Search Results

Search found 25518 results on 1021 pages for 'iterative development'.

Page 465/1021 | < Previous Page | 461 462 463 464 465 466 467 468 469 470 471 472  | Next Page >

  • J2ME character animation with multiple sprite sheets

    - by Alex
    I'm working on a J2ME game and I want to have walking animations. Each direction of walking has a separate sprite sheet (i.e. one for walking up, one for walking right etc), I also have a static idle image for each direction held together in a single file. I've tried to hold an array of sprites in my player class and then just drawing the sprite corresponding to the current direction, but this doesn't seem to work. I'm aware that if I combine all the animations into one sprite sheet I could set up different animation sequences, but I want to be able to do it with separate images for each animation. Is there a way that anyone knows of to achieve this? And ideally without too much extra code (as opposed to combining the sprites into one sheet)

    Read the article

  • Calculating up-vector to avoid gimbal lock using euler angles

    - by jessejuicer
    I wish to orbit a camera around a sphere, yet the problem is that when the camera rotates so that it is at the north pole (and pointing down) or the south pole (and pointing up) of the sphere the camera doesn't handle itself very well. It spins rapidly until arriving 180 degrees in the opposite direction. I believe this is known as gimbal lock. I understand you can avoid this problem using quaternions. But I also read in another forum that it's possible to avoid this easily using euler angles as well. Which I would prefer to do. It was said that all you need to do is "calculate a proper up-vector every frame, and that avoids the problem entirely." Well, I tried aligning the up-vector with the vertical axis of the camera whenever the camera changed orientation, but this didn't seem to work. Meaning that the up-vector followed exactly the orientation of the camera's y-axis (or it's up vector), instead of using a constant up-vector aligned to the up-vector of the world (0, 1, 0). How exactly do I go about calculating a proper up-vector as my camera orientation changes to avoid the gimbal lock problem mentioned above?

    Read the article

  • Game engine like Unity 3D that allow me to use .NET code

    - by Pking
    I've been looking at Unity 3D for developing a 3D PC game and I really like the scene editor and how it simplifies the process of constructing 3D scenes, managing assets, animations, transitions etc. However, I don't want to restrict myself to using the Unity 3D scripts for handling every bit of game logic in the game. E.g. If I want to construct a RPG dialogue system I don't want to do it with unity 3d scripts - I'd like to use C#/.net. Also, I might want to use e.g. windows azure and sql azure as backend, and use 3rd party .net libraries such as reactive-extensions etc. Is there a .net engine out there that helps me with asset loading, animations, physics, transitions, etc. with a scene editor, but allow me to plug it into a visual studio .net project? Thanks

    Read the article

  • Index Check and Correct Character Display in a Console Hangman Game for Java

    - by Jen
    I have this problem wherein, I can not display the correct characters given by the character. Here's what I meant: String words, in; String replaced_words; Scanner s = new Scanner (System.in); System.out.println("Enter a line of words basing on an event, verse, place or a name of a person."); words = s.nextLine(); System.out.println("The words you just placed are now accepted."); //using char array method, we tried to place the words into a characters array. char [] c = words.toCharArray(); // we need to replace the replaced_words = words.replace(' ', '_').replaceAll("[^\\-]", "-"); for (int i = 0; i < replaced_words.length(); i++) { System.out.print(replaced_words.charAt(i) + " "); } System.out.println("Now, please input a character, guessing the words you just placed."); in = s.nextLine(); in that code, want that the user, when types a word (or should it be character?), any of the correct character the user inputs will be displayed, and changes the hyphen to it...(more like the hangman series of games). How can I achieve this?

    Read the article

  • Event Driven Behavior Tree: deterministic traversal order with parallel

    - by Heisenbug
    I've studied several articles and listen some talks about behavior trees (mostly the resources available on AIGameDev by Alex J. Champandard). I'm particularly interested on event driven behavior trees, but I have still some doubts on how to implement them correctly using a scheduler. Just a quick recap: Standard Behavior Tree Each execution tick the tree is traversed from the root in depth-first order The execution order is implicitly expressed by the tree structure. So in the case of behaviors parented to a parallel node, even if both children are executed during the same traversing, the first leaf is always evaluated first. Event Driven BT During the first traversal the nodes (tasks) are enqueued using a scheduler which is responsible for updating only running ones every update The first traversal implicitly produce a depth-first ordered queue in the scheduler Non leaf nodes stays suspended mostly of the time. When a leaf node terminate(either with success or fail status) the parent (observer) is waked up allowing the tree traversing to continue and new tasks will be enqueued in the scheduler Without parallel nodes in the tree there will be up to 1 task running in the scheduler Without parallel nodes, the tasks in the queue(excluding dynamic priority implementation) will be always ordered in a depth-first order (is this right?) Now, from what is my understanding of a possible implementation, there are 2 requirements I think must be respected(I'm not sure though): Now, some requirements I think needs to be guaranteed by a correct implementation are: The result of the traversing should be independent from which implementation strategy is used. The traversing result must be deterministic. I'm struggling trying to guarantee both in the case of parallel nodes. Here's an example: Parallel_1 -->Sequence_1 ---->leaf_A ---->leaf_B -->leaf_C Considering a FIFO policy of the scheduler, before leaf_A node terminates the tasks in the scheduler are: P1(suspended),S1(suspended),leaf_A(running),leaf_C(running) When leaf_A terminate leaf_B will be scheduled (at the end of the queue), so the queue will become: P1(suspended),S1(suspended),leaf_C(running),leaf_B(running) In this case leaf_B will be executed after leaf_C at every update, meanwhile with a non event-driven traversing from the root node, the leaf_B will always be evaluated before leaf_A. So I have a couple of question: do I have understand correctly how event driven BT work? How can I guarantee the depth first order is respected with such an implementation? is this a common issue or am I missing something?

    Read the article

  • How to make an Actor follow my finger

    - by user48352
    I'm back with another question that may be really simple. I've a texture drawn on my spritebatch and I'm making it move up or down (y-axis only) with Libgdx's Input Handler: touchDown and touchUp. @Override public boolean touchDown(int screenX, int screenY, int pointer, int button) { myWhale.touchDownY = screenY; myWhale.isTouched = true; return true; } @Override public boolean touchUp(int screenX, int screenY, int pointer, int button) { myWhale.isTouched = false; return false; } myWhale is an object from Whale Class where I move my texture position: public void update(float delta) { this.delta = delta; if(isTouched){ dragWhale(); } } public void dragWhale() { if(Gdx.input.getY(0) - touchDownY < 0){ if(Gdx.input.getY(0)<position.y+height/2){ position.y = position.y - velocidad*delta; } } else{ if(Gdx.input.getY(0)>position.y+height/2){ position.y = position.y + velocidad*delta; } } } So the object moves to the center of the position where the person is pressing his/her finger and most of the time it works fine but the object seems to take about half a second to move up or down and sometimes when I press my finger it wont move. Maybe there's another simplier way to do this. I'd highly appreciate if someone points me on the right direction.

    Read the article

  • Build a view frustum from angles

    - by MulletDevil
    I have 4 angles, left, right, top & bottom. These angles are in degrees. They define the angle between the forward vector and the corresponding side. I am trying to use these to calculate the required values for Perseective Off Centre function found here http://docs.unity3d.com/Documentation/ScriptReference/Camera-projectionMatrix.html I tried doing (near plane-far plane) * Tan(angle) But that didn't give the correct results.

    Read the article

  • Does XNA/MonoGame have a text caching mechanism, or has an open source one been implemented?

    - by Casey
    I'm playing around with MonoGame, and I've noticed the SpriteFont class draws static text very inefficiently. Each time the text is drawn the spacing is recalculated. This isn't a big deal on my quad core PC, but on mobile applications it might be a problem. Before I go and program some text which caches the arrangement of its letters in an array and then feeds that array to the SpriteBatch, I would like to make sure there isn't something available to do this already, either in MonoGame itself or a class someone has implemented and made available for general use.

    Read the article

  • Optimized algorithm for line-sphere intersection in GLSL

    - by fernacolo
    Well, hello then! I need to find intersection between line and sphere in GLSL. Right now my solution is based on Paul Bourke's page and was ported to GLSL this way: // The line passes through p1 and p2: vec3 p1 = (...); vec3 p2 = (...); // Sphere center is p3, radius is r: vec3 p3 = (...); float r = ...; float x1 = p1.x; float y1 = p1.y; float z1 = p1.z; float x2 = p2.x; float y2 = p2.y; float z2 = p2.z; float x3 = p3.x; float y3 = p3.y; float z3 = p3.z; float dx = x2 - x1; float dy = y2 - y1; float dz = z2 - z1; float a = dx*dx + dy*dy + dz*dz; float b = 2.0 * (dx * (x1 - x3) + dy * (y1 - y3) + dz * (z1 - z3)); float c = x3*x3 + y3*y3 + z3*z3 + x1*x1 + y1*y1 + z1*z1 - 2.0 * (x3*x1 + y3*y1 + z3*z1) - r*r; float test = b*b - 4.0*a*c; if (test >= 0.0) { // Hit (according to Treebeard, "a fine hit"). float u = (-b - sqrt(test)) / (2.0 * a); vec3 hitp = p1 + u * (p2 - p1); // Now use hitp. } It works perfectly! But it seems slow... I'm new at GLSL. You can answer this questions in two ways: Tell me there is no solution, showing some proof or strong evidence. Tell me about GLSL features (vector APIs, primitive operations) that makes the above algorithm faster, showing some example. Thanks a lot!

    Read the article

  • What cars on roads game engines are there?

    - by David Thielen
    What game engines are there that support laying out a map of roads and handle vehicle movement on the roads. Something similar to the basic functionality in Transport Tycoon/Locomotion. I don't care about looks (although prettier is better) and top down or isometric is fine. I just need a simple way to create maps and move cars on it. And preferably the cars do take time to speed up and slow down as they go from stopped to full speed. Prefer in Windows (any API in Windows). I also prefer a free engine as this is just for internal use. I have found CarDriving 2D - does anyone know if it works well?

    Read the article

  • Resolution Independent 2D Rendering in XNA

    - by AttackingHobo
    I am trying to figure out the best way to render a 2d game at any resolution. I am currently rendering the game at 1920x1200. I am trying scale the game to any user selected resolution without changing the way I am rendering, or game logic. What is the best way to scale a game to any arbitrary resolution? Edit: I am trying to achieve this: http://www.david-amador.com/2010/03/xna-2d-independent-resolution-rendering/ but I think the code he has is for a different version of XNA because I cannot find that method overload he uses.

    Read the article

  • Programming bots in games

    - by Bane
    I'm interested in how bots are usually written. Here's my situation: I plan to make an online 2D mecha game in HTML5, and the server-side will be done with node. It is intended to be multiplayer, but I also want to make bots in case there aren't enough players. How does my game logic see them, as players or as bots? Is there a standard by which I should make them? Also, any general tips and hints will be OK.

    Read the article

  • Defining the track in a 2D racing game

    - by Ivan
    I am designing a top-down racing game using canvas (html5) which takes a lot of inspiration from Micro Machines. In MM, cars can move off the track, but they are reset/destroyed if they go too far. My maths knowledge isn't great, so I'm finding it hard to separate 3D/complex concepts from those which are directly relevant to my situation. For example, I have seen "splines" mentioned, is this something I should read up on or is that overkill for a 2D game? Could I use a single path which defines the centre of the track and check a car's distance from this line? A second path might be required as a "racing line" for AI. Any advice on methods/techniques/terms to read up on would be greatly appreciated.

    Read the article

  • Linear search vs Octree (Frustum cull)

    - by Dave
    I am wondering whether I should look into implementing an octree of some kind. I have a very simple game which consists of a 3d plane for the floor. There are multiple objects scattered around on the ground, each one has an aabb in world space. Currently I just do a loop through the list of all these objects and check if its bounding box intersects with the frustum, it works great but I am wondering if if it would be a good investment in an octree. I only have max 512 of these objects on the map and they all contain bounding boxes. I am not sure if an octree would make it faster since I have so little objects in the scene.

    Read the article

  • GLSL: Strange light reflections

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices? SOLVED Solved... 3 days needed for changing one letter from this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(12*sizeof(float)) // array buffer offset ); to this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(11*sizeof(float)) // array buffer offset ); see difference? :)

    Read the article

  • Random/Procedural vs. Previously Made Level Generation

    - by PythonInProgress
    I am making a game (called "Glory") that is a top-down explorer game, and am wondering what the advantages/disadvantages of using random/procedural generation vs. pre-made levels are. There seems to be few that i can think of, other than the fact that items may be a problem to distribute in randomly generated terrain, and that the generated terrain may look weird. The downside to previously made levels is that I would need to make a level editor, though. I cannot decide what is better to use.

    Read the article

  • XNA: SpriteFont question

    - by Zukki
    Hi everyone, I need some help with the SpriteFont. I want a different font for my game, other than Kootenay. So, I edit the SpriteFont xml, i.e: <FontName>Kootenay</FontName> or <FontName>Arial</FontName> No problem with Windows fonts, or other XNA redistributable fonts pack. However, I want to use other fonts, that I downloaded and installed already, they are TTF or OTF, both supported by XNA. My problem is, I cant use them, I got this error: The font family "all the fonts i tried" could not be found. Please ensure the requested font is installed, and is a TrueType or OpenType font. So, checking at the windows fonts folder, I check the properties and details of the fonts, I try all the names they have, and but never works. Maybe I need some kind of importing or installing in order to use them, I dont know, and I hope you guys can help me, thanks!

    Read the article

  • Triangulating a partially triangulated mesh (2D)

    - by teodron
    Referring to the above exhibits, this is the scenario I am working with: starting with a planar graph (in my case, a 2D mesh) with a given triangulation, based on a certain criterion, the graph nodes are labeled as RED and BLACK. (A) a subgraph containing all the RED nodes (with edges between only the directly connected neighbours) is formed (note: although this figure shows a tree forming, it may well happen that the subgraph contain loops) (B) Problem: I need to quickly build a triangulation around the subgraph (e.g. as shown in figure C), but under the constraint that I have to keep the already present edges in the final result. Question: Is there a fast way of achieving this given a partially triangulated mesh? Ideally, the complexity should be in the O(n) class. Some side-remarks: it would be nice for the triangulation algorithm to take into account a certain vertex priority when adding edges (e.g. it should always try to build a "1-ring" structure around the most important nodes first - I can implement iteratively such a routine, but it's O(n^2) ). it would also be nice to reflect somehow the "hop distance" when adding edges: add edges first between the nodes that were "closer" to each other given the start topology. Nevertheless, disregarding the remarks, is there an already known scenario similar to this one where a triangulation is built upon a partially given set of triangles/edges?

    Read the article

  • Selling your iphone games.

    - by Artemix
    Hi. So, long story short, some days ago I pusblished an iPhone game, I think the game wasnt that bad tbh, and still I got only 10 sells at $0.99. Are they any publishers, sponsors, or distributors to make your game "visible" on the app store market?, or the only thing you need is to have an amazing game and thats all? Somehow I think that even if you have an awesome game if you dont do that "marketing magic" correctly you will not exist in the store. Now Im making a second game, completly different, and I want to know how to do things right. If anyone knows something about this topic, let me know. Thx in advance.

    Read the article

  • Music for Kids Game!

    - by Dane
    I'm developing a Multimedia Software for Kindergarten Kids. It introduce them to animals, Alphabets, Simple Math, Colors and it contain some simple games. Music is very crucial for my project and it is very important to choose the right sort of music for different sections. But unfortunately I know nothing about music. Is there a music consultant firm which can help me to choose melodies and rythmes for my project from free music available in internet. My Budget is limited but as this is mandatory and I have no knowledge or taste about music, I think I can afford to pay for this.

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Architecture a for a central renderer rather than self-rendering

    - by The Communist Duck
    For the architectural side of rendering, there's two main ways: having each object render itself, and having a single renderer which renders everything. I'm currently aiming for the second idea, for the following reasons: The list can be sorted to only use shaders once. Else each object would have to bind the shader, because it's not sure if it's active. The objects could be sorted and grouped. Easier to swap APIs. With a few macro lines, it can be easy to swap between a DirectX renderer and an OpenGL renderer (not a reason for my project, but still a good point) Easier to manage rendering code Of course, if anyone has strong recommendations for the first method, I will listen to them. But I was wondering how make this work. First idea The renderer has a list of pointers to the renderable components of each entity, which register themselves on RenderCompoent creation. However, I'm worrying that this may end up as a lot of extra pointer weight. But I can sort the list of pointers every so often. Second idea The entire list of entities is passed to the renderer each render call. The renderer then sorts the list (each call, or maybe once?) and gets what it wants. That's a lot of passing and/or sorting, however. Other ideas ??? PROFIT Anyone got ideas? Thank you.

    Read the article

  • What is the purpose of bitdepth for the several components of the framebuffer in glfwWindowHint function of GLFW3?

    - by Rui d'Orey
    I would like to know what are the following "framebuffer related hints" of GLFW3 function glfwWindowHint : GLFW_RED_BITS GLFW_GREEN_BITS GLFW_BLUE_BITS GLFW_ALPHA_BITS GLFW_DEPTH_BITS GLFW_STENCIL_BITS What is the purpose of this? Usually their default values are enough? Where are those bits stored? In a buffer in the GPU? What do they affect? And by that I mean in what way Thank you in advance!

    Read the article

  • How do I implement Unreal-like object serialization?

    - by MrWiggels
    Recently, I've been working on the core of my engine, and as I'm moving forward I find myself developing throwaway code to read files and simple data into the engine. This got me thinking about how I should implement a file management system. After a bit of googleing I came across the Unreal Package format, and boy does it look like the perfect one. I think it's good because the way how it allows you to separate different assets into different packages and allow something like a level to reference the different packages. I was just wondering, is this possible with C#? Because the built-in serialization API in .NET does not seem to support any form of this, only reading and writing to a single file.

    Read the article

  • Quaternion based rotation and pivot position

    - by Michael IV
    I can't figure out how to perform matrix rotation using Quaternion while taking into account pivot position in OpenGL.What I am currently getting is rotation of the object around some point in the space and not a local pivot which is what I want. Here is the code [Using Java] Quaternion rotation method: public void rotateTo3(float xr, float yr, float zr) { _rotation.x = xr; _rotation.y = yr; _rotation.z = zr; Quaternion xrotQ = Glm.angleAxis((xr), Vec3.X_AXIS); Quaternion yrotQ = Glm.angleAxis((yr), Vec3.Y_AXIS); Quaternion zrotQ = Glm.angleAxis((zr), Vec3.Z_AXIS); xrotQ = Glm.normalize(xrotQ); yrotQ = Glm.normalize(yrotQ); zrotQ = Glm.normalize(zrotQ); Quaternion acumQuat; acumQuat = Quaternion.mul(xrotQ, yrotQ); acumQuat = Quaternion.mul(acumQuat, zrotQ); Mat4 rotMat = Glm.matCast(acumQuat); _model = new Mat4(1); scaleTo(_scaleX, _scaleY, _scaleZ); _model = Glm.translate(_model, new Vec3(_pivot.x, _pivot.y, 0)); _model =rotMat.mul(_model);//_model.mul(rotMat); //rotMat.mul(_model); _model = Glm.translate(_model, new Vec3(-_pivot.x, -_pivot.y, 0)); translateTo(_x, _y, _z); notifyTranformChange(); } Model matrix scale method: public void scaleTo(float x, float y, float z) { _model.set(0, x); _model.set(5, y); _model.set(10, z); _scaleX = x; _scaleY = y; _scaleZ = z; notifyTranformChange(); } Translate method: public void translateTo(float x, float y, float z) { _x = x - _pivot.x; _y = y - _pivot.y; _z = z; _position.x = _x; _position.y = _y; _position.z = _z; _model.set(12, _x); _model.set(13, _y); _model.set(14, _z); notifyTranformChange(); } But this method in which I don't use Quaternion works fine: public void rotate(Vec3 axis, float angleDegr) { _rotation.add(axis.scale(angleDegr)); // change to GLM: Mat4 backTr = new Mat4(1.0f); backTr = Glm.translate(backTr, new Vec3(_pivot.x, _pivot.y, 0)); backTr = Glm.rotate(backTr, angleDegr, axis); backTr = Glm.translate(backTr, new Vec3(-_pivot.x, -_pivot.y, 0)); _model =_model.mul(backTr);///backTr.mul(_model); notifyTranformChange(); }

    Read the article

< Previous Page | 461 462 463 464 465 466 467 468 469 470 471 472  | Next Page >