Search Results

Search found 25518 results on 1021 pages for 'iterative development'.

Page 464/1021 | < Previous Page | 460 461 462 463 464 465 466 467 468 469 470 471  | Next Page >

  • Circle collision detection and Vector math: HELP?

    - by Griffin
    Hey so i'm currently going through the wildbunny blog to learn about collision detection, but i'm a bit confused on how the vectors he's talking about come into play QUOTED BLOG: p = ||A-B|| – (r1+r2) The two spheres are penetrating by distance p. We would also like the penetration vector so that we can correct the penetration once we discover it. This is the vector that moves both circles to the point where they just touch, correcting the penetration. Importantly it is not only just a vector that does this, it is the only vector which corrects the penetration by moving the minimum amount. This is important because we only want to correct the error, not introduce more by moving too much when we correct, or too little. N = (A-B) / ||A-B|| P = N*p Here we have calculated the normalised vector N between the two centres and the penetration vector P by multiplying our unit direction by the penetration distance. Ok so i understand that p is the distance each circle is penetrating each other, but i don't get what exactly N and P is. it seems to me N is just the coordinates of the 3rd point of the right trianlge formed by point A and B (A-B) then being divided by the hypotenuse of that triangle or distance between A and B (||A-B||) Whats the significance of this? Also, what is the penetration vector used for? It seems to me like a movement that one of the circles would perform to get un-penetrated.

    Read the article

  • How i can sign and/or group a specific set of vertices in a 3D file container like OBJ ? - in Blender

    - by user827992
    I would like to export a 3D model with each part having a name or a label if you will. For example i would like to export a model of an human body and name each part in specifics vertex groups like: left hand, right hand, right foot, head, ears, ... and you got the idea; so i can have a single 3D model that i can explode in various parts if needed. If there is a better technique about how to mark vertex groups in a 3D file please share your solution. As 3D editor i use Blender.

    Read the article

  • Resolution Independent 2D Rendering in XNA

    - by AttackingHobo
    I am trying to figure out the best way to render a 2d game at any resolution. I am currently rendering the game at 1920x1200. I am trying scale the game to any user selected resolution without changing the way I am rendering, or game logic. What is the best way to scale a game to any arbitrary resolution? Edit: I am trying to achieve this: http://www.david-amador.com/2010/03/xna-2d-independent-resolution-rendering/ but I think the code he has is for a different version of XNA because I cannot find that method overload he uses.

    Read the article

  • How do I implement SkyBox in xna 4.0 Reach Profile (for Windows Phone 7)?

    - by Biny
    I'm trying to Implement SkyBox in my phone game. Most of the samples in the web are for HiDef profile, and they are using custom effects (that not supported on Windows Phone). I've tried to follow this guide. But for some reason my SkyBox is not rendered. This is my SkyBox class: using System; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Rocuna.Core; using Rocuna.GameEngine.Graphics; using Rocuna.GameEngine.Graphics.Components; namespace Rocuna.GameEngine.Extension.WP7.Graphics { /// <summary> /// Sky box element for phone games. /// </summary> public class SkyBox : SkyBoxBase { /// <summary> /// Initializes a new instance of the <see cref="SkyBoxBase"/> class. /// </summary> /// <param name="game">The Game that the game component should be attached to.</param> public SkyBox(TextureCube cube, Game game) : base(game) { Cube = cube; CubeFaces = new Texture2D[6]; PositionOffset = new Vector3(20, 20, 20); CreateGraphic(512); StripTexturesFromCube(); InitializeData(Game.GraphicsDevice); } #region Properties /// <summary> /// Gets or sets the position offset. /// </summary> /// <value> /// The position offset. /// </value> public Vector3 PositionOffset { get; set; } /// <summary> /// Gets or sets the position. /// </summary> /// <value> /// The position. /// </value> public Vector3 Position { get; set; } /// <summary> /// Gets or sets the cube. /// </summary> /// <value> /// The cube. /// </value> public TextureCube Cube { get; set; } /// <summary> /// Gets or sets the pixel array. /// </summary> /// <value> /// The pixel array. /// </value> public Color[] PixelArray { get; set; } /// <summary> /// Gets or sets the cube faces. /// </summary> /// <value> /// The cube faces. /// </value> public Texture2D[] CubeFaces { get; set; } /// <summary> /// Gets or sets the vertex buffer. /// </summary> /// <value> /// The vertex buffer. /// </value> public VertexBuffer VertexBuffer { get; set; } /// <summary> /// Gets or sets the index buffer. /// </summary> /// <value> /// The index buffer. /// </value> public IndexBuffer IndexBuffer { get; set; } /// <summary> /// Gets or sets the effect. /// </summary> /// <value> /// The effect. /// </value> public BasicEffect Effect { get; set; } #endregion protected override void LoadContent() { } public override void Update(GameTime gameTime) { var camera = Game.GetService<GraphicManager>().CurrentCamera; this.Position = camera.Position + PositionOffset; base.Update(gameTime); } public override void Draw(GameTime gameTime) { DrawOrder = int.MaxValue; var graphics = Effect.GraphicsDevice; graphics.DepthStencilState = new DepthStencilState() { DepthBufferEnable = false }; graphics.RasterizerState = new RasterizerState() { CullMode = CullMode.None }; graphics.BlendState = new BlendState(); graphics.SamplerStates[0] = SamplerState.AnisotropicClamp; graphics.SetVertexBuffer(VertexBuffer); graphics.Indices = IndexBuffer; Effect.Texture = CubeFaces[0]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 0, 2); Effect.Texture = CubeFaces[1]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 6, 2); Effect.Texture = CubeFaces[2]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 12, 2); Effect.Texture = CubeFaces[3]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 18, 2); Effect.Texture = CubeFaces[4]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 24, 2); Effect.Texture = CubeFaces[5]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 30, 2); base.Draw(gameTime); } #region Fields private List<VertexPositionNormalTexture> _vertices = new List<VertexPositionNormalTexture>(); private List<ushort> _indices = new List<ushort>(); #endregion #region Private methods private void InitializeData(GraphicsDevice graphicsDevice) { VertexBuffer = new VertexBuffer(graphicsDevice, typeof(VertexPositionNormalTexture), _vertices.Count, BufferUsage.None); VertexBuffer.SetData<VertexPositionNormalTexture>(_vertices.ToArray()); // Create an index buffer, and copy our index data into it. IndexBuffer = new IndexBuffer(graphicsDevice, typeof(ushort), _indices.Count, BufferUsage.None); IndexBuffer.SetData<ushort>(_indices.ToArray()); // Create a BasicEffect, which will be used to render the primitive. Effect = new BasicEffect(graphicsDevice); Effect.TextureEnabled = true; Effect.EnableDefaultLighting(); } private void CreateGraphic(float size) { Vector3[] normals = { Vector3.Right, Vector3.Left, Vector3.Up, Vector3.Down, Vector3.Backward, Vector3.Forward, }; Vector2[] textureCoordinates = { Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, }; var index = 0; foreach (var normal in normals) { var side1 = new Vector3(normal.Z, normal.X, normal.Y); var side2 = Vector3.Cross(normal, side1); AddIndex(CurrentVertex + 0); AddIndex(CurrentVertex + 1); AddIndex(CurrentVertex + 2); AddIndex(CurrentVertex + 0); AddIndex(CurrentVertex + 2); AddIndex(CurrentVertex + 3); AddVertex((normal - side1 - side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal - side1 + side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal + side1 + side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal + side1 - side2) * size / 2, normal, textureCoordinates[index++]); } } protected void StripTexturesFromCube() { PixelArray = new Color[Cube.Size * Cube.Size]; for (int s = 0; s < CubeFaces.Length; s++) { CubeFaces[s] = new Texture2D(Game.GraphicsDevice, Cube.Size, Cube.Size, false, SurfaceFormat.Color); switch (s) { case 0: Cube.GetData<Color>(CubeMapFace.PositiveX, PixelArray); CubeFaces[s].SetData<Color>(PixelArray); break; case 1: Cube.GetData(CubeMapFace.NegativeX, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 2: Cube.GetData(CubeMapFace.PositiveY, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 3: Cube.GetData(CubeMapFace.NegativeY, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 4: Cube.GetData(CubeMapFace.PositiveZ, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 5: Cube.GetData(CubeMapFace.NegativeZ, PixelArray); CubeFaces[s].SetData(PixelArray); break; } } } protected void AddVertex(Vector3 position, Vector3 normal, Vector2 textureCoordinates) { _vertices.Add(new VertexPositionNormalTexture(position, normal, textureCoordinates)); } protected void AddIndex(int index) { if (index > ushort.MaxValue) throw new ArgumentOutOfRangeException("index"); _indices.Add((ushort)index); } protected int CurrentVertex { get { return _vertices.Count; } } #endregion } }

    Read the article

  • Trouble with SAT style vector projection in C#/XNA

    - by ssb
    Simply put I'm having a hard time working out how to work with XNA's Vector2 types while maintaining spatial considerations. I'm working with separating axis theorem and trying to project vectors onto an arbitrary axis to check if those projections overlap, but the severe lack of XNA-specific help online combined with pseudo code everywhere that omits key parts of the algorithm, googling has left me little help. I'm aware of HOW to project a vector, but the way that I know of doing it involves the two vectors starting from the same point. Particularly here: http://www.metanetsoftware.com/technique/tutorialA.html So let's say I have a simple rectangle, and I store each of its corners in a list of Vector2s. How would I go about projecting that onto an arbitrary axis? The crux of my problem is that taking the dot product of say, a vector2 of (1, 0) and a vector2 of (50, 50) won't get me the dot product I'm looking for.. or will it? Because that (50, 50) won't be the vector of the polygon's vertex but from whatever XNA calculates. It's getting the calculation from the right starting point that's throwing me off. I'm sorry if this is unclear, but my brain is fried from trying to think about this. I need a better understanding of how XNA calculates Vector2s as actual vectors and not just as random points.

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Kinect Click counter function

    - by Sweta Dwivedi
    So i have the following kinect click function which will check if the hand is within the bounds then it will click with a counter . . however there is a slight problem . .the first few button clicks work fine.. but after it clicks one of the buttons it changes the game state and immediately clicks the other button without the counter reaching 200. . . Kinect click is a method in the button class. . .and each button inside a list can access the Kinect click method. . . public bool KinectClick(int x,int y) { if ((x >= position.X && x <= position.X + position.Width) && (y >= position.Y && y <= position.Y + position.Height)) { counter++; if (counter > 200) { counter = 0; return true; } } else { counter = 0; } return false; } I call to check if this property is true in the Game update method to act as a button click. . foreach(Button g_t in Game_theme) { if ((g_t.KinectClick(x_c, y_c) == true || g_t.ButtonClicked() == true) && g_t.name == "animoe") { Selected_anim = true; currentGameState = GameState.InGame; } if ((g_t.KinectClick(x_c, y_c) == true || g_t.ButtonClicked() == true) && g_t.name == "planet") { Selected_planet = true; currentGameState = GameState.InGame; }

    Read the article

  • Defining the track in a 2D racing game

    - by Ivan
    I am designing a top-down racing game using canvas (html5) which takes a lot of inspiration from Micro Machines. In MM, cars can move off the track, but they are reset/destroyed if they go too far. My maths knowledge isn't great, so I'm finding it hard to separate 3D/complex concepts from those which are directly relevant to my situation. For example, I have seen "splines" mentioned, is this something I should read up on or is that overkill for a 2D game? Could I use a single path which defines the centre of the track and check a car's distance from this line? A second path might be required as a "racing line" for AI. Any advice on methods/techniques/terms to read up on would be greatly appreciated.

    Read the article

  • Question about JPanel "transition" for Java Swing

    - by user16778
    I want to make like a sort of main menu (in GUI). When the user clicks the start button, the screen transition into another "screen" (JPanel). This image will make it easier to understand. http://i.imgur.com/Cfdry.png Currently, I have a MainMenu extends JPanel and that gets added into a driver class with a JFrame. I can't figure how to switch to another class like Game extends JPanel. So when the user clicks the start button in MainMenu, I want it to somehow hide itself and the Game to show itself. Thanks.

    Read the article

  • Interesting 3d zooming technique

    - by stark
    Is it possible to zoom to a certain point on screen by modifying the field of view and rotating the camera as to keep that point/object in the same place on screen while zooming ? Changing the camera position is not allowed.. I projected the 3d pos of the object on screen and remembered it. Then on each frame I calculate the direction to it in camera space and then I construct a rotation matrix to align this direction to Z axis (in cam space). After this, I calculate the direction from the camera to the object in world space and transform this vector with the matrix I obtained earlier and then use this final vector as the camera's new direction. And it's actually "kinda working", the problem is that it is more/less off than the camera's rotation before starting to zoom depending on the area you are trying to zoom in (larger error on edges/corners). It looks acceptable, but I'm not settling for only this. Any suggestions/resources for doing this technique perfectly ? If some of you want to explain the math in detail, be my guests, I can understand these things well. Thanks. Edit: I'll check often for responses, I'm really curious about this :D

    Read the article

  • LWJGL Java 2D collision when lagging

    - by user1990950
    I'm using a tile based collision, but when the game is lagging (the lag isn't the problem) the collision fails and the player falls through tiles. This is the movement/collision detection code of my Player class: gravity.y = gspeed; speed.y+=gravity.y; position.set(position.x + direction.x * speed.x * deltaSeconds, position.y + direction.y * speed.y * deltaSeconds); for (int i = (int) Math.round(position.x / 32) - 2 * t; i < (int) Math.round(position.x / 32) + 3 * t; i++) { for (int j = (int) Math.round(position.y / 32); j < (int) Math.round((position.y + height + 64) / 32); j++) { checkCollision(i, j, deltaSeconds); } } public void checkCollision(int i, int j, float deltaSeconds) { bbox.setBounds((int) position.x, (int) position.y, (int) width, (int) height); Tile t = null; t = Map.getTile(i, j); if (t != null) { if (t.isSolid()) { if (t.getTop().intersects(bbox)) { if (position.y + height < t.y * 32 + 32) { if (speed.y >= 0) { position.y = t.y * 32 - height; speed.y = 0; gravity.y = 0; jumpState = 0; } } } if (t.getBottom().intersects(bbox)) { if (position.y < t.y * 32 + 32) { position.y = t.y * 32 + 32; speed.y = 0; } } else { if (t.getLeft().intersects(bbox)) { if (position.x + width > t.x * 32) { position.x = t.x * 32 - width; speed.x = 0; } } if (t.getRight().intersects(bbox)) { if (position.x < t.x * 32 + 32) { position.x = t.x * 32 + 32; speed.x = 0; } } } } } } Is it possible to fix my code, if yes how? Or is it possible to tell if the game is lagging?

    Read the article

  • XNA: SpriteFont question

    - by Zukki
    Hi everyone, I need some help with the SpriteFont. I want a different font for my game, other than Kootenay. So, I edit the SpriteFont xml, i.e: <FontName>Kootenay</FontName> or <FontName>Arial</FontName> No problem with Windows fonts, or other XNA redistributable fonts pack. However, I want to use other fonts, that I downloaded and installed already, they are TTF or OTF, both supported by XNA. My problem is, I cant use them, I got this error: The font family "all the fonts i tried" could not be found. Please ensure the requested font is installed, and is a TrueType or OpenType font. So, checking at the windows fonts folder, I check the properties and details of the fonts, I try all the names they have, and but never works. Maybe I need some kind of importing or installing in order to use them, I dont know, and I hope you guys can help me, thanks!

    Read the article

  • Central renderer for a given scene

    - by Loggie
    When creating a central rendering system for all game objects in a given scene I am trying to work out the best way to go about passing the scene to the render system to be rendered. If I have a scene managed by an arbitrary structure, i.e., an octree, bsp trees, quad-tree, kd tree, etc. What is the best way to pass this to the render system? The obvious problem is that if simply given the root node of the structure, the render system would require an intrinsic knowledge of the structure in order to traverse the structure. My solution to this is to clip all objects outside the frustum in the scene manager and then create a list of the objects which are left and pass this simple list to the render system, be it an array, a vector, a linked list, etc. (This would be a structure required by the render system as a means to know which objects should be rendered). The list would of course attempt to minimise OpenGL state changes by grouping objects that require the same rendering operations to be performed on them. I have been thinking a lot about this and started searching various terms on here and followed any additional information/links but I have not really found a definitive answer. The case may be that there is no definitive answer but I would appreciate some advice and tips. My question is, is this a reasonable solution to the problem? Are there any improvements that I could make? Are there any caveats I should know about? Side question: Am I right in assuming that octrees, bsp trees, etc are all forms of BVH?

    Read the article

  • Physics from other games

    - by Carlosrdz1
    I'm making a platform engine with XNA Game Studio, and I've solved almost everything about colliding stuff. But now, I'm searching for good physics for the player, I'm trying to emulate characters from other games like Mario from Super Mario World, or MegaMan X... do you know a website or something, where the physics from that games are revealed? I remember seen a page with something like that. Or what's the process you think is the best to emulate physics from other games? Just trial and error? Thank you.

    Read the article

  • What functionality should I use in OpenGL 2.0?

    - by Jeffrey
    Considering OpenGL 2.1, we all know that glBegin and glEnd are the devil. Should I use only VBO to render 3d primitives (I can't find VAO in that version, weren't there already?)? Should I still use the matrix stack (why not?)? Should I still use glFrustum? Can I take advantage of shaders in GLSL 1.20? Where can I find a tutorial for VBO in OpenGL 2.1 and the "correct" way of programming in it? Also how am I supposed to animate something. Like a cube moving around an object or a player moving in the scene (static vbo data + shader?)? Note: Take your time to answer this question, I'll accept an answer tomorrow.

    Read the article

  • Why is my model's scale changing after rotating it?

    - by justnS
    I have just started a simple flight simulator and have implemented Roll and pitch. In the beginning, testing went very well; however, after about 15-20 seconds of constantly moving the thumbsticks in a random or circular motion, my model's scale begins to grow. At first I thought the model was moving closer to the camera, but i set break points when it was happening and can confirm the translation of my orientation matrix remains 0,0,0. Is this a result of Gimbal Lock? Does anyone see an obvious error in my code below? public override void Draw( Matrix view, Matrix projection ) { Matrix[] transforms = new Matrix[Model.Bones.Count]; Model.CopyAbsoluteBoneTransformsTo( transforms ); Matrix translateMatrix = Matrix.Identity * Matrix.CreateFromAxisAngle( _orientation.Right, MathHelper.ToRadians( pitch ) ) * Matrix.CreateFromAxisAngle( _orientation.Down, MathHelper.ToRadians( roll ) ); _orientation *= translateMatrix; foreach ( ModelMesh mesh in Model.Meshes ) { foreach ( BasicEffect effect in mesh.Effects ) { effect.World = _orientation * transforms[mesh.ParentBone.Index]; effect.View = view; effect.Projection = projection; effect.EnableDefaultLighting(); } mesh.Draw(); } } public void Update( GamePadState gpState ) { roll = 5 * gpState.ThumbSticks.Left.X; pitch = 5 * gpState.ThumbSticks.Left.Y; }

    Read the article

  • How does one specify raster operations in XNA?

    - by Corey Ogburn
    I'm looking for a way to add a sprite using a particular logic operation (like XOR). I can't find anything on Google and I'm not sure where to look in the documentation. I've looked into SpriteBatch.Begin(...) and its Draw method and several options in the GraphicsDevice class, but I'm not recognizing anything capable of this. I'm still pretty new to XNA so I may just not have recognized the terminology to do this.

    Read the article

  • How to make Pokémon White 3D effect?

    - by Pipo
    I just wondered how to create a 3D effect similar to Pokemon White/Black? It seems to be not polygon based, but created just with sprites. If the perspective changes the sprites stay sharp and don't get blurred. How can I archive this? Source: https://www.youtube.com/watch?v=fZEPUPYOnRc&feature=youtube_gdata_player Edit: Wow, two downvotes because I used a video instead of screenshots? Don't get me wrong, I thank you, because you want to help me, but the 3D effect can be better understand in motion. Anyway, here is a screenshot: http://wearearcade.com/wp-content/uploads/2011/03/pokemon-black-white-starter-town.jpg So, if this is a hardware limitation, how can I archive this o na different hardware, e.g. a HTML5 game? Thank you.

    Read the article

  • Class Design - Space Simulator

    - by Peteyslatts
    I have pretty much taught myself everything I know about programming, so while I know how to teach myself (books, internet and reading API's), I'm finding that there hasn't been a whole lot in the way of good programming. So I have two questions: First the broad one: Does anyone have suggestions as to sources for learning about good programming habits and techniques? I'd prefer it if the resource wasn't a 5000 page tome. The more I can read it in installments the better. More specifically: I am finishing up learning the basics of XNA and I want to create a space simulator to test my knowledge. This isn't a full scale simulator, but just something that covers everything I learned. It's also going to be modular so I can build on it, after I get the basics down. One of the early features I want to implement is AI. And I want to take this into account as I'm designing my classes so I can minimize rewriting code. So my question: How should I design ship classes so that both the player and AI can use them? The only idea I have so far is: Create a ship class that contains stats, models, textures, collision data etc. The player and AI would then have the data for position, rotation, health, etc and would base their status off of the ship stats.

    Read the article

  • Square game map rendered as sphere

    - by Roflha
    For a hobby project of mine I have created a finite voxel world (similar to Minecraft), but as I said, mine is finite. When you reach the edge of it, you are sent to the other side. That is all working fine along with rendering the far side of the map, but I want to be able to render this grid as a sphere. Looking down from above, the world is a square. I basically want to be able to represent a portion of that square as a sphere, as if you were looking at a planet. Right now I am experimenting with taking a circular section of the map, and rendering that, but it look to flat (no curvature around the edges). My question then, is what would be the best way to add some curvature to the edges of a 2d circle to make it look like a hemisphere. However, I am not overly attached to this implementation so if somebody has some other idea for representing the square as a planet, I am all ears.

    Read the article

  • Map format for 3d open world

    - by Pacha
    I am making an open world 3d platformer in Ogre3D, and I have no idea on what kind of 3d map file format I should use for it. I want to make low-polygon blocky-style objects. Probably rectangles and other geometrical figures that don't have circular edges. Some of those blocks will have properties, like climbable or they might move. I was wondering what would be the best thing to do to make the map (just one level, as it is open).

    Read the article

  • Render 3d object to 2d surface (embedded system)

    - by Martin Berger
    i am working on an embedded system of a sort, and in some free time i would like to test its drawing capabilities. System in question is ARM Cortex M3 microcontroller attached to EasyMX Stellaris board. And i have a small 320x240 TFT screen :) Now, i have some free time each day and i want to create rotating cube. Micro C PRO for ARM doesnt have 3d drawing capabilities, which means it must be done in software. From the book Introduction to 3D Game Programming with DirectX 10 i know matrix algebra for transformations but that is cool when you have DirectX to set camera right. I gues i could make 2d object to rotate, but how would i go with 3d one? Any ideas and examples are welcome. Although i would prefer advices. I'd like to understand this.

    Read the article

  • cocos2d-x simple shader usage [on hold]

    - by Narek
    I want to obtain color ramp effect from this tutorial: http://www.raywenderlich.com/10862/how-to-create-cool-effects-with-custom-shaders-in-opengl-es-2-0-and-cocos2d-2-x Here is my code in cocos2d-x 3: bool HelloWorld::init() { ////////////////////////////// // 1. super init first if ( !Layer::init() ) { return false; } Vec2 origin = Director::getInstance()->getVisibleOrigin(); sprite = Sprite::create("HelloWorld.png"); sprite->setAnchorPoint(Vec2(0, 0)); sprite->setRotation(3); sprite->setPosition(origin); addChild(sprite); std::string str = FileUtils::getInstance()->getStringFromFile("CSEColorRamp.fsh"); const GLchar * fragmentSource = str.c_str(); GLProgram* p = GLProgram::createWithByteArrays(ccPositionTextureA8Color_vert, fragmentSource); p->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_POSITION, GLProgram::VERTEX_ATTRIB_POSITION); p->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_TEX_COORD, GLProgram::VERTEX_ATTRIB_TEX_COORD); p->link(); p->updateUniforms(); sprite->setGLProgram(p); // 3 colorRampUniformLocation = glGetUniformLocation(sprite->getGLProgram()->getProgram(), "u_colorRampTexture"); glUniform1i(colorRampUniformLocation, 1); // 4 colorRampTexture = Director::getInstance()->getTextureCache()->addImage("colorRamp.png"); colorRampTexture->setAliasTexParameters(); // 5 sprite->getGLProgram()->use(); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, colorRampTexture->getName()); glActiveTexture(GL_TEXTURE0); return true; } And here is the fragment shader as it is in the tutorial: #ifdef GL_ES precision mediump float; #endif // 1 varying vec2 v_texCoord; uniform sampler2D u_texture; uniform sampler2D u_colorRampTexture; void main() { // 2 vec3 normalColor = texture2D(u_texture, v_texCoord).rgb; // 3 float rampedR = texture2D(u_colorRampTexture, vec2(normalColor.r, 0)).r; float rampedG = texture2D(u_colorRampTexture, vec2(normalColor.g, 0)).g; float rampedB = texture2D(u_colorRampTexture, vec2(normalColor.b, 0)).b; // 4 gl_FragColor = vec4(rampedR, rampedG, rampedB, 1); } As a result I get a black screen with 2 draw calls. What is wrong? Do I miss something?

    Read the article

  • Jumping a sprite while moving in a Bezier action

    - by marcg11
    I'm creating a game and I need the sprite to jump (move up and down basically) while it's moving on a bezier path so it moves vertically while it still follows the path. If I do this while it's moving along the bezier path: [mySprite runAction:[CCJumpBy actionWithDuration:0.1 position:ccp(0,0) height:10 jumps:1]]; It jumps vertically but instantly it returns to the position on the path. What I want is to jump relative to the path. Anyone knows something about it? It would looks something like this: the curve is a sequence of CCBezierBy's by the way. Thanks.

    Read the article

  • Vector vs Scalar velocity?

    - by Serguei Fedorov
    I am revamping an engine I have been working on and off on for the last few weeks to use a directional vector to dictate direction; this way I can dictate the displacement based on a direction. However, the issue I am trying to overcome is the following problem; the speed towards X and speed towards Y are unrelated to one another. If gravity pulls the object down by an increasing velocity my velocity towards the X should not change. This is very easy to implement if my speed is broken into a Vector datatype, Vector.X dictates one direction Vector.Y dictates the other (assuming we are not concerned about the Z axis). However, this defeats the purpose of the directional vector because: SpeedX = 10 SpeedY = 15 [1, 1] normalized = ~[0.7, 0.7] [0.7, 0.7] * [10, 15] = [7, 10.5] As you can see my direction is now "scaled" to my speed which is no longer the direction that I want to be moving in. I am very new to vector math and this is a learning project for me. I looked around a little bit on the internet but I still want to figure out things on my own (not just look at an example and copy off it). Is there way around this? Using a directional vector is extremely useful but I am a little bit stumped at this problem. I am sorry if my mathematical understanding maybe completely wrong.

    Read the article

< Previous Page | 460 461 462 463 464 465 466 467 468 469 470 471  | Next Page >