Search Results

Search found 52954 results on 2119 pages for 'net snmp'.

Page 47/2119 | < Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >

  • ASP.NET High CPU Bringing Servers to their Knees

    - by user880954
    Ok, our new build is having 100% cpu spikes on each server at random intervals. For long durations it make the site totally unresponsive - this will be at peak times as people in different countries log on to the site etc. We've looked at perfmom, memory profilers, CLR profiler, sql profilers, Red gate ants profiler, tried load testing in UAT - but cannot even reproduce the problem. This could mean only thousands of users hitting the live site causes it to happen. One pattern we did notice was that the new code - the broken build - actually uses noticably less threads. We are also using spring for IOC - does this have a bed reputation? To make things worse, we cannot deploy to live due to the business impact - so cannot narrow the problem down to subset of the new features we've added. We truly are destroyed - has anyone got any battle scars that may save us a few lives?

    Read the article

  • How to fix error "To run this application, you first must install one of the following version of the .Net Framework: v2.0.50727"?

    - by Gravitas
    How do I fix the error that started popping up in a lot of applications: To run this application, you first must install one of the following version of the .Net Framework: v2.0.50727. Would you like to download an install version v2.0.50727 of the .NET framework now? Unfortunately, this is not as simple as just installing the .NET 2.0 runtime, because its already installed. If I run the recommended installers for .NET 2.0 or .NET 3.5 SP1, it exits silently. Events leading to problem: Installed SQL Server 2008 R2, which installs a toy version of Visual Studio 2008 that only deals with SQL specific projects. Uninstalled Visual Studio 2008.

    Read the article

  • Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 1

    - by rajbk
    The Open Data Protocol, referred to as OData, is a new data-sharing standard that breaks down silos and fosters an interoperative ecosystem for data consumers (clients) and producers (services) that is far more powerful than currently possible. It enables more applications to make sense of a broader set of data, and helps every data service and client add value to the whole ecosystem. WCF Data Services (previously known as ADO.NET Data Services), then, was the first Microsoft technology to support the Open Data Protocol in Visual Studio 2008 SP1. It provides developers with client libraries for .NET, Silverlight, AJAX, PHP and Java. Microsoft now also supports OData in SQL Server 2008 R2, Windows Azure Storage, Excel 2010 (through PowerPivot), and SharePoint 2010. Many other other applications in the works. * This post walks you through how to create an OData feed, define a shape for the data and pre-filter the data using Visual Studio 2010, WCF Data Services and the Entity Framework. A sample project is attached at the bottom of Part 2 of this post. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Create the Web Application File –› New –› Project, Select “ASP.NET Empty Web Application” Add the Entity Data Model Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “ADO.NET Entity Data Model” under "Data”. Name the Model “Northwind” and click “Add”.   In the “Choose Model Contents”, select “Generate Model From Database” and click “Next”   Define a connection to your database containing the Northwind database in the next screen. We are going to expose the Products table through our OData feed. Select “Products” in the “Choose your Database Object” screen.   Click “Finish”. We are done creating our Entity Data Model. Save the Northwind.edmx file created. Add the WCF Data Service Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “WCF Data Service” from the list and call the service “DataService” (creative, huh?). Click “Add”.   Enable Access to the Data Service Open the DataService.svc.cs class. The class is well commented and instructs us on the next steps. public class DataService : DataService< /* TODO: put your data source class name here */ > { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { // TODO: set rules to indicate which entity sets and service operations are visible, updatable, etc. // Examples: // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead); // config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } Replace the comment that starts with “/* TODO:” with “NorthwindEntities” (the entity container name of the Model we created earlier).  WCF Data Services is initially locked down by default, FTW! No data is exposed without you explicitly setting it. You have explicitly specify which Entity sets you wish to expose and what rights are allowed by using the SetEntitySetAccessRule. The SetServiceOperationAccessRule on the other hand sets rules for a specified operation. Let us define an access rule to expose the Products Entity we created earlier. We use the EnititySetRights.AllRead since we want to give read only access. Our modified code is shown below. public class DataService : DataService<NorthwindEntities> { public static void InitializeService(DataServiceConfiguration config) { config.SetEntitySetAccessRule("Products", EntitySetRights.AllRead); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } We are done setting up our ODataFeed! Compile your project. Right click on DataService.svc and select “View in Browser” to see the OData feed. To view the feed in IE, you must make sure that "Feed Reading View" is turned off. You set this under Tools -› Internet Options -› Content tab.   If you navigate to “Products”, you should see the Products feed. Note also that URIs are case sensitive. ie. Products work but products doesn’t.   Filtering our data OData has a set of system query operations you can use to perform common operations against data exposed by the model. For example, to see only Products in CategoryID 2, we can use the following request: /DataService.svc/Products?$filter=CategoryID eq 2 At the time of this writing, supported operations are $orderby, $top, $skip, $filter, $expand, $format†, $select, $inlinecount. Pre-filtering our data using Query Interceptors The Product feed currently returns all Products. We want to change that so that it contains only Products that have not been discontinued. WCF introduces the concept of interceptors which allows us to inject custom validation/policy logic into the request/response pipeline of a WCF data service. We will use a QueryInterceptor to pre-filter the data so that it returns only Products that are not discontinued. To create a QueryInterceptor, write a method that returns an Expression<Func<T, bool>> and mark it with the QueryInterceptor attribute as shown below. [QueryInterceptor("Products")] public Expression<Func<Product, bool>> OnReadProducts() { return o => o.Discontinued == false; } Viewing the feed after compilation will only show products that have not been discontinued. We also confirm this by looking at the WHERE clause in the SQL generated by the entity framework. SELECT [Extent1].[ProductID] AS [ProductID], ... ... [Extent1].[Discontinued] AS [Discontinued] FROM [dbo].[Products] AS [Extent1] WHERE 0 = [Extent1].[Discontinued] Other examples of Query/Change interceptors can be seen here including an example to filter data based on the identity of the authenticated user. We are done pre-filtering our data. In the next part of this post, we will see how to shape our data. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Foot Notes * http://msdn.microsoft.com/en-us/data/aa937697.aspx † $format did not work for me. The way to get a Json response is to include the following in the  request header “Accept: application/json, text/javascript, */*” when making the request. This is easily done with most JavaScript libraries.

    Read the article

  • AngularJS on top of ASP.NET: Moving the MVC framework out to the browser

    - by Varun Chatterji
    Heavily drawing inspiration from Ruby on Rails, MVC4’s convention over configuration model of development soon became the Holy Grail of .NET web development. The MVC model brought with it the goodness of proper separation of concerns between business logic, data, and the presentation logic. However, the MVC paradigm, was still one in which server side .NET code could be mixed with presentation code. The Razor templating engine, though cleaner than its predecessors, still encouraged and allowed you to mix .NET server side code with presentation logic. Thus, for example, if the developer required a certain <div> tag to be shown if a particular variable ShowDiv was true in the View’s model, the code could look like the following: Fig 1: To show a div or not. Server side .NET code is used in the View Mixing .NET code with HTML in views can soon get very messy. Wouldn’t it be nice if the presentation layer (HTML) could be pure HTML? Also, in the ASP.NET MVC model, some of the business logic invariably resides in the controller. It is tempting to use an anti­pattern like the one shown above to control whether a div should be shown or not. However, best practice would indicate that the Controller should not be aware of the div. The ShowDiv variable in the model should not exist. A controller should ideally, only be used to do the plumbing of getting the data populated in the model and nothing else. The view (ideally pure HTML) should render the presentation layer based on the model. In this article we will see how Angular JS, a new JavaScript framework by Google can be used effectively to build web applications where: 1. Views are pure HTML 2. Controllers (in the server sense) are pure REST based API calls 3. The presentation layer is loaded as needed from partial HTML only files. What is MVVM? MVVM short for Model View View Model is a new paradigm in web development. In this paradigm, the Model and View stuff exists on the client side through javascript instead of being processed on the server through postbacks. These frameworks are JavaScript frameworks that facilitate the clear separation of the “frontend” or the data rendering logic from the “backend” which is typically just a REST based API that loads and processes data through a resource model. The frameworks are called MVVM as a change to the Model (through javascript) gets reflected in the view immediately i.e. Model > View. Also, a change on the view (through manual input) gets reflected in the model immediately i.e. View > Model. The following figure shows this conceptually (comments are shown in red): Fig 2: Demonstration of MVVM in action In Fig 2, two text boxes are bound to the same variable model.myInt. Thus, changing the view manually (changing one text box through keyboard input) also changes the other textbox in real time demonstrating V > M property of a MVVM framework. Furthermore, clicking the button adds 1 to the value of model.myInt thus changing the model through JavaScript. This immediately updates the view (the value in the two textboxes) thus demonstrating the M > V property of a MVVM framework. Thus we see that the model in a MVVM JavaScript framework can be regarded as “the single source of truth“. This is an important concept. Angular is one such MVVM framework. We shall use it to build a simple app that sends SMS messages to a particular number. Application, Routes, Views, Controllers, Scope and Models Angular can be used in many ways to construct web applications. For this article, we shall only focus on building Single Page Applications (SPAs). Many of the approaches we will follow in this article have alternatives. It is beyond the scope of this article to explain every nuance in detail but we shall try to touch upon the basic concepts and end up with a working application that can be used to send SMS messages using Sent.ly Plus (a service that is itself built using Angular). Before you read on, we would like to urge you to forget what you know about Models, Views, Controllers and Routes in the ASP.NET MVC4 framework. All these words have different meanings in the Angular world. Whenever these words are used in this article, they will refer to Angular concepts and not ASP.NET MVC4 concepts. The following figure shows the skeleton of the root page of an SPA: Fig 3: The skeleton of a SPA The skeleton of the application is based on the Bootstrap starter template which can be found at: http://getbootstrap.com/examples/starter­template/ Apart from loading the Angular, jQuery and Bootstrap JavaScript libraries, it also loads our custom scripts /app/js/controllers.js /app/js/app.js These scripts define the routes, views and controllers which we shall come to in a moment. Application Notice that the body tag (Fig. 3) has an extra attribute: ng­app=”smsApp” Providing this tag “bootstraps” our single page application. It tells Angular to load a “module” called smsApp. This “module” is defined /app/js/app.js angular.module('smsApp', ['smsApp.controllers', function () {}]) Fig 4: The definition of our application module The line shows above, declares a module called smsApp. It also declares that this module “depends” on another module called “smsApp.controllers”. The smsApp.controllers module will contain all the controllers for our SPA. Routing and Views Notice that in the Navbar (in Fig 3) we have included two hyperlinks to: “#/app” “#/help” This is how Angular handles routing. Since the URLs start with “#”, they are actually just bookmarks (and not server side resources). However, our route definition (in /app/js/app.js) gives these URLs a special meaning within the Angular framework. angular.module('smsApp', ['smsApp.controllers', function () { }]) //Configure the routes .config(['$routeProvider', function ($routeProvider) { $routeProvider.when('/binding', { templateUrl: '/app/partials/bindingexample.html', controller: 'BindingController' }); }]); Fig 5: The definition of a route with an associated partial view and controller As we can see from the previous code sample, we are using the $routeProvider object in the configuration of our smsApp module. Notice how the code “asks for” the $routeProvider object by specifying it as a dependency in the [] braces and then defining a function that accepts it as a parameter. This is known as dependency injection. Please refer to the following link if you want to delve into this topic: http://docs.angularjs.org/guide/di What the above code snippet is doing is that it is telling Angular that when the URL is “#/binding”, then it should load the HTML snippet (“partial view”) found at /app/partials/bindingexample.html. Also, for this URL, Angular should load the controller called “BindingController”. We have also marked the div with the class “container” (in Fig 3) with the ng­view attribute. This attribute tells Angular that views (partial HTML pages) defined in the routes will be loaded within this div. You can see that the Angular JavaScript framework, unlike many other frameworks, works purely by extending HTML tags and attributes. It also allows you to extend HTML with your own tags and attributes (through directives) if you so desire, you can find out more about directives at the following URL: http://www.codeproject.com/Articles/607873/Extending­HTML­with­AngularJS­Directives Controllers and Models We have seen how we define what views and controllers should be loaded for a particular route. Let us now consider how controllers are defined. Our controllers are defined in the file /app/js/controllers.js. The following snippet shows the definition of the “BindingController” which is loaded when we hit the URL http://localhost:port/index.html#/binding (as we have defined in the route earlier as shown in Fig 5). Remember that we had defined that our application module “smsApp” depends on the “smsApp.controllers” module (see Fig 4). The code snippet below shows how the “BindingController” defined in the route shown in Fig 5 is defined in the module smsApp.controllers: angular.module('smsApp.controllers', [function () { }]) .controller('BindingController', ['$scope', function ($scope) { $scope.model = {}; $scope.model.myInt = 6; $scope.addOne = function () { $scope.model.myInt++; } }]); Fig 6: The definition of a controller in the “smsApp.controllers” module. The pieces are falling in place! Remember Fig.2? That was the code of a partial view that was loaded within the container div of the skeleton SPA shown in Fig 3. The route definition shown in Fig 5 also defined that the controller called “BindingController” (shown in Fig 6.) was loaded when we loaded the URL: http://localhost:22544/index.html#/binding The button in Fig 2 was marked with the attribute ng­click=”addOne()” which added 1 to the value of model.myInt. In Fig 6, we can see that this function is actually defined in the “BindingController”. Scope We can see from Fig 6, that in the definition of “BindingController”, we defined a dependency on $scope and then, as usual, defined a function which “asks for” $scope as per the dependency injection pattern. So what is $scope? Any guesses? As you might have guessed a scope is a particular “address space” where variables and functions may be defined. This has a similar meaning to scope in a programming language like C#. Model: The Scope is not the Model It is tempting to assign variables in the scope directly. For example, we could have defined myInt as $scope.myInt = 6 in Fig 6 instead of $scope.model.myInt = 6. The reason why this is a bad idea is that scope in hierarchical in Angular. Thus if we were to define a controller which was defined within the another controller (nested controllers), then the inner controller would inherit the scope of the parent controller. This inheritance would follow JavaScript prototypal inheritance. Let’s say the parent controller defined a variable through $scope.myInt = 6. The child controller would inherit the scope through java prototypical inheritance. This basically means that the child scope has a variable myInt that points to the parent scopes myInt variable. Now if we assigned the value of myInt in the parent, the child scope would be updated with the same value as the child scope’s myInt variable points to the parent scope’s myInt variable. However, if we were to assign the value of the myInt variable in the child scope, then the link of that variable to the parent scope would be broken as the variable myInt in the child scope now points to the value 6 and not to the parent scope’s myInt variable. But, if we defined a variable model in the parent scope, then the child scope will also have a variable model that points to the model variable in the parent scope. Updating the value of $scope.model.myInt in the parent scope would change the model variable in the child scope too as the variable is pointed to the model variable in the parent scope. Now changing the value of $scope.model.myInt in the child scope would ALSO change the value in the parent scope. This is because the model reference in the child scope is pointed to the scope variable in the parent. We did no new assignment to the model variable in the child scope. We only changed an attribute of the model variable. Since the model variable (in the child scope) points to the model variable in the parent scope, we have successfully changed the value of myInt in the parent scope. Thus the value of $scope.model.myInt in the parent scope becomes the “single source of truth“. This is a tricky concept, thus it is considered good practice to NOT use scope inheritance. More info on prototypal inheritance in Angular can be found in the “JavaScript Prototypal Inheritance” section at the following URL: https://github.com/angular/angular.js/wiki/Understanding­Scopes. Building It: An Angular JS application using a .NET Web API Backend Now that we have a perspective on the basic components of an MVVM application built using Angular, let’s build something useful. We will build an application that can be used to send out SMS messages to a given phone number. The following diagram describes the architecture of the application we are going to build: Fig 7: Broad application architecture We are going to add an HTML Partial to our project. This partial will contain the form fields that will accept the phone number and message that needs to be sent as an SMS. It will also display all the messages that have previously been sent. All the executable code that is run on the occurrence of events (button clicks etc.) in the view resides in the controller. The controller interacts with the ASP.NET WebAPI to get a history of SMS messages, add a message etc. through a REST based API. For the purposes of simplicity, we will use an in memory data structure for the purposes of creating this application. Thus, the tasks ahead of us are: Creating the REST WebApi with GET, PUT, POST, DELETE methods. Creating the SmsView.html partial Creating the SmsController controller with methods that are called from the SmsView.html partial Add a new route that loads the controller and the partial. 1. Creating the REST WebAPI This is a simple task that should be quite straightforward to any .NET developer. The following listing shows our ApiController: public class SmsMessage { public string to { get; set; } public string message { get; set; } } public class SmsResource : SmsMessage { public int smsId { get; set; } } public class SmsResourceController : ApiController { public static Dictionary<int, SmsResource> messages = new Dictionary<int, SmsResource>(); public static int currentId = 0; // GET api/<controller> public List<SmsResource> Get() { List<SmsResource> result = new List<SmsResource>(); foreach (int key in messages.Keys) { result.Add(messages[key]); } return result; } // GET api/<controller>/5 public SmsResource Get(int id) { if (messages.ContainsKey(id)) return messages[id]; return null; } // POST api/<controller> public List<SmsResource> Post([FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { SmsResource res = (SmsResource) value; res.smsId = currentId++; messages.Add(res.smsId, res); //SentlyPlusSmsSender.SendMessage(value.to, value.message); return Get(); } } // PUT api/<controller>/5 public List<SmsResource> Put(int id, [FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { if (messages.ContainsKey(id)) { //Update the message messages[id].message = value.message; messages[id].to = value.message; } return Get(); } } // DELETE api/<controller>/5 public List<SmsResource> Delete(int id) { if (messages.ContainsKey(id)) { messages.Remove(id); } return Get(); } } Once this class is defined, we should be able to access the WebAPI by a simple GET request using the browser: http://localhost:port/api/SmsResource Notice the commented line: //SentlyPlusSmsSender.SendMessage The SentlyPlusSmsSender class is defined in the attached solution. We have shown this line as commented as we want to explain the core Angular concepts. If you load the attached solution, this line is uncommented in the source and an actual SMS will be sent! By default, the API returns XML. For consumption of the API in Angular, we would like it to return JSON. To change the default to JSON, we make the following change to WebApiConfig.cs file located in the App_Start folder. public static class WebApiConfig { public static void Register(HttpConfiguration config) { config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); var appXmlType = config.Formatters.XmlFormatter. SupportedMediaTypes. FirstOrDefault( t => t.MediaType == "application/xml"); config.Formatters.XmlFormatter.SupportedMediaTypes.Remove(appXmlType); } } We now have our backend REST Api which we can consume from Angular! 2. Creating the SmsView.html partial This simple partial will define two fields: the destination phone number (international format starting with a +) and the message. These fields will be bound to model.phoneNumber and model.message. We will also add a button that we shall hook up to sendMessage() in the controller. A list of all previously sent messages (bound to model.allMessages) will also be displayed below the form input. The following code shows the code for the partial: <!--­­ If model.errorMessage is defined, then render the error div -­­> <div class="alert alert-­danger alert-­dismissable" style="margin­-top: 30px;" ng­-show="model.errorMessage != undefined"> <button type="button" class="close" data­dismiss="alert" aria­hidden="true">&times;</button> <strong>Error!</strong> <br /> {{ model.errorMessage }} </div> <!--­­ The input fields bound to the model --­­> <div class="well" style="margin-­top: 30px;"> <table style="width: 100%;"> <tr> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Phone number (eg; +44 7778 609466)" ng­-model="model.phoneNumber" class="form-­control" style="width: 90%" onkeypress="return checkPhoneInput();" /> </td> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Message" ng­-model="model.message" class="form-­control" style="width: 90%" /> </td> <td style="text-­align: center;"> <button class="btn btn-­danger" ng-­click="sendMessage();" ng-­disabled="model.isAjaxInProgress" style="margin­right: 5px;">Send</button> <img src="/Content/ajax-­loader.gif" ng­-show="model.isAjaxInProgress" /> </td> </tr> </table> </div> <!--­­ The past messages ­­--> <div style="margin-­top: 30px;"> <!­­-- The following div is shown if there are no past messages --­­> <div ng­-show="model.allMessages.length == 0"> No messages have been sent yet! </div> <!--­­ The following div is shown if there are some past messages --­­> <div ng-­show="model.allMessages.length == 0"> <table style="width: 100%;" class="table table-­striped"> <tr> <td>Phone Number</td> <td>Message</td> <td></td> </tr> <!--­­ The ng-­repeat directive is line the repeater control in .NET, but as you can see this partial is pure HTML which is much cleaner --> <tr ng-­repeat="message in model.allMessages"> <td>{{ message.to }}</td> <td>{{ message.message }}</td> <td> <button class="btn btn-­danger" ng-­click="delete(message.smsId);" ng­-disabled="model.isAjaxInProgress">Delete</button> </td> </tr> </table> </div> </div> The above code is commented and should be self explanatory. Conditional rendering is achieved through using the ng-­show=”condition” attribute on various div tags. Input fields are bound to the model and the send button is bound to the sendMessage() function in the controller as through the ng­click=”sendMessage()” attribute defined on the button tag. While AJAX calls are taking place, the controller sets model.isAjaxInProgress to true. Based on this variable, buttons are disabled through the ng-­disabled directive which is added as an attribute to the buttons. The ng-­repeat directive added as an attribute to the tr tag causes the table row to be rendered multiple times much like an ASP.NET repeater. 3. Creating the SmsController controller The penultimate piece of our application is the controller which responds to events from our view and interacts with our MVC4 REST WebAPI. The following listing shows the code we need to add to /app/js/controllers.js. Note that controller definitions can be chained. Also note that this controller “asks for” the $http service. The $http service is a simple way in Angular to do AJAX. So far we have only encountered modules, controllers, views and directives in Angular. The $http is new entity in Angular called a service. More information on Angular services can be found at the following URL: http://docs.angularjs.org/guide/dev_guide.services.understanding_services. .controller('SmsController', ['$scope', '$http', function ($scope, $http) { //We define the model $scope.model = {}; //We define the allMessages array in the model //that will contain all the messages sent so far $scope.model.allMessages = []; //The error if any $scope.model.errorMessage = undefined; //We initially load data so set the isAjaxInProgress = true; $scope.model.isAjaxInProgress = true; //Load all the messages $http({ url: '/api/smsresource', method: "GET" }). success(function (data, status, headers, config) { this callback will be called asynchronously //when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { //called asynchronously if an error occurs //or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); $scope.delete = function (id) { //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource/' + id, method: "DELETE" }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } $scope.sendMessage = function () { $scope.model.errorMessage = undefined; var message = ''; if($scope.model.message != undefined) message = $scope.model.message.trim(); if ($scope.model.phoneNumber == undefined || $scope.model.phoneNumber == '' || $scope.model.phoneNumber.length < 10 || $scope.model.phoneNumber[0] != '+') { $scope.model.errorMessage = "You must enter a valid phone number in international format. Eg: +44 7778 609466"; return; } if (message.length == 0) { $scope.model.errorMessage = "You must specify a message!"; return; } //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource', method: "POST", data: { to: $scope.model.phoneNumber, message: $scope.model.message } }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status // We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } }]); We can see from the previous listing how the functions that are called from the view are defined in the controller. It should also be evident how easy it is to make AJAX calls to consume our MVC4 REST WebAPI. Now we are left with the final piece. We need to define a route that associates a particular path with the view we have defined and the controller we have defined. 4. Add a new route that loads the controller and the partial This is the easiest part of the puzzle. We simply define another route in the /app/js/app.js file: $routeProvider.when('/sms', { templateUrl: '/app/partials/smsview.html', controller: 'SmsController' }); Conclusion In this article we have seen how much of the server side functionality in the MVC4 framework can be moved to the browser thus delivering a snappy and fast user interface. We have seen how we can build client side HTML only views that avoid the messy syntax offered by server side Razor views. We have built a functioning app from the ground up. The significant advantage of this approach to building web apps is that the front end can be completely platform independent. Even though we used ASP.NET to create our REST API, we could just easily have used any other language such as Node.js, Ruby etc without changing a single line of our front end code. Angular is a rich framework and we have only touched on basic functionality required to create a SPA. For readers who wish to delve further into the Angular framework, we would recommend the following URL as a starting point: http://docs.angularjs.org/misc/started. To get started with the code for this project: Sign up for an account at http://plus.sent.ly (free) Add your phone number Go to the “My Identies Page” Note Down your Sender ID, Consumer Key and Consumer Secret Download the code for this article at: https://docs.google.com/file/d/0BzjEWqSE31yoZjZlV0d0R2Y3eW8/edit?usp=sharing Change the values of Sender Id, Consumer Key and Consumer Secret in the web.config file Run the project through Visual Studio!

    Read the article

  • How to configure Visual Studio 2010 code coverage for ASP.NET MVC unit tests

    - by DigiMortal
    I just got Visual Studio 2010 code coverage work with ASP.NET MVC application unit tests. Everything is simple after you have spent some time with forums, blogs and Google. To save your valuable time I wrote this posting to guide you through the process of making code coverage work with ASP.NET MVC application unit tests. After some fighting with Visual Studio I got everything to work as expected. I am still not very sure why users must deal with this mess, but okay – I survived it. Before you start configuring Visual Studio I expect your solution meets the following needs: there are at least one library that will be tested, there is at least on library that contains tests to be run, there are some classes and some tests for them, and, of course, you are using version of Visual Studio 2010 that supports tests (I have Visual Studio 2010 Ultimate). Now open the following screenshot to separate windows and follow the steps given below. Visual Studio 2010 Test Settings window. Click on image to see it at original size.  Double click on Local.testsettings under Solution Items. Test settings window will be opened. Select “Data and Diagnostics” from left pane. Mark checkboxes “ASP.NET Profiler” and “Code Coverage”. Move cursor to “Code Coverage” line and press Configure button or make double click on line. Assemblies selection window will be opened. Mark checkboxes that are located before assemblies about what you want code coverage reports and apply settings. Save your project and close Visual Studio. Run Visual Studio as Administrator and run tests. NB! Select Test => Run => Tests in Current Context from menu. When tests are run you can open code coverage results by selecting Test => Windows => Code Coverage Results from menu. Here you can see my example test results. Visual Studio 2010 Test Results window. All my tests passed this time. :) Click on image to see it at original size.  And here are the code coverage results. Visual Studio 2101 Code Coverage Results. I need a lot more tests for sure. Click on image to see it at original size.  As you can see everything was pretty simple. But it took me sometime to figure out how to get everything work as expected. Problems? You may face some problems when making code coverage work. Here is my short list of possible problems. Make sure you have all assemblies available for code coverage. In some cases it needs more libraries to be referenced as you currently have. By example, I had to add some more Enterprise Library assemblies to my project. You can use EventViewer to discover errors that where given during testing. Make sure you selected all testable assemblies from Code Coverage settings like shown above. Otherwise you may get empty results. Tests with code coverage are slower because we need ASP.NET profiler. If your machine slows down then try to free more resources.

    Read the article

  • Learning AngularJS by Example – The Customer Manager Application

    - by dwahlin
    I’m always tinkering around with different ideas and toward the beginning of 2013 decided to build a sample application using AngularJS that I call Customer Manager. It’s not exactly the most creative name or concept, but I wanted to build something that highlighted a lot of the different features offered by AngularJS and how they could be used together to build a full-featured app. One of the goals of the application was to ensure that it was approachable by people new to Angular since I’ve never found overly complex applications great for learning new concepts. The application initially started out small and was used in my AngularJS in 60-ish Minutes video on YouTube but has gradually had more and more features added to it and will continue to be enhanced over time. It’ll be used in a new “end-to-end” training course my company is working on for AngularjS as well as in some video courses that will be coming out. Here’s a quick look at what the application home page looks like: In this post I’m going to provide an overview about how the application is organized, back-end options that are available, and some of the features it demonstrates. I’ve already written about some of the features so if you’re interested check out the following posts: Building an AngularJS Modal Service Building a Custom AngularJS Unique Value Directive Using an AngularJS Factory to Interact with a RESTful Service Application Structure The structure of the application is shown to the right. The  homepage is index.html and is located at the root of the application folder. It defines where application views will be loaded using the ng-view directive and includes script references to AngularJS, AngularJS routing and animation scripts, plus a few others located in the Scripts folder and to custom application scripts located in the app folder. The app folder contains all of the key scripts used in the application. There are several techniques that can be used for organizing script files but after experimenting with several of them I decided that I prefer things in folders such as controllers, views, services, etc. Doing that helps me find things a lot faster and allows me to categorize files (such as controllers) by functionality. My recommendation is to go with whatever works best for you. Anyone who says, “You’re doing it wrong!” should be ignored. Contrary to what some people think, there is no “one right way” to organize scripts and other files. As long as the scripts make it down to the client properly (you’ll likely minify and concatenate them anyway to reduce bandwidth and minimize HTTP calls), the way you organize them is completely up to you. Here’s what I ended up doing for this application: Animation code for some custom animations is located in the animations folder. In addition to AngularJS animations (which are defined using CSS in Content/animations.css), it also animates the initial customer data load using a 3rd party script called GreenSock. Controllers are located in the controllers folder. Some of the controllers are placed in subfolders based upon the their functionality while others are placed at the root of the controllers folder since they’re more generic:   The directives folder contains the custom directives created for the application. The filters folder contains the custom filters created for the application that filter city/state and product information. The partials folder contains partial views. This includes things like modal dialogs used in the application. The services folder contains AngularJS factories and services used for various purposes in the application. Most of the scripts in this folder provide data functionality. The views folder contains the different views used in the application. Like the controllers folder, the views are organized into subfolders based on their functionality:   Back-End Services The Customer Manager application (grab it from Github) provides two different options on the back-end including ASP.NET Web API and Node.js. The ASP.NET Web API back-end uses Entity Framework for data access and stores data in SQL Server (LocalDb). The other option on the back-end is Node.js, Express, and MongoDB.   Using the ASP.NET Web API Back-End To run the application using ASP.NET Web API/SQL Server back-end open the .sln file at the root of the project in Visual Studio 2012 or higher (the free Express 2013 for Web version is fine). Press F5 and a browser will automatically launch and display the application. Using the Node.js Back-End To run the application using the Node.js/MongoDB back-end follow these steps: In the CustomerManager directory execute 'npm install' to install Express, MongoDB and Mongoose (package.json). Load sample data into MongoDB by performing the following steps: Execute 'mongod' to start the MongoDB daemon Navigate to the CustomerManager directory (the one that has initMongoCustData.js in it) then execute 'mongo' to start the MongoDB shell Enter the following in the mongo shell to load the seed files that handle seeding the database with initial data: use custmgr load("initMongoCustData.js") load("initMongoSettingsData.js") load("initMongoStateData.js") Start the Node/Express server by navigating to the CustomerManager/server directory and executing 'node app.js' View the application at http://localhost:3000 in your browser. Key Features The Customer Manager application certainly doesn’t cover every feature provided by AngularJS (as mentioned the intent was to keep it as simple as possible) but does provide insight into several key areas: Using factories and services as re-useable data services (see the app/services folder) Creating custom directives (see the app/directives folder) Custom paging (see app/views/customers/customers.html and app/controllers/customers/customersController.js) Custom filters (see app/filters) Showing custom modal dialogs with a re-useable service (see app/services/modalService.js) Making Ajax calls using a factory (see app/services/customersService.js) Using Breeze to retrieve and work with data (see app/services/customersBreezeService.js). Switch the application to use the Breeze factory by opening app/services.config.js and changing the useBreeze property to true. Intercepting HTTP requests to display a custom overlay during Ajax calls (see app/directives/wcOverlay.js) Custom animations using the GreenSock library (see app/animations/listAnimations.js) Creating custom AngularJS animations using CSS (see Content/animations.css) JavaScript patterns for defining controllers, services/factories, directives, filters, and more (see any JavaScript file in the app folder) Card View and List View display of data (see app/views/customers/customers.html and app/controllers/customers/customersController.js) Using AngularJS validation functionality (see app/views/customerEdit.html, app/controllers/customerEditController.js, and app/directives/wcUnique.js) More… Conclusion I’ll be enhancing the application even more over time and welcome contributions as well. Tony Quinn contributed the initial Node.js/MongoDB code which is very cool to have as a back-end option. Access the standard application here and a version that has custom routing in it here. Additional information about the custom routing can be found in this post.

    Read the article

  • Running ASP.Net MVC3 Alongside ASP.Net WebForms in the Same Project

    - by Sam Abraham
    I previously blogged on running ASP.Net MVC in an ASP.Net WebForms project. My reference at the time was a freely-available PDF document by Scott Guthrie which covered the setup process in good detail.   As I am preparing references to share with our audience at my upcoming talk at the Deerfield Beach Coders Café on March 1st (http://www.fladotnet.com/Reg.aspx?EventID=514), I found a nice blog post by Scott Hanselman on running both ASP.Net 4.0 WebForms along with ASP.Net MVC 3.0 in the same project. You can access this article here.   Moreover, Scott later followed-up with a blog showing how to leverage NuGet to automate the setup of ASP.Net MVC3 in an existing ASP.Net WebForms project.   One frequent question that usually comes up when discussing this side-by-side setup is the loss of the convenient Visual Studio Solution Explorer context menu which enable us to easily create controllers and views with a few mouse clicks.   A good suggestion brought up in the comments section of Scott’s article presented a good work-around to this problem: Manually add the MVC Visual Studio Project Type GUID in your .sln solution file ({E53F8FEA-EAE0-44A6-8774-FFD645390401}) which then brings back the MVC-specific context menu functionality in solution explorer of the hybrid project. (Thank James Raden!)

    Read the article

  • The dynamic Type in C# Simplifies COM Member Access from Visual FoxPro

    - by Rick Strahl
    I’ve written quite a bit about Visual FoxPro interoperating with .NET in the past both for ASP.NET interacting with Visual FoxPro COM objects as well as Visual FoxPro calling into .NET code via COM Interop. COM Interop with Visual FoxPro has a number of problems but one of them at least got a lot easier with the introduction of dynamic type support in .NET. One of the biggest problems with COM interop has been that it’s been really difficult to pass dynamic objects from FoxPro to .NET and get them properly typed. The only way that any strong typing can occur in .NET for FoxPro components is via COM type library exports of Visual FoxPro components. Due to limitations in Visual FoxPro’s type library support as well as the dynamic nature of the Visual FoxPro language where few things are or can be described in the form of a COM type library, a lot of useful interaction between FoxPro and .NET required the use of messy Reflection code in .NET. Reflection is .NET’s base interface to runtime type discovery and dynamic execution of code without requiring strong typing. In FoxPro terms it’s similar to EVALUATE() functionality albeit with a much more complex API and corresponiding syntax. The Reflection APIs are fairly powerful, but they are rather awkward to use and require a lot of code. Even with the creation of wrapper utility classes for common EVAL() style Reflection functionality dynamically access COM objects passed to .NET often is pretty tedious and ugly. Let’s look at a simple example. In the following code I use some FoxPro code to dynamically create an object in code and then pass this object to .NET. An alternative to this might also be to create a new object on the fly by using SCATTER NAME on a database record. How the object is created is inconsequential, other than the fact that it’s not defined as a COM object – it’s a pure FoxPro object that is passed to .NET. Here’s the code: *** Create .NET COM InstanceloNet = CREATEOBJECT('DotNetCom.DotNetComPublisher') *** Create a Customer Object Instance (factory method) loCustomer = GetCustomer() loCustomer.Name = "Rick Strahl" loCustomer.Company = "West Wind Technologies" loCustomer.creditLimit = 9999999999.99 loCustomer.Address.StreetAddress = "32 Kaiea Place" loCustomer.Address.Phone = "808 579-8342" loCustomer.Address.Email = "[email protected]" *** Pass Fox Object and echo back values ? loNet.PassRecordObject(loObject) RETURN FUNCTION GetCustomer LOCAL loCustomer, loAddress loCustomer = CREATEOBJECT("EMPTY") ADDPROPERTY(loCustomer,"Name","") ADDPROPERTY(loCustomer,"Company","") ADDPROPERTY(loCUstomer,"CreditLimit",0.00) ADDPROPERTY(loCustomer,"Entered",DATETIME()) loAddress = CREATEOBJECT("Empty") ADDPROPERTY(loAddress,"StreetAddress","") ADDPROPERTY(loAddress,"Phone","") ADDPROPERTY(loAddress,"Email","") ADDPROPERTY(loCustomer,"Address",loAddress) RETURN loCustomer ENDFUNC Now prior to .NET 4.0 you’d have to access this object passed to .NET via Reflection and the method code to do this would looks something like this in the .NET component: public string PassRecordObject(object FoxObject) { // *** using raw Reflection string Company = (string) FoxObject.GetType().InvokeMember( "Company", BindingFlags.GetProperty,null, FoxObject,null); // using the easier ComUtils wrappers string Name = (string) ComUtils.GetProperty(FoxObject,"Name"); // Getting Address object – then getting child properties object Address = ComUtils.GetProperty(FoxObject,"Address");    string Street = (string) ComUtils.GetProperty(FoxObject,"StreetAddress"); // using ComUtils 'Ex' functions you can use . Syntax     string StreetAddress = (string) ComUtils.GetPropertyEx(FoxObject,"AddressStreetAddress"); return Name + Environment.NewLine + Company + Environment.NewLine + StreetAddress + Environment.NewLine + " FOX"; } Note that the FoxObject is passed in as type object which has no specific type. Since the object doesn’t exist in .NET as a type signature the object is passed without any specific type information as plain non-descript object. To retrieve a property the Reflection APIs like Type.InvokeMember or Type.GetProperty().GetValue() etc. need to be used. I made this code a little simpler by using the Reflection Wrappers I mentioned earlier but even with those ComUtils calls the code is pretty ugly requiring passing the objects for each call and casting each element. Using .NET 4.0 Dynamic Typing makes this Code a lot cleaner Enter .NET 4.0 and the dynamic type. Replacing the input parameter to the .NET method from type object to dynamic makes the code to access the FoxPro component inside of .NET much more natural: public string PassRecordObjectDynamic(dynamic FoxObject) { // *** using raw Reflection string Company = FoxObject.Company; // *** using the easier ComUtils class string Name = FoxObject.Name; // *** using ComUtils 'ex' functions to use . Syntax string Address = FoxObject.Address.StreetAddress; return Name + Environment.NewLine + Company + Environment.NewLine + Address + Environment.NewLine + " FOX"; } As you can see the parameter is of type dynamic which as the name implies performs Reflection lookups and evaluation on the fly so all the Reflection code in the last example goes away. The code can use regular object ‘.’ syntax to reference each of the members of the object. You can access properties and call methods this way using natural object language. Also note that all the type casts that were required in the Reflection code go away – dynamic types like var can infer the type to cast to based on the target assignment. As long as the type can be inferred by the compiler at compile time (ie. the left side of the expression is strongly typed) no explicit casts are required. Note that although you get to use plain object syntax in the code above you don’t get Intellisense in Visual Studio because the type is dynamic and thus has no hard type definition in .NET . The above example calls a .NET Component from VFP, but it also works the other way around. Another frequent scenario is an .NET code calling into a FoxPro COM object that returns a dynamic result. Assume you have a FoxPro COM object returns a FoxPro Cursor Record as an object: DEFINE CLASS FoxData AS SESSION OlePublic cAppStartPath = "" FUNCTION INIT THIS.cAppStartPath = ADDBS( JustPath(Application.ServerName) ) SET PATH TO ( THIS.cAppStartpath ) ENDFUNC FUNCTION GetRecord(lnPk) LOCAL loCustomer SELECT * FROM tt_Cust WHERE pk = lnPk ; INTO CURSOR TCustomer IF _TALLY < 1 RETURN NULL ENDIF SCATTER NAME loCustomer MEMO RETURN loCustomer ENDFUNC ENDDEFINE If you call this from a .NET application you can now retrieve this data via COM Interop and cast the result as dynamic to simplify the data access of the dynamic FoxPro type that was created on the fly: int pk = 0; int.TryParse(Request.QueryString["id"],out pk); // Create Fox COM Object with Com Callable Wrapper FoxData foxData = new FoxData(); dynamic foxRecord = foxData.GetRecord(pk); string company = foxRecord.Company; DateTime entered = foxRecord.Entered; This code looks simple and natural as it should be – heck you could write code like this in days long gone by in scripting languages like ASP classic for example. Compared to the Reflection code that previously was necessary to run similar code this is much easier to write, understand and maintain. For COM interop and Visual FoxPro operation dynamic type support in .NET 4.0 is a huge improvement and certainly makes it much easier to deal with FoxPro code that calls into .NET. Regardless of whether you’re using COM for calling Visual FoxPro objects from .NET (ASP.NET calling a COM component and getting a dynamic result returned) or whether FoxPro code is calling into a .NET COM component from a FoxPro desktop application. At one point or another FoxPro likely ends up passing complex dynamic data to .NET and for this the dynamic typing makes coding much cleaner and more readable without having to create custom Reflection wrappers. As a bonus the dynamic runtime that underlies the dynamic type is fairly efficient in terms of making Reflection calls especially if members are repeatedly accessed. © Rick Strahl, West Wind Technologies, 2005-2010Posted in COM  FoxPro  .NET  CSharp  

    Read the article

  • Tulsa SharePoint Interest Group - How SharePoint 2010 Business Connectivity Services could change yo

    - by dmccollough
    Bio: Corey Roth is a consultant at Stonebridge specializing in SharePoint solutions in the Oil & Gas Industry. He has ten plus years of experience delivering solutions in the energy, travel, advertising and consumer electronics verticals. Corey has always focused on rapid adoption of new Microsoft technologies including Visual Studio 2010, SharePoint 2010, .NET Framework 4.0, LINQ, and SilverLight. He also contributed greatly to the beta phases of Visual Studio 2005. For his contributions, he was awarded the Microsoft Award for Customer Excellence (ACE). Corey is a graduate of Oklahoma State University. Corey is a member of the .NET Mafia (www.dotnetmafia.com) where he blogs about the latest technology and SharePoint. Abstract: How SharePoint 2010 Business Connectivity Services could change your life - The New BDC How many hours have your wasted building simple ASP.NET applications to do nothing more than simple CRUD operations against a database.  Many tools have made this easier, but now it's so easy, you'll be up and running in minutes.  This session will show you hot easy it is to get started integrating external data from your line of business systems in SharePoint 2010.  You will learn how to register an external content type using SharePoint Designer based upon a database table or web service and then build an external list.  With external lists, you will see how you can perform CRUD operations on your line of business directly from SharePoint without ever having to do manual configuration in XML files.  Finally, we will walk through how to create custom edit forms for your list using InfoPath 2010. Agenda: 6pm - 6:30 Pizza and Mingle - Sponsored by TekSystems 6:30 - 6:45 Announcements 6:45 - 7:45 Presentation! 7:45 - 8:00 Drawings and Door Prizes Location: TCC (Tulsa Community College) Northeast Campus 3727 East Apache Tulsa, OK 74115 918-594-8000 Campus Map | Live | Yahoo | Google | MapQuest Door Prizes: We will be giving away one of each of these: XBox 360 - Halo 3 ODST Telerik Premium Collection ($1300.00 value) ReSharper ($199.00 value) SQLSets ($149.00 value) 64 bit Windows 7 Introducing Windows 7 for Developers Developing Service-Oriented AJAX Applications on the Microsoft Platform Sponsors: Thanks to our sponsors: TekSystems - Thanks for purchasing the Pizza for our meetings. ISOCentric - Thanks for providing us hosting for the groups web site. Tulsa Community College - Thanks for providing us a place to have our meetings. NEVRON - Thanks for providing us prizes to give away. INETA.org - For allowing us to be a Charter Member and providing awesome Speakers! PERPETUUM Software - Thanks for providing us prizes to give away. Telerik - Thanks for providing us prizes to give away. GrapeCity - Thanks for providing us prizes to give away. SQLSets - Thanks for providing us prizes to give away. K2 - Thanks for providing us prizes to give away. Microsoft - For providing us with a lot of support and product giveaways! Orielly books - For providing us with books and discounts. Wrox books - For providing us with books and discounts. Have any special requests? Let us know at this link: http://tinyurl.com/lg5o38. RSVP for this month's meeting by responding to this thread: http://tinyurl.com/yafkzel . (Must be logged in to the site) Be SURE to RSVP no later than Noon on April 12th and you will get an extra entry for the prize drawings! So, do it now, before you forget and miss out! Show up for the first time or bring a new buddy and you both get TWO extra entries!

    Read the article

  • ASP.NET and WIF: Showing custom profile username as User.Identity.Name

    - by DigiMortal
    I am building ASP.NET MVC application that uses external services to authenticate users. For ASP.NET users are fully authenticated when they are redirected back from external service. In system they are logically authenticated when they have created user profiles. In this posting I will show you how to force ASP.NET MVC controller actions to demand existence of custom user profiles. Using external authentication sources with AppFabric Suppose you want to be user-friendly and you don’t force users to keep in mind another username/password when they visit your site. You can accept logins from different popular sites like Windows Live, Facebook, Yahoo, Google and many more. If user has account in some of these services then he or she can use his or her account to log in to your site. If you have community site then you usually have support for user profiles too. Some of these providers give you some information about users and other don’t. So only thing in common you get from all those providers is some unique ID that identifies user in service uniquely. Image above shows you how new user joins your site. Existing users who already have profile are directed to users homepage after they are authenticated. You can read more about how to solve semi-authorized users problem from my blog posting ASP.NET MVC: Using ProfileRequiredAttribute to restrict access to pages. The other problem is related to usernames that we don’t get from all identity providers. Why is IIdentity.Name sometimes empty? The problem is described more specifically in my blog posting Identifying AppFabric Access Control Service users uniquely. Shortly the problem is that not all providers have claim called http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name. The following diagram illustrates what happens when user got token from AppFabric ACS and was redirected to your site. Now, when user was authenticated using Windows Live ID then we don’t have name claim in token and that’s why User.Identity.Name is empty. Okay, we can force nameidentifier to be used as name (we can do it in web.config file) but we have user profiles and we want username from profile to be shown when username is asked. Modifying name claim Now let’s force IClaimsIdentity to use username from our user profiles. You can read more about my profiles topic from my blog posting ASP.NET MVC: Using ProfileRequiredAttribute to restrict access to pages and you can find some useful extension methods for claims identity from my blog posting Identifying AppFabric Access Control Service users uniquely. Here is what we do to set User.Identity.Name: we will check if user has profile, if user has profile we will check if User.Identity.Name matches the name given by profile, if names does not match then probably identity provider returned some name for user, we will remove name claim and recreate it with correct username, we will add new name claim to claims collection. All this stuff happens in Application_AuthorizeRequest event of our web application. The code is here. protected void Application_AuthorizeRequest() {     if (string.IsNullOrEmpty(User.Identity.Name))     {         var identity = User.Identity;         var profile = identity.GetProfile();         if (profile != null)         {             if (profile.UserName != identity.Name)             {                 identity.RemoveName();                   var claim = new Claim("http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name", profile.UserName);                 var claimsIdentity = (IClaimsIdentity)identity;                 claimsIdentity.Claims.Add(claim);             }         }     } } RemoveName extension method is simple – it looks for name claims of IClaimsIdentity claims collection and removes them. public static void RemoveName(this IIdentity identity) {     if (identity == null)         return;       var claimsIndentity = identity as ClaimsIdentity;     if (claimsIndentity == null)         return;       for (var i = claimsIndentity.Claims.Count - 1; i >= 0; i--)     {         var claim = claimsIndentity.Claims[i];         if (claim.ClaimType == "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name")             claimsIndentity.Claims.RemoveAt(i);     } } And we are done. Now User.Identity.Name returns the username from user profile and you can use it to show username of current user everywhere in your site. Conclusion Mixing AppFabric Access Control Service and Windows Identity Foundation with custom authorization logic is not impossible but a little bit tricky. This posting finishes my little series about AppFabric ACS and WIF for this time and hopefully you found some useful tricks, tips, hacks and code pieces you can use in your own applications.

    Read the article

  • RC of Entity Framework 4.1 (which includes EF Code First)

    - by ScottGu
    Last week the data team shipped the Release Candidate of Entity Framework 4.1.  You can learn more about it and download it here. EF 4.1 includes the new “EF Code First” option that I’ve blogged about several times in the past.  EF Code First provides a really elegant and clean way to work with data, and enables you to do so without requiring a designer or XML mapping file.  Below are links to some tutorials I’ve written in the past about it: Code First Development with Entity Framework 4.x EF Code First: Custom Database Schema Mapping Using EF Code First with an Existing Database The above tutorials were written against the CTP4 release of EF Code First (and so some APIs might be a little different) – but the concepts and scenarios outlined in them are the same as with the RC. Go Live License Last week’s EF 4.1 RC ships with a “go live” license that enables you to use it in production environments.  The final release of EF 4.1 will ship within the next 4 weeks and will be 100% API compatible with the RC release. Improvements with the RC The RC includes several improvements and enhancements.  The EF team has a good blog post summarizing the RC changes.  Scott Hanselman also has a nice video interview with the data team that talks more about the release. One of my favorite improvements introduced with last week’s RC is its support for medium trust security.  This enables you to use EF 4.1 (and code-first) within low-cost ASP.NET shared hosting web environments – without requiring a hoster to install anything to use it. EF 4.1 also now supports validation with not only code-first scenarios, but also model-first and database-first workflows.  Upgrading from previous releases The RC does include a few API tweaks and changes from the prior CTP builds.  Read the release notes that come with the release to get a more detailed listing of the changes. John Papa also has an excellent Upgrading to EF 4.1 RC blog post that describes the steps he took when upgrading a large project he wrote with the previous CTP5 release.  The work to upgrade is pretty straight forward and easy – use his write-up as a guide on how to quickly update projects of your own. NuGet Package Rename One of the changes that the data team made between the CTP5 and RC releases was to rename the NuGet package name from “EFCodeFirst” to “EntityFramework”. They decided to make this change since the EF 4.1 release now includes several additions above and beyond just code first. If you already have installed the “EFCodeFirst” NuGet package, you’ll want to uninstall it and then install the new “EntityFramework” NuGet package.  John Papa’s blog post details the exact steps on how to do this (it only takes ~20 seconds to do this). More EF Tutorials Julie Lerman has created some nice whitepapers and tutorials for MSDN that show using the new EF4 and EF 4.1 feature set. Click here to find links to read and watch them. Summary I’m really excited about the EF 4.1 release that will be shipping next month.  It significantly improves the Entity Framework, and makes it even easier and cleaner to work with data inside of .NET.  You can take advantage of it within all ASP.NET projects (including both Web Forms and MVC), within client projects using Windows Forms and WPF, and within other project types like WCF, Console and Services.  You can use NuGet to easily install it within all of them. Hope this helps, Scott P.S. I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Installing AJAX Control Toolkit 4 in Visual Studio 2010

    - by Yousef_Jadallah
      In this tutorial I’ll show you how to install AJAX Control toolkit step by step: You can download AJAX Toolkit .NET 4 “Apr 12 2010” released before 4 days, from http://ajaxcontroltoolkit.codeplex.com/releases/view/43475#DownloadId=116534, Once downloaded, extract AjaxControlToolkit.Binary.NET4  on your computer, then extract AjaxControlToolkitSampleSite. after that you need to open Visual Studio 2010, So we will add the toolkit to the toolbox. To do that press right-click in an empty space on your toolbox, then choose Add Tab.     You can rename the new tab to be “Ajax Toolkit” for example : Then when it is added, right-click under the tab and select Choose Items: When the dialog box appears Choose .NET Framework Components tab then click Browse button and find  AjaxControlToolkit folder that you installed the  AJAX Control Toolkit. In that directory you will find a sub-directory called AjaxControlToolkitSampleSite, and under that folder you will find bin Folder, in this folder choose AjaxControlToolkit.DLL which 5.59 MB.   The result of these steps, Visual Studio will load all the controls from the DLL file and by default it will be checked in this list:   To submit your steps press OK button.   Ultimately,you can find the components in your Toolbox and you can use it.     Happy programming!

    Read the article

  • jQuery Templates and Data Linking (and Microsoft contributing to jQuery)

    - by ScottGu
    The jQuery library has a passionate community of developers, and it is now the most widely used JavaScript library on the web today. Two years ago I announced that Microsoft would begin offering product support for jQuery, and that we’d be including it in new versions of Visual Studio going forward. By default, when you create new ASP.NET Web Forms and ASP.NET MVC projects with VS 2010 you’ll find jQuery automatically added to your project. A few weeks ago during my second keynote at the MIX 2010 conference I announced that Microsoft would also begin contributing to the jQuery project.  During the talk, John Resig -- the creator of the jQuery library and leader of the jQuery developer team – talked a little about our participation and discussed an early prototype of a new client templating API for jQuery. In this blog post, I’m going to talk a little about how my team is starting to contribute to the jQuery project, and discuss some of the specific features that we are working on such as client-side templating and data linking (data-binding). Contributing to jQuery jQuery has a fantastic developer community, and a very open way to propose suggestions and make contributions.  Microsoft is following the same process to contribute to jQuery as any other member of the community. As an example, when working with the jQuery community to improve support for templating to jQuery my team followed the following steps: We created a proposal for templating and posted the proposal to the jQuery developer forum (http://forum.jquery.com/topic/jquery-templates-proposal and http://forum.jquery.com/topic/templating-syntax ). After receiving feedback on the forums, the jQuery team created a prototype for templating and posted the prototype at the Github code repository (http://github.com/jquery/jquery-tmpl ). We iterated on the prototype, creating a new fork on Github of the templating prototype, to suggest design improvements. Several other members of the community also provided design feedback by forking the templating code. There has been an amazing amount of participation by the jQuery community in response to the original templating proposal (over 100 posts in the jQuery forum), and the design of the templating proposal has evolved significantly based on community feedback. The jQuery team is the ultimate determiner on what happens with the templating proposal – they might include it in jQuery core, or make it an official plugin, or reject it entirely.  My team is excited to be able to participate in the open source process, and make suggestions and contributions the same way as any other member of the community. jQuery Template Support Client-side templates enable jQuery developers to easily generate and render HTML UI on the client.  Templates support a simple syntax that enables either developers or designers to declaratively specify the HTML they want to generate.  Developers can then programmatically invoke the templates on the client, and pass JavaScript objects to them to make the content rendered completely data driven.  These JavaScript objects can optionally be based on data retrieved from a server. Because the jQuery templating proposal is still evolving in response to community feedback, the final version might look very different than the version below. This blog post gives you a sense of how you can try out and use templating as it exists today (you can download the prototype by the jQuery core team at http://github.com/jquery/jquery-tmpl or the latest submission from my team at http://github.com/nje/jquery-tmpl).  jQuery Client Templates You create client-side jQuery templates by embedding content within a <script type="text/html"> tag.  For example, the HTML below contains a <div> template container, as well as a client-side jQuery “contactTemplate” template (within the <script type="text/html"> element) that can be used to dynamically display a list of contacts: The {{= name }} and {{= phone }} expressions are used within the contact template above to display the names and phone numbers of “contact” objects passed to the template. We can use the template to display either an array of JavaScript objects or a single object. The JavaScript code below demonstrates how you can render a JavaScript array of “contact” object using the above template. The render() method renders the data into a string and appends the string to the “contactContainer” DIV element: When the page is loaded, the list of contacts is rendered by the template.  All of this template rendering is happening on the client-side within the browser:   Templating Commands and Conditional Display Logic The current templating proposal supports a small set of template commands - including if, else, and each statements. The number of template commands was deliberately kept small to encourage people to place more complicated logic outside of their templates. Even this small set of template commands is very useful though. Imagine, for example, that each contact can have zero or more phone numbers. The contacts could be represented by the JavaScript array below: The template below demonstrates how you can use the if and each template commands to conditionally display and loop the phone numbers for each contact: If a contact has one or more phone numbers then each of the phone numbers is displayed by iterating through the phone numbers with the each template command: The jQuery team designed the template commands so that they are extensible. If you have a need for a new template command then you can easily add new template commands to the default set of commands. Support for Client Data-Linking The ASP.NET team recently submitted another proposal and prototype to the jQuery forums (http://forum.jquery.com/topic/proposal-for-adding-data-linking-to-jquery). This proposal describes a new feature named data linking. Data Linking enables you to link a property of one object to a property of another object - so that when one property changes the other property changes.  Data linking enables you to easily keep your UI and data objects synchronized within a page. If you are familiar with the concept of data-binding then you will be familiar with data linking (in the proposal, we call the feature data linking because jQuery already includes a bind() method that has nothing to do with data-binding). Imagine, for example, that you have a page with the following HTML <input> elements: The following JavaScript code links the two INPUT elements above to the properties of a JavaScript “contact” object that has a “name” and “phone” property: When you execute this code, the value of the first INPUT element (#name) is set to the value of the contact name property, and the value of the second INPUT element (#phone) is set to the value of the contact phone property. The properties of the contact object and the properties of the INPUT elements are also linked – so that changes to one are also reflected in the other. Because the contact object is linked to the INPUT element, when you request the page, the values of the contact properties are displayed: More interesting, the values of the linked INPUT elements will change automatically whenever you update the properties of the contact object they are linked to. For example, we could programmatically modify the properties of the “contact” object using the jQuery attr() method like below: Because our two INPUT elements are linked to the “contact” object, the INPUT element values will be updated automatically (without us having to write any code to modify the UI elements): Note that we updated the contact object above using the jQuery attr() method. In order for data linking to work, you must use jQuery methods to modify the property values. Two Way Linking The linkBoth() method enables two-way data linking. The contact object and INPUT elements are linked in both directions. When you modify the value of the INPUT element, the contact object is also updated automatically. For example, the following code adds a client-side JavaScript click handler to an HTML button element. When you click the button, the property values of the contact object are displayed using an alert() dialog: The following demonstrates what happens when you change the value of the Name INPUT element and click the Save button. Notice that the name property of the “contact” object that the INPUT element was linked to was updated automatically: The above example is obviously trivially simple.  Instead of displaying the new values of the contact object with a JavaScript alert, you can imagine instead calling a web-service to save the object to a database. The benefit of data linking is that it enables you to focus on your data and frees you from the mechanics of keeping your UI and data in sync. Converters The current data linking proposal also supports a feature called converters. A converter enables you to easily convert the value of a property during data linking. For example, imagine that you want to represent phone numbers in a standard way with the “contact” object phone property. In particular, you don’t want to include special characters such as ()- in the phone number - instead you only want digits and nothing else. In that case, you can wire-up a converter to convert the value of an INPUT element into this format using the code below: Notice above how a converter function is being passed to the linkFrom() method used to link the phone property of the “contact” object with the value of the phone INPUT element. This convertor function strips any non-numeric characters from the INPUT element before updating the phone property.  Now, if you enter the phone number (206) 555-9999 into the phone input field then the value 2065559999 is assigned to the phone property of the contact object: You can also use a converter in the opposite direction also. For example, you can apply a standard phone format string when displaying a phone number from a phone property. Combining Templating and Data Linking Our goal in submitting these two proposals for templating and data linking is to make it easier to work with data when building websites and applications with jQuery. Templating makes it easier to display a list of database records retrieved from a database through an Ajax call. Data linking makes it easier to keep the data and user interface in sync for update scenarios. Currently, we are working on an extension of the data linking proposal to support declarative data linking. We want to make it easy to take advantage of data linking when using a template to display data. For example, imagine that you are using the following template to display an array of product objects: Notice the {{link name}} and {{link price}} expressions. These expressions enable declarative data linking between the SPAN elements and properties of the product objects. The current jQuery templating prototype supports extending its syntax with custom template commands. In this case, we are extending the default templating syntax with a custom template command named “link”. The benefit of using data linking with the above template is that the SPAN elements will be automatically updated whenever the underlying “product” data is updated.  Declarative data linking also makes it easier to create edit and insert forms. For example, you could create a form for editing a product by using declarative data linking like this: Whenever you change the value of the INPUT elements in a template that uses declarative data linking, the underlying JavaScript data object is automatically updated. Instead of needing to write code to scrape the HTML form to get updated values, you can instead work with the underlying data directly – making your client-side code much cleaner and simpler. Downloading Working Code Examples of the Above Scenarios You can download this .zip file to get with working code examples of the above scenarios.  The .zip file includes 4 static HTML page: Listing1_Templating.htm – Illustrates basic templating. Listing2_TemplatingConditionals.htm – Illustrates templating with the use of the if and each template commands. Listing3_DataLinking.htm – Illustrates data linking. Listing4_Converters.htm – Illustrates using a converter with data linking. You can un-zip the file to the file-system and then run each page to see the concepts in action. Summary We are excited to be able to begin participating within the open-source jQuery project.  We’ve received lots of encouraging feedback in response to our first two proposals, and we will continue to actively contribute going forward.  These features will hopefully make it easier for all developers (including ASP.NET developers) to build great Ajax applications. Hope this helps, Scott P.S. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu]

    Read the article

  • Html5 Input Validation Presentation

    - by srkirkland
    Last week I gave a presentations to the 2011 UC Davis IT Security Symposium that covered input validation features in HTML5.  I mostly discussed the following three topics: New Html5 Input Types (like <input type=”email” />) Html5 Constraints (like <input type=”text” required maxlength=”8” />) Polyfills The slides only cover part of the story since there are a few “live demos.”  You can find all of the demo code on my github repository https://github.com/srkirkland/ITSecuritySymposium.  You’ll need ASP.NET Mvc 3 installed to run them. The slides are also available in my GitHub repository, but I’ve also added them to slideshare as well because that’s what the cool kids do: http://www.slideshare.net/srkirkland/data-validation-in-web-applications. I believe the presentation was well received and most people learned something, so I just wanted to share.  When loading up the Html5 demo just click on the Html5 tab and go through each example. Enjoy!   [Examples from the Slides and Demos]  

    Read the article

  • The remote host closed the connection. The error code is 0x80070057

    - by Jalpesh P. Vadgama
    While creating a PDF or any file with asp.net pages I was getting following error. Exception Type:System.Web.HttpException The remote host closed the connection. The error code is 0x80072746. at System.Web.Hosting.ISAPIWorkerRequestInProcForIIS6.FlushCore(Byte[] status, Byte[] header, Int32 keepConnected, Int32 totalBodySize, Int32 numBodyFragments, IntPtr[] bodyFragments, Int32[] bodyFragmentLengths, Int32 doneWithSession, Int32 finalStatus, Boolean& async) at System.Web.Hosting.ISAPIWorkerRequest.FlushCachedResponse(Boolean isFinal) at System.Web.Hosting.ISAPIWorkerRequest.FlushResponse(Boolean finalFlush) at System.Web.HttpResponse.Flush(Boolean finalFlush) at System.Web.HttpResponse.Flush() at System.Web.UI.HttpResponseWrapper.System.Web.UI.IHttpResponse.Flush() at System.Web.UI.PageRequestManager.RenderFormCallback(HtmlTextWriter writer, Control containerControl) at System.Web.UI.Control.RenderChildrenInternal(HtmlTextWriter writer, ICollection children) at System.Web.UI.Control.RenderChildren(HtmlTextWriter writer) at System.Web.UI.HtmlControls.HtmlForm.RenderChildren(HtmlTextWriter writer) at System.Web.UI.HtmlControls.HtmlForm.Render(HtmlTextWriter output) at System.Web.UI.Control.RenderControlInternal(HtmlTextWriter writer, ControlAdapter adapter) at System.Web.UI.Control.RenderControl(HtmlTextWriter writer, ControlAdapter adapter) at System.Web.UI.HtmlControls.HtmlForm.RenderControl(HtmlTextWriter writer) at System.Web.UI.HtmlFormWrapper.System.Web.UI.IHtmlForm.RenderControl(HtmlTextWriter writer) at System.Web.UI.PageRequestManager.RenderPageCallback(HtmlTextWriter writer, Control pageControl) at System.Web.UI.Control.RenderChildrenInternal(HtmlTextWriter writer, ICollection children) at System.Web.UI.Control.RenderChildren(HtmlTextWriter writer) at System.Web.UI.Page.Render(HtmlTextWriter writer) at System.Web.UI.Control.RenderControlInternal(HtmlTextWriter writer, ControlAdapter adapter) at System.Web.UI.Control.RenderControl(HtmlTextWriter writer, ControlAdapter adapter) at System.Web.UI.Control.RenderControl(HtmlTextWriter writer) at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) Exception Type:System.Web.HttpException The remote host closed the connection. The error code is 0x80072746. at System.Web.Hosting.ISAPIWorkerRequestInProcForIIS6.FlushCore(Byte[] status, After searching and analyzing I have found that client was disconnected and still I am flushing the response which I am doing for creating PDF files from the stream. To fix this kind of error we can use Response.IsClientConnected property to check whether client is connected or not and then we can flush and end response from client. Here is the sample code to fix that problem. if (Response.IsClientConnected) { Response.Flush(); Response.End(); } That’s it Hope this will help you..Stay tuned for more.. Till that Happy Programming!! Technorati Tags: Exception,ASp.NET

    Read the article

  • Visual Studio 2010 Guatemala Community Launch

    - by carlone
      Bien Amig@s, el momento tan esperado ha llegado. Para dar nuevamente empuje a la Comunidad de Desarrolladores de .NET de Guatemala, hemos logrado confirmar el evento apoyados por Microsoft Guatemala. Este será un evento de 3 días en donde tendremos la oportunidad de visualizar todas las nuevas características, mejoras, tecnologías y herramientas disponibles en Visual Studio 2010. Cuando: Las sesiones se llevarán a cabo los días 23,24 y 25 de Junio del 2010 Donde: En las oficinas de Microsoft Guatemala 3a Avenida 13-78 Zona 10 Torre City Bank Off. 1101 Guatemala City Guatemala Costo: $0, si NADA, solo tu entusiasmo, participación y apoyo para el evento.   Temas: Silverlight/WPF 4.0 Development Session              23 de Junio Office Sharepoint Development Session                 24 de Junio ASP.NET and Web Development Session                25 de Junio   Give Aways: Si…., habrán sorpresas para los asistentes, así como también podremos compartir una pizza, alitas de pollo y más ….   Como me Inscribo para participar:   Muy simple, visita la siguiente página http://vs2010gt.eventbrite.com/ y listo.   Riega la Bola!, invita a tu colega, a tu amigo geek, la mara de la U, a los de la Office, es una única oportunidad que no te puedes perder. Esperamos contar con tu participación !!!!!!!!!!!!!!!   Saludos Cordiales, Carlos A. Lone sigueme en Twitter: @carloslonegt

    Read the article

  • A DirectoryCatalog class for Silverlight MEF (Managed Extensibility Framework)

    - by Dixin
    In the MEF (Managed Extension Framework) for .NET, there are useful ComposablePartCatalog implementations in System.ComponentModel.Composition.dll, like: System.ComponentModel.Composition.Hosting.AggregateCatalog System.ComponentModel.Composition.Hosting.AssemblyCatalog System.ComponentModel.Composition.Hosting.DirectoryCatalog System.ComponentModel.Composition.Hosting.TypeCatalog While in Silverlight, there is a extra System.ComponentModel.Composition.Hosting.DeploymentCatalog. As a wrapper of AssemblyCatalog, it can load all assemblies in a XAP file in the web server side. Unfortunately, in silverlight there is no DirectoryCatalog to load a folder. Background There are scenarios that Silverlight application may need to load all XAP files in a folder in the web server side, for example: If the Silverlight application is extensible and supports plug-ins, there would be a /ClinetBin/Plugins/ folder in the web server, and each pluin would be an individual XAP file in the folder. In this scenario, after the application is loaded and started up, it would like to load all XAP files in /ClinetBin/Plugins/ folder. If the aplication supports themes, there would be a /ClinetBin/Themes/ folder, and each theme would be an individual XAP file too. The application would qalso need to load all XAP files in /ClinetBin/Themes/. It is useful if we have a DirectoryCatalog: DirectoryCatalog catalog = new DirectoryCatalog("/Plugins"); catalog.DownloadCompleted += (sender, e) => { }; catalog.DownloadAsync(); Obviously, the implementation of DirectoryCatalog is easy. It is just a collection of DeploymentCatalog class. Retrieve file list from a directory Of course, to retrieve file list from a web folder, the folder’s “Directory Browsing” feature must be enabled: So when the folder is requested, it responses a list of its files and folders: This is nothing but a simple HTML page: <html> <head> <title>localhost - /Folder/</title> </head> <body> <h1>localhost - /Folder/</h1> <hr> <pre> <a href="/">[To Parent Directory]</a><br> <br> 1/3/2011 7:22 PM 185 <a href="/Folder/File.txt">File.txt</a><br> 1/3/2011 7:22 PM &lt;dir&gt; <a href="/Folder/Folder/">Folder</a><br> </pre> <hr> </body> </html> For the ASP.NET Deployment Server of Visual Studio, directory browsing is enabled by default: The HTML <Body> is almost the same: <body bgcolor="white"> <h2><i>Directory Listing -- /ClientBin/</i></h2> <hr width="100%" size="1" color="silver"> <pre> <a href="/">[To Parent Directory]</a> Thursday, January 27, 2011 11:51 PM 282,538 <a href="Test.xap">Test.xap</a> Tuesday, January 04, 2011 02:06 AM &lt;dir&gt; <a href="TestFolder/">TestFolder</a> </pre> <hr width="100%" size="1" color="silver"> <b>Version Information:</b>&nbsp;ASP.NET Development Server 10.0.0.0 </body> The only difference is, IIS’s links start with slash, but here the links do not. Here one way to get the file list is read the href attributes of the links: [Pure] private IEnumerable<Uri> GetFilesFromDirectory(string html) { Contract.Requires(html != null); Contract.Ensures(Contract.Result<IEnumerable<Uri>>() != null); return new Regex( "<a href=\"(?<uriRelative>[^\"]*)\">[^<]*</a>", RegexOptions.IgnoreCase | RegexOptions.CultureInvariant) .Matches(html) .OfType<Match>() .Where(match => match.Success) .Select(match => match.Groups["uriRelative"].Value) .Where(uriRelative => uriRelative.EndsWith(".xap", StringComparison.Ordinal)) .Select(uriRelative => { Uri baseUri = this.Uri.IsAbsoluteUri ? this.Uri : new Uri(Application.Current.Host.Source, this.Uri); uriRelative = uriRelative.StartsWith("/", StringComparison.Ordinal) ? uriRelative : (baseUri.LocalPath.EndsWith("/", StringComparison.Ordinal) ? baseUri.LocalPath + uriRelative : baseUri.LocalPath + "/" + uriRelative); return new Uri(baseUri, uriRelative); }); } Please notice the folders’ links end with a slash. They are filtered by the second Where() query. The above method can find files’ URIs from the specified IIS folder, or ASP.NET Deployment Server folder while debugging. To support other formats of file list, a constructor is needed to pass into a customized method: /// <summary> /// Initializes a new instance of the <see cref="T:System.ComponentModel.Composition.Hosting.DirectoryCatalog" /> class with <see cref="T:System.ComponentModel.Composition.Primitives.ComposablePartDefinition" /> objects based on all the XAP files in the specified directory URI. /// </summary> /// <param name="uri"> /// URI to the directory to scan for XAPs to add to the catalog. /// The URI must be absolute, or relative to <see cref="P:System.Windows.Interop.SilverlightHost.Source" />. /// </param> /// <param name="getFilesFromDirectory"> /// The method to find files' URIs in the specified directory. /// </param> public DirectoryCatalog(Uri uri, Func<string, IEnumerable<Uri>> getFilesFromDirectory) { Contract.Requires(uri != null); this._uri = uri; this._getFilesFromDirectory = getFilesFromDirectory ?? this.GetFilesFromDirectory; this._webClient = new Lazy<WebClient>(() => new WebClient()); // Initializes other members. } When the getFilesFromDirectory parameter is null, the above GetFilesFromDirectory() method will be used as default. Download the directory’s XAP file list Now a public method can be created to start the downloading: /// <summary> /// Begins downloading the XAP files in the directory. /// </summary> public void DownloadAsync() { this.ThrowIfDisposed(); if (Interlocked.CompareExchange(ref this._state, State.DownloadStarted, State.Created) == 0) { this._webClient.Value.OpenReadCompleted += this.HandleOpenReadCompleted; this._webClient.Value.OpenReadAsync(this.Uri, this); } else { this.MutateStateOrThrow(State.DownloadCompleted, State.Initialized); this.OnDownloadCompleted(new AsyncCompletedEventArgs(null, false, this)); } } Here the HandleOpenReadCompleted() method is invoked when the file list HTML is downloaded. Download all XAP files After retrieving all files’ URIs, the next thing becomes even easier. HandleOpenReadCompleted() just uses built in DeploymentCatalog to download the XAPs, and aggregate them into one AggregateCatalog: private void HandleOpenReadCompleted(object sender, OpenReadCompletedEventArgs e) { Exception error = e.Error; bool cancelled = e.Cancelled; if (Interlocked.CompareExchange(ref this._state, State.DownloadCompleted, State.DownloadStarted) != State.DownloadStarted) { cancelled = true; } if (error == null && !cancelled) { try { using (StreamReader reader = new StreamReader(e.Result)) { string html = reader.ReadToEnd(); IEnumerable<Uri> uris = this._getFilesFromDirectory(html); Contract.Assume(uris != null); IEnumerable<DeploymentCatalog> deploymentCatalogs = uris.Select(uri => new DeploymentCatalog(uri)); deploymentCatalogs.ForEach( deploymentCatalog => { this._aggregateCatalog.Catalogs.Add(deploymentCatalog); deploymentCatalog.DownloadCompleted += this.HandleDownloadCompleted; }); deploymentCatalogs.ForEach(deploymentCatalog => deploymentCatalog.DownloadAsync()); } } catch (Exception exception) { error = new InvalidOperationException(Resources.InvalidOperationException_ErrorReadingDirectory, exception); } } // Exception handling. } In HandleDownloadCompleted(), if all XAPs are downloaded without exception, OnDownloadCompleted() callback method will be invoked. private void HandleDownloadCompleted(object sender, AsyncCompletedEventArgs e) { if (Interlocked.Increment(ref this._downloaded) == this._aggregateCatalog.Catalogs.Count) { this.OnDownloadCompleted(e); } } Exception handling Whether this DirectoryCatelog can work only if the directory browsing feature is enabled. It is important to inform caller when directory cannot be browsed for XAP downloading. private void HandleOpenReadCompleted(object sender, OpenReadCompletedEventArgs e) { Exception error = e.Error; bool cancelled = e.Cancelled; if (Interlocked.CompareExchange(ref this._state, State.DownloadCompleted, State.DownloadStarted) != State.DownloadStarted) { cancelled = true; } if (error == null && !cancelled) { try { // No exception thrown when browsing directory. Downloads the listed XAPs. } catch (Exception exception) { error = new InvalidOperationException(Resources.InvalidOperationException_ErrorReadingDirectory, exception); } } WebException webException = error as WebException; if (webException != null) { HttpWebResponse webResponse = webException.Response as HttpWebResponse; if (webResponse != null) { // Internally, WebClient uses WebRequest.Create() to create the WebRequest object. Here does the same thing. WebRequest request = WebRequest.Create(Application.Current.Host.Source); Contract.Assume(request != null); if (request.CreatorInstance == WebRequestCreator.ClientHttp && // Silverlight is in client HTTP handling, all HTTP status codes are supported. webResponse.StatusCode == HttpStatusCode.Forbidden) { // When directory browsing is disabled, the HTTP status code is 403 (forbidden). error = new InvalidOperationException( Resources.InvalidOperationException_ErrorListingDirectory_ClientHttp, webException); } else if (request.CreatorInstance == WebRequestCreator.BrowserHttp && // Silverlight is in browser HTTP handling, only 200 and 404 are supported. webResponse.StatusCode == HttpStatusCode.NotFound) { // When directory browsing is disabled, the HTTP status code is 404 (not found). error = new InvalidOperationException( Resources.InvalidOperationException_ErrorListingDirectory_BrowserHttp, webException); } } } this.OnDownloadCompleted(new AsyncCompletedEventArgs(error, cancelled, this)); } Please notice Silverlight 3+ application can work either in client HTTP handling, or browser HTTP handling. One difference is: In browser HTTP handling, only HTTP status code 200 (OK) and 404 (not OK, including 500, 403, etc.) are supported In client HTTP handling, all HTTP status code are supported So in above code, exceptions in 2 modes are handled differently. Conclusion Here is the whole DirectoryCatelog’s looking: Please click here to download the source code, a simple unit test is included. This is a rough implementation. And, for convenience, some design and coding are just following the built in AggregateCatalog class and Deployment class. Please feel free to modify the code, and please kindly tell me if any issue is found.

    Read the article

  • Not Happy With the Monochrome Visual Studio 11 Beta UI

    - by Ken Cox [MVP]
    I can’t wait for a third-party to come out with tools to return some colour to the flat, monochrome look of Visual Studio 11 (beta). What bugs me most are the icons. I feel like a newbie when I have to squint and analyze the shape of icons on the debugging toolbar just to get the one I want. (Fortunately, the meddlers didn’t mess with the keyboard commands so I’m not totally lost.) Not sure what usability studies told MS that bland is better. Maybe it is for most people, but not for me.  Gray, shades of gray and black. Ugh. And don’t get me started on the stupidity of using all-caps for window titles. Who approved that? I see that there’s a UserVoice poll on the topic (http://visualstudio.uservoice.com/forums/121579-visual-studio/suggestions/2623017-add-some-color-to-visual-studio-11-beta) but I doubt that anything will change Microsoft’s opinion in time for the release. Once a product gets to a stable beta, most non-crashing stuff gets pushed to the next version. I hope I’m proved wrong. Fortunately, Visual Studio is quite customizable. Unless ‘Bland’ is hard-coded, some registry tweaks and a collection of replacement icons should allow dissenters like me back to productivity. BTW, other than hating the UI, VS 11 beta is working quite well for me on a .NET 4 project.Note: Although my username for the ASP.NET domain includes the letters "[MVP]", I'm no longer an MVP. Apparently it's nearly impossible to change a username in the system. My apologies for the misleading identifier but I tried to have it changed without success.

    Read the article

  • Full Circle

    - by capgpilk
    Things have been a little bit hectic these past 6 months hence the lack of posts. My excuse is a good one though, my wife gave birth to our first son Tom back in September and it has been one hell of a rollercoaster ride since then. Things have settled back down now thank hevens.My last development gig didn't quite work out so now I have took the plunge and started contracting. It turns out my first contract is with the NHS trust that I started my development career with, which seems a bit wierd as that was 10 years ago. A lot has changed in the techniques and tools the NHS now use to develop with, there is a lot more .net with a slant towards the web side of the spectrum (at least in this NHS trust). They are really getting to grips with the MVC platform, so you will hopefully see some MVC posts coming up. The really suprising thing is that the Intranet I developed back in 2001 (classic asp migrated to .net 1.0) is still up and running and will finally be fazed out these coming weeks (to Sharepoint). It is like seeing an old friend all grown up. 

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Is Your ASP.NET Development Server Not Working?

    - by Paulo Morgado
    Since Visual Studio 2005, Visual Studio comes with a development web server: the ASP.NET Development Server. I’ve been using this web server for simple test projects since than with Visual Studio 2005 and Visual Studio 2008 in Windows XP Professional on my work laptop and Windows XP Professional, Windows Vista 64bit Ultimate and Windows 7 64bit Ultimate at my home desktop without any problems (apart the known custom identity problem, that is). When I received my new work laptop, I installed Windows Vista 64bit Enterprise and Visual Studio 2008 and, for my surprise, the ASP.NET Development Server wasn’t working. I started looking for differences between the laptop environment and the desktop environment and the most notorious differences were: System Laptop Desktop SKU Windows Vista 64bit Enterprise Windows Vista 64bit Ultimate Joined to a Domain Yes No Anti-Virus McAffe ESET After asserting that no domain policies were being applied to my laptop and domain user and nothing was being logged by the ant-virus, my suspicions turned to the fact that the laptop was running an Enterprise SKU and the desktop was running an Ultimate SKU. After having problems with other applications I was sure that problem was the Enterprise SKU, but never found a solution to the problem. Because I wasn’t doing any web development at the time, I left it alone. After upgrading to Windows 7, the problem persisted but, because I wasn’t doing any web development at the time, once again, I left it alone. Now that I installed Visual Studio 2010 I had to solve this. After searching around forums and blogs that either didn’t offer an answer or offered very complicated workarounds that, sometimes, involved messing with the registry, I came to the conclusion that the solution is, in fact, very simple. When Windows Vista is installed, hosts file, according to this contains this definition: 127.0.0.1 localhost ::1 localhost This was not what I had on my laptop hosts file. What I had was this: #127.0.0.1 localhost #::1 localhost I might have changed it myself, but from the amount of people that I found complaining about this problem on Windows Vista, this was probably the way it was. The installation of Windows 7 leaves the hosts file like this: #127.0.0.1 localhost #::1 localhost And although the ASP.NET Development Server works fine on Windows 7 64bit Ultimate, on Windows 7 64bit Enterprise it needs to be change to this: 127.0.0.1 localhost ::1 localhost And I suspect it’s the same with Windows Vista 64bit Enterprise.

    Read the article

  • ASP.NET Cookies

    - by Aamir Hasan
    Cookies are domain specific and cannot be used across different network domains. The only domain that can read a cookie is the domain that sets it. It does not matter what domain name you set.Cookies are used to store small pieces of information on a client machine. A cookie can store only up to 4 KB of information. Generally cookies are used to store data which user types frequently such as user id and password to login to a site.The HttpCookie class defined in the System.Web namespace represents a browser cookie.Creating cookies (C#)Dim cookie As HttpCookie = New HttpCookie("UID")cookie.Value = "id"cookie.Expires = #3/30/2010#Response.Cookies.Add(cookie)cookie = New HttpCookie("username")cookie.Value = "username"cookie.Expires = #3/31/2010#Response.Cookies.Add(cookie)Creating cookies (VB.NET) HttpCookie cookie = Request.Cookies["Preferences"];      if (cookie == null)      {        cookie = new HttpCookie("Preferences");      }      cookie["Name"] = txtName.Text;      cookie.Expires = DateTime.Now.AddYears(1);      Response.Cookies.Add(cookie);Creating cookies (C#)    HttpCookie MyCookie = new HttpCookie("Background");    MyCookie.Value = "value";    Response.Cookies.Add(MyCookie);Reading cookies  (VB.NET)Dim cookieCols As New HttpCookieCollectioncookieCols = Request.CookiesDim str As String' Read and add all cookies to the list boxFor Each str In cookieColsListBox1.Items.Add("Value:" Request.Cookies(str).Value)Next Reading cookies (C#) ArrayList colCookies = new ArrayList();        for (int i = 0; i < Request.Cookies.Count; i++)            colCookies.Add(Request.Cookies[i]);        grdCookies.DataSource = colCookies;        grdCookies.DataBind();Deleting cookies (VB.NET)Dim cookieCols As New HttpCookieCollectioncookieCols = Request.CookiesDim str As String' Read and add all cookies to the list boxRequest.Cookies.Remove("PASS")Request.Cookies.Remove("UID")Deleting cookies (C#)string[] cookies = Request.Cookies.AllKeys;        foreach (string cookie in cookies)        {            ListBox1.Items.Add("Deleting " + cookie);            Response.Cookies[cookie].Expires = DateTime.Now.AddDays(-1);        }

    Read the article

  • Advise on how to move from a .net developer role to a web developer role

    - by dermd
    I've been working primarily as a .net developer for the past 4 years for a financial services company. I've worked on .net 1.1, 2.0, 3.5 and have done the 3.5 enterprise app developer cert (not that that's worth a whole lot!). Before that I worked as a java developer with a bit of Flex thrown in for just over a year. My educational background is an Electronic and computer engineering degree, a higher diploma in systems analysis as well as one in web development (this was mainly java - JSP, Spring, etc) and a science masters in software design and development. I really feel like a change and would like to move to a different field to experience something different. I've done some courses in RoR and played around with it a bit in my spare time. Similarly I've done various web and mobile courses and done up some mobile webapps along with android and ios equivalents (haven't tried pushing them up to the app stores yet but may be worth tidying them up and doing that). I currently work long enough hours so find it hard to find time to work on too many side projects to get a decent portfolio together. But when I do work on the web stuff I do find it really enjoyable so think it's something I'd like to do full time. However, since my experience is pretty much all .net and financial services I find it very hard to get my foot in the door anywhere or get past a phone screen unless their specifically looking for someone with .net knowledge. What is the best way to move into a web development role without starting from scratch again. I do think a lot of the skills I have translate over but I seem to just get paired with .net jobs whenever I look around? Apart from js, jquery, html5, objective C are there any other technologies I should be looking into?

    Read the article

  • Visual Studio 2010 Service Pack 1 And .NET Framework 4.0 Update

    - by Paulo Morgado
    As announced by Jason Zender in his blog post, Visual Studio 2010 Service Pack 1 is available for download for MSDN subscribers since March 8 and is available to the general public since March 10. Brian Harry provides information related to TFS and S. "Soma" Somasegar provides information on the latest Visual Studio 2010 enhancements. With this service pack for Visual Studio an update to the .NET Framework 4.0 is also released. For detailed information about these releases, please refer to the corresponding KB articles: Update for Microsoft .NET Framework 4 Description of Visual Studio 2010 Service Pack 1 Update: When I was upgrading from the Beta to the final release on Windows 7 Enterprise 64bit, the instalation hanged with Returning IDCANCEL. INSTALLMESSAGE_WARNING [Warning 1946.Property 'System.AppUserModel.ExcludeFromShowInNewInstall' for shortcut 'Manage Help Settings - ENU.lnk' could not be set.]. Canceling the installation didn’t work and I had to kill the setup.exe process. When reapplying it again, rollbacks were reported, so I reapplied it again – this time with succes.

    Read the article

  • Can a .Net 1.1 client call a .Net 2.0 web service? If so, how?

    - by Colin
    We have finally upgraded our web services from .Net 1.1 to .Net 2.0/3.5. One of the clients that calls these web services is run as a windows service. It is probable that the server will be upgraded at customer sites and the windows service will not (at least for some time). Is it possible to massage my .Net 2.0 web services so they will correctly service the calls from the .Net 1.1 client? It doesn't happen in my test environment and I can't find any docs about it online. Thanks for your help, -colin-

    Read the article

< Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >