Search Results

Search found 20353 results on 815 pages for 'website review'.

Page 466/815 | < Previous Page | 462 463 464 465 466 467 468 469 470 471 472 473  | Next Page >

  • HTML5, PHP, JAVA or asp?

    - by user67418
    I am building a new website for a friend of mine. Its all plain html, and a server side include. The problem is to build static pages for 500 products would not be fun to create, or maintain. So i am forced to at least put dynamic information on these pages based off a spreadsheet, or dynamic pages all together. What i want to do is have a spreadsheet that can be used to keep track of in stock quantity, sku numbers, ecc.. that way i dont have to update hundreds of pages every night. He can just edit the spreadsheet and the pages will automatically adjust. I am a busy man, and i am not asking anyone to just give me the answer. But to save some time what is more worth learning to get this done fastest. HTML5, PHP, JAVA asp, or is there somehthing else better suited?

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • Inspect the referrer in PHP

    - by Ngu Soon Hui
    Is it possible to check who is entering your website in PHP. I have a web application ( written in PHP) that should only allow users entering from some particular websites. Is it possible to get the referral websites by examining the _Request object? If yes, how?

    Read the article

  • Is it possible to download and run IPhone apps on an IPhone emulator

    - by Adrian Grigore
    Hi, I am tasked to provide an IPhone client app for our SaaS website. I have never written an IPhone application, nor do I have an IPhone at the moment. Before I can decide whether or not I want to do this myself or outsource this, I'd like to try a few apps myself to get a feeling for the UI. Is there any IPhone emulator I might use to download and run apps from the App Store? I do have an Intel-based Mac if that helps.

    Read the article

  • Facebook Like-Button - hide count?

    - by piquadrat
    In the setup dialog for the Like-Button, there are only two options for layout: Unfortunately, the numbers for the website of my employer is nowhere near 22'000, so the powers that be have decided that we should not show the number of "likes" until said number is a little more in our favour. As far as I know, I don't have access to the layout of the button through Javascript or CSS (it's in an iframe served by facebook). Are there any other ways to hide the count?

    Read the article

  • WPF TreeView similar to Organizational chart with connecting lines

    - by Priya
    I have modified my treeview to look like an Org chart using the example shown in the Code Project website (Author Josh Smith). I need connecting lines in the treeview to make it look exact to org chart. I found references pointing to the below site http://wpfblog.info/2008/05/26/turning-a-treeview-into-an-org-chart-with-connectors/ But I am not able to view the content. Probably the webpage has been moved. Can anybody help?

    Read the article

  • What is the best .NET web development framework?

    - by tjjjohnson
    I'm looking for a framework to simplify the creation of a website with social networking features and plenty of custom functionality. I'm quite keen to use an ORM like nHibernate or similar for data access. Would DotNetNuke be a good choice? Or are there other options which are better. Added: I'm quite keen not to have to reinvent the wheel for the social network features like secure login, open id, friends etc.

    Read the article

  • System.UriFormatException: Invalid URI: The hostname could not be parsed.

    - by Shane
    All of a sudden I'm getting the following error on my website. It doesnt access a db. just a simple website using .net 2.0. I did recently apply the available windows server 2003 service packs. Could that have changed things? I should add the error randomly comes and goes and has been doing so for today and yesterday. I leave it for 5 minutes and the error is gone. Server Error in '/' Application. Invalid URI: The hostname could not be parsed. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.UriFormatException: Invalid URI: The hostname could not be parsed. Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [UriFormatException: Invalid URI: The hostname could not be parsed.] System.Uri.CreateThis(String uri, Boolean dontEscape, UriKind uriKind) +5367536 System.Uri.CreateUri(Uri baseUri, String relativeUri, Boolean dontEscape) +31 System.Uri..ctor(Uri baseUri, String relativeUri) +34 System.Net.HttpWebRequest.CheckResubmit(Exception& e) +5300867 [WebException: Cannot handle redirect from HTTP/HTTPS protocols to other dissimilar ones.] System.Net.HttpWebRequest.GetResponse() +5314029 System.Xml.XmlDownloadManager.GetNonFileStream(Uri uri, ICredentials credentials) +69 System.Xml.XmlDownloadManager.GetStream(Uri uri, ICredentials credentials) +3929371 System.Xml.XmlUrlResolver.GetEntity(Uri absoluteUri, String role, Type ofObjectToReturn) +54 System.Xml.XmlTextReaderImpl.OpenUrlDelegate(Object xmlResolver) +74 System.Threading.CompressedStack.runTryCode(Object userData) +70 System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) +0 System.Threading.CompressedStack.Run(CompressedStack compressedStack, ContextCallback callback, Object state) +108 System.Xml.XmlTextReaderImpl.OpenUrl() +186 System.Xml.XmlTextReaderImpl.Read() +208 System.Xml.XmlLoader.Load(XmlDocument doc, XmlReader reader, Boolean preserveWhitespace) +112 System.Xml.XmlDocument.Load(XmlReader reader) +108 System.Web.UI.WebControls.XmlDataSource.PopulateXmlDocument(XmlDocument document, CacheDependency& dataCacheDependency, CacheDependency& transformCacheDependency) +303 System.Web.UI.WebControls.XmlDataSource.GetXmlDocument() +153 System.Web.UI.WebControls.XmlDataSourceView.ExecuteSelect(DataSourceSelectArguments arguments) +29 System.Web.UI.WebControls.BaseDataList.GetData() +39 System.Web.UI.WebControls.DataList.CreateControlHierarchy(Boolean useDataSource) +264 System.Web.UI.WebControls.BaseDataList.OnDataBinding(EventArgs e) +55 System.Web.UI.WebControls.BaseDataList.DataBind() +75 System.Web.UI.WebControls.BaseDataList.EnsureDataBound() +55 System.Web.UI.WebControls.BaseDataList.CreateChildControls() +65 System.Web.UI.Control.EnsureChildControls() +97 System.Web.UI.Control.PreRenderRecursiveInternal() +53 System.Web.UI.Control.PreRenderRecursiveInternal() +202 System.Web.UI.Control.PreRenderRecursiveInternal() +202 System.Web.UI.Control.PreRenderRecursiveInternal() +202 System.Web.UI.Control.PreRenderRecursiveInternal() +202 System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) +4588

    Read the article

  • npoi export from datatable

    - by Iulian
    I have an asp.net website that will generate some excel files with 7-8 sheets of data. The best solution so far seems to be NPOI, this can create excel files without installing excel on the server, and has a nice API simillar to the excel interop. However i can't find a way to dump an entire datatable in excel similar to CopyFromRecordset Any tips on how to do that , or a better solution than NPOI ?

    Read the article

  • Let other computer view my localhost over a network...

    - by Smickie
    Hi, I have apache and what not running on my local machine (mac), there also another mac on the local network. How does this other machine access my localhost? For example I have a local website at example.local.net in my vhost. How can another computer on the network navigate to this site? Cheers!

    Read the article

  • msdeploy IIS 6 to 7 migration issue

    - by rboorgapally
    I am trying to view the dependencies of my website on IIS 6.0 running on windows server 2003. When I type the following command, msdeploy -verb:getDependencies -source:metakey=lm/w3svc/1 I got the following error: C:\Program Files\IIS\Microsoft Web Deploy>msdeploy -verb:getDependencies -source :metakey=lm/w3svc/1 Error: Object of type 'metaKey' and path 'lm/w3svc/1' cannot be created Error: The metabase key '/lm/w3svc/1' could not be found. Error: Access is denied. (Exception from HRESULT: 0x80070005 (E_ACCESSDENIED)) Error count: 1 Can any one explain these to me?

    Read the article

  • asp.net mvc2 - controller for master page and code organization

    - by ile
    I've just finished my first ASP.NET MVC (2) CMS. Next step is to build website that will show data from CMS's database. This is website design: #1 (Red box) - displays article categories. ViewModel: public class CategoriesDisplay { public CategoriesDisplay() { } public int CategoryID { set; get; } public string CategoryTitle { set; get; } } #2 (Brown box) - displays last x articles; skips those from green box #3. Viewmodel: public class ArticleDisplay { public ArticleDisplay() { } public int CategoryID { set; get; } public string CategoryTitle { set; get; } public int ArticleID { set; get; } public string ArticleTitle { set; get; } public string URLArticleTitle { set; get; } public DateTime ArticleDate; public string ArticleContent { set; get; } } #3 (green box) - Displays last x articles. Uses the same ViewModel as brown box #2 #4 (blue box) - Displays list of upcoming events. Uses dataContext.Model.Event as ViewModel Boxes #1, #2 and #4 will repeat all over the site and they are part of Master Page. So, my question is: what is the best way to transfer this data from Model to Controller and finally to View pages? Should I make a controller for master page and ViewModel class that will wrap all this classes together OR Should I create partial Views for every of these boxes and make each of them inherit appropriate class (if it is even possible that it works this way?) OR Should I put this repeated code in all controllers and all additional data transfer via ViewData, which would be probably the worse way :) OR There is maybe a better and more simple way but I don't know/see it? Thanks in advance, Ile EDIT: If your answer is #1, then please explain how to make a controller for master page! EDIT 2: In this tutorial is described how to pass data to master page using abstract class: http://www.asp.net/LEARN/mvc/tutorial-13-cs.aspx In "Listing 5 – Controllers\MoviesController.cs", data is retrieved directly from database using LINQ, not from repository. So, I wonder if this is just in this tutorial, or there is some trick here and repository can't/shouldn't be used?

    Read the article

  • How to be a verified publisher ?

    - by Frank
    I wrote an app and I want to sell it online, so I uploaded it to my website and tried to download and run it as a test, but a window appeared, it said : "The publisher could not be verified. Are you sure you want to run this software ?", and it also said : "Publisher : Unknown Publisher". It's actually a self-signed Java jar file wrapped into an exe file, I self-signed it with Netbeans6.7. I wonder what should I do to be a "known" publisher ? Frank

    Read the article

  • Disadvantages of the Force.com platform

    - by lomaxx
    We're currently looking at using the Force.com platform as our development platform and the sales guys and the force.com website are full of reasons why it's the best platform in the world. What I'm looking for tho, is some real disadvantages to using such a platform.

    Read the article

  • Bind DropDownList with Hierarchy from MSSQL Table with ASP.NET C#

    - by Gal V
    Hello all, I have the following sql table which contains menu (website menu) data. Table Name: MenuItems Columns: Id, MenuId, ParentMenuItemId, Text. My goal is to bind a DDL according to the following hierarchy (example): Id: 1, MenuId: 1, ParentMenuItemId: -1, Text: 'One' Id: 2, MenuId: 1, ParentMenuItemId: 1, Text: 'Two' Id: 3, MenuId: 1, ParentMenuItemId: 1, Text: 'Three' Id: 4, MenuId: 1, ParentMenuItemId: 2, Text: 'Four' Id: 5, MenuId: 1, ParentMenuItemId: 4, Text: 'Five' Requested result in DDL: One -- Two ---- Four ------ Five -- Three I think it should contain 'WITH' SQL command. Thanks all!

    Read the article

  • VS 2010 Profiling Problem with Signed Assemblies

    - by Binder
    I have a website that uses AjaxControlToolkit.dll and Log4Net.dll; When I try to run the performance profiling tool in VS 2010 on it it gives me the following warnings "AjaxControlToolkit.dll is signed and instrumenting it will invalidate its signature. If you proceed without a post-instrument event to re-sign the binary it may not load correctly". Now, if I choose the option to continue without re-signing the profiling starts but the assembly doesn't load and gives an ASP.NET exception.

    Read the article

  • How to use HttpContext.Current on asynchronous threads?

    - by Eran Betzalel
    I've a schedule tasks mechanism (very similar to DotNetNuke's) in my business logic library (a DLL that is used by ASP.Net website). When I use HttpContext.Current inside on of these tasks, it returns with a null value, because the current async thread (or task) was not initiated from a user's request. How can I use HttpContext.Current in these asynchronous threads? P.S - I think my question is more best-practices related than technical.

    Read the article

  • Face morph and recognition

    - by startuper
    I have two requirements: members of a social network choose other member's faces and morph an average face of them. The website finds other members' faces that resemble the morphed face and list up in order of resemblance. Is there a script that can do this? I see that http://www.faceresearch.org/demos/average does the item 1 but they don't license their technology. Please help. Thank you in advance.

    Read the article

  • Merge aspnetdb database with another one?

    - by Xaisoft
    I have an aspnetdb and I have created another aspnetdb for another website, but instead of starting from scratch, I would like to import all the data from the one that has users and other data into the new aspnetdb. Is there a way to do this? Are any tools available?

    Read the article

< Previous Page | 462 463 464 465 466 467 468 469 470 471 472 473  | Next Page >