQATEC Profiler Make your .NET app run faster. No source code changes are needed. Just point the profiler to your app, run the modified code, and get a visual report. COST Expression Studio 3/4 Comes with Web, Blend, Sketch Flow and more. You can create websites, produce beautiful XAML and more. COST/Trial Expresso The award-winning Expresso editor is equally suitable as a teaching tool for the beginning user of regular expressions or as a full-featured development environment for the experienced programmer or web designer with an extensive knowledge of regular expressions. Free Fiddler Fiddler is a web debugging proxy which logs all HTTP(s) traffic between your computer and the internet. Free Firebug Powerful Web development tool. If you build websites, you will need this. Free FxCop FxCop is an application that analyzes managed code assemblies (code that targets the .NET Framework common language runtime) and reports information about the assemblies, such as possible design, localization, performance, and security improvements. Free GAC Browser and Remover Easy way to remove multiple assemblies from the GAC. Assemblies registered by programs like Install Shield can also be removed. Free GAC Util The Global Assembly Cache tool allows you to view and manipulate the contents of the global assembly cache and download cache. Free HelpScribble Help Scribble is a full-featured, easy-to-use help authoring tool for creating help files from start to finish. You can create Win Help (.hlp) files, HTML Help (.chm) files, a printed manual and online documentation (on a web site) all from the same Help Scribble project. COST/Trial IETester IETester is a free Web Browser that allows you to have the rendering and JavaScript engines of IE9 preview, IE8, IE7 IE 6 and IE5.5 on Windows 7, Vista and XP, as well as the installed IE in the same process. Free iTextSharp iText# (iTextSharp) is a port of the iText open source java library for PDF generation written entirely in C# for the .NET platform. Use the iText mailing list to get support. Free Kaxaml Kaxaml is a lightweight XAML editor that gives you a "split view" so you can see both your XAML and your rendered content. Free LINQPad LinqPad lets you interactively query databases in a LINQ. Free Linquer Many programmers are familiar with SQL and will need a help in the transition to LINQ. Sometimes there are complicated queries to be written and Linqer can help by converting SQL scripts to LINQ. COST/Trial LiquidXML Liquid XML Studio 2010 is an advanced XML developers toolkit and IDE, containing all the tools needed for designing and developing XML schema and applications. COST/Trial Log4Net log4net is a tool to help the programmer output log statements to a variety of output targets. log4net is a port of the excellent log4j framework to the .NET runtime. We have kept the framework similar in spirit to the original log4j while taking advantage of new features in the .NET runtime. For more information on log4net see the features document. Free Microsoft Web Platform Installer The Microsoft Web Platform Installer 2.0 (Web PI) is a free tool that makes getting the latest components of the Microsoft Web Platform, including Internet Information Services (IIS), SQL Server Express, .NET Framework and Visual Web Developer easy. Free Mono Development Don't have Visual Studio - no problem! This is an open Source C# and .NET development environment for Linux, Windows, and Mac OS X Free Net Mass Downloader While it’s great that Microsoft has released the .NET Reference Source Code, you can only get it one file at a time while you’re debugging. If you’d like to batch download it for reading or to populate the cache, you’d have to write a program that instantiated and called each method in the Framework Class Library. Fortunately, .NET Mass Downloader comes to the rescue! Free nMap Nmap ("Network Mapper") is a free and open source (license) utility for network exploration or security auditing. Many systems and network administrators also find it useful for tasks such as network inventory, managing service upgrade schedules, and monitoring host or service uptime. Free NoScript (Firefox add-in) The NoScript Firefox extension provides extra protection for Firefox, Flock, Seamonkey and other Mozilla-based browsers: this free, open source add-on allows JavaScript, Java and Flash and other plug-ins to be executed only by trusted web sites of your choice (e.g. your online bank), and provides the most powerful Anti-XSS protection available in a browser. Free NotePad 2 Notepad2, a fast and light-weight Notepad-like text editor with syntax highlighting. This program can be run out of the box without installation, and does not touch your system's registry. Free PageSpy PageSpy is a small add-on for Internet Explorer that allows you to select any element within a webpage, select an option in the context menu, and view detailed information about both the coding behind the page and the element you selected. Free Phrase Express PhraseExpress manages your frequently used text snippets in customizable categories for quick access. Free PowerGui PowerGui is a free community for PowerGUI, a graphical user interface and script editor for Microsoft Windows PowerShell! Free Powershell Comes with Win7, but you can automate tasks by using the .NET Framework. Great for network admins. Free Process Explorer Ever wondered which program has a particular file or directory open? Now you can find out. Process Explorer shows you information about which handles and DLLs processes have opened or loaded. Also, included in the SysInterals Suite. Free Process Monitor Process Monitor is an advanced monitoring tool for Windows that shows real-time file system, Registry and process/thread activity. Free Reflector Explore and analyze compiled .NET assemblies, viewing them in C#, Visual Basic, and IL. This is an Essential for any .NET developer. Free Regular Expression Library Stuck on a Regular Expression but you think someone has already figured it out? Chances are they have. Free Regulator Regulator makes Regular Expressions easy. This is a must have for a .NET Developer. Free RenameMaestro RenameMaestro is probably the easiest batch file renamer you'll find to instantly rename multiple files COST ReSharper The one program that I cannot live without. Supports VS2010 and offers simple refactoring, code analysis/assistance/cleanup/templates. One of the few applications that is worth the $$$. COST/Trial ScrewTurn Wiki ScrewTurn Wiki allows you to create, manage and share wikis. A wiki is a collaboratively-edited, information-centered website: the most famous is Wikipedia. Free SharpDevelop What is #develop? SharpDevelop is a free IDE for C# and VB.NET projects on Microsoft's .NET platform. Free Show Me The Template Show Me The Template is a tool for exploring the templates, be their data, control or items panel, that comes with the controls built into WPF for all 6 themes. Free SnippetCompiler Compiles code snippets without opening Visual Studio. It does not support .NET 4. Free SQL Prompt SQL Prompt is a plug-in that increases how fast you can work with SQL. It provides code-completion for SQL server, reformatting, db schema information and snippets. Awesome! COST/Trial SQLinForm SQLinForm is an automatic SQL code formatter for all major databases  including ORACLE, SQL Server, DB2, UDB, Sybase, Informix, PostgreSQL, Teradata, MySQL, MS Access etc. with over 70 formatting options. COST/OnlineFree SSMS Tools SSMS Tools Pack is an add-in for Microsoft SQL Server Management Studio (SSMS) including SSMS Express. Free Storm STORM is a free and open source tool for testing web services. Free Telerik Code Convertor Convert code from VB to C Sharp and Vice Versa. Free TurtoiseSVN TortoiseSVN is a really easy to use Revision control / version control / source control software for Windows.Since it's not an integration for a specific IDE you can use it with whatever development tools you like. Free UltraEdit UltraEdit is the ideal text, HTML and hex editor, and an advanced PHP, Perl, Java and JavaScript editor for programmers. UltraEdit is also an XML editor including a tree-style XML parser. An industry-award winner, UltraEdit supports disk-based 64-bit file handling (standard) on 32-bit Windows platforms (Windows 2000 and later). COST/Trial Virtual Windows XP Comes with some W7 version and allows you to run WinXP along side W7. Free VirtualBox Virtualization by Sun Microsystems. You can virtualize Windows, Linux and more. Free Visual Log Parser SQL queries against a variety of log files and other system data sources. Free WinMerge WinMerge is an Open Source differencing and merging tool for Windows. WinMerge can compare both folders and files, presenting differences in a visual text format that is easy to understand and handle. Free Wireshark Wireshark is one of the best network protocol analyzer's for Unix and windows. This has been used several times to get me out of a bind. Free XML Notepad 07 Old, but still one of my favorite XML viewers. Free Productivity Tools – This is the list of tools that I use to save time or quickly navigate around Windows. Name Description License AutoHotKey Automate almost anything by sending keystrokes and mouse clicks. You can write a mouse or keyboard macro by hand or use the macro recorder. Free CLCL CLCL is clipboard caching utility. Free Ditto Ditto is an extension to the standard windows clipboard. It saves each item placed on the clipboard allowing you access to any of those items at a later time. Ditto allows you to save any type of information that can be put on the clipboard, text, images, html, custom formats, ..... Free Evernote Remember everything from notes to photos. It will synch between computers/devices. Free InfoRapid Inforapid is a search tool that will display all you search results in a html like browser. If you click on a word in that browser, it will start another search to the word you clicked on. Handy if you want to trackback something to it's true origin. The word you looked for will be highlighted in red. Clicking on the red word will open the containing file in a text based viewer. Clicking on any word in the opened document will start another search on that word. Free KatMouse The prime purpose of the KatMouse utility is to enhance the functionality of mice with a scroll wheel, offering 'universal' scrolling: moving the mouse wheel will scroll the window directly beneath the mouse cursor (not the one with the keyboard focus, which is default on Windows OSes). This is a major increase in the usefulness of the mouse wheel. Free ScreenR Instant Screencast with nothing to download. Works with Mac or PC and free. Free Start++ Start++ is an enhancement for the Start Menu in Windows Vista. It also extends the Run box and the command-line with customizable commands.  For example, typing "w Windows Vista" will take you to the Windows Vista page on Wikipedia! Free Synergy Synergy lets you easily share a single mouse and keyboard between multiple computers with different operating systems, each with its own display, without special hardware. It's intended for users with multiple computers on their desk since each system uses its own monitor(s). Free Texter Texter lets you define text substitution hot strings that, when triggered, will replace hotstring with a larger piece of text. By entering your most commonly-typed snippets of text into Texter, you can save countless keystrokes in the course of the day. Free Total Commander File handling, FTP, Archive handling and much more. Even works with Win3.11. COST/Trial Available Wizmouse WizMouse is a mouse enhancement utility that makes your mouse wheel work on the window currently under the mouse pointer, instead of the currently focused window. This means you no longer have to click on a window before being able to scroll it with the mouse wheel. This is a far more comfortable and practical way to make use of the mouse wheel. Free Xmarks Bookmark sync and search between computers. Free General Utilities – This is a list for power user users or anyone that wants more out of Windows. I usually install a majority of these whenever I get a new system. Name Description License µTorrent µTorrent is a lightweight and efficient BitTorrent client for Windows or Mac with many features. I use this for downloading LEGAL media. Free Audacity Audacity® is free, open source software for recording and editing sounds. It is available for Mac OS X, Microsoft Windows, GNU/Linux, and other operating systems. Learn more about Audacity... Also check our Wiki and Forum for more information. Free AVast Free FREE Antivirus. Free CD Burner XP Pro CDBurnerXP is a free application to burn CDs and DVDs, including Blu-Ray and HD-DVDs. It also includes the feature to burn and create ISOs, as well as a multilanguage interface. Free CDEX You can extract digital audio CDs into mp3/wav. Free Combofix Combofix is a freeware (a legitimate spyware remover created by sUBs), Combofix was designed to scan a computer for known malware, spyware (SurfSideKick, QooLogic, and Look2Me as well as any other combination of the mentioned spyware applications) and remove them. Free Cpu-Z Provides information about some of the main devices of your system. Free Cropper Cropper is a screen capture utility written in C#. It makes it fast and easy to grab parts of your screen. Use it to easily crop out sections of vector graphic files such as Fireworks without having to flatten the files or open in a new editor. Use it to easily capture parts of a web site, including text and images. It's also great for writing documentation that needs images of your application or web site. Free DropBox Drag and Drop files to sync between computers. Free DVD-Fab Converts/Copies DVDs/Blu-Ray to different formats. (like mp4, mkv, avi) COST/Trial Available FastStone Capture FastStone Capture is a powerful, lightweight, yet full-featured screen capture tool that allows you to easily capture and annotate anything on the screen including windows, objects, menus, full screen, rectangular/freehand regions and even scrolling windows/web pages. Free ffdshow FFDShow is a DirectShow decoding filter for decompressing DivX, XviD, H.264, FLV1, WMV, MPEG-1 and MPEG-2, MPEG-4 movies. Free Filezilla FileZilla Client is a fast and reliable cross-platform FTP, FTPS and SFTP client with lots of useful features and an intuitive graphical user interface. You can also download a server version. Free FireFox Web Browser, do you really need an explanation? Free FireGestures A customizable mouse gestures extension which enables you to execute various commands and user scripts with five types of gestures. Free FoxIt Reader Light weight PDF viewer. You should install this with the advanced setting or it will install a toolbar and setup some shortcuts. Free gSynchIt Synch Gmail and Outlook. Even supports Outlook 2010 32/64 bit COST/Trial Available Hulu Desktop At home or in a hotel, this has replaced my cable/satellite subscription. Free ImgBurn ImgBurn is a lightweight CD / DVD / HD DVD / Blu-ray burning application that everyone should have in their toolkit! Free Infrarecorder InfraRecorder is a free CD/DVD burning solution for Microsoft Windows. It offers a wide range of powerful features; all through an easy to use application interface and Windows Explorer integration. Free KeePass KeePass is a free open source password manager, which helps you to manage your passwords in a secure way. Free LastPass Another password management, synchronize between browsers, automatic form filling and more. Free Live Essentials One download and lots of programs including Mail, Live Writer, Movie Maker and more! Free Monitores MonitorES is a small windows utility that helps you to turnoff monitor display when you lock down your machine.Also when you lock your machine, it will pause all your running media programs & set your IM status message to "Away" / Custom message(via options) and restore it back to normal when you back. Free mRemote mRemote is a full-featured, multi-tab remote connections manager. Free Open Office OpenOffice.org 3 is the leading open-source office software suite for word processing, spreadsheets, presentations, graphics, databases and more. It is available in many languages and works on all common computers. It stores all your data in an international open standard format and can also read and write files from other common office software packages. It can be downloaded and used completely free of charge for any purpose. Free Paint.NET Simple, intuitive, and innovative user interface for editing photos. Free Picasa Picasa is free photo editing software from Google that makes your pictures look great. Free Pidgin Pidgin is an easy to use and free chat client used by millions. Connect to AIM, MSN, Yahoo, and more chat networks all at once. Free PING PING is a live Linux ISO, based on the excellent Linux From Scratch (LFS) documentation. It can be burnt on a CD and booted, or integrated into a PXE / RIS environment. Free Putty PuTTY is an SSH and telnet client, developed originally by Simon Tatham for the Windows platform. Free Revo Uninstaller Revo Uninstaller Pro helps you to uninstall software and remove unwanted programs installed on your computer easily! Even if you have problems uninstalling and cannot uninstall them from "Windows Add or Remove Programs" control panel applet.Revo Uninstaller is a much faster and more powerful alternative to "Windows Add or Remove Programs" applet! It has very powerful features to uninstall and remove programs. Free Security Essentials Microsoft Security Essentials is a new, free consumer anti-malware solution for your computer. Free SetupVirtualCloneDrive Virtual CloneDrive works and behaves just like a physical CD/DVD drive, however it exists only virtually. Point to the .ISO file and it appears in Windows Explorer as a Drive. Free Shark 007 Codec Pack Play just about any file format with this download. Also includes my W7 Media Playlist Generator. Free Snagit 9 Screen Capture on steroids. Add arrows, captions, etc to any screenshot. COST/Trial Available SysinternalsSuite Go ahead and download the entire sys internals suite. I have mentioned multiple programs in this suite already. Free TeraCopy TeraCopy is a compact program designed to copy and move files at the maximum possible speed, providing the user with a lot of features. Free for Home TrueCrypt Free open-source disk encryption software for Windows 7/Vista/XP, Mac OS X, and Linux Free TweetDeck Fully featured Twitter client. Free UltraVNC UltraVNC is a powerful, easy to use and free software that can display the screen of another computer (via internet or network) on your own screen. The program allows you to use your mouse and keyboard to control the other PC remotely. It means that you can work on a remote computer, as if you were sitting in front of it, right from your current location. Free Unlocker Unlocks locked files. Pretty simple right? Free VLC Media Player VLC media player is a highly portable multimedia player and multimedia framework capable of reading most audio and video formats Free Windows 7 Media Playlist This program is special to my heart because I wrote it. It has been mentioned on podcast and various websites. It allows you to quickly create wvx video playlist for Windows Media Center. Free WinRAR WinRAR is a powerful archive manager. It can backup your data and reduce the size of email attachments, decompress RAR, ZIP and other files downloaded from Internet and create new archives in RAR and ZIP file format. COST/Trial Available Blogging – I use the following for my blog. Name Description License Insert Code for Windows Live Writer Insert Code for Windows Live Writer will format a snippet of text in a number of programming languages such as C#, HTML, MSH, JavaScript, Visual Basic and TSQL. Free LiveWriter Included in Live Essentials, but the ultimate in Windows Blogging Free PasteAsVSCode Plug-in for Windows Live Writer that pastes clipboard content as Visual Studio code. Preserves syntax highlighting, indentation and background color. Converts RTF, outputted by Visual Studio, into HTML. Free Desktop Management – The list below represent the best in Windows Desktop Management. Name Description License 7 Stacks Allows users to have "stacks" of icons in their taskbar. Free Executor Executor is a multi purpose launcher and a more advanced and customizable version of windows run. Free Fences Fences is a program that helps you organize your desktop and can hide your icons when they are not in use. Free RocketDock Rocket Dock is a smoothly animated, alpha blended application launcher. It provides a nice clean interface to drop shortcuts on for easy access and organization. With each item completely customizable there is no end to what you can add and launch from the dock. Free WindowsTab Tabbing is an essential feature of modern web browsers. Window Tabs brings the productivity of tabbed window management to all of your desktop applications. Free

    Read the article

  • Send regular keyboard samples OR keyboard state changes over network

    - by Ciaran
    Building a multi player asteroids game where ships compete with each other. Using UDP. Wanted to minimize traffic sent to server. Which would you do: Send periodic keyboard state samples every from client every to match server physics update rate e.g. 50 times per second. Highly resilient to packet loss and other reliabilty problems. Out of date packets disacarded by server. Generates a lot of unnuecessary traffic. Only send keyboard state when it changes (key up, key down). Radically less traffic sent from client to server. However, UDP can lose packets without you being informed. So the latter method could result in the vital packet never being resent unless I detect and resend this in a timely manner.

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • SQL SERVER – Guest Posts – Feodor Georgiev – The Context of Our Database Environment – Going Beyond the Internal SQL Server Waits – Wait Type – Day 21 of 28

    - by pinaldave
    This guest post is submitted by Feodor. Feodor Georgiev is a SQL Server database specialist with extensive experience of thinking both within and outside the box. He has wide experience of different systems and solutions in the fields of architecture, scalability, performance, etc. Feodor has experience with SQL Server 2000 and later versions, and is certified in SQL Server 2008. In this article Feodor explains the server-client-server process, and concentrated on the mutual waits between client and SQL Server. This is essential in grasping the concept of waits in a ‘global’ application plan. Recently I was asked to write a blog post about the wait statistics in SQL Server and since I had been thinking about writing it for quite some time now, here it is. It is a wide-spread idea that the wait statistics in SQL Server will tell you everything about your performance. Well, almost. Or should I say – barely. The reason for this is that SQL Server is always a part of a bigger system – there are always other players in the game: whether it is a client application, web service, any other kind of data import/export process and so on. In short, the SQL Server surroundings look like this: This means that SQL Server, aside from its internal waits, also depends on external waits and settings. As we can see in the picture above, SQL Server needs to have an interface in order to communicate with the surrounding clients over the network. For this communication, SQL Server uses protocol interfaces. I will not go into detail about which protocols are best, but you can read this article. Also, review the information about the TDS (Tabular data stream). As we all know, our system is only as fast as its slowest component. This means that when we look at our environment as a whole, the SQL Server might be a victim of external pressure, no matter how well we have tuned our database server performance. Let’s dive into an example: let’s say that we have a web server, hosting a web application which is using data from our SQL Server, hosted on another server. The network card of the web server for some reason is malfunctioning (think of a hardware failure, driver failure, or just improper setup) and does not send/receive data faster than 10Mbs. On the other end, our SQL Server will not be able to send/receive data at a faster rate either. This means that the application users will notify the support team and will say: “My data is coming very slow.” Now, let’s move on to a bit more exciting example: imagine that there is a similar setup as the example above – one web server and one database server, and the application is not using any stored procedure calls, but instead for every user request the application is sending 80kb query over the network to the SQL Server. (I really thought this does not happen in real life until I saw it one day.) So, what happens in this case? To make things worse, let’s say that the 80kb query text is submitted from the application to the SQL Server at least 100 times per minute, and as often as 300 times per minute in peak times. Here is what happens: in order for this query to reach the SQL Server, it will have to be broken into a of number network packets (according to the packet size settings) – and will travel over the network. On the other side, our SQL Server network card will receive the packets, will pass them to our network layer, the packets will get assembled, and eventually SQL Server will start processing the query – parsing, allegorizing, generating the query execution plan and so on. So far, we have already had a serious network overhead by waiting for the packets to reach our Database Engine. There will certainly be some processing overhead – until the database engine deals with the 80kb query and its 20 subqueries. The waits you see in the DMVs are actually collected from the point the query reaches the SQL Server and the packets are assembled. Let’s say that our query is processed and it finally returns 15000 rows. These rows have a certain size as well, depending on the data types returned. This means that the data will have converted to packages (depending on the network size package settings) and will have to reach the application server. There will also be waits, however, this time you will be able to see a wait type in the DMVs called ASYNC_NETWORK_IO. What this wait type indicates is that the client is not consuming the data fast enough and the network buffers are filling up. Recently Pinal Dave posted a blog on Client Statistics. What Client Statistics does is captures the physical flow characteristics of the query between the client(Management Studio, in this case) and the server and back to the client. As you see in the image, there are three categories: Query Profile Statistics, Network Statistics and Time Statistics. Number of server roundtrips–a roundtrip consists of a request sent to the server and a reply from the server to the client. For example, if your query has three select statements, and they are separated by ‘GO’ command, then there will be three different roundtrips. TDS Packets sent from the client – TDS (tabular data stream) is the language which SQL Server speaks, and in order for applications to communicate with SQL Server, they need to pack the requests in TDS packets. TDS Packets sent from the client is the number of packets sent from the client; in case the request is large, then it may need more buffers, and eventually might even need more server roundtrips. TDS packets received from server –is the TDS packets sent by the server to the client during the query execution. Bytes sent from client – is the volume of the data set to our SQL Server, measured in bytes; i.e. how big of a query we have sent to the SQL Server. This is why it is best to use stored procedures, since the reusable code (which already exists as an object in the SQL Server) will only be called as a name of procedure + parameters, and this will minimize the network pressure. Bytes received from server – is the amount of data the SQL Server has sent to the client, measured in bytes. Depending on the number of rows and the datatypes involved, this number will vary. But still, think about the network load when you request data from SQL Server. Client processing time – is the amount of time spent in milliseconds between the first received response packet and the last received response packet by the client. Wait time on server replies – is the time in milliseconds between the last request packet which left the client and the first response packet which came back from the server to the client. Total execution time – is the sum of client processing time and wait time on server replies (the SQL Server internal processing time) Here is an illustration of the Client-server communication model which should help you understand the mutual waits in a client-server environment. Keep in mind that a query with a large ‘wait time on server replies’ means the server took a long time to produce the very first row. This is usual on queries that have operators that need the entire sub-query to evaluate before they proceed (for example, sort and top operators). However, a query with a very short ‘wait time on server replies’ means that the query was able to return the first row fast. However a long ‘client processing time’ does not necessarily imply the client spent a lot of time processing and the server was blocked waiting on the client. It can simply mean that the server continued to return rows from the result and this is how long it took until the very last row was returned. The bottom line is that developers and DBAs should work together and think carefully of the resource utilization in the client-server environment. From experience I can say that so far I have seen only cases when the application developers and the Database developers are on their own and do not ask questions about the other party’s world. I would recommend using the Client Statistics tool during new development to track the performance of the queries, and also to find a synchronous way of utilizing resources between the client – server – client. Here is another example: think about similar setup as above, but add another server to the game. Let’s say that we keep our media on a separate server, and together with the data from our SQL Server we need to display some images on the webpage requested by our user. No matter how simple or complicated the logic to get the images is, if the images are 500kb each our users will get the page slowly and they will still think that there is something wrong with our data. Anyway, I don’t mean to get carried away too far from SQL Server. Instead, what I would like to say is that DBAs should also be aware of ‘the big picture’. I wrote a blog post a while back on this topic, and if you are interested, you can read it here about the big picture. And finally, here are some guidelines for monitoring the network performance and improving it: Run a trace and outline all queries that return more than 1000 rows (in Profiler you can actually filter and sort the captured trace by number of returned rows). This is not a set number; it is more of a guideline. The general thought is that no application user can consume that many rows at once. Ask yourself and your fellow-developers: ‘why?’. Monitor your network counters in Perfmon: Network Interface:Output queue length, Redirector:Network errors/sec, TCPv4: Segments retransmitted/sec and so on. Make sure to establish a good friendship with your network administrator (buy them coffee, for example J ) and get into a conversation about the network settings. Have them explain to you how the network cards are setup – are they standalone, are they ‘teamed’, what are the settings – full duplex and so on. Find some time to read a bit about networking. In this short blog post I hope I have turned your attention to ‘the big picture’ and the fact that there are other factors affecting our SQL Server, aside from its internal workings. As a further reading I would still highly recommend the Wait Stats series on this blog, also I would recommend you have the coffee break conversation with your network admin as soon as possible. This guest post is written by Feodor Georgiev. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL

    Read the article

  • 12.04lts: no network internet

    - by dgermann
    Friends-- Cannot connect reliably to ethernet nor at all to Internet: Symptoms: About 2 weeks ago did an upgrade. Have not been able to connect to ethernet nor Internet. Today, for example, boot up this System76 laptop and there was no network connection. Did sudo mount -a and got some internal network connectivity: doug@ubuntu:/sam$ ping earth PING earth (192.168.0.201) 56(84) bytes of data. 64 bytes from earth (192.168.0.201): icmp_req=1 ttl=64 time=0.160 ms 64 bytes from earth (192.168.0.201): icmp_req=2 ttl=64 time=0.177 ms 64 bytes from earth (192.168.0.201): icmp_req=3 ttl=64 time=0.159 ms ^C --- earth ping statistics --- 3 packets transmitted, 3 received, 0% packet loss, time 1998ms rtt min/avg/max/mdev = 0.159/0.165/0.177/0.013 ms doug@ubuntu:/sam$ ping doug2 PING doug (192.168.0.4) 56(84) bytes of data. ^C --- doug ping statistics --- 3 packets transmitted, 0 received, 100% packet loss, time 1999ms doug@ubuntu:/sam$ ping sharon PING sharon (192.168.0.111) 56(84) bytes of data. 64 bytes from sharon (192.168.0.111): icmp_req=1 ttl=128 time=0.276 ms ^C --- sharon ping statistics --- 6 packets transmitted, 1 received, 83% packet loss, time 5031ms rtt min/avg/max/mdev = 0.276/0.276/0.276/0.000 ms doug@ubuntu:/sam$ ping 192.168.0.1 PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data. ^C --- 192.168.0.1 ping statistics --- 6 packets transmitted, 0 received, 100% packet loss, time 4999ms doug@ubuntu:/sam$ ping earth PING earth (192.168.0.201) 56(84) bytes of data. ^C --- earth ping statistics --- 5 packets transmitted, 0 received, 100% packet loss, time 4032ms doug@ubuntu:/sam$ ping yahoo.com ping: unknown host yahoo.com doug@ubuntu:/sam$ ping ubuntu.com ping: unknown host ubuntu.com doug@ubuntu:/sam$ ping 8.8.8.8 PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data. ^C --- 8.8.8.8 ping statistics --- 14 packets transmitted, 0 received, 100% packet loss, time 13103ms Note that earth is the cifs server, and one time pinging it worked, later failed. Clues: doug@ubuntu:/sam$ grep -i eth /var/log/syslog |tail Aug 23 15:32:46 ubuntu kernel: [ 5328.070401] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:32:48 ubuntu kernel: [ 5330.651139] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=19090 PROTO=2 Aug 23 15:34:51 ubuntu kernel: [ 5453.072279] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:34:55 ubuntu kernel: [ 5457.085433] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16137 PROTO=2 Aug 23 15:36:56 ubuntu kernel: [ 5578.074492] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:37:00 ubuntu kernel: [ 5582.359006] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16150 PROTO=2 Aug 23 15:39:01 ubuntu kernel: [ 5703.074410] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:39:03 ubuntu kernel: [ 5705.070122] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16163 PROTO=2 Aug 23 15:41:06 ubuntu kernel: [ 5828.074387] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:41:13 ubuntu kernel: [ 5835.319941] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=23298 PROTO=2 doug@ubuntu:/sam$ ifconfig -a eth0 Link encap:Ethernet HWaddr [BLANKED] inet addr:192.168.0.7 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::21b:fcff:fe29:9dfc/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:3961 errors:0 dropped:0 overruns:0 frame:0 TX packets:2007 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:991204 (991.2 KB) TX bytes:252908 (252.9 KB) Interrupt:16 Base address:0xec00 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:2190 errors:0 dropped:0 overruns:0 frame:0 TX packets:2190 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:168052 (168.0 KB) TX bytes:168052 (168.0 KB) wlan0 Link encap:Ethernet HWaddr 00:19:d2:72:5a:0c UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) doug@ubuntu:/sam$ iwconfig lo no wireless extensions. wlan0 IEEE 802.11abg ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=15 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off eth0 no wireless extensions. doug@ubuntu:/sam$ lsmod Module Size Used by des_generic 21191 0 md4 12523 0 nls_iso8859_1 12617 1 nls_cp437 12751 1 vfat 17308 1 fat 55605 1 vfat usb_storage 39646 1 dm_crypt 22528 1 joydev 17393 0 snd_hda_codec_analog 75395 1 snd_hda_intel 32719 2 pcmcia 39826 0 snd_hda_codec 109562 2 snd_hda_codec_analog,snd_hda_intel snd_hwdep 13276 1 snd_hda_codec ip6t_LOG 16846 4 xt_hl 12465 6 ip6t_rt 12473 3 snd_pcm 80916 2 snd_hda_intel,snd_hda_codec nf_conntrack_ipv6 13581 7 nf_defrag_ipv6 13175 1 nf_conntrack_ipv6 ipt_REJECT 12512 1 ipt_LOG 12783 5 xt_limit 12541 12 xt_tcpudp 12531 21 xt_addrtype 12596 4 snd_seq_midi 13132 0 xt_state 12514 14 ip6table_filter 12711 1 ip6_tables 22528 3 ip6t_LOG,ip6t_rt,ip6table_filter nf_conntrack_netbios_ns 12585 0 nf_conntrack_broadcast 12541 1 nf_conntrack_netbios_ns nf_nat_ftp 12595 0 nf_nat 24959 1 nf_nat_ftp nf_conntrack_ipv4 19084 9 nf_nat nf_defrag_ipv4 12649 1 nf_conntrack_ipv4 nf_conntrack_ftp 13183 1 nf_nat_ftp nf_conntrack 73847 8 nf_conntrack_ipv6,xt_state,nf_conntrack_netbios_ns,nf_conntrack_broadcast,nf_nat_ftp,nf_nat,nf_conntrack_ipv4,nf_conntrack_ftp iptable_filter 12706 1 ip_tables 18106 1 iptable_filter snd_rawmidi 25424 1 snd_seq_midi psmouse 86982 0 x_tables 22011 13 ip6t_LOG,xt_hl,ip6t_rt,ipt_REJECT,ipt_LOG,xt_limit,xt_tcpudp,xt_addrtype,xt_state,ip6table_filter,ip6_tables,iptable_filter,ip_tables arc4 12473 2 r592 17808 0 snd_seq_midi_event 14475 1 snd_seq_midi memstick 15857 1 r592 yenta_socket 27465 0 serio_raw 13027 0 pcmcia_rsrc 18367 1 yenta_socket iwl3945 73186 0 pcmcia_core 21511 3 pcmcia,yenta_socket,pcmcia_rsrc iwl_legacy 71334 1 iwl3945 snd_seq 51592 2 snd_seq_midi,snd_seq_midi_event mac80211 436493 2 iwl3945,iwl_legacy snd_timer 28931 2 snd_pcm,snd_seq snd_seq_device 14172 3 snd_seq_midi,snd_rawmidi,snd_seq rfcomm 38139 0 bnep 17830 2 parport_pc 32114 0 bluetooth 158447 10 rfcomm,bnep ppdev 12849 0 cfg80211 178877 3 iwl3945,iwl_legacy,mac80211 asus_laptop 23693 0 sparse_keymap 13658 1 asus_laptop input_polldev 13648 1 asus_laptop nls_utf8 12493 6 cifs 258037 10 snd 62218 13 snd_hda_codec_analog,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device soundcore 14635 1 snd mac_hid 13077 0 snd_page_alloc 14108 2 snd_hda_intel,snd_pcm lp 17455 0 parport 40930 3 parport_pc,ppdev,lp i915 428418 3 firewire_ohci 40172 0 sdhci_pci 18324 0 sdhci 28241 1 sdhci_pci firewire_core 56940 1 firewire_ohci crc_itu_t 12627 1 firewire_core r8169 56396 0 drm_kms_helper 45466 1 i915 drm 197641 4 i915,drm_kms_helper i2c_algo_bit 13199 1 i915 video 19115 1 i915 doug@ubuntu:/sam$ dmesg |grep eth [ 0.116936] i2c-core: driver [aat2870] using legacy suspend method [ 0.116939] i2c-core: driver [aat2870] using legacy resume method [ 1.453811] r8169 0000:03:07.0: eth0: RTL8169sb/8110sb at 0xf840ec00, [BLANKED], XID 10000000 IRQ 16 [ 1.453815] r8169 0000:03:07.0: eth0: jumbo features [frames: 7152 bytes, tx checksumming: ok] [ 25.681231] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 154.037318] r8169 0000:03:07.0: eth0: link down [ 154.037329] r8169 0000:03:07.0: eth0: link down [ 154.037596] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 155.583162] r8169 0000:03:07.0: eth0: link up [ 155.583366] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 156.637048] r8169 0000:03:07.0: eth0: link down [ 156.637066] r8169 0000:03:07.0: eth0: link down [ 156.637339] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 156.773699] r8169 0000:03:07.0: eth0: link down [ 156.773983] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 158.456181] r8169 0000:03:07.0: eth0: link up [ 158.456378] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 159.364468] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 162.384496] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=38877 PROTO=2 [ 166.272457] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 166.422333] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=40695 PROTO=2 [ 168.736049] eth0: no IPv6 routers present [ 183.572472] r8169 0000:03:07.0: eth0: link down [ 183.572490] r8169 0000:03:07.0: eth0: link down [ 183.572934] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 185.204801] r8169 0000:03:07.0: eth0: link up [ 185.205005] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 3620.680451] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3621.068431] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3624.912973] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=9118 PROTO=2 [ 3631.088069] eth0: no IPv6 routers present [ 3703.062980] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3703.465330] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=9210 PROTO=2 [ 3828.062951] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3833.617772] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=9749 PROTO=2 [ 3953.062920] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3955.675129] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=15983 PROTO=2 [ 4078.062922] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4078.386319] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=15997 PROTO=2 [ 4203.062899] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4203.559241] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16011 PROTO=2 [ 4328.062833] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4328.930922] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16027 PROTO=2 [ 4453.062811] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4453.950224] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16039 PROTO=2 [ 4578.062742] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4580.626432] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=13738 PROTO=2 [ 4703.062704] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4706.310170] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=15942 PROTO=2 [ 4828.062707] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4832.174324] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16505 PROTO=2 [ 4953.062628] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4961.469282] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16090 PROTO=2 [ 5078.062552] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5080.776462] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=17239 PROTO=2 [ 5203.070394] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5205.358134] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=17665 PROTO=2 [ 5328.070401] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5330.651139] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=19090 PROTO=2 [ 5453.072279] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5457.085433] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16137 PROTO=2 [ 5578.074492] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5582.359006] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16150 PROTO=2 [ 5703.074410] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5705.070122] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16163 PROTO=2 [ 5828.074387] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED][BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5835.319941] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED][BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=23298 PROTO=2 [ 5953.074429] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED][BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5961.925481] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED][BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=24261 PROTO=2 doug@ubuntu:/sam$ lspci -nnk |grep -iA2 eth 03:07.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8169 PCI Gigabit Ethernet Controller [10ec:8169] (rev 10) Subsystem: ASUSTeK Computer Inc. Device [1043:11e5] Kernel driver in use: r8169 doug@ubuntu:/sam$ route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 192.168.0.1 0.0.0.0 UG 0 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0 192.168.0.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0 doug@ubuntu:/sam$ nm-tool NetworkManager Tool State: connected (global) - Device: eth0 [Ifupdown (eth0)] ---------------------------------------------- Type: Wired Driver: r8169 State: connected Default: yes HW Address: [BLANKED] Capabilities: Carrier Detect: yes Speed: 100 Mb/s Wired Properties Carrier: on IPv4 Settings: Address: 192.168.0.7 Prefix: 24 (255.255.255.0) Gateway: 192.168.0.1 DNS: 192.168.0.1 - Device: wlan0 ---------------------------------------------------------------- Type: 802.11 WiFi Driver: iwl3945 State: disconnected Default: no HW Address: 00:19:D2:72:5A:0C Capabilities: Wireless Properties WEP Encryption: yes WPA Encryption: yes WPA2 Encryption: yes Wireless Access Points ATT592: Infra, 30:60:23:76:FE:60, Freq 2437 MHz, Rate 54 Mb/s, Strength 24 WPA WPA2 doug@ubuntu:/sam$ nslookup ubuntu.com ;; connection timed out; no servers could be reached doug@ubuntu:/sam$ dig ubuntuforums.org ; <<>> DiG 9.8.1-P1 <<>> ubuntuforums.org ;; global options: +cmd ;; connection timed out; no servers could be reached doug@ubuntu:/sam$ sudo ifconfig eth0 up doug@ubuntu:/sam$ dhcpcd eth0 The program 'dhcpcd' can be found in the following packages: * dhcpcd * dhcpcd5 Try: sudo apt-get install <selected package> doug@ubuntu:/sam$ lspci -k 00:00.0 Host bridge: Intel Corporation Mobile 945GM/PM/GMS, 943/940GML and 945GT Express Memory Controller Hub (rev 03) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: agpgart-intel 00:02.0 VGA compatible controller: Intel Corporation Mobile 945GM/GMS, 943/940GML Express Integrated Graphics Controller (rev 03) Subsystem: ASUSTeK Computer Inc. Device 1252 Kernel driver in use: i915 Kernel modules: intelfb, i915 00:02.1 Display controller: Intel Corporation Mobile 945GM/GMS/GME, 943/940GML Express Integrated Graphics Controller (rev 03) Subsystem: ASUSTeK Computer Inc. Device 1252 00:1b.0 Audio device: Intel Corporation NM10/ICH7 Family High Definition Audio Controller (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge: Intel Corporation NM10/ICH7 Family PCI Express Port 1 (rev 02) Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.1 PCI bridge: Intel Corporation NM10/ICH7 Family PCI Express Port 2 (rev 02) Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #1 (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: uhci_hcd 00:1d.1 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #2 (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: uhci_hcd 00:1d.2 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #3 (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: uhci_hcd 00:1d.3 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #4 (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: uhci_hcd 00:1d.7 USB controller: Intel Corporation NM10/ICH7 Family USB2 EHCI Controller (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: ehci_hcd 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev e2) 00:1f.0 ISA bridge: Intel Corporation 82801GBM (ICH7-M) LPC Interface Bridge (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel modules: leds-ss4200, iTCO_wdt, intel-rng 00:1f.1 IDE interface: Intel Corporation 82801G (ICH7 Family) IDE Controller (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: ata_piix 00:1f.3 SMBus: Intel Corporation NM10/ICH7 Family SMBus Controller (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel modules: i2c-i801 02:00.0 Network controller: Intel Corporation PRO/Wireless 3945ABG [Golan] Network Connection (rev 02) Subsystem: Intel Corporation PRO/Wireless 3945ABG Network Connection Kernel driver in use: iwl3945 Kernel modules: iwl3945 03:01.0 CardBus bridge: Ricoh Co Ltd RL5c476 II (rev b3) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: yenta_cardbus Kernel modules: yenta_socket 03:01.1 FireWire (IEEE 1394): Ricoh Co Ltd R5C552 IEEE 1394 Controller (rev 08) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: firewire_ohci Kernel modules: firewire-ohci 03:01.2 SD Host controller: Ricoh Co Ltd R5C822 SD/SDIO/MMC/MS/MSPro Host Adapter (rev 17) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: sdhci-pci Kernel modules: sdhci-pci 03:01.3 System peripheral: Ricoh Co Ltd R5C592 Memory Stick Bus Host Adapter (rev 08) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: r592 Kernel modules: r592 03:07.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8169 PCI Gigabit Ethernet Controller (rev 10) Subsystem: ASUSTeK Computer Inc. Device 11e5 Kernel driver in use: r8169 Kernel modules: r8169 doug@ubuntu:/sam$ Things I have tried: sudo start network-manager: no help gksudo gedit /etc/network/interfaces changed line to iface eth0 inet dhcp: no help gksudo gedit /etc/NetworkManager/NetworkManager.conf, I changed managed=false to managed=true. Then sudo service network-manager restart: no help: network is unreachable sudo pkill -9 NetworkManager: no help gksudo gedit /etc/resolve.conf added line nameseriver 8.8.8.8: no help I know very little about networking; to date this has simply worked. Thanks for your help! :- Doug.

    Read the article

  • Which LAN card / module combinations proven to work with Wake on LAN

    - by pablomo
    I've got a 12.04 headless server that I've been trying to get to work with wake-on-lan. The card is Marvel 88E8053 using the sky2 module. Although WOL is enabled in BIOS and ethtool shows the card as WOL enabled, it refuses to wake when I send the magic packet. I have verified that the packet is being received OK when the machine is on. The machine does wake OK from a BIOS alarm which suggests it is a network card issue. I've seen reference to bugs in sky2 that mean WOL fails in recent versions of Ubuntu (and have tried a module conf file as suggested here but to no avail) So I am thinking the best bet is to replace the ethernet card with one that definitely works with WOL in 12.04 - please could you post your card make and model no if you are using it successfully?

    Read the article

  • Ubunti 12.10 wake on lan not working with Realtek 8139

    - by f.cipriani
    My pc doesn't wake up when receiving a magic packet from a pc connected to the same router. ethtool: fcipriani@ubuntu:~$ sudo ethtool eth0 Settings for eth0: Supported ports: [ TP MII ] Supported link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full Supported pause frame use: No Supports auto-negotiation: Yes Advertised link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full Advertised pause frame use: No Advertised auto-negotiation: Yes Link partner advertised link modes: 10baseT/Half 10baseT/Full 100baseT/Half 100baseT/Full Link partner advertised pause frame use: No Link partner advertised auto-negotiation: Yes Speed: 100Mb/s Duplex: Full Port: MII PHYAD: 32 Transceiver: internal Auto-negotiation: on Supports Wake-on: pumbg Wake-on: g Current message level: 0x00000007 (7) drv probe link Link detected: yes I have enabled all the wake up features in my bios, and I have verified the magic packet gets to the pc. I suspect the main problem is that the NIC light is completely turned off after the shutdown, but even after spending a lot of time researching I can't understand if this is a limit of my network card, my mobo, or something in the OS which needs to be configured correctly in order to leave the NIC in stand by mode with the light flashing. the NIC is Realtek 8139, the motherboard Asus P5L13L-X

    Read the article

  • ssh login fails for user with empty password

    - by Reid
    How do you enable ssh login on OS X 10.8 (Mountain Lion) for a user with an empty password? I've seen others asking this question, and like me it's for the same reason: a parent who can't deal with passwords. So "set a password" is not an option. I found references to adding "nullok" to various PAM config files. Didn't work. Found sshd config "PermitEmptyPasswords yes". Didn't work. I've done a diff on "ssh -vvv" between a successful ssh with a password-enabled account and the one with no password. 54,55c54,55 < debug2: dh_gen_key: priv key bits set: 133/256 < debug2: bits set: 533/1024 --- > debug2: dh_gen_key: priv key bits set: 140/256 > debug2: bits set: 508/1024 67c67 < debug2: bits set: 509/1024 --- > debug2: bits set: 516/1024 79c79 < debug2: key: /Users/rae/.ssh/rae (0x7f9a0241e2c0) --- > debug2: key: /Users/rae/.ssh/rae (0x7f81e0c1e2c0) 90,116c90,224 < debug1: Authentications that can continue: publickey,keyboard-interactive < debug2: we did not send a packet, disable method < debug3: authmethod_lookup keyboard-interactive < debug3: remaining preferred: password < debug3: authmethod_is_enabled keyboard-interactive < debug1: Next authentication method: keyboard-interactive < debug2: userauth_kbdint < debug2: we sent a keyboard-interactive packet, wait for reply < debug2: input_userauth_info_req < debug2: input_userauth_info_req: num_prompts 1 < debug3: packet_send2: adding 32 (len 14 padlen 18 extra_pad 64) < debug1: Authentications that can continue: publickey,keyboard-interactive < debug2: userauth_kbdint < debug2: we sent a keyboard-interactive packet, wait for reply < debug2: input_userauth_info_req < debug2: input_userauth_info_req: num_prompts 1 < debug3: packet_send2: adding 32 (len 14 padlen 18 extra_pad 64) < debug1: Authentications that can continue: publickey,keyboard-interactive < debug2: userauth_kbdint < debug2: we sent a keyboard-interactive packet, wait for reply < debug2: input_userauth_info_req < debug2: input_userauth_info_req: num_prompts 1 < debug3: packet_send2: adding 32 (len 14 padlen 18 extra_pad 64) < debug1: Authentications that can continue: publickey,keyboard-interactive < debug2: we did not send a packet, disable method < debug1: No more authentication methods to try. < Permission denied (publickey,keyboard-interactive). --- > debug1: Server accepts key: pkalg ssh-dss blen 433 > debug2: input_userauth_pk_ok: fp 6e:02:20:63:48:6a:08:99:b8:5f:12:d8:d5:3d:e1:fb > debug3: sign_and_send_pubkey: DSA 6e:02:20:63:48:6a:08:99:b8:5f:12:d8:d5:3d:e1:fb > debug1: read PEM private key done: type DSA > debug1: Authentication succeeded (publickey). > Authenticated to cme-mini.local ([192.168.1.5]:22). > debug2: fd 7 setting O_NONBLOCK > debug3: fd 8 is O_NONBLOCK > debug1: channel 0: new [client-session] > debug3: ssh_session2_open: channel_new: 0 > debug2: channel 0: send open > debug1: Requesting [email protected] > debug1: Entering interactive session. > debug2: callback start > debug2: client_session2_setup: id 0 > debug2: fd 5 setting TCP_NODELAY > debug2: channel 0: request pty-req confirm 1 > debug1: Sending environment.

    Read the article

  • Foraward Traffic from local machine to proxy server using iptables

    - by Vaibhav
    I am using Ubuntu Server 12.04. My IP is 192.168.4.160. I want to route the HTTP traffic generated locally from my system destined to a particular URL (say x.x.x.x) to pass through proxy server. My proxy server is 192.168.0.13:3128. I added following rule in iptables sudo iptables -t nat -A OUTPUT -p tcp -d x.x.x.x --dport 80 -j DNAT --to 192.168.0.13:3128 However, this rule does not seem to work for me. I captured packet in wireshark and I saw that packet is still going to x.x.x.x I am not very much familiar with iptables, so please try to be specific. Thanks in advance

    Read the article

  • Duplicate ping response when running Ubuntu as virtual machine (VMWare)

    - by Stonerain
    I have the following setup: My router - 192.168.0.1 My host computer (Windows 7) - 192.168.0.3 And Ubuntu is running as virtual machine on the host. VMWare network settings is Bridged mode. I've modified Ubuntu network settings in /etc/netowrk/interfaces, set the following config: iface eth0 inet static address 192.168.0.220 netmask 255.255.255.0 network 192.168.0.0 broadcast 192.168.0.255 gateway 192.168.0.1 Internet works correctly, I can install packages. But it gets weird if I try to ping something I get this: PING belpak.by (193.232.248.80) 56(84) bytes of data. From 192.168.0.1 icmp_seq=1 Time to live exceeded From 192.168.0.1 icmp_seq=1 Time to live exceeded From 192.168.0.1 icmp_seq=1 Time to live exceeded From 192.168.0.1 icmp_seq=1 Time to live exceeded From 192.168.0.1 icmp_seq=1 Time to live exceeded 64 bytes from belhost.by (193.232.248.80): icmp_seq=1 ttl=250 time=17.0 ms 64 bytes from belhost.by (193.232.248.80): icmp_seq=1 ttl=249 time=17.0 ms (DUP! ) 64 bytes from belhost.by (193.232.248.80): icmp_seq=1 ttl=248 time=17.0 ms (DUP! ) 64 bytes from belhost.by (193.232.248.80): icmp_seq=1 ttl=247 time=17.0 ms (DUP! ) 64 bytes from belhost.by (193.232.248.80): icmp_seq=1 ttl=246 time=17.0 ms (DUP! ) ^CFrom 192.168.0.1 icmp_seq=2 Time to live exceeded --- belpak.by ping statistics --- 2 packets transmitted, 1 received, +4 duplicates, +6 errors, 50% packet loss, ti me 999ms rtt min/avg/max/mdev = 17.023/17.041/17.048/0.117 ms I think even more interesting are the results of pinging the router itself: stonerain@ubuntu:~$ ping 192.168.0.1 -c 1 PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data. From 192.168.0.3: icmp_seq=1 Redirect Network(New nexthop: 192.168.0.1) 64 bytes from 192.168.0.1: icmp_seq=1 ttl=254 time=6.64 ms --- 192.168.0.1 ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 6.644/6.644/6.644/0.000 ms But if I set -c 2: ... 64 bytes from 192.168.0.1: icmp_seq=1 ttl=252 time=13.5 ms (DUP!) 64 bytes from 192.168.0.1: icmp_seq=1 ttl=251 time=13.5 ms (DUP!) 64 bytes from 192.168.0.1: icmp_seq=1 ttl=254 time=13.5 ms (DUP!) 64 bytes from 192.168.0.1: icmp_seq=1 ttl=253 time=13.5 ms (DUP!) 64 bytes from 192.168.0.1: icmp_seq=1 ttl=252 time=13.5 ms (DUP!) 64 bytes from 192.168.0.1: icmp_seq=1 ttl=251 time=13.5 ms (DUP!) From 192.168.0.3: icmp_seq=2 Redirect Network(New nexthop: 192.168.0.1) 64 bytes from 192.168.0.1: icmp_seq=2 ttl=254 time=7.87 ms --- 192.168.0.1 ping statistics --- 2 packets transmitted, 2 received, +256 duplicates, 0% packet loss, time 1002ms rtt min/avg/max/mdev = 6.666/10.141/13.556/2.410 ms Pinging host machine on the other hand works absolutely correctly: no DUPs, no errors. What seems to be the problem and how can I fix it? Thank you.

    Read the article

  • Application stuck in TCP retransmit

    - by SandeepJ
    I am running Linux kernel 3.13 (Ubuntu 14.04) on two Virtual Machines each of which operates inside two different servers running ESXi 5.1. There is a zeromq client-server application running between the two VMs. After running for about 10-30 minutes, this application consistently hangs due to inability to retransmit a lost packet. When I run the same setup over Ubuntu 12.04 (Linux 3.11), the application never fails If you notice below, "ss" (socket statistics) shows 1 packet lost, sk_wmem_queued of 14110 (i.e. w14110) and a high rto (120000). State Recv-Q Send-Q Local Address:Port Peer Address:Port ESTAB 0 12350 192.168.2.122:41808 192.168.2.172:55550 timer:(on,16sec,10) uid:1000 ino:35042 sk:ffff880035bcb100 <- skmem:(r0,rb648720,t0,tb1164800,f2274,w14110,o0,bl0) ts sack cubic wscale:7,7 rto:120000 rtt:7.5/3 ato:40 mss:8948 cwnd:1 ssthresh:21 send 9.5Mbps unacked:1 retrans:1/10 lost:1 rcv_rtt:1476 rcv_space:37621 Since this has happened so consistently, I was able to capture the TCP log in wireshark. I found that the packet which is lost does get retransmitted and even acknowledged by the TCP in the other OS (the sequence number is seen in the ACK), but the sender doesn't seem to understand this ACK and continues retransmitting. MTU is 9000 on both virtual machines and througout the route. The packets being sent are large in size. As I said earlier, this does not happen on Ubuntu 12.04 (kernel 3.11). So I did a diff on the TCP config options (seen via "sysctl -a |grep tcp ") between 14.04 and 12.04 and found the following differences. I also noticed that net.ipv4.tcp_mtu_probing=0 in both configurations. Left side is 3.11, right side is 3.13 <<net.ipv4.tcp_abc = 0 <<net.ipv4.tcp_cookie_size = 0 <<net.ipv4.tcp_dma_copybreak = 4096 14c11 << net.ipv4.tcp_early_retrans = 2 --- >> net.ipv4.tcp_early_retrans = 3 17c14 << net.ipv4.tcp_fastopen = 0 >> net.ipv4.tcp_fastopen = 1 20d16 << net.ipv4.tcp_frto_response = 0 26,27c22 << net.ipv4.tcp_max_orphans = 16384 << net.ipv4.tcp_max_ssthresh = 0 >> net.ipv4.tcp_max_orphans = 4096 29,30c24,25 << net.ipv4.tcp_max_tw_buckets = 16384 << net.ipv4.tcp_mem = 94377 125837 188754 >> net.ipv4.tcp_max_tw_buckets = 4096 >> net.ipv4.tcp_mem = 23352 31138 46704 34a30 >> net.ipv4.tcp_notsent_lowat = -1 My question to the networking experts on this forum : Are there any other debugging tools or options I can install/enable to dig further into why this TCP retransmit failure is occurring so consistently ? Are there any configuration changes which might account for this weird behaviour.

    Read the article

  • Why does async BeginReceiveFrom never time out on a raw socket?

    - by James Hugard
    Writing an asynchronous Ping using Raw Sockets in F#, to enable parallel requests using as few threads as possible. Not using "System.Net.NetworkInformation.Ping", because it appears to allocate one thread per request. Am also interested in using F# async workflows. The synchronous version below correctly times out when the target host does not exist/respond, but the asynchronous version hangs. Both work when the host does respond. Not sure if this is a .NET issue, or an F# one... Any ideas? (note: the process must run as Admin to allow Raw Socket access) This throws a timeout: let result = Ping.Ping ( IPAddress.Parse( "192.168.33.22" ), 1000 ) However, this hangs: let result = Ping.AsyncPing ( IPAddress.Parse( "192.168.33.22" ), 1000 ) |> Async.RunSynchronously Here's the code... module Ping open System open System.Net open System.Net.Sockets open System.Threading //---- ICMP Packet Classes type IcmpMessage (t : byte) = let mutable m_type = t let mutable m_code = 0uy let mutable m_checksum = 0us member this.Type with get() = m_type member this.Code with get() = m_code member this.Checksum = m_checksum abstract Bytes : byte array default this.Bytes with get() = [| m_type m_code byte(m_checksum) byte(m_checksum >>> 8) |] member this.GetChecksum() = let mutable sum = 0ul let bytes = this.Bytes let mutable i = 0 // Sum up uint16s while i < bytes.Length - 1 do sum <- sum + uint32(BitConverter.ToUInt16( bytes, i )) i <- i + 2 // Add in last byte, if an odd size buffer if i <> bytes.Length then sum <- sum + uint32(bytes.[i]) // Shuffle the bits sum <- (sum >>> 16) + (sum &&& 0xFFFFul) sum <- sum + (sum >>> 16) sum <- ~~~sum uint16(sum) member this.UpdateChecksum() = m_checksum <- this.GetChecksum() type InformationMessage (t : byte) = inherit IcmpMessage(t) let mutable m_identifier = 0us let mutable m_sequenceNumber = 0us member this.Identifier = m_identifier member this.SequenceNumber = m_sequenceNumber override this.Bytes with get() = Array.append (base.Bytes) [| byte(m_identifier) byte(m_identifier >>> 8) byte(m_sequenceNumber) byte(m_sequenceNumber >>> 8) |] type EchoMessage() = inherit InformationMessage( 8uy ) let mutable m_data = Array.create 32 32uy do base.UpdateChecksum() member this.Data with get() = m_data and set(d) = m_data <- d this.UpdateChecksum() override this.Bytes with get() = Array.append (base.Bytes) (this.Data) //---- Synchronous Ping let Ping (host : IPAddress, timeout : int ) = let mutable ep = new IPEndPoint( host, 0 ) let socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let mutable buffer = packet.Bytes try if socket.SendTo( buffer, ep ) <= 0 then raise (SocketException()) buffer <- Array.create (buffer.Length + 20) 0uy let mutable epr = ep :> EndPoint if socket.ReceiveFrom( buffer, &epr ) <= 0 then raise (SocketException()) finally socket.Close() buffer //---- Entensions to the F# Async class to allow up to 5 paramters (not just 3) type Async with static member FromBeginEnd(arg1,arg2,arg3,arg4,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,iar,state)), endAction, ?cancelAction=cancelAction) static member FromBeginEnd(arg1,arg2,arg3,arg4,arg5,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,arg5,iar,state)), endAction, ?cancelAction=cancelAction) //---- Extensions to the Socket class to provide async SendTo and ReceiveFrom type System.Net.Sockets.Socket with member this.AsyncSendTo( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginSendTo, this.EndSendTo ) member this.AsyncReceiveFrom( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginReceiveFrom, (fun asyncResult -> this.EndReceiveFrom(asyncResult, remoteEP) ) ) //---- Asynchronous Ping let AsyncPing (host : IPAddress, timeout : int ) = async { let ep = IPEndPoint( host, 0 ) use socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let outbuffer = packet.Bytes try let! result = socket.AsyncSendTo( outbuffer, 0, outbuffer.Length, SocketFlags.None, ep ) if result <= 0 then raise (SocketException()) let epr = ref (ep :> EndPoint) let inbuffer = Array.create (outbuffer.Length + 256) 0uy let! result = socket.AsyncReceiveFrom( inbuffer, 0, inbuffer.Length, SocketFlags.None, epr ) if result <= 0 then raise (SocketException()) return inbuffer finally socket.Close() }

    Read the article

  • codingbat wordEnds using regex

    - by polygenelubricants
    I'm trying to solve wordEnds from codingbat.com using regex. This is the simplest as I can make it with my current knowledge of regex: public String wordEnds(String str, String word) { return str.replaceAll( String.format( ".*?(?=%s)(?<=(.|^))%1$s(?=(.|$))|.+", java.util.regex.Pattern.quote(word) ), "$1$2" ); } String.format is used to inject word into the pattern for both readability and convenience (it's injected twice). Pattern.quote isn't necessary to pass their tests, but I think it's required for a proper regex-based solution. The regex has two major parts: If after matching as few characters as possible ".*?", word can still be found "(?=%s)", then lookbehind to capture any character immediately preceding it "(?<=(.|^))", match word "%1$s" and lookforward to capture any character following it "(?=(.|$))". The initial "if" test ensures that the atomic lookbehind captures only if there's a word Using lookahead to capture the following character doesn't consume it, so it can be used as part of further matching Otherwise match what's left "|.+" Groups 1 and 2 would capture empty strings I think this works in all cases, but it's obviously quite complex. I'm just wondering if others can suggest a simpler regex to do this. Note: I'm not looking for a solution using indexOf and a loop. I want a regex-based replaceAll solution. I also need a working solution that I can just copy-paste into codingbat and passes.

    Read the article

  • How to detect a timeout when using asynchronous Socket.BeginReceive?

    - by James Hugard
    Writing an asynchronous Ping using Raw Sockets in F#, to enable parallel requests using as few threads as possible. Not using "System.Net.NetworkInformation.Ping", because it appears to allocate one thread per request. Am also interested in using F# async workflows. The synchronous version below correctly times out when the target host does not exist/respond, but the asynchronous version hangs. Both work when the host does respond. Not sure if this is a .NET issue, or an F# one... Any ideas? (note: the process must run as Admin to allow Raw Socket access) This throws a timeout: let result = Ping.Ping ( IPAddress.Parse( "192.168.33.22" ), 1000 ) However, this hangs: let result = Ping.AsyncPing ( IPAddress.Parse( "192.168.33.22" ), 1000 ) |> Async.RunSynchronously Here's the code... module Ping open System open System.Net open System.Net.Sockets open System.Threading //---- ICMP Packet Classes type IcmpMessage (t : byte) = let mutable m_type = t let mutable m_code = 0uy let mutable m_checksum = 0us member this.Type with get() = m_type member this.Code with get() = m_code member this.Checksum = m_checksum abstract Bytes : byte array default this.Bytes with get() = [| m_type m_code byte(m_checksum) byte(m_checksum >>> 8) |] member this.GetChecksum() = let mutable sum = 0ul let bytes = this.Bytes let mutable i = 0 // Sum up uint16s while i < bytes.Length - 1 do sum <- sum + uint32(BitConverter.ToUInt16( bytes, i )) i <- i + 2 // Add in last byte, if an odd size buffer if i <> bytes.Length then sum <- sum + uint32(bytes.[i]) // Shuffle the bits sum <- (sum >>> 16) + (sum &&& 0xFFFFul) sum <- sum + (sum >>> 16) sum <- ~~~sum uint16(sum) member this.UpdateChecksum() = m_checksum <- this.GetChecksum() type InformationMessage (t : byte) = inherit IcmpMessage(t) let mutable m_identifier = 0us let mutable m_sequenceNumber = 0us member this.Identifier = m_identifier member this.SequenceNumber = m_sequenceNumber override this.Bytes with get() = Array.append (base.Bytes) [| byte(m_identifier) byte(m_identifier >>> 8) byte(m_sequenceNumber) byte(m_sequenceNumber >>> 8) |] type EchoMessage() = inherit InformationMessage( 8uy ) let mutable m_data = Array.create 32 32uy do base.UpdateChecksum() member this.Data with get() = m_data and set(d) = m_data <- d this.UpdateChecksum() override this.Bytes with get() = Array.append (base.Bytes) (this.Data) //---- Synchronous Ping let Ping (host : IPAddress, timeout : int ) = let mutable ep = new IPEndPoint( host, 0 ) let socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let mutable buffer = packet.Bytes try if socket.SendTo( buffer, ep ) <= 0 then raise (SocketException()) buffer <- Array.create (buffer.Length + 20) 0uy let mutable epr = ep :> EndPoint if socket.ReceiveFrom( buffer, &epr ) <= 0 then raise (SocketException()) finally socket.Close() buffer //---- Entensions to the F# Async class to allow up to 5 paramters (not just 3) type Async with static member FromBeginEnd(arg1,arg2,arg3,arg4,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,iar,state)), endAction, ?cancelAction=cancelAction) static member FromBeginEnd(arg1,arg2,arg3,arg4,arg5,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,arg5,iar,state)), endAction, ?cancelAction=cancelAction) //---- Extensions to the Socket class to provide async SendTo and ReceiveFrom type System.Net.Sockets.Socket with member this.AsyncSendTo( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginSendTo, this.EndSendTo ) member this.AsyncReceiveFrom( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginReceiveFrom, (fun asyncResult -> this.EndReceiveFrom(asyncResult, remoteEP) ) ) //---- Asynchronous Ping let AsyncPing (host : IPAddress, timeout : int ) = async { let ep = IPEndPoint( host, 0 ) use socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let outbuffer = packet.Bytes try let! result = socket.AsyncSendTo( outbuffer, 0, outbuffer.Length, SocketFlags.None, ep ) if result <= 0 then raise (SocketException()) let epr = ref (ep :> EndPoint) let inbuffer = Array.create (outbuffer.Length + 256) 0uy let! result = socket.AsyncReceiveFrom( inbuffer, 0, inbuffer.Length, SocketFlags.None, epr ) if result <= 0 then raise (SocketException()) return inbuffer finally socket.Close() }

    Read the article

  • Odd tcp deadlock under windows

    - by John Robertson
    We are moving large amounts of data on a LAN and it has to happen very rapidly and reliably. Currently we use windows TCP as implemented in C++. Using large (synchronous) sends moves the data much faster than a bunch of smaller (synchronous) sends but will frequently deadlock for large gaps of time (.15 seconds) causing the overall transfer rate to plummet. This deadlock happens in very particular circumstances which makes me believe it should be preventable altogether. More importantly if we don't really know the cause we don't really know it won't happen some time with smaller sends anyway. Can anyone explain this deadlock? Deadlock description (OK, zombie-locked, it isn't dead, but for .15 or so seconds it stops, then starts again) The receiving side sends an ACK. The sending side sends a packet containing the end of a message (push flag is set) The call to socket.recv takes about .15 seconds(!) to return About the time the call returns an ACK is sent by the receiving side The the next packet from the sender is finally sent (why is it waiting? the tcp window is plenty big) The odd thing about (3) is that typically that call doesn't take much time at all and receives exactly the same amount of data. On a 2Ghz machine that's 300 million instructions worth of time. I am assuming the call doesn't (heaven forbid) wait for the received data to be acked before it returns, so the ack must be waiting for the call to return, or both must be delayed by something else. The problem NEVER happens when there is a second packet of data (part of the same message) arriving between 1 and 2. That part very clearly makes it sound like it has to do with the fact that windows TCP will not send back a no-data ACK until either a second packet arrives or a 200ms timer expires. However the delay is less than 200 ms (its more like 150 ms). The third unseemly character (and to my mind the real culprit) is (5). Send is definitely being called well before that .15 seconds is up, but the data NEVER hits the wire before that ack returns. That is the most bizarre part of this deadlock to me. Its not a tcp blockage because the TCP window is plenty big since we set SO_RCVBUF to something like 500*1460 (which is still under a meg). The data is coming in very fast (basically there is a loop spinning out data via send) so the buffer should fill almost immediately. According to msdn the buffer being full and at least one pending send should cause the data to be sent (though in another place it mentions that there various "heuristics" used in deciding when a send hits the wire). Anway, why the sender doesn't actually send more data during that .15 second pause is the most bizarre part to me. The information above was captured on the receiving side via wireshark (except of course the socket.recv return times which were logged in a text file). We tried changing the send buffer to zero and turning off Nagle on the sender (yes, I know Nagle is about not sending small packets - but we tried turning Nagle off in case that was part of the unstated "heuristics" affecting whether the message would be posted to the wire. Technically microsoft's Nagle is that a small packet isn't sent if the buffer is full and there is an outstanding ACK, so it seemed like a possibility).

    Read the article

  • Why does BeginReceiveFrom never time out?

    - by James Hugard
    I am writing an asynchronous Ping using Raw Sockets in F#, to enable parallel requests using as few threads as possible ("System.Net.NetworkInformation.Ping" appears to use one thread per request, but have not tested this... also am interested in using F# async workflows). The synchronous version below correctly times out when the target host does not exist/respond, but the asynchronous version hangs. Both work when the host does respond... Any ideas? (note: the process must run as Admin for this code to work) This throws a timeout: let result = Ping.Ping ( IPAddress.Parse( "192.168.33.22" ), 1000 ) However, this hangs: let result = Ping.PingAsync ( IPAddress.Parse( "192.168.33.22" ), 1000 ) |> Async.RunSynchronously Here's the code... module Ping open System open System.Net open System.Net.Sockets open System.Threading //---- ICMP Packet Classes type IcmpMessage (t : byte) = let mutable m_type = t let mutable m_code = 0uy let mutable m_checksum = 0us member this.Type with get() = m_type member this.Code with get() = m_code member this.Checksum = m_checksum abstract Bytes : byte array default this.Bytes with get() = [| m_type m_code byte(m_checksum) byte(m_checksum >>> 8) |] member this.GetChecksum() = let mutable sum = 0ul let bytes = this.Bytes let mutable i = 0 // Sum up uint16s while i < bytes.Length - 1 do sum <- sum + uint32(BitConverter.ToUInt16( bytes, i )) i <- i + 2 // Add in last byte, if an odd size buffer if i <> bytes.Length then sum <- sum + uint32(bytes.[i]) // Shuffle the bits sum <- (sum >>> 16) + (sum &&& 0xFFFFul) sum <- sum + (sum >>> 16) sum <- ~~~sum uint16(sum) member this.UpdateChecksum() = m_checksum <- this.GetChecksum() type InformationMessage (t : byte) = inherit IcmpMessage(t) let mutable m_identifier = 0us let mutable m_sequenceNumber = 0us member this.Identifier = m_identifier member this.SequenceNumber = m_sequenceNumber override this.Bytes with get() = Array.append (base.Bytes) [| byte(m_identifier) byte(m_identifier >>> 8) byte(m_sequenceNumber) byte(m_sequenceNumber >>> 8) |] type EchoMessage() = inherit InformationMessage( 8uy ) let mutable m_data = Array.create 32 32uy do base.UpdateChecksum() member this.Data with get() = m_data and set(d) = m_data <- d this.UpdateChecksum() override this.Bytes with get() = Array.append (base.Bytes) (this.Data) //---- Synchronous Ping let Ping (host : IPAddress, timeout : int ) = let mutable ep = new IPEndPoint( host, 0 ) let socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let mutable buffer = packet.Bytes try if socket.SendTo( buffer, ep ) <= 0 then raise (SocketException()) buffer <- Array.create (buffer.Length + 20) 0uy let mutable epr = ep :> EndPoint if socket.ReceiveFrom( buffer, &epr ) <= 0 then raise (SocketException()) finally socket.Close() buffer //---- Entensions to the F# Async class to allow up to 5 paramters (not just 3) type Async with static member FromBeginEnd(arg1,arg2,arg3,arg4,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,iar,state)), endAction, ?cancelAction=cancelAction) static member FromBeginEnd(arg1,arg2,arg3,arg4,arg5,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,arg5,iar,state)), endAction, ?cancelAction=cancelAction) //---- Extensions to the Socket class to provide async SendTo and ReceiveFrom type System.Net.Sockets.Socket with member this.AsyncSendTo( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginSendTo, this.EndSendTo ) member this.AsyncReceiveFrom( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginReceiveFrom, (fun asyncResult -> this.EndReceiveFrom(asyncResult, remoteEP) ) ) //---- Asynchronous Ping let PingAsync (host : IPAddress, timeout : int ) = async { let ep = IPEndPoint( host, 0 ) use socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let outbuffer = packet.Bytes try let! result = socket.AsyncSendTo( outbuffer, 0, outbuffer.Length, SocketFlags.None, ep ) if result <= 0 then raise (SocketException()) let epr = ref (ep :> EndPoint) let inbuffer = Array.create (outbuffer.Length + 256) 0uy let! result = socket.AsyncReceiveFrom( inbuffer, 0, inbuffer.Length, SocketFlags.None, epr ) if result <= 0 then raise (SocketException()) return inbuffer finally socket.Close() }

    Read the article

  • Extracting DCT coefficients from encoded images and video

    - by misha
    Is there a way to easily extract the DCT coefficients (and quantization parameters) from encoded images and video? Any decoder software must be using them to decode block-DCT encoded images and video. So I'm pretty sure the decoder knows what they are. Is there a way to expose them to whomever is using the decoder? I'm implementing some video quality assessment algorithms that work directly in the DCT domain. Currently, the majority of my code uses OpenCV, so it would be great if anyone knows of a solution using that framework. I don't mind using other libraries (perhaps libjpeg, but that seems to be for still images only), but my primary concern is to do as little format-specific work as possible (I don't want to reinvent the wheel and write my own decoders). I want to be able to open any video/image (H.264, MPEG, JPEG, etc) that OpenCV can open, and if it's block DCT-encoded, to get the DCT coefficients. In the worst case, I know that I can write up my own block DCT code, run the decompressed frames/images through it and then I'd be back in the DCT domain. That's hardly an elegant solution, and I hope I can do better. Presently, I use the fairly common OpenCV boilerplate to open images: IplImage *image = cvLoadImage(filename); // Run quality assessment metric The code I'm using for video is equally trivial: CvCapture *capture = cvCaptureFromAVI(filename); while (cvGrabFrame(capture)) { IplImage *frame = cvRetrieveFrame(capture); // Run quality assessment metric on frame } cvReleaseCapture(&capture); In both cases, I get a 3-channel IplImage in BGR format. Is there any way I can get the DCT coefficients as well?

    Read the article

  • Incorrect data when passing pointer a list of pointers to a function. (C++)

    - by Phil Elm
    I'm writing code for combining data received over multiple sources. When the objects received (I'll call them MyPacket for now), they are stored in a standard list. However, whenever I reference the payload size of a partial MyPacket, the value shows up as 1 instead of the intended size. Here's the function code: MyPacket* CombinePackets(std::list<MyPacket*>* packets, uint8* current_packet){ uint32 total_payload_size = 0; if(packets->size() <= 0) return NULL; //For now. std::list<MyPacket*>::iterator it = packets->begin(); //Some minor code here, not relevant to the problem. for(uint8 index = 0; index < packets->size(); index++){ //(*it)->GetPayloadSize() returns 1 when it should show 1024. I've tried directly accessing the variable and more, but I just can't get it to work. total_payload_size += (*it)->GetPayloadSize(); cout << "Adding to total payload size value: " << (*it)->GetPayloadSize() << endl; std::advance(it,1); } MyPacket* packet = new MyPacket(); //Byte is just a typedef'd unsigned char. packet->payload = (byte) calloc(total_payload_size, sizeof(byte)); packet->payload_size = total_payload_size; it = packets->begin(); //Go back to the beginning again. uint32 big_payload_index = 0; for(uint8 index = 0; index < packets->size(); index++){ if(current_packet != NULL) *current_packet = index; for(uint32 payload_index = 0; payload_index < (*it)->GetPayloadSize(); payload_index++){ packet->payload[big_payload_index] = (*it)->payload[payload_index]; big_payload_index++; } std::advance(it,1); } return packet; } //Calling code std::list<MyPacket*> received = std::list<MyPacket*>(); //The code that fills it is here. std::list<MyPacket*>::iterator it = received.begin(); cout << (*it)->GetPayloadSize() << endl; // Outputs 1024 correctly! MyPacket* final = CombinePackets(&received,NULL); cout << final->GetPayloadSize() << endl; //Outputs 181, which happens to be the number of elements in the received list. So, as you can see above, when I reference (*it)-GetPayloadSize(), it returns 1 instead of the intended 1024. Can anyone see the problem and if so, do you have an idea on how to fix this? I've spent 4 hours searching and trying new solutions, but they all keep returning 1... EDIT:

    Read the article

  • Use BGInfo to Build a Database of System Information of Your Network Computers

    - by Sysadmin Geek
    One of the more popular tools of the Sysinternals suite among system administrators is BGInfo which tacks real-time system information to your desktop wallpaper when you first login. For obvious reasons, having information such as system memory, available hard drive space and system up time (among others) right in front of you is very convenient when you are managing several systems. A little known feature about this handy utility is the ability to have system information automatically saved to a SQL database or some other data file. With a few minutes of setup work you can easily configure BGInfo to record system information of all your network computers in a centralized storage location. You can then use this data to monitor or report on these systems however you see fit. BGInfo Setup If you are familiar with BGInfo, you can skip this section. However, if you have never used this tool, it takes just a few minutes to setup in order to capture the data you are looking for. When you first open BGInfo, a timer will be counting down in the upper right corner. Click the countdown button to keep the interface up so we can edit the settings. Now edit the information you want to capture from the available fields on the right. Since all the output will be redirected to a central location, don’t worry about configuring the layout or formatting. Configuring the Storage Database BGInfo supports the ability to store information in several database formats: SQL Server Database, Access Database, Excel and Text File. To configure this option, open File > Database. Using a Text File The simplest, and perhaps most practical, option is to store the BGInfo data in a comma separated text file. This format allows for the file to be opened in Excel or imported into a database. To use a text file or any other file system type (Excel or MS Access), simply provide the UNC to the respective file. The account running the task to write to this file will need read/write access to both the share and NTFS file permissions. When using a text file, the only option is to have BGInfo create a new entry each time the capture process is run which will add a new line to the respective CSV text file. Using a SQL Database If you prefer to have the data dropped straight into a SQL Server database, BGInfo support this as well. This requires a bit of additional configuration, but overall it is very easy. The first step is to create a database where the information will be stored. Additionally, you will want to create a user account to fill data into this table (and this table only). For your convenience, this script creates a new database and user account (run this as Administrator on your SQL Server machine): @SET Server=%ComputerName%.@SET Database=BGInfo@SET UserName=BGInfo@SET Password=passwordSQLCMD -S “%Server%” -E -Q “Create Database [%Database%]“SQLCMD -S “%Server%” -E -Q “Create Login [%UserName%] With Password=N’%Password%’, DEFAULT_DATABASE=[%Database%], CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF”SQLCMD -S “%Server%” -E -d “%Database%” -Q “Create User [%UserName%] For Login [%UserName%]“SQLCMD -S “%Server%” -E -d “%Database%” -Q “EXEC sp_addrolemember N’db_owner’, N’%UserName%’” Note the SQL user account must have ‘db_owner’ permissions on the database in order for BGInfo to work correctly. This is why you should have a SQL user account specifically for this database. Next, configure BGInfo to connect to this database by clicking on the SQL button. Fill out the connection properties according to your database settings. Select the option of whether or not to only have one entry per computer or keep a history of each system. The data will then be dropped directly into a table named “BGInfoTable” in the respective database.   Configure User Desktop Options While the primary function of BGInfo is to alter the user’s desktop by adding system info as part of the wallpaper, for our use here we want to leave the user’s wallpaper alone so this process runs without altering any of the user’s settings. Click the Desktops button. Configure the Wallpaper modifications to not alter anything.   Preparing the Deployment Now we are all set for deploying the configuration to the individual machines so we can start capturing the system data. If you have not done so already, click the Apply button to create the first entry in your data repository. If all is configured correctly, you should be able to open your data file or database and see the entry for the respective machine. Now click the File > Save As menu option and save the configuration as “BGInfoCapture.bgi”.   Deploying to Client Machines Deployment to the respective client machines is pretty straightforward. No installation is required as you just need to copy the BGInfo.exe and the BGInfoCapture.bgi to each machine and place them in the same directory. Once in place, just run the command: BGInfo.exe BGInfoCapture.bgi /Timer:0 /Silent /NoLicPrompt Of course, you probably want to schedule the capture process to run on a schedule. This command creates a Scheduled Task to run the capture process at 8 AM every morning and assumes you copied the required files to the root of your C drive: SCHTASKS /Create /SC DAILY /ST 08:00 /TN “System Info” /TR “C:\BGInfo.exe C:\BGInfoCapture.bgi /Timer:0 /Silent /NoLicPrompt” Adjust as needed, but the end result is the scheduled task command should look something like this:   Download BGInfo from Sysinternals Latest Features How-To Geek ETC How To Create Your Own Custom ASCII Art from Any Image How To Process Camera Raw Without Paying for Adobe Photoshop How Do You Block Annoying Text Message (SMS) Spam? How to Use and Master the Notoriously Difficult Pen Tool in Photoshop HTG Explains: What Are the Differences Between All Those Audio Formats? How To Use Layer Masks and Vector Masks to Remove Complex Backgrounds in Photoshop Bring Summer Back to Your Desktop with the LandscapeTheme for Chrome and Iron The Prospector – Home Dash Extension Creates a Whole New Browsing Experience in Firefox KinEmote Links Kinect to Windows Why Nobody Reads Web Site Privacy Policies [Infographic] Asian Temple in the Snow Wallpaper 10 Weird Gaming Records from the Guinness Book

    Read the article

  • Compare images after canny edge detection in OpenCV (C++)

    - by typoknig
    Hi all, I am working on an OpenCV project and I need to compare some images after canny has been applied to both of them. Before the canny was applied I had the gray scale images populating a histogram and then I compared the histograms, but when canny is added to the images the histogram does not populate. I have read that a canny image can populate a histogram, but have not found a way to make it happen. I do not necessairly need to keep using the histograms, I just want to know the best way to compare two canny images. SSCCE below for you to chew on. I have poached and patched about 75% of this code from books and various sites on the internet, so props to those guys... // SLC (Histogram).cpp : Defines the entry point for the console application. #include "stdafx.h" #include <cxcore.h> #include <cv.h> #include <cvaux.h> #include <highgui.h> #include <stdio.h> #include <sstream> #include <iostream> using namespace std; IplImage* image1= 0; IplImage* imgHistogram1 = 0; IplImage* gray1= 0; CvHistogram* hist1; int main(){ CvCapture* capture = cvCaptureFromCAM(0); if(!cvQueryFrame(capture)){ cout<<"Video capture failed, please check the camera."<<endl; } else{ cout<<"Video camera capture successful!"<<endl; }; CvSize sz = cvGetSize(cvQueryFrame(capture)); IplImage* image = cvCreateImage(sz, 8, 3); IplImage* imgHistogram = 0; IplImage* gray = 0; CvHistogram* hist; cvNamedWindow("Image Source",1); cvNamedWindow("gray", 1); cvNamedWindow("Histogram",1); cvNamedWindow("BG", 1); cvNamedWindow("FG", 1); cvNamedWindow("Canny",1); cvNamedWindow("Canny1", 1); image1 = cvLoadImage("image bin/use this image.jpg");// an image has to load here or the program will not run //size of the histogram -1D histogram int bins1 = 256; int hsize1[] = {bins1}; //max and min value of the histogram float max_value1 = 0, min_value1 = 0; //value and normalized value float value1; int normalized1; //ranges - grayscale 0 to 256 float xranges1[] = { 0, 256 }; float* ranges1[] = { xranges1 }; //create an 8 bit single channel image to hold a //grayscale version of the original picture gray1 = cvCreateImage( cvGetSize(image1), 8, 1 ); cvCvtColor( image1, gray1, CV_BGR2GRAY ); IplImage* canny1 = cvCreateImage(cvGetSize(gray1), 8, 1 ); cvCanny( gray1, canny1, 55, 175, 3 ); //Create 3 windows to show the results cvNamedWindow("original1",1); cvNamedWindow("gray1",1); cvNamedWindow("histogram1",1); //planes to obtain the histogram, in this case just one IplImage* planes1[] = { canny1 }; //get the histogram and some info about it hist1 = cvCreateHist( 1, hsize1, CV_HIST_ARRAY, ranges1,1); cvCalcHist( planes1, hist1, 0, NULL); cvGetMinMaxHistValue( hist1, &min_value1, &max_value1); printf("min: %f, max: %f\n", min_value1, max_value1); //create an 8 bits single channel image to hold the histogram //paint it white imgHistogram1 = cvCreateImage(cvSize(bins1, 50),8,1); cvRectangle(imgHistogram1, cvPoint(0,0), cvPoint(256,50), CV_RGB(255,255,255),-1); //draw the histogram :P for(int i=0; i < bins1; i++){ value1 = cvQueryHistValue_1D( hist1, i); normalized1 = cvRound(value1*50/max_value1); cvLine(imgHistogram1,cvPoint(i,50), cvPoint(i,50-normalized1), CV_RGB(0,0,0)); } //show the image results cvShowImage( "original1", image1 ); cvShowImage( "gray1", gray1 ); cvShowImage( "histogram1", imgHistogram1 ); cvShowImage( "Canny1", canny1); CvBGStatModel* bg_model = cvCreateFGDStatModel( image ); for(;;){ image = cvQueryFrame(capture); cvUpdateBGStatModel( image, bg_model ); //Size of the histogram -1D histogram int bins = 256; int hsize[] = {bins}; //Max and min value of the histogram float max_value = 0, min_value = 0; //Value and normalized value float value; int normalized; //Ranges - grayscale 0 to 256 float xranges[] = {0, 256}; float* ranges[] = {xranges}; //Create an 8 bit single channel image to hold a grayscale version of the original picture gray = cvCreateImage(cvGetSize(image), 8, 1); cvCvtColor(image, gray, CV_BGR2GRAY); IplImage* canny = cvCreateImage(cvGetSize(gray), 8, 1 ); cvCanny( gray, canny, 55, 175, 3 );//55, 175, 3 with direct light //Planes to obtain the histogram, in this case just one IplImage* planes[] = {canny}; //Get the histogram and some info about it hist = cvCreateHist(1, hsize, CV_HIST_ARRAY, ranges,1); cvCalcHist(planes, hist, 0, NULL); cvGetMinMaxHistValue(hist, &min_value, &max_value); //printf("Minimum Histogram Value: %f, Maximum Histogram Value: %f\n", min_value, max_value); //Create an 8 bits single channel image to hold the histogram and paint it white imgHistogram = cvCreateImage(cvSize(bins, 50),8,3); cvRectangle(imgHistogram, cvPoint(0,0), cvPoint(256,50), CV_RGB(255,255,255),-1); //Draw the histogram for(int i=0; i < bins; i++){ value = cvQueryHistValue_1D(hist, i); normalized = cvRound(value*50/max_value); cvLine(imgHistogram,cvPoint(i,50), cvPoint(i,50-normalized), CV_RGB(0,0,0)); } double correlation = cvCompareHist (hist1, hist, CV_COMP_CORREL); double chisquare = cvCompareHist (hist1, hist, CV_COMP_CHISQR); double intersection = cvCompareHist (hist1, hist, CV_COMP_INTERSECT); double bhattacharyya = cvCompareHist (hist1, hist, CV_COMP_BHATTACHARYYA); double difference = (1 - correlation) + chisquare + (1 - intersection) + bhattacharyya; printf("correlation: %f\n", correlation); printf("chi-square: %f\n", chisquare); printf("intersection: %f\n", intersection); printf("bhattacharyya: %f\n", bhattacharyya); printf("difference: %f\n", difference); cvShowImage("Image Source", image); cvShowImage("gray", gray); cvShowImage("Histogram", imgHistogram); cvShowImage( "Canny", canny); cvShowImage("BG", bg_model->background); cvShowImage("FG", bg_model->foreground); //Page 19 paragraph 3 of "Learning OpenCV" tells us why we DO NOT use "cvReleaseImage(&image)" in this section cvReleaseImage(&imgHistogram); cvReleaseImage(&gray); cvReleaseHist(&hist); cvReleaseImage(&canny); char c = cvWaitKey(10); //if ASCII key 27 (esc) is pressed then loop breaks if(c==27) break; } cvReleaseBGStatModel( &bg_model ); cvReleaseImage(&image); cvReleaseCapture(&capture); cvDestroyAllWindows(); }

    Read the article

  • Converting Encrypted Values

    - by Johnm
    Your database has been protecting sensitive data at rest using the cell-level encryption features of SQL Server for quite sometime. The employees in the auditing department have been inviting you to their after-work gatherings and buying you drinks. Thousands of customers implicitly include you in their prayers of thanks giving as their identities remain safe in your company's database. The cipher text resting snuggly in a column of the varbinary data type is great for security; but it can create some interesting challenges when interacting with other data types such as the XML data type. The XML data type is one that is often used as a message type for the Service Broker feature of SQL Server. It also can be an interesting data type to capture for auditing or integrating with external systems. The challenge that cipher text presents is that the need for decryption remains even after it has experienced its XML metamorphosis. Quite an interesting challenge nonetheless; but fear not. There is a solution. To simulate this scenario, we first will want to create a plain text value for us to encrypt. We will do this by creating a variable to store our plain text value: -- set plain text value DECLARE @PlainText NVARCHAR(255); SET @PlainText = 'This is plain text to encrypt'; The next step will be to create a variable that will store the cipher text that is generated from the encryption process. We will populate this variable by using a pre-defined symmetric key and certificate combination: -- encrypt plain text value DECLARE @CipherText VARBINARY(MAX); OPEN SYMMETRIC KEY SymKey     DECRYPTION BY CERTIFICATE SymCert     WITH PASSWORD='mypassword2010';     SET @CipherText = EncryptByKey                          (                            Key_GUID('SymKey'),                            @PlainText                           ); CLOSE ALL SYMMETRIC KEYS; The value of our newly generated cipher text is 0x006E12933CBFB0469F79ABCC79A583--. This will be important as we reference our cipher text later in this post. Our final step in preparing our scenario is to create a table variable to simulate the existence of a table that contains a column used to hold encrypted values. Once this table variable has been created, populate the table variable with the newly generated cipher text: -- capture value in table variable DECLARE @tbl TABLE (EncVal varbinary(MAX)); INSERT INTO @tbl (EncVal) VALUES (@CipherText); We are now ready to experience the challenge of capturing our encrypted column in an XML data type using the FOR XML clause: -- capture set in xml DECLARE @xml XML; SET @xml = (SELECT               EncVal             FROM @tbl AS MYTABLE             FOR XML AUTO, BINARY BASE64, ROOT('root')); If you add the SELECT @XML statement at the end of this portion of the code you will see the contents of the XML data in its raw format: <root>   <MYTABLE EncVal="AG4Skzy/sEafeavMeaWDBwEAAACE--" /> </root> Strangely, the value that is captured appears nothing like the value that was created through the encryption process. The result being that when this XML is converted into a readable data set the encrypted value will not be able to be decrypted, even with access to the symmetric key and certificate used to perform the decryption. An immediate thought might be to convert the varbinary data type to either a varchar or nvarchar before creating the XML data. This approach makes good sense. The code for this might look something like the following: -- capture set in xml DECLARE @xml XML; SET @xml = (SELECT              CONVERT(NVARCHAR(MAX),EncVal) AS EncVal             FROM @tbl AS MYTABLE             FOR XML AUTO, BINARY BASE64, ROOT('root')); However, this results in the following error: Msg 9420, Level 16, State 1, Line 26 XML parsing: line 1, character 37, illegal xml character A quick query that returns CONVERT(NVARCHAR(MAX),EncVal) reveals that the value that is causing the error looks like something off of a genuine Chinese menu. While this situation does present us with one of those spine-tingling, expletive-generating challenges, rest assured that this approach is on the right track. With the addition of the "style" argument to the CONVERT method, our solution is at hand. When dealing with converting varbinary data types we have three styles available to us: - The first is to not include the style parameter, or use the value of "0". As we see, this style will not work for us. - The second option is to use the value of "1" will keep our varbinary value including the "0x" prefix. In our case, the value will be 0x006E12933CBFB0469F79ABCC79A583-- - The third option is to use the value of "2" which will chop the "0x" prefix off of our varbinary value. In our case, the value will be 006E12933CBFB0469F79ABCC79A583-- Since we will want to convert this back to varbinary when reading this value from the XML data we will want the "0x" prefix, so we will want to change our code as follows: -- capture set in xml DECLARE @xml XML; SET @xml = (SELECT              CONVERT(NVARCHAR(MAX),EncVal,1) AS EncVal             FROM @tbl AS MYTABLE             FOR XML AUTO, BINARY BASE64, ROOT('root')); Once again, with the inclusion of the SELECT @XML statement at the end of this portion of the code you will see the contents of the XML data in its raw format: <root>   <MYTABLE EncVal="0x006E12933CBFB0469F79ABCC79A583--" /> </root> Nice! We are now cooking with gas. To continue our scenario, we will want to parse the XML data into a data set so that we can glean our freshly captured cipher text. Once we have our cipher text snagged we will capture it into a variable so that it can be used during decryption: -- read back xml DECLARE @hdoc INT; DECLARE @EncVal NVARCHAR(MAX); EXEC sp_xml_preparedocument @hDoc OUTPUT, @xml; SELECT @EncVal = EncVal FROM OPENXML (@hdoc, '/root/MYTABLE') WITH ([EncVal] VARBINARY(MAX) '@EncVal'); EXEC sp_xml_removedocument @hDoc; Finally, the decryption of our cipher text using the DECRYPTBYKEYAUTOCERT method and the certificate utilized to perform the encryption earlier in our exercise: SELECT     CONVERT(NVARCHAR(MAX),                     DecryptByKeyAutoCert                          (                            CERT_ID('AuditLogCert'),                            N'mypassword2010',                            @EncVal                           )                     ) EncVal; Ah yes, another hurdle presents itself! The decryption produced the value of NULL which in cryptography means that either you don't have permissions to decrypt the cipher text or something went wrong during the decryption process (ok, sometimes the value is actually NULL; but not in this case). As we see, the @EncVal variable is an nvarchar data type. The third parameter of the DECRYPTBYKEYAUTOCERT method requires a varbinary value. Therefore we will need to utilize our handy-dandy CONVERT method: SELECT     CONVERT(NVARCHAR(MAX),                     DecryptByKeyAutoCert                          (                             CERT_ID('AuditLogCert'),                             N'mypassword2010',                             CONVERT(VARBINARY(MAX),@EncVal)                           )                     ) EncVal; Oh, almost. The result remains NULL despite our conversion to the varbinary data type. This is due to the creation of an varbinary value that does not reflect the actual value of our @EncVal variable; but rather a varbinary conversion of the variable itself. In this case, something like 0x3000780030003000360045003--. Considering the "style" parameter got us past XML challenge, we will want to consider its power for this challenge as well. Knowing that the value of "1" will provide us with the actual value including the "0x", we will opt to utilize that value in this case: SELECT     CONVERT(NVARCHAR(MAX),                     DecryptByKeyAutoCert                          (                            CERT_ID('SymCert'),                            N'mypassword2010',                            CONVERT(VARBINARY(MAX),@EncVal,1)                           )                     ) EncVal; Bingo, we have success! We have discovered what happens with varbinary data when captured as XML data. We have figured out how to make this data useful post-XML-ification. Best of all we now have a choice in after-work parties now that our very happy client who depends on our XML based interface invites us for dinner in celebration. All thanks to the effective use of the style parameter.

    Read the article

  • pfSense: How to route traffic out the WAN port?

    - by Ian Boyd
    Expert version i want to create a route in pfSense that will send traffic out the physical WAN port, not the PPPoE WAN port. i want to talk to talk to the web-server on my DSL modem, but it doesn't see packets wrapped in a PPPoE header. Long version My pfSense router is responsible for setting up the PPPoE connection over DSL to my ISP. When a machine on the LAN wants to sent packets to the internet, the default route sends packets out over the PPPoE connection. Those packets, wrapped in a PPPoE header, are sent on the ethernet cable to my DSL modem. From there they are sent the ISP, and the internet at large. i want a way to send a packet out the WAN port itself - not the PPPoE WAN port. My modem is sitting out there, with a http interface where i can monitor connection speed signal-to-noise ratio bandwidth connection time Whenever i try to set a route for destination of 192.168.2.1 (the IP that the modem will listen to for HTTP requests) to go out the WAN port, they instead end up going out the PPPoE port. The difference being that they're wrapped in a PPPoE protocol packet, and the modem isn't being sent the packet, it's being delivered to the ISP. Given that pfSense has no ability to direct traffic out the physical WAN port: how can i direct traffic out the physical WAN port on pfSense?

    Read the article

  • Cisco adaptive security appliance is dropping packets where SYN flag is not set

    - by Brett Ryan
    We have an apache instance sitting inside our DMZ which is configured to proxy requests to an internal NATed tomcat instance inside our network. It works fine, but then all of a sudden requests from apache to the tomcat instance stop getting through with the following in the apache logs: [error] (70007)The timeout specified has expired: ajp_ilink_receive() can't receive header Investigating into the Cisco log viewer reveals the following: Error Message %ASA-6-106015: Deny TCP (no connection) from IP_address/port to IP_address/port flags tcp_flags on interface interface_name. Explanation The adaptive security appliance discarded a TCP packet that has no associated connection in the adaptive security appliance connection table. The adaptive security appliance looks for a SYN flag in the packet, which indicates a request to establish a new connection. If the SYN flag is not set, and there is not an existing connection, the adaptive security appliance discards the packet. Recommended Action None required unless the adaptive security appliance receives a large volume of these invalid TCP packets. If this is the case, trace the packets to the source and determine the reason these packets were sent. All are machines are virtualised using VMware, and by default machines have been using the Intel E1000 emulated NIC. Our network administrator has changed this to a VMXNET3 driver in an attempt to correct the problem, we just have to wait and see if the problem persists as it's an intermittent problem. Is there something else that could be causing this problem? This isn't the first service where we have had similar issues. Our apache host is running Ubuntu 11.10 with a kernel version of 3.0.0-17-server. We have also had this issue on RHEL5 (5.8) running kernel 2.6.18-308.16.1.el5, this machine also has the E1000 NIC. NOTE: I am not a network administrator and am a software architect and analyst programmer responsible for these systems.

    Read the article

< Previous Page | 42 43 44 45 46 47 48 49 50 51 52 53  | Next Page >