Search Results

Search found 25518 results on 1021 pages for 'iterative development'.

Page 469/1021 | < Previous Page | 465 466 467 468 469 470 471 472 473 474 475 476  | Next Page >

  • Projecting onto different size screens by cropping

    - by Jason
    Hi, I am building a phone application which will display a shape on screen. The shape should look the same on different screen sizes. I. Decided the best way to do this is to show more of the background on larger screen keeping the shapes proportion the same on all screens. My problem is I am not sure how to achieve this, I can query the screen size at runtime and calculate how different it is from the six is designed for but I am not sure what to do with this value. What kind of projection should I use for my orthographic matrix an hour will I display more on larger screens and not loose information on smaller screens? Thanks, Jason.

    Read the article

  • Create a thread in xna Update method to find path?

    - by Dan
    I am trying to create a separate thread for my enemy's A* pathfinder which will give me a list of points to get to the player. I have placed the thread in the update method of my enemy. However this seems to cause jittering in the game every-time the thread is called. I have tried calling just the method and this works fine. Is there any way I can sort this out so that I can have the pathfinder on its own thread? Do I need to remove the thread start from the update and start it in the constructor? Is there any way this can work. Here is the code at the moment: bool running = false; bool threadstarted; System.Threading.Thread thread; public void update() { if (running == false && threadstarted == false) { thread = new System.Threading.Thread(PathThread); //thread.Priority = System.Threading.ThreadPriority.Lowest; thread.IsBackground = true; thread.Start(startandendobj); //PathThread(startandendobj); threadstarted = true; } } public void PathThread(object Startandend) { object[] Startandendarray = (object[])Startandend; Point startpoint = (Point)Startandendarray[0]; Point endpoint = (Point)Startandendarray[1]; bool runnable = true; // Path find from 255, 255 to 0,0 on the map foreach(Tile tile in Map) { if(tile.Color == Color.Red) { if (tile.Position.Contains(endpoint)) { runnable = false; } } } if(runnable == true) { running = true; Pathfinder p = new Pathfinder(Map); pathway = p.FindPath(startpoint, endpoint); running = false; threadstarted = false; } }

    Read the article

  • Behaviour Trees with irregular updates

    - by Robominister
    I'm interested in behaviour trees that aren't iterated every game tick, but every so often. (Edit: the tree could specify how many frames within the main game loop to wait before running its tick function again). Every theoretical implementation I have seen of behaviour trees talks of the tree search being carried out every game update - which seems necessary, because a leaf node (eg a behaviour, like 'return to base') needs to be constantly checked to see if is still running, failed or completed. Can anyone suggest how I might start implementing a tree that isnt run every tick, or point me in the direction of good material specific to this case (I am struggling to find anything)? My thoughts so far: action leaf nodes (when they start) must only push some kind of action object onto a list for an entity, rather than directly calling any code that makes the entity do something. The list of actions for the entity would be run every frame (update any that need to run, pop any that have completed from the list). the return state from a given action must be fed back into the tree, so that when we run the tree iteration again (and reach the same action leaf node - so the tree has so far determined that we ought to still be trying this action) - that the action has completed, or is still running etc. If my actual action code is running from an action list on an entity, then I possibly need to cancel previously running actions in the list - i am thinking that I can just delete the entire stack of queued up actions. I've seen the idea of ActionLists which block lower priority actions when a higher priority one is added, but this seems like very close logic to behaviour trees, and I dont want to be duplicating behaviour. This leaves me with some questions 1) How would I feed the action return state back into the tree? Its obvious I need to store some information relating to 'currently executing actions' on the entity, and check that in the tree tick, but I can't imagine how. 2) Does having a seperate behaviour tree (for deciding behaviour) and action list (for carrying out actual queued up actions) sound like a reasonable approach? 3) Is the approach of updating a behaviour tree irregularly actually used by anyone? It seems like a nice idea for budgeting ai search time when you have a lot of ai entities to process. (Edit) - I am also thinking about storing a single instance of a given behaviour tree in memory, and providing it by reference to any entity that uses it. So any information about what action was last selected for execution on an entity must be stored in a data context relative to the entity (which the tree can check). (I am probably answering my own questions as i go!) I hope I have expressed my questions adequately! Thanks in advance for any help :)

    Read the article

  • Moving objects colliding when using unalligned collision avoidance (steering)

    - by James Bedford
    I'm having trouble with unaligned collision avoidance for what I think is a rare case. I have set two objects to move towards each other but with a slight offset, so one of the objects is moving slightly upwards, and one of the objects is moving slightly downwards. In my unaligned collision avoidance steering algorithm I'm finding the points on the object's forward line and the other object's forward line where these two lines are the closest. If these closest points are within a collision avoidance distance, and if the distance between them is smaller than the two radii of the two object's bounding spheres, then the objects should steer away in the appropriate direction. The problem is that for my case, the closest points on the lines are calculated to be really far away from the actual collision point. This is because the two forward lines for each object are moving away from each other as the objects pass. The problem is that because of this, no steering takes place, and the two objects partially collide. Does anyone have any suggestions as to how I can correctly calculate the point of collision? Perhaps by somehow taking into account the size of the two objects?

    Read the article

  • How should bots be recognised in a game?

    - by Bane
    I'm interested in how bots are usually written. Here's my situation: I plan to make an online 2D mecha game in HTML5, and the server-side will be done with node. It is intended to be multiplayer, but I also want to make bots in case there aren't enough players. How does my game logic see them, as players or as bots? Is there a standard by which I should make them? Also, any general tips and hints will be OK.

    Read the article

  • 3D Modeling Software for Programmer [closed]

    - by Pathachiever11
    I've recently learned how to make games for Unity3d, and now I want to start making games! I can't wait to start! However, before I can make 3D games, I need to learn 3D modeling for character design, level design, and some animation. What is the easiest 3D modeling software, compatible with Unity3d? I do not want to spend too much time learning the software. From what I've heard, Blender is a bit complicated to use. Maya and 3dsMax seem very powerful. Could someone point me in the right direction? I don't want to spend a lot of time learning. I know its not that easy, but you guys have experience, you guys probably know out of all which one is easier and powerful. Could you recommend a software? Many Thanks!

    Read the article

  • How can I create animated card graphics like in Hearthstone?

    - by Appeltaart
    In the game Hearthstone, there are cards with animated images on them. A few examples: http://www.hearthhead.com/card=281/argent-commander http://www.hearthhead.com/card=469/blood-imp The animations seem to be composed of multiple effects: Particle systems. Fading sprites in and out/rotating them Simple scrolling textures A distortion effect, very evident in the cape and hair of example 1. Swirling smoke effects, the light in example 1 and the green/purple glow in example 2. The first three elements are trivial, what I'd like to know is how the last two could be done. Can this even be done realtime in a game, or are they pre-rendered animations?

    Read the article

  • Why was my Facebook game rejected with the note that "your app icon must not overlap with content in your cover image?"

    - by peterwilli
    My FB game just recently got rejected for two reasons. The first I fixed, but I just can't see to figure out what they mean by the second, and I was hoping someone else got the same issue and did know what they meant. The remaining error is: Cover Image Your app icon must not overlap with content in your cover image. Click on 'Web Preview' in the 'App Details' section to check for overlap prior to submitting your app. See more here. All I know is that the rejection has something to do with the cover image, not the icons or the screenshots. The web preview of my game looks like this now: Please let me know what to do to get approved.

    Read the article

  • GLSL Normals not transforming propertly

    - by instancedName
    I've been stuck on this problem for two days. I've read many articles about transforming normals, but I'm just totaly stuck. I understand choping off W component for "turning off" translation, and doing inverse/traspose transformation for non-uniform scaling problem, but my bug seems to be from a different source. So, I've imported a simple ball into OpenGL. Only transformation that I'm applying is rotation over time. But when my ball rotates, the illuminated part of the ball moves around just as it would if direction light direction was changing. I just can't figure out what is the problem. Can anyone help me with this? Here's the GLSL code: Vertex Shader: #version 440 core uniform mat4 World, View, Projection; layout(location = 0) in vec3 VertexPosition; layout(location = 1) in vec3 VertexColor; layout(location = 2) in vec3 VertexNormal; out vec4 Color; out vec3 Normal; void main() { Color = vec4(VertexColor, 1.0); vec4 n = World * vec4(VertexNormal, 0.0f); Normal = n.xyz; gl_Position = Projection * View * World * vec4(VertexPosition, 1.0); } Fragment Shader: #version 440 core uniform vec3 LightDirection = vec3(0.0, 0.0, -1.0); uniform vec3 LightColor = vec3(1f); in vec4 Color; in vec3 Normal; out vec4 FragColor; void main() { diffuse = max(0.0, dot(normalize(-LightDirection), normalize(Normal))); vec4 scatteredLight = vec4(LightColor * diffuse, 1.0f); FragColor = min(Color * scatteredLight, vec4(1.0)); }

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • What is the purpose of bitdepth for the several components of the framebuffer in glfwWindowHint function of GLFW3?

    - by Rui d'Orey
    I would like to know what are the following "framebuffer related hints" of GLFW3 function glfwWindowHint : GLFW_RED_BITS GLFW_GREEN_BITS GLFW_BLUE_BITS GLFW_ALPHA_BITS GLFW_DEPTH_BITS GLFW_STENCIL_BITS What is the purpose of this? Usually their default values are enough? Where are those bits stored? In a buffer in the GPU? What do they affect? And by that I mean in what way Thank you in advance!

    Read the article

  • [JOGL] my program is too slow, ho can i profile with Eclipse?

    - by nkint
    hi juys my simple opengl program is really toooo slow and not fluid i'm rendering 30 sphere with simple illumination and simple material. the only hard(?) computing stuffs i do is a collision detection between ray-mouse and spheres (that works ok and i do it only in mouseMoved) i have no thread only animator to move spheres how can i profile my jogl project? or mayebe (most probable..) i have some opengl instruction that i don't understand and make render particular accurate (or back face rendering that i don't need or whatever i don't know exctly i'm just entered in opengl world)

    Read the article

  • Changing DisplayMode seems not to update Input&Graphic Dimension

    - by coding.mof
    I'm writing a small game using Slick and Nifty-GUI. At the program startup I set the DisplayMode using the following lines: AppGameContainer app = new ... app.setDisplayMode( 800, 600, false ); app.start(); I wrote a Nifty-ScreenController for my settings dialog in which the user can select the desired DisplayMode. When I try to set the new DisplayMode within this controller class the game window gets resized correctly but the Graphics and Input objects aren't updated accordingly. Therefore my rendering code just uses a part of the new window. I tried to set different DisplayModes in the main method to test if it's generally possible to invoke this method multiple times. It seems that changing the DisplayMode only works before I call app.start(). Furthermore I tried to update the Graphics & Input object manually but the init and setDimensions methods are package private. :( Does someone know what I'm doing wrong and how to change the DisplayMode correctly?

    Read the article

  • Collision planes confusion

    - by Jeffrey
    I'm following this tutorial by thecplusplusguy and in the linked video he explain that for example for the world basement and walls we need to create the actual rendered (shown to the player) walls and then duplicate them, place them in the same coordinates as the rendered walls and call them collision (by defining their material to collision). Then it defines in the Object loader function that those objects with material == collision are collision planes and should not be rendered but just used to check collision. Now I'm pretty confused. Why would we add this kind of complexity to a problem that can easily be solved by a simple loadObject(string plane_object, bool check_collision);: Creating only the walls object (by loading .obj file in plane_object) Define them also as collision planes whenever the check_collision is set to true In this case we have lowered the complexity of his method and make it more flexible and faster to develop (faster because we don't always have to make a copy for each plane and flexible because we don't hardcode the Object loader). The only case in which this method could not work is when we need hidden collision planes, and for that we could modify the loadObject() function like this: loadObject(string plane_object, bool check_collision = true, bool hide_object = false); Creating only the walls object (by loading .obj file in plane_object) Define them also as collision planes whenever the check_collision is set to true And add the ability to actually show the object or hide it based on hide_object. The final question is: am I right? What would the possible problem encountered with my solution versus his?

    Read the article

  • XNA 4.0 Refresh AudioEngine, WaveBank and Others Not Found

    - by Peteyslatts
    I'm going through the Learning XNA 4.0 book, and unfortunately I installed XNA 4.0 refresh. All the code up until now has worked, with the exception of me needing to remove the Framework.Net and Framework.Storage. (As a side question, will this be problematic later?) The problem I'm having now is that in my Game1.cs file, I have imported all of the XNA.Framework libraries, and when I try and create instances of any of the following classes, an error pops up saying VisualStudio can't find them: AudiEngine, WaveBank, SoundBank, and Cue. I have googled around for a while, and the only solution I saw was to import Microsoft.Xna.Framework.Xact, but this doesn't seem to exist for me. Any help is much appreciated, Thanks Peter.

    Read the article

  • Triangle Picking Picking Back faces

    - by Tangeleno
    I'm having a bit of trouble with 3D picking, at first I thought my ray was inaccurate but it turns out that the picking is happening on faces facing the camera and faces facing away from the camera which I'm currently culling. Here's my ray creation code, I'm pretty sure the problem isn't here but I've been wrong before. private uint Pick() { Ray cursorRay = CalculateCursorRay(); Vector3? point = Control.Mesh.RayCast(cursorRay); if (point != null) { Tile hitTile = Control.TileMesh.GetTileAtPoint(point); return hitTile == null ? uint.MaxValue : (uint)(hitTile.X + hitTile.Y * Control.Generator.TilesWide); } return uint.MaxValue; } private Ray CalculateCursorRay() { Vector3 nearPoint = Control.Camera.Unproject(new Vector3(Cursor.Position.X, Control.ClientRectangle.Height - Cursor.Position.Y, 0f)); Vector3 farPoint = Control.Camera.Unproject(new Vector3(Cursor.Position.X, Control.ClientRectangle.Height - Cursor.Position.Y, 1f)); Vector3 direction = farPoint - nearPoint; direction.Normalize(); return new Ray(nearPoint, direction); } public Vector3 Camera.Unproject(Vector3 source) { Vector4 result; result.X = (source.X - _control.ClientRectangle.X) * 2 / _control.ClientRectangle.Width - 1; result.Y = (source.Y - _control.ClientRectangle.Y) * 2 / _control.ClientRectangle.Height - 1; result.Z = source.Z - 1; if (_farPlane - 1 == 0) result.Z = 0; else result.Z = result.Z / (_farPlane - 1); result.W = 1f; result = Vector4.Transform(result, Matrix4.Invert(ProjectionMatrix)); result = Vector4.Transform(result, Matrix4.Invert(ViewMatrix)); result = Vector4.Transform(result, Matrix4.Invert(_world)); result = Vector4.Divide(result, result.W); return new Vector3(result.X, result.Y, result.Z); } And my triangle intersection code. Ripped mainly from the XNA picking sample. public float? Intersects(Ray ray) { float? closestHit = Bounds.Intersects(ray); if (closestHit != null && Vertices.Length == 3) { Vector3 e1, e2; Vector3.Subtract(ref Vertices[1].Position, ref Vertices[0].Position, out e1); Vector3.Subtract(ref Vertices[2].Position, ref Vertices[0].Position, out e2); Vector3 directionCrossEdge2; Vector3.Cross(ref ray.Direction, ref e2, out directionCrossEdge2); float determinant; Vector3.Dot(ref e1, ref directionCrossEdge2, out determinant); if (determinant > -float.Epsilon && determinant < float.Epsilon) return null; float inverseDeterminant = 1.0f/determinant; Vector3 distanceVector; Vector3.Subtract(ref ray.Position, ref Vertices[0].Position, out distanceVector); float triangleU; Vector3.Dot(ref distanceVector, ref directionCrossEdge2, out triangleU); triangleU *= inverseDeterminant; if (triangleU < 0 || triangleU > 1) return null; Vector3 distanceCrossEdge1; Vector3.Cross(ref distanceVector, ref e1, out distanceCrossEdge1); float triangleV; Vector3.Dot(ref ray.Direction, ref distanceCrossEdge1, out triangleV); triangleV *= inverseDeterminant; if (triangleV < 0 || triangleU + triangleV > 1) return null; float rayDistance; Vector3.Dot(ref e2, ref distanceCrossEdge1, out rayDistance); rayDistance *= inverseDeterminant; if (rayDistance < 0) return null; return rayDistance; } return closestHit; } I'll admit I don't fully understand all of the math behind the intersection and that is something I'm working on, but my understanding was that if rayDistance was less than 0 the face was facing away from the camera, and shouldn't be counted as a hit. So my question is, is there an issue with my intersection or ray creation code, or is there another check I need to perform to tell if the face is facing away from the camera, and if so any hints on what that check might contain would be appreciated.

    Read the article

  • Best strategy (tried and tested) for using Box2D in a real-time multiplayer game?

    - by Simon Grey
    I am currently tackling real-time multiplayer physics updates for a game engine I am writing. My question is how best to use Box2D for networked physics. If I run the simulation on the server, should I send position, velocity etc to every client on every tick? Should I send it every few ticks? Maybe there is another way that I am missing? How has this problem been solved using Box2D before? Anyone with some ideas would be greatly appreciated!

    Read the article

  • Intersection points of plane set forming convex hull

    - by Toji
    Mostly looking for a nudge in the right direction here. Given a set of planes (defined as a normal and distance from origin) that form a convex hull, I would like to find the intersection points that form the corners of that hull. More directly, I'm looking for a way to generate a point cloud appropriate to provide to Bullet. Bonus points if someone knows of a way I could give bullet the plane list directly, since I somewhat suspect that's what it's building on the backend anyway.

    Read the article

  • Make Interactive Story more Variable [on hold]

    - by Guest0343
    I'm creating an interactive story that allows users to make choices based on a story. However, it doesn't give users room to do much creatively on their own. They are bound by the script at the moment. I'm wondering if anyone can suggest any element I can add that might give users some personalization. I was thinking about maybe character editing, but that doesn't add too much. I also thought about a stats system where they can have certain attributes and stats they might earn, but I'm not sure how they might use those stats. Anything is helpful!

    Read the article

  • LOD in modern games

    - by Firas Assaad
    I'm currently working on my master's thesis about LOD and mesh simplification, and I've been reading many academic papers and articles about the subject. However, I can't find enough information about how LOD is being used in modern games. I know many games use some sort of dynamic LOD for terrain, but what about elsewhere? Level of Detail for 3D Graphics for example points out that discrete LOD (where artists prepare several models in advance) is widely used because of the performance overhead of continuous LOD. That book was published in 2002 however, and I'm wondering if things are different now. There has been some research in performing dynamic LOD using the geometry shader (this paper for example, with its implementation in ShaderX6), would that be used in a modern game? To summarize, my question is about the state of LOD in modern video games, what algorithms are used and why? In particular, is view dependent continuous simplification used or does the runtime overhead make using discrete models with proper blending and impostors a more attractive solution? If discrete models are used, is an algorithm used (e.g. vertex clustering) to generate them offline, do artists manually create the models, or perhaps a combination of both methods is used?

    Read the article

  • Batching dynamic sprites in OpenGL

    - by Aaron
    I'm trying to wrap my head around how batching is done in a 2D sprite-based game. My understanding is I'd get the vertices that represent each sprite I want to draw and stuff them all into a single mesh. That way I'd only need a single draw call to render everything. Does this apply when the sprites I render are different between frames, or when some sprites are moving? Because it sounds like I'd then have to recreate my batch mesh each frame, using either glDrawArrays/glDrawElements or a streaming VBO I assume. Does this sound correct?

    Read the article

  • Resolving collisions between dynamic game objects

    - by TheBroodian
    I've been building a 2D platformer for some time now, I'm getting to the point where I am adding dynamic objects to the stage for testing. This has prompted me to consider how I would like my character and other objects to behave when they collide. A typical staple in many 2D platformer type games is that the player takes damage upon touching an enemy, and then essentially becomes able to pass through enemies during a period of invulnerability, and at the same time, enemies are able to pass through eachother freely. I personally don't want to take this approach, it feels strange to me that the player should receive arbitrary damage for harmless contact to an enemy, despite whether the enemy is attacking or not, and I would like my enemies' interactions between each other (and my player) to be a little more organic, so to speak. In my head I sort of have this idea where a game object (player, or non player) would be able to push other game objects around by manner of 'pushing' each other out of one anothers' bounding boxes if there is an intersection, and maybe correlate the repelling force to how much their bounding boxes are intersecting. The problem I'm experiencing is I have no idea what the math might look like for something like this? I'll show what work I've done so far, it sort of works, but it's jittery, and generally not quite what I would pass in a functional game: //Clears the anti-duplicate buffer collisionRecord.Clear(); //pick a thing foreach (GameObject entity in entities) { //pick another thing foreach (GameObject subject in entities) { //check to make sure both things aren't the same thing if (!ReferenceEquals(entity, subject)) { //check to see if thing2 is in semi-near proximity to thing1 if (entity.WideProximityArea.Intersects(subject.CollisionRectangle) || entity.WideProximityArea.Contains(subject.CollisionRectangle)) { //check to see if thing2 and thing1 are colliding. if (entity.CollisionRectangle.Intersects(subject.CollisionRectangle) || entity.CollisionRectangle.Contains(subject.CollisionRectangle) || subject.CollisionRectangle.Contains(entity.CollisionRectangle)) { //check if we've already resolved their collision or not. if (!collisionRecord.ContainsKey(entity.GetHashCode())) { //more duplicate resolution checking. if (!collisionRecord.ContainsKey(subject.GetHashCode())) { //if thing1 is traveling right... if (entity.Velocity.X > 0) { //if it isn't too far to the right... if (subject.CollisionRectangle.Contains(new Microsoft.Xna.Framework.Rectangle(entity.CollisionRectangle.Right, entity.CollisionRectangle.Y, 1, entity.CollisionRectangle.Height)) || subject.CollisionRectangle.Intersects(new Microsoft.Xna.Framework.Rectangle(entity.CollisionRectangle.Right, entity.CollisionRectangle.Y, 1, entity.CollisionRectangle.Height))) { //Find how deep thing1 is intersecting thing2's collision box; float offset = entity.CollisionRectangle.Right - subject.CollisionRectangle.Left; //Move both things in opposite directions half the length of the intersection, pushing thing1 to the left, and thing2 to the right. entity.Velocities.Add(new Vector2(-(((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); subject.Velocities.Add(new Vector2((((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); } } //if thing1 is traveling left... if (entity.Velocity.X < 0) { //if thing1 isn't too far left... if (entity.CollisionRectangle.Contains(new Microsoft.Xna.Framework.Rectangle(subject.CollisionRectangle.Right, subject.CollisionRectangle.Y, 1, subject.CollisionRectangle.Height)) || entity.CollisionRectangle.Intersects(new Microsoft.Xna.Framework.Rectangle(subject.CollisionRectangle.Right, subject.CollisionRectangle.Y, 1, subject.CollisionRectangle.Height))) { //Find how deep thing1 is intersecting thing2's collision box; float offset = subject.CollisionRectangle.Right - entity.CollisionRectangle.Left; //Move both things in opposite directions half the length of the intersection, pushing thing1 to the right, and thing2 to the left. entity.Velocities.Add(new Vector2((((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); subject.Velocities.Add(new Vector2(-(((offset * 4) * (float)gameTime.ElapsedGameTime.TotalMilliseconds)), 0)); } } //Make record that thing1 and thing2 have interacted and the collision has been solved, so that if thing2 is picked next in the foreach loop, it isn't checked against thing1 a second time before the next update. collisionRecord.Add(entity.GetHashCode(), subject.GetHashCode()); } } } } } } } } One of the biggest issues with my code aside from the jitteriness is that if one character were to land on top of another character, it very suddenly and abruptly resolves the collision, whereas I would like a more subtle and gradual resolution. Any thoughts or ideas are incredibly welcome and helpful.

    Read the article

  • Implementing movement on a grid

    - by Dvole
    I have a simple snake game, where I have other NPC snakes on the field. How do I calculate the movement of those other snakes so that they did not hit walls, and each other? So far I have it like this: I check for current coordinates and when there is a wall nearby I change direction to some other one. And so on, this way the snakes never collide the walls. But not actually colliding other snakes, how do I prevent this? I figured I could probe for the direction I'm heading and if there is anything there I would change direction too, but there is a set of situation where this won't work, for example if another snake will block off all exits later.

    Read the article

  • OpenGL ES 2. How do I Create a Basic Fading Streak Effect?

    - by dugla
    For the iPad app I am writing using OpenGL ES 2 I have a single quad - shaded using GLSL - that is dragged around the screen. Very basic. This works fine. But is rather boring. I want to increase the coolness a bit in the following way: when the user drags the quad it leaves a streak behind that fades over time. Continuous dragging would be a bit like a streaking comet across the night sky. What is the simplest way to implement this? Thanks.

    Read the article

< Previous Page | 465 466 467 468 469 470 471 472 473 474 475 476  | Next Page >