Search Results

Search found 5954 results on 239 pages for 'cpu cores'.

Page 47/239 | < Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >

  • C#: Perform Operations on GPU, not CPU (Calculate Pi)

    - by Alex
    Hello, I've recently read a lot about software (mostly scientific/math and encryption related) that moves part of their calculation onto the GPU which causes a 100-1000 (!) fold increase in speed for supported operations. Is there a library, API or other way to run something on the GPU via C#? I'm thinking of simple Pi calculation. I have a GeForce 8800 GTX if that's relevant at all (would prefer card independent solution though). Any hints are appreciated!

    Read the article

  • Measure CPU performance via JS

    - by Nicholas Kyriakides
    A webapp has as a central component a relatively heavy algorithm that handles geometric operations. There are 2 solutions to make the whole thing accessible from both high-end machines and relatively slower mobile devices. I will use RPC's if i detect that the user machine is ''slow'' or else if i detect that the user machine can handle it OK, then i provide to the webapp the script to handle it client side. Now what would be a reliable way to detect the speed of the user machine? I was thinking of providing a sample script as a test when the page loads and detect the time it took to execute that. Any ideas?

    Read the article

  • Distributing cpu-bound compression jobs to multiple computers?

    - by barnaby
    The other day I needed to archive a lot of data on our network and I was frustrated I had no immediate way to harness the power of multiple machines to speed-up the process. I understand that creating a distributed job management system is a leap from a command-line archiving tool. I'm now wondering what the simplest solution to this type of distributed performance scenario could be. Would a custom tool always be a requirement or are there ways to use standard utilities and somehow distribute their load transparently at a higher level? Thanks for any suggestions.

    Read the article

  • CPU emulator on C for assembler

    - by krlzx00
    Hi, there. I have a problem. I´m working on a little aplication of security, but i recived an array that means a bytes, and that bytes can be interpreted as a assembler code, so my cuestion is.... some one knows a library that a i can use on my aplication that can execute this bytes and show what it do, or something like that?

    Read the article

  • Getting the alternative to the 200-Line Linux Kernel patch to work

    - by Gödel
    Apparently, there is a comparable alternative to the 200-line kernel patch that involves no kernel upgrade. It is presented here and discussed here. However, I am not sure if webupd8's solution (under the section "Use it in Ubuntu") on Ubuntu actually works or not. In particular, one commenter on ./ is saying he's getting an error message. Could anyone post the "correct" method that actually works? Suggested solution: Based on the comments I've read so far, the following seems to work. (1) In /etc/rc.local, add the following lines to above exit 0: mkdir -p /dev/cgroup/cpu mount -t cgroup cgroup /dev/cgroup/cpu -o cpu mkdir -m 0777 /dev/cgroup/cpu/user echo "/usr/local/sbin/cgroup_clean" > /dev/cgroup/cpu/release_agent (2) Create a file named /usr/local/sbin/cgroup_clean with the following content: #!/bin/sh rmdir /dev/cgroup/cpu/$1 (3) In your ~/.bashrc, add: if [ "$PS1" ] ; then mkdir -m 0700 /dev/cgroup/cpu/user/$$ echo $$ > /dev/cgroup/cpu/user/$$/tasks echo "1" > /dev/cgroup/cpu/user/$$/notify_on_release fi (4) (To make sure the execution bit is on) execute sudo chmod +x /usr/local/sbin/cgroup_clean /etc/rc.local (5) Reboot.

    Read the article

  • Running 64 bit Ubuntu distribution from 32 bit Ubuntu

    - by csg
    Related to this question How do I run qemu with 64bit processor on a 64bit machine?, I'm trying to run latest ubuntu 11.10 64bit distribution under Ubuntu 11.04 32 bit using qemu on a core2duo (64 bit cpu) machine, using following qemu parameters with no success. Error under qemu: "This kernel required an x86-64 CPU, but only detected an i686 CPU. Unable to boot - please use a kernel appropiate for your CPU" Isn't qemu suppose to emulate a 64 bit machine? I think I'm missing something, but I can't figure it out. qemu -cpu (kvm64|core2duo|qemu64) -boot d -cdrom ubuntu-11.10-desktop-amd64.iso qemu-system-x86_64 -boot d -cdrom ubuntu-11.10-desktop-amd64.iso Here is my uname -m i686 Here is my /proc/cpuinfo processor : 1 vendor_id : GenuineIntel cpu family : 6 model : 23 model name : Intel(R) Core(TM)2 Duo CPU P8400 @ 2.26GHz stepping : 6 cpu MHz : 800.000 cache size : 3072 KB physical id : 0 siblings : 2 core id : 1 cpu cores : 2 apicid : 1 initial apicid : 1 fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu : yes fpu_exception : yes cpuid level : 10 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx lm constant_tsc arch_perfmon pebs bts aperfmperf pni dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 lahf_lm dts tpr_shadow vnmi flexpriority bogomips : 4522.45 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management:

    Read the article

  • Cache consistency & spawning a thread

    - by Dave Keck
    Background I've been reading through various books and articles to learn about processor caches, cache consistency, and memory barriers in the context of concurrent execution. So far though, I have been unable to determine whether a common coding practice of mine is safe in the strictest sense. Assumptions The following pseudo-code is executed on a two-processor machine: int sharedVar = 0; myThread() { print(sharedVar); } main() { sharedVar = 1; spawnThread(myThread); sleep(-1); } main() executes on processor 1 (P1), while myThread() executes on P2. Initially, sharedVar exists in the caches of both P1 and P2 with the initial value of 0 (due to some "warm-up code" that isn't shown above.) Question Strictly speaking – preferably without assuming any particular CPU – is myThread() guaranteed to print 1? With my newfound knowledge of processor caches, it seems entirely possible that at the time of the print() statement, P2 may not have received the invalidation request for sharedVar caused by P1's assignment in main(). Therefore, it seems possible that myThread() could print 0. References These are the related articles and books I've been reading. (It wouldn't allow me to format these as links because I'm a new user - sorry.) Shared Memory Consistency Models: A Tutorial hpl.hp.com/techreports/Compaq-DEC/WRL-95-7.pdf Memory Barriers: a Hardware View for Software Hackers rdrop.com/users/paulmck/scalability/paper/whymb.2009.04.05a.pdf Linux Kernel Memory Barriers kernel.org/doc/Documentation/memory-barriers.txt Computer Architecture: A Quantitative Approach amazon.com/Computer-Architecture-Quantitative-Approach-4th/dp/0123704901/ref=dp_ob_title_bk

    Read the article

  • Why this code generates different numbers?

    - by frbry
    Hello, I have this function that creates a unique number for hard-disk and CPU combination. DWORD hw_hash() { char drv[4]; char szNameBuffer[256]; DWORD dwHddUnique; DWORD dwProcessorUnique; DWORD dwUniqueKey; char *sysDrive = getenv ("SystemDrive"); strcpy(drv, sysDrive); drv[2] = '\\'; drv[3] = 0; GetVolumeInformation(drv, szNameBuffer, 256, &dwHddUnique, NULL, NULL, NULL, NULL); SYSTEM_INFO si; GetSystemInfo(&si); dwProcessorUnique = si.dwProcessorType + si.wProcessorArchitecture + si.wProcessorRevision; dwUniqueKey = dwProcessorUnique + dwHddUnique; return dwUniqueKey; } It returns different numbers if I format my hard-disk and install a new Windows. Any ideas, why? Thank you. Edit: OK, Got it: This function returns the volume serial number that the operating system assigns when a hard disk is formatted. To programmatically obtain the hard disk's serial number that the manufacturer assigns, use the Windows Management Instrumentation (WMI) Win32_PhysicalMedia property SerialNumber. I should do more research before posting my problems online. Sorry to bother you, let's keep this here in case anybody else can need it.

    Read the article

  • Why is this JLabel continuously repainting?

    - by Morinar
    I've got an item that appears to continuously repaint when it exists, causing the CPU to spike whenever it is in any of my windows. It directly inherits from a JLabel, and unlike the other JLabels on the screen, it has a red background and a border. I have NO idea why it would be different enough to continuously repaint. The callstack looks like this: Thread [AWT-EventQueue-1] (Suspended (breakpoint at line 260 in sItem)) sItem.paint(Graphics) line: 260 sItem(JComponent).paintToOffscreen(Graphics, int, int, int, int, int, int) line: 5124 RepaintManager$PaintManager.paintDoubleBuffered(JComponent, Image, Graphics, int, int, int, int) line: 1475 RepaintManager$PaintManager.paint(JComponent, JComponent, Graphics, int, int, int, int) line: 1406 RepaintManager.paint(JComponent, JComponent, Graphics, int, int, int, int) line: 1220 sItem(JComponent)._paintImmediately(int, int, int, int) line: 5072 sItem(JComponent).paintImmediately(int, int, int, int) line: 4882 RepaintManager.paintDirtyRegions(Map<Component,Rectangle>) line: 803 RepaintManager.paintDirtyRegions() line: 714 RepaintManager.seqPaintDirtyRegions() line: 694 [local variables unavailable] SystemEventQueueUtilities$ComponentWorkRequest.run() line: 128 InvocationEvent.dispatch() line: 209 summitEventQueue(EventQueue).dispatchEvent(AWTEvent) line: 597 summitEventQueue(SummitHackableEventQueue).dispatchEvent(AWTEvent) line: 26 summitEventQueue.dispatchEvent(AWTEvent) line: 62 EventDispatchThread.pumpOneEventForFilters(int) line: 269 EventDispatchThread.pumpEventsForFilter(int, Conditional, EventFilter) line: 184 EventDispatchThread.pumpEventsForHierarchy(int, Conditional, Component) line: 174 EventDispatchThread.pumpEvents(int, Conditional) line: 169 EventDispatchThread.pumpEvents(Conditional) line: 161 EventDispatchThread.run() line: 122 [local variables unavailable] It basically just continually hits that over and over again as fast as I can press continue. The code that is "unique" to this particular label looks approximately like this: bgColor = OurColors.clrWindowTextAlert; textColor = Color.white; setBackground(bgColor); setOpaque(true); setSize(150, getHeight()); Border border_warning = BorderFactory.createCompoundBorder( BorderFactory.createMatteBorder(1, 1, 1, 1, OurColors.clrXBoxBorder), Global.border_left_margin); setBorder(border_warning); It obviously does more, but that particular block only exists for these labels that are causing the spike/continuous repaint. Any ideas why it would keep repainting this particular label?

    Read the article

  • How to copy depth buffer to CPU memory in DirectX?

    - by Ashwin
    I have code in OpenGL that uses glReadPixels to copy the depth buffer to a CPU memory buffer: glReadPixels(0, 0, w, h, GL_DEPTH_COMPONENT, GL_FLOAT, dbuf); How do I achieve the same in DirectX? I have looked at a similar question which gives the solution to copy the RGB buffer. I've tried to write similar code to copy the depth buffer: IDirect3DSurface9* d3dSurface; d3dDevice->GetDepthStencilSurface(&d3dSurface); D3DSURFACE_DESC d3dSurfaceDesc; d3dSurface->GetDesc(&d3dSurfaceDesc); IDirect3DSurface9* d3dOffSurface; d3dDevice->CreateOffscreenPlainSurface( d3dSurfaceDesc.Width, d3dSurfaceDesc.Height, D3DFMT_D32F_LOCKABLE, D3DPOOL_SCRATCH, &d3dOffSurface, NULL); // FAILS: D3DERR_INVALIDCALL D3DXLoadSurfaceFromSurface( d3dOffSurface, NULL, NULL, d3dSurface, NULL, NULL, D3DX_FILTER_NONE, 0); // Copy from offscreen surface to CPU memory ... The code fails on the call to D3DXLoadSurfaceFromSurface. It returns the error value D3DERR_INVALIDCALL. What is wrong with my code?

    Read the article

  • update-apt-xapian-index uses 100% CPU, even when Update Manager is set to not check for updates

    - by Dave M G
    I have a slightly older laptop running Ubuntu 11.10. It runs fine, but frequently, when I start it up, the CPU monitor in my Gnome Panel shows 100% usage for for what can be up to five minutes or so. It seems that the offending process is update-apt-xapian-index, which, if I understand correctly, is the update manager checking for updates. I have gone into the update manager settings, and selected to never check for updates. I'll do that manually when I feel like I have the time to leave the laptop running for that. However, despite my selection, this still happens. Roughly 50% of the time or more, when I start my laptop, it runs update-apt-xapian-index. How can I get the update manager to respect my settings, or at least to get this process to stop eating my CPU cycles?

    Read the article

  • OpenACC : le standard de programmation parallèle par NVIDIA, accélérer les applications hybrides CPU/GPU avec les directives

    OpenACC : le nouveau standard de développement parallèle par NVIDIA Accélérer plus facilement les applications hybrides combinant CPU/GPU avec les directives En compagnie de Cray, PGI et avec le soutien de Caps ; NVidia a développé un nouveau standard ouvert pour la programmation parallèle. OpenACC est conçu pour permettre aux programmeurs d'exploiter facilement la puissance transformatrice de l'hétérogénéité des systèmes informatiques hybrides CPU/GPU (processeur graphique). Il trouve son indication auprès des programmeurs travaillant dans l'analyse de donnée, l'intelligence artificielle et la physique entre autres domaines scientifiques et techniques. [IMG]http://...

    Read the article

  • update-apt-xapian-index hogs CPU, even when Update Manager is set to not check for updates

    - by Dave M G
    I have a slightly older laptop running Ubuntu 11.10. It runs fine, but frequently, when I start it up, the CPU monitor in my Gnome Panel shows 100% usage for for what can be up to five minutes or so. It seems that the offending process is update-apt-xapian-index, which, if I understand correctly, is the update manager checking for updates. I have gone into the update manager settings, and selected to never check for updates. I'll do that manually when I feel like I have the time to leave the laptop running for that. However, despite my selection, this still happens. Roughly 50% of the time or more, when I start my laptop, it runs update-apt-xapian-index. How can I get the update manager to respect my settings, or at least to get this process to stop eating my CPU cycles?

    Read the article

  • Linux 3.10 améliore la mise en cache pour les SSD et offre de meilleures performances pour le CPU et le GPU, la version stable disponible

    Linux 3.10 améliore la mise en cache pour les SSD et offre de meilleures performances pour le CPU et le GPU, la version stable disponibleComme il est de coutume, Linus Torvalds a annoncé la publication de la version stable du noyau Linux 3.10.Cette nouvelle mouture, qui sort pratiquement deux mois après son prédécesseur, se distingue essentiellement par une meilleure prise en charge des disques SSD, le support de Radeon et des améliorations pour le CPU et GPU.Développée pendant plus d'un an, la technologie de mise en cache SSD « block layer cache » (Bcache) a été intégrée à Linux 3.10. Cette fonctionnalité peut être utilisée pour configurer un disque comme mémoire cache pour un autre disque pl...

    Read the article

  • "This CPU is not compatible with 64-bit mode." - Installing Windows 7 Ultimate 64-bit on a netbook with a 64-bit Intel Atom CPU

    - by galacticninja
    I tried installing Windows 7 Ultimate SP 1, 64-bit on a netbook (Lenovo IdeaPad S110), which has the Intel Atom N2800 (1.86 GHz) as its processor, but I get the following error message when the Windows 7 installation DVD is loading: It says "Attempting to load a 64-bit application, however this CPU is not compatible with 64-bit mode". The Intel Atom N2800 is a 64-bit CPU according to its webpage. I am wondering why the Windows 7 installer shows this error message, despite this. Is there something I must configure first before installing Windows 7, 64-bit? Or is the netbook not compatible with a 64-bit OS? I am trying to format the netbook and install Windows 7 Ultimate 64-bit, instead. Other details: The netbook has 2 GB RAM. The netbook initially had Windows 7 Starter (32-bit) installed.

    Read the article

  • Raphaeljs animation kills my browser

    - by user1688606
    I have this code where I have a made a character using 20 paths and put it into a set. Now when I animate the set, the first transformation runs smoothly, the second animation stutters, the third animation doesn't happen as it should and the 4th animation kills my pc, the browser hangs and in the task manager I can see that it consumes up to 70% of CPU. How can I avoid this and free the resources so all the animations run smoothly. *I have to execute 10 simple y-axis transformation animations on that character. JS Fiddle window.onload = function(){ var paper = Raphael(0,0,400,400); var character = paper.set(); paper.setStart(); var attr = {fill:'red',stroke:'none'}; var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var shape = paper.rect(100,100,10,20).attr(attr); var character = paper.setFinish(); character.transform("t0,200") //1st animation.. var chartrnsfrm = Raphael.animation({ transform:'...t0,-48' },1000,"easeout",function(){ character.animate(chartrnsfrm1.delay(2000)) }); character.animate(chartrnsfrm.delay(2000)); //2nd animation.. var chartrnsfrm1 = Raphael.animation({ transform:'...t0,-48' },1000,"easeout",function(){ character.animate(chartrnsfrm2.delay(2000)) }); //3rd animation.. var chartrnsfrm2 = Raphael.animation({ transform:'...t0,-48' },1000,"easeout",function(){ character.animate(chartrnsfrm3.delay(2000)) }); //4th animation.. var chartrnsfrm3 = Raphael.animation({ transform:'...t0,-48' },1000,"easeout"); }

    Read the article

  • Java Compiler Creation Help..Please

    - by Brian
    I need some help with my code here...What we are trying to do is make a compiler that will read a file containing Machine Code and converting it to 100 lines of 4 bits example: this code is the machine code being converting to opcode and operands. I need some help please.. thanks 799 798 198 499 1008 1108 899 909 898 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Everything compiles but when I go and run my Test.java I get the following OutPut: Exception in thread "main" java.util.NoSuchElementException: No line found at java.util.Scanner.nextLine(Scanner.java:1516) at Compiler.FirstPass(Compiler.java:22) at Compiler.compile(Compiler.java:11) at Test.main(Test.java:5) Here is my class Compiler: import java.io.*; import java.io.DataOutputStream; import java.util.NoSuchElementException; import java.util.Scanner; class Compiler{ private int lc = 0; private int dc = 99; public void compile(String filename) { SymbolList symbolTable = FirstPass(filename); SecondPass(symbolTable, filename); } public SymbolList FirstPass(String filename) { File file = new File(filename); SymbolList temp = new SymbolList(); int dc = 99; int lc = 0; try{ Scanner scan = new Scanner(file); String line = scan.nextLine(); String[] linearray = line.split(" "); while(line!=null){ if(!linearray[0].equals("REM")){ if(!this.isInstruction(linearray[0])){ linearray[0]=removeColon(linearray[0]); if(this.isInstruction(linearray[1])){ temp.add(new Symbol(linearray[0], lc, null)); lc++; } else { temp.add(new Symbol(linearray[0], dc, Integer.valueOf((linearr\ ay[2])))); dc--; } } else { if(!linearray[0].equals("REM")) lc++; } } try{ line = scan.nextLine(); } catch(NoSuchElementException e){ line=null; break; } linearray = line.split(" "); } } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } return temp; } public String makeFilename(String filename) { return filename + ".ex"; } public String removeColon(String str) { if(str.charAt(str.length()-1) == ':'){ return str.substring(0, str.length()-1); } else { return str; } } public void SecondPass(SymbolList symbolTable, String filename){ try { int dc = 99; //Open file for reading File file = new File(filename); Scanner scan = new Scanner(file); //Make filename of new executable file String newfile = makeFilename(filename); //Open Output Stream for writing new file. FileOutputStream os = new FileOutputStream(filename); DataOutputStream dos = new DataOutputStream(os); //Read First line. Split line by Spaces into linearray. String line = scan.nextLine(); String[] linearray = line.split(" "); while(scan.hasNextLine()){ if(!linearray[0].equals("REM")){ int inst=0, opcode, loc; if(isInstruction(linearray[0])){ opcode = getOpcode(linearray[0]); loc = symbolTable.searchName(linearray[1]).getMemloc(); inst = (opcode*100)+loc; } else if(!isInstruction(linearray[0])){ if(isInstruction(linearray[1])){ opcode = getOpcode(linearray[1]); if(linearray[1].equals("STOP")) inst=0000; else { loc = symbolTable.searchName(linearray[2]).getMemloc(); inst = (opcode*100)+loc; } } if(linearray[1].equals("DC")) dc--; } System.out.println(inst); dos.writeInt(inst); linearray = line.split(" "); } if(scan.hasNextLine()) { line = scan.nextLine(); } } scan.close(); for(int i = lc; i <= dc; i++) { dos.writeInt(0); } for(int i = dc+1; i<100; i++){ dos.writeInt(symbolTable.searchLocation(i).getValue()); if(i!=99) dos.writeInt(0); } dos.close(); os.close(); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } } public int getOpcode(String inst){ int toreturn = -1; if(isInstruction(inst)){ if(inst.equals("STOP")) toreturn=0; if(inst.equals("LD")) toreturn=1; if(inst.equals("STO")) toreturn=2; if(inst.equals("ADD")) toreturn=3; if(inst.equals("SUB")) toreturn=4; if(inst.equals("MPY")) toreturn=5; if(inst.equals("DIV")) toreturn=6; if(inst.equals("IN")) toreturn=7; if(inst.equals("OUT")) toreturn=8; if(inst.equals("B")) toreturn=9; if(inst.equals("BGTR")) toreturn=10; if(inst.equals("BZ")) toreturn=11; return toreturn; } else { return -1; } } public boolean isInstruction(String totest){ boolean toreturn = false; String[] labels = {"IN", "LD", "SUB", "BGTR", "BZ", "OUT", "B", "STO", "STOP", "AD\ D", "MTY", "DIV"}; for(int i = 0; i < 12; i++){ if(totest.equals(labels[i])) toreturn = true; } return toreturn; } } And here is my class Computer: import java.io.*; import java.util.NoSuchElementException; import java.util.Scanner; class Computer{ private Cpu cpu; private Input in; private OutPut out; private Memory mem; public Computer() throws IOException { Memory mem = new Memory(100); Input in = new Input(); OutPut out = new OutPut(); Cpu cpu = new Cpu(); System.out.println(in.getInt()); } public void run() throws IOException { cpu.reset(); cpu.setMDR(mem.read(cpu.getMAR())); cpu.fetch2(); while (!cpu.stop()) { cpu.decode(); if (cpu.OutFlag()) OutPut.display(mem.read(cpu.getMAR())); if (cpu.InFlag()) mem.write(cpu.getMDR(),in.getInt()); if (cpu.StoreFlag()) { mem.write(cpu.getMAR(),in.getInt()); cpu.getMDR(); } else { cpu.setMDR(mem.read(cpu.getMAR())); cpu.execute(); cpu.fetch(); cpu.setMDR(mem.read(cpu.getMAR())); cpu.fetch2(); } } } public void load() { mem.loadMemory(); } } Here is my Memory class: import java.io.*; import java.util.NoSuchElementException; import java.util.Scanner; class Memory{ private MemEl[] memArray; private int size; private int[] mem; public Memory(int s) {size = s; memArray = new MemEl[s]; for(int i = 0; i < s; i++) memArray[i] = new MemEl(); } public void write (int loc,int val) {if (loc >=0 && loc < size) memArray[loc].write(val); else System.out.println("Index Not in Domain"); } public int read (int loc) {return memArray[loc].read(); } public void dump() { for(int i = 0; i < size; i++) if(i%1 == 0) System.out.println(memArray[i].read()); else System.out.print(memArray[i].read()); } public void writeTo(int location, int value) { mem[location] = value; } public int readFrom(int location) { return mem[location]; } public int size() { return mem.length; } public void loadMemory() { this.write(0, 799); this.write(1, 798); this.write(2, 198); this.write(3, 499); this.write(4, 1008); this.write(5, 1108); this.write(6, 899); this.write(7, 909); this.write(8, 898); this.write(9, 0000); } public void loadFromFile(String filename){ try { FileReader fr = new FileReader(filename); BufferedReader br = new BufferedReader(fr); String read=null; int towrite=0; int l=0; do{ try{ read=br.readLine(); towrite = Integer.parseInt(read); }catch(Exception e){ } this.write(l, towrite); l++; }while(l<100); }catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } } } Here is my Test class: public class Test{ public static void main(String[] args) throws java.io.IOException { Compiler compiler = new Compiler(); compiler.compile("program.txt"); } }

    Read the article

  • How do I make use of multiple cores in Large SQL Server Queries?

    - by Jonathan Beerhalter
    I have two SQL Servers, one for production, and one as an archive. Every night, we've got a SQL job that runs and copies the days production data over to the archive. As we've grown, this process takes longer and longer and longer. When I watch the utilization on the archive server running the archival process, I see that it only ever makes use of a single core. And since this box has eight cores, this is a huge waste of resources. The job runs at 3AM, so it's free to take any and all resources it can find. So what I need to do if figure out how to structure SQL Server jobs so they can take advantage of multiple cores, but I can't find any literature on tackling this problem. We're running SQL Server 2005, but I could certainly push for an upgrade if 2008 takes of this problem.

    Read the article

  • Unlocking AMD Phenom II X2 550 Black Edition cores - what are the risks?

    - by Vilx-
    I've got the above mentioned CPU and a GigaByte GA-MA790XT-UD4P motherboard, which should be capable of unlocking the extra two cores - if I'm lucky and they're not faulty. The Internet is full of instructions on how to do that. What I don't have is spare money to buy new hardware if I brick something. What are the risks when attempting to do this? Is it completely safe, or can I be left with an expensive pile of junk? What should I keep in mind when doing so? Bigger cooler maybe (I'm running with the default box cooler)? Should I lower the frequencies too? I've never done any OC before.

    Read the article

  • Why are my Opteron cores running at only 75% capacity each? (25% CPU idle)

    - by Tim Cooper
    We've just taken delivery of a powerful 32-core AMD Opteron server with 128Gb. We have 2 x 6272 CPU's with 16 cores each. We are running a big long-running java task on 30 threads. We have the NUMA optimisations for Linux and java turned on. Our Java threads are mainly using objects that are private to that thread, sometimes reading memory that other threads will be reading, and very very occasionally writing or locking shared objects. We can't explain why the CPU cores are 25% idle. Below is a dump of "top": top - 23:06:38 up 1 day, 23 min, 3 users, load average: 10.84, 10.27, 9.62 Tasks: 676 total, 1 running, 675 sleeping, 0 stopped, 0 zombie Cpu(s): 64.5%us, 1.3%sy, 0.0%ni, 32.9%id, 1.3%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 132138168k total, 131652664k used, 485504k free, 92340k buffers Swap: 5701624k total, 230252k used, 5471372k free, 13444344k cached ... top - 22:37:39 up 23:54, 3 users, load average: 7.83, 8.70, 9.27 Tasks: 678 total, 1 running, 677 sleeping, 0 stopped, 0 zombie Cpu0 : 75.8%us, 2.0%sy, 0.0%ni, 22.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu1 : 77.2%us, 1.3%sy, 0.0%ni, 21.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu2 : 77.3%us, 1.0%sy, 0.0%ni, 21.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu3 : 77.8%us, 1.0%sy, 0.0%ni, 21.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu4 : 76.9%us, 2.0%sy, 0.0%ni, 21.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu5 : 76.3%us, 2.0%sy, 0.0%ni, 21.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu6 : 12.6%us, 3.0%sy, 0.0%ni, 84.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu7 : 8.6%us, 2.0%sy, 0.0%ni, 89.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu8 : 77.0%us, 2.0%sy, 0.0%ni, 21.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu9 : 77.0%us, 2.0%sy, 0.0%ni, 21.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu10 : 77.6%us, 1.7%sy, 0.0%ni, 20.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu11 : 75.7%us, 2.0%sy, 0.0%ni, 21.4%id, 1.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu12 : 76.6%us, 2.3%sy, 0.0%ni, 21.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu13 : 76.6%us, 2.3%sy, 0.0%ni, 21.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu14 : 76.2%us, 2.6%sy, 0.0%ni, 15.9%id, 5.3%wa, 0.0%hi, 0.0%si, 0.0%st Cpu15 : 76.6%us, 2.0%sy, 0.0%ni, 21.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu16 : 73.6%us, 2.6%sy, 0.0%ni, 23.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu17 : 74.5%us, 2.3%sy, 0.0%ni, 23.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu18 : 73.9%us, 2.3%sy, 0.0%ni, 23.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu19 : 72.9%us, 2.6%sy, 0.0%ni, 24.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu20 : 72.8%us, 2.6%sy, 0.0%ni, 24.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu21 : 72.7%us, 2.3%sy, 0.0%ni, 25.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu22 : 72.5%us, 2.6%sy, 0.0%ni, 24.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu23 : 73.0%us, 2.3%sy, 0.0%ni, 24.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu24 : 74.7%us, 2.7%sy, 0.0%ni, 22.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu25 : 74.5%us, 2.6%sy, 0.0%ni, 22.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu26 : 73.7%us, 2.0%sy, 0.0%ni, 24.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu27 : 74.1%us, 2.3%sy, 0.0%ni, 23.6%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu28 : 74.1%us, 2.3%sy, 0.0%ni, 23.6%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu29 : 74.0%us, 2.0%sy, 0.0%ni, 24.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu30 : 73.2%us, 2.3%sy, 0.0%ni, 24.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu31 : 73.1%us, 2.0%sy, 0.0%ni, 24.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 132138168k total, 131711704k used, 426464k free, 88336k buffers Swap: 5701624k total, 229572k used, 5472052k free, 13745596k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 13865 root 20 0 122g 112g 3.1g S 2334.3 89.6 20726:49 java 27139 jayen 20 0 15428 1728 952 S 2.6 0.0 0:04.21 top 27161 sysadmin 20 0 15428 1712 940 R 1.0 0.0 0:00.28 top 33 root 20 0 0 0 0 S 0.3 0.0 0:06.24 ksoftirqd/7 131 root 20 0 0 0 0 S 0.3 0.0 0:09.52 events/0 1858 root 20 0 0 0 0 S 0.3 0.0 1:35.14 kondemand/0 A dump of the java stack confirms that none of the threads are anywhere near the few places where locks are used, nor are they anywhere near any disk or network i/o. I had trouble finding a clear explanation of what 'top' means by "idle" versus "wait", but I get the impression that "idle" means "no more threads that need to be run" but this doesn't make sense in our case. We're using a "Executors.newFixedThreadPool(30)". There are a large number of tasks pending and each task lasts for 10 seconds or so. I suspect that the explanation requires a good understanding of NUMA. Is the "idle" state what you see when a CPU is waiting for a non-local access? If not, then what is the explanation?

    Read the article

  • How to make Linux reliably boot on multi-cpu machines?

    - by Adam Tabi
    I've got two machines, one with 4x12 AMD Opteron cores (AMD Opteron(tm) Processor 6176), one with 2x8 Xeon cores (HT disabled; Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz). On both machines I experience difficulties during boot of Linux using recent kernels. The system hangs during the initialization of the kernel, before or just when initramfs started initializing the hardware. The last thing which got displayed was a stacktrace like this: CPU: 31 PID: 0 Comm: swapper/31 Tainted: G D 3.11.6-hardened #11 Hardware name: Supermicro X9DRT-HF+/X9DRT-HF+, BIOS 3.00 07/08/2013 task: ffff880854695500 ti: ffff880854695a28 task.ti: ffff880854695a28 RIP: 0010:[<ffffffff8100a82e>] [<ffffffff8100a82e>] default_idle+0x6/0xe RSP: 0000:ffff8808546b3ec8 EFLAGS: 00000286 RAX: ffffffff8100a828 RBX: ffff880854695a28 RCX: 00000000ffffffff RDX: 0100000000000000 RSI: 0000000000000000 RDI: ffff88107fdec690 RBP: ffff8808546b3ec8 R08: 0000000000000000 R09: ffff880854695500 R10: ffff880854695500 R11: 0000000000000001 R12: ffff880854695a28 R13: ffff880854695a28 R14: ffff880854695a28 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88107fde0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000002b43256a960 CR3: 00000000016b5000 CR4: 00000000000607f0 Stack: ffff8808546b3ed8 ffffffff8100aec9 ffff8808546b3f10 ffffffff8109ce25 334ab55852ec7aef 000000000000001f ffffffff8102d6c0 0000000000000000 0000000000000000 ffff8808546b3f48 ffffffff810276e0 ffff8808546b3f28 Call Trace: [<ffffffff8100aec9>] arch_cpu_idle+0x20/0x2b [<ffffffff8109ce25>] cpu_startup_entry+0xed/0x138 [<ffffffff8102d6c0>] ? flat_init_apic_ldr+0x80/0x80 [<ffffffff810276e0>] start_secondary+0x2c9/0x2f8 I compiled the kernel myself and it works fine, if I boot with nolapic. Yet, only one core is used. Also, the kernel of RHEL6 seems to work fine. I suspect that there are some patches used to make things work. Using the kernel config file from RHEL6 and building a more recent kernel yields the same problems. On the Xeon machine, things got better by disabling Hyperthreading completely. The machine now boots successfully on at least 4 out of 5 times. And if it boots, multicore stuff works just fine. However, I'm wondering about what to do about the AMD machine. So to sum it up: Gentoo kernel 3.6 - 3.11 won't reliably boot those machines unless you reduce the amount of cores (e.g. via nolapic). RHEL6 kernel (which is 2.6.32) boots just fine. RH kernel config used to build a 3.x kernel won't yield a working kernel. Not distribution specific (apart from the kernel being used). These stack traces got printed every minute or so. The kernel seems to be stuck in an endless loop. Yet, a recent kernel is needed for various reasons. So the question is: What does the RHEL6 kernel do, what vanilla or gentoo kernels don't do? Is there a boot option that might lead to a reliable boot with all the cores enabled? Best, Adam

    Read the article

  • Das T5-4 TPC-H Ergebnis naeher betrachtet

    - by Stefan Hinker
    Inzwischen haben vermutlich viele das neue TPC-H Ergebnis der SPARC T5-4 gesehen, das am 7. Juni bei der TPC eingereicht wurde.  Die wesentlichen Punkte dieses Benchmarks wurden wie gewohnt bereits von unserer Benchmark-Truppe auf  "BestPerf" zusammengefasst.  Es gibt aber noch einiges mehr, das eine naehere Betrachtung lohnt. Skalierbarkeit Das TPC raet von einem Vergleich von TPC-H Ergebnissen in unterschiedlichen Groessenklassen ab.  Aber auch innerhalb der 3000GB-Klasse ist es interessant: SPARC T4-4 mit 4 CPUs (32 Cores mit 3.0 GHz) liefert 205,792 QphH. SPARC T5-4 mit 4 CPUs (64 Cores mit 3.6 GHz) liefert 409,721 QphH. Das heisst, es fehlen lediglich 1863 QphH oder 0.45% zu 100% Skalierbarkeit, wenn man davon ausgeht, dass die doppelte Anzahl Kerne das doppelte Ergebnis liefern sollte.  Etwas anspruchsvoller, koennte man natuerlich auch einen Faktor von 2.4 erwarten, wenn man die hoehere Taktrate mit beruecksichtigt.  Das wuerde die Latte auf 493901 QphH legen.  Dann waere die SPARC T5-4 bei 83%.  Damit stellt sich die Frage: Was hat hier nicht skaliert?  Vermutlich der Plattenspeicher!  Auch hier lohnt sich eine naehere Betrachtung: Plattenspeicher Im Bericht auf BestPerf und auch im Full Disclosure Report der TPC stehen einige interessante Details zum Plattenspeicher und der Konfiguration.   In der Konfiguration der SPARC T4-4 wurden 12 2540-M2 Arrays verwendet, die jeweils ca. 1.5 GB/s Durchsatz liefert, insgesamt also eta 18 GB/s.  Dabei waren die Arrays offensichtlich mit jeweils 2 Kabeln pro Array direkt an die 24 8GBit FC-Ports des Servers angeschlossen.  Mit den 2x 8GBit Ports pro Array koennte man so ein theoretisches Maximum von 2GB/s erreichen.  Tatsaechlich wurden 1.5GB/s geliefert, was so ziemlich dem realistischen Maximum entsprechen duerfte. Fuer den Lauf mit der SPARC T5-4 wurden doppelt so viele Platten verwendet.  Dafuer wurden die 2540-M2 Arrays mit je einem zusaetzlichen Plattentray erweitert.  Mit dieser Konfiguration wurde dann (laut BestPerf) ein Maximaldurchsatz von 33 GB/s erreicht - nicht ganz das doppelte des SPARC T4-4 Laufs.  Um tatsaechlich den doppelten Durchsatz (36 GB/s) zu liefern, haette jedes der 12 Arrays 3 GB/s ueber seine 4 8GBit Ports liefern muessen.  Im FDR stehen nur 12 dual-port FC HBAs, was die Verwendung der Brocade FC Switches erklaert: Es wurden alle 4 8GBit ports jedes Arrays an die Switches angeschlossen, die die Datenstroeme dann in die 24 16GBit HBA ports des Servers buendelten.  Das theoretische Maximum jedes Storage-Arrays waere nun 4 GB/s.  Wenn man jedoch den Protokoll- und "Realitaets"-Overhead mit einrechnet, sind die tatsaechlich gelieferten 2.75 GB/s gar nicht schlecht.  Mit diesen Zahlen im Hinterkopf ist die Verdopplung des SPARC T4-4 Ergebnisses eine gute Leistung - und gleichzeitig eine gute Erklaerung, warum nicht bis zum 2.4-fachen skaliert wurde. Nebenbei bemerkt: Weder die SPARC T4-4 noch die SPARC T5-4 hatten in der gemessenen Konfiguration irgendwelche Flash-Devices. Mitbewerb Seit die T4 Systeme auf dem Markt sind, bemuehen sich unsere Mitbewerber redlich darum, ueberall den Eindruck zu hinterlassen, die Leistung des SPARC CPU-Kerns waere weiterhin mangelhaft.  Auch scheinen sie ueberzeugt zu sein, dass (ueber)grosse Caches und hohe Taktraten die einzigen Schluessel zu echter Server Performance seien.  Wenn ich mir nun jedoch die oeffentlichen TPC-H Ergebnisse ansehe, sehe ich dies: TPC-H @3000GB, Non-Clustered Systems System QphH SPARC T5-4 3.6 GHz SPARC T5 4/64 – 2048 GB 409,721.8 SPARC T4-4 3.0 GHz SPARC T4 4/32 – 1024 GB 205,792.0 IBM Power 780 4.1 GHz POWER7 8/32 – 1024 GB 192,001.1 HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 8/64 – 512 GB 162,601.7 Kurz zusammengefasst: Mit 32 Kernen (mit 3 GHz und 4MB L3 Cache), liefert die SPARC T4-4 mehr QphH@3000GB ab als IBM mit ihrer 32 Kern Power7 (bei 4.1 GHz und 32MB L3 Cache) und auch mehr als HP mit einem 64 Kern Intel Xeon System (2.27 GHz und 24MB L3 Cache).  Ich frage mich, wo genau SPARC hier mangelhaft ist? Nun koennte man natuerlich argumentieren, dass beide Ergebnisse nicht gerade neu sind.  Nun, in Ermangelung neuerer Ergebnisse kann man ja mal ein wenig spekulieren: IBMs aktueller Performance Report listet die o.g. IBM Power 780 mit einem rPerf Wert von 425.5.  Ein passendes Nachfolgesystem mit Power7+ CPUs waere die Power 780+ mit 64 Kernen, verfuegbar mit 3.72 GHz.  Sie wird mit einem rPerf Wert von  690.1 angegeben, also 1.62x mehr.  Wenn man also annimmt, dass Plattenspeicher nicht der limitierende Faktor ist (IBM hat mit 177 SSDs getestet, sie duerfen das gerne auf 400 erhoehen) und IBMs eigene Leistungsabschaetzung zugrunde legt, darf man ein theoretisches Ergebnis von 311398 QphH@3000GB erwarten.  Das waere dann allerdings immer noch weit von dem Ergebnis der SPARC T5-4 entfernt, und gerade in der von IBM so geschaetzen "per core" Metric noch weniger vorteilhaft. In der x86-Welt sieht es nicht besser aus.  Leider gibt es von Intel keine so praktischen rPerf-Tabellen.  Daher muss ich hier fuer eine Schaetzung auf SPECint_rate2006 zurueckgreifen.  (Ich bin kein grosser Fan von solchen Kreuz- und Querschaetzungen.  Insb. SPECcpu ist nicht besonders geeignet, um Datenbank-Leistung abzuschaetzen, da fast kein IO im Spiel ist.)  Das o.g. HP System wird bei SPEC mit 1580 CINT2006_rate gelistet.  Das bis einschl. 2013-06-14 beste Resultat fuer den neuen Intel Xeon E7-4870 mit 8 CPUs ist 2180 CINT2006_rate.  Das ist immerhin 1.38x besser.  (Wenn man nur die Taktrate beruecksichtigen wuerde, waere man bei 1.32x.)  Hier weiter zu rechnen, ist muessig, aber fuer die ungeduldigen Leser hier eine kleine tabellarische Zusammenfassung: TPC-H @3000GB Performance Spekulationen System QphH* Verbesserung gegenueber der frueheren Generation SPARC T4-4 32 cores SPARC T4 205,792 2x SPARC T5-464 cores SPARC T5 409,721 IBM Power 780 32 cores Power7 192,001 1.62x IBM Power 780+ 64 cores Power7+  311,398* HP ProLiant DL980 G764 cores Intel Xeon X7560 162,601 1.38x HP ProLiant DL980 G780 cores Intel Xeon E7-4870    224,348* * Keine echten Resultate  - spekulative Werte auf der Grundlage von rPerf (Power7+) oder SPECint_rate2006 (HP) Natuerlich sind IBM oder HP herzlich eingeladen, diese Werte zu widerlegen.  Aber stand heute warte ich noch auf aktuelle Benchmark Veroffentlichungen in diesem Datensegment. Was koennen wir also zusammenfassen? Es gibt einige Hinweise, dass der Plattenspeicher der begrenzende Faktor war, der die SPARC T5-4 daran hinderte, auf jenseits von 2x zu skalieren Der Mythos, dass SPARC Kerne keine Leistung bringen, ist genau das - ein Mythos.  Wie sieht es umgekehrt eigentlich mit einem TPC-H Ergebnis fuer die Power7+ aus? Cache ist nicht der magische Performance-Schalter, fuer den ihn manche Leute offenbar halten. Ein System, eine CPU-Architektur und ein Betriebsystem jenseits einer gewissen Grenze zu skalieren ist schwer.  In der x86-Welt scheint es noch ein wenig schwerer zu sein. Was fehlt?  Nun, das Thema Preis/Leistung ueberlasse ich gerne den Verkaeufern ;-) Und zu guter Letzt: Nein, ich habe mich nicht ins Marketing versetzen lassen.  Aber manchmal kann ich mich einfach nicht zurueckhalten... Disclosure Statements The views expressed on this blog are my own and do not necessarily reflect the views of Oracle. TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org, results as of 6/7/13. Prices are in USD. SPARC T5-4 409,721.8 QphH@3000GB, $3.94/QphH@3000GB, available 9/24/13, 4 processors, 64 cores, 512 threads; SPARC T4-4 205,792.0 QphH@3000GB, $4.10/QphH@3000GB, available 5/31/12, 4 processors, 32 cores, 256 threads; IBM Power 780 QphH@3000GB, 192,001.1 QphH@3000GB, $6.37/QphH@3000GB, available 11/30/11, 8 processors, 32 cores, 128 threads; HP ProLiant DL980 G7 162,601.7 QphH@3000GB, $2.68/QphH@3000GB available 10/13/10, 8 processors, 64 cores, 128 threads. SPEC and the benchmark names SPECfp and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. Results as of June 18, 2013 from www.spec.org. HP ProLiant DL980 G7 (2.27 GHz, Intel Xeon X7560): 1580 SPECint_rate2006; HP ProLiant DL980 G7 (2.4 GHz, Intel Xeon E7-4870): 2180 SPECint_rate2006,

    Read the article

< Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >