Search Results

Search found 26124 results on 1045 pages for 'unreal development kit'.

Page 473/1045 | < Previous Page | 469 470 471 472 473 474 475 476 477 478 479 480  | Next Page >

  • Game engine like Unity 3D that allow me to use .NET code

    - by Pking
    I've been looking at Unity 3D for developing a 3D PC game and I really like the scene editor and how it simplifies the process of constructing 3D scenes, managing assets, animations, transitions etc. However, I don't want to restrict myself to using the Unity 3D scripts for handling every bit of game logic in the game. E.g. If I want to construct a RPG dialogue system I don't want to do it with unity 3d scripts - I'd like to use C#/.net. Also, I might want to use e.g. windows azure and sql azure as backend, and use 3rd party .net libraries such as reactive-extensions etc. Is there a .net engine out there that helps me with asset loading, animations, physics, transitions, etc. with a scene editor, but allow me to plug it into a visual studio .net project? Thanks

    Read the article

  • Struct Method for Loops Problem

    - by Annalyne
    I have tried numerous times how to make a do-while loop using the float constructor for my code but it seems it does not work properly as I wanted. For summary, I am making a TBRPG in C++ and I encountered few problems. But before that, let me post my code. #include <iostream> #include <string> #include <ctime> #include <cstdlib> using namespace std; int char_level = 1; //the starting level of the character. string town; //town string town_name; //the name of the town the character is in. string charname; //holds the character's name upon the start of the game int gems = 0; //holds the value of the games the character has. const int MAX_ITEMS = 15; //max items the character can carry string inventory [MAX_ITEMS]; //the inventory of the character in game int itemnum = 0; //number of items that the character has. bool GameOver = false; //boolean intended for the game over scr. string monsterTroop [] = {"Slime", "Zombie", "Imp", "Sahaguin, Hounds, Vampire"}; //monster name float monsterTroopHealth [] = {5.0f, 10.0f, 15.0f, 20.0f, 25.0f}; // the health of the monsters int monLifeBox; //life carrier of the game's enemy troops int enemNumber; //enemy number //inventory[itemnum++] = "Sword"; class RPG_Game_Enemy { public: void enemyAppear () { srand(time(0)); enemNumber = 1+(rand()%3); if (enemNumber == 1) cout << monsterTroop[1]; //monster troop 1 else if (enemNumber == 2) cout << monsterTroop[2]; //monster troop 2 else if (enemNumber == 3) cout << monsterTroop[3]; //monster troop 3 else if (enemNumber == 4) cout << monsterTroop[4]; //monster troop 4 } void enemDefeat () { cout << "The foe has been defeated. You are victorious." << endl; } void enemyDies() { //if the enemy dies: //collapse declaration cout << "The foe vanished and you are victorious!" << endl; } }; class RPG_Scene_Battle { public: RPG_Scene_Battle(float ini_health) : health (ini_health){}; float getHealth() { return health; } void setHealth(float rpg_val){ health = rpg_val;}; private: float health; }; //---------------------------------------------------------------// // Conduct Damage for the Scene Battle's Damage //---------------------------------------------------------------// float conductDamage(RPG_Scene_Battle rpg_tr, float damage) { rpg_tr.setHealth(rpg_tr.getHealth() - damage); return rpg_tr.getHealth(); }; // ------------------------------------------------------------- // void RPG_Scene_DisplayItem () { cout << "Items: \n"; for (int i=0; i < itemnum; ++i) cout << inventory[i] <<endl; }; In this code I have so far, the problem I have is the battle scene. For example, the player battles a Ghost with 10 HP, when I use a do while loop to subtract the HP of the character and the enemy, it only deducts once in the do while. Some people said I should use a struct, but I have no idea how to make it. Is there a way someone can display a code how to implement it on my game? Edit: I made the do-while by far like this: do RPG_Scene_Battle (player, 20.0f); RPG_Scene_Battle (enemy, 10.0f); cout << "Battle starts!" <<endl; cout << "You used a blade skill and deducted 2 hit points to the enemy!" conductDamage (enemy, 2.0f); while (enemy!=0) also, I made something like this: #include <iostream> using namespace std; int gems = 0; class Entity { public: Entity(float startingHealth) : health(startingHealth){}; // initialize health float getHealth(){return health;} void setHealth(float value){ health = value;}; private: float health; }; float subtractHealthFrom(Entity& ent, float damage) { ent.setHealth(ent.getHealth() - damage); return ent.getHealth(); }; int main () { Entity character(10.0f); Entity enemy(10.0f); cout << "Hero Life: "; cout << subtractHealthFrom(character, 2.0f) <<endl; cout << "Monster Life: "; cout << subtractHealthFrom(enemy, 2.0f) <<endl; cout << "Hero Life: "; cout << subtractHealthFrom(character, 2.0f) <<endl; cout << "Monster Life: "; cout << subtractHealthFrom(enemy, 2.0f) <<endl; }; Struct method, they say, should solve this problem. How can I continously deduct hp from the enemy? Whenever I deduct something, it would return to its original value -_-

    Read the article

  • 2D isometric picking

    - by Bikonja
    I'm trying to implement picking in my isometric 2D game, however, I am failing. First of all, I've searched for a solution and came to several, different equations and even a solution using matrices. I tried implementing every single one, but none of them seem to work for me. The idea is that I have an array of tiles, with each tile having it's x and y coordinates specified (in this simplified example it's by it's position in the array). I'm thinking that the tile (0, 0) should be on the left, (max, 0) on top, (0, max) on the bottom and (max, max) on the right. I came up with this loop for drawing, which googling seems to have verified as the correct solution, as has the rendered scene (ofcourse, it could still be wrong, also, forgive the messy names and stuff, it's just a WIP proof of concept code) // Draw code int col = 0; int row = 0; for (int i = 0; i < nrOfTiles; ++i) { // XOffset and YOffset are currently hardcoded values, but will represent camera offset combined with HUD offset Point tile = IsoToScreen(col, row, TileWidth / 2, TileHeight / 2, XOffset, YOffset); int x = tile.X; int y = tile.Y; spriteBatch.Draw(_tiles[i], new Rectangle(tile.X, tile.Y, TileWidth, TileHeight), Color.White); col++; if (col >= Columns) // Columns is the number of tiles in a single row { col = 0; row++; } } // Get selection overlay location (removed check if selection exists for simplicity sake) Point tile = IsoToScreen(_selectedTile.X, _selectedTile.Y, TileWidth / 2, TileHeight / 2, XOffset, YOffset); spriteBatch.Draw(_selectionTexture, new Rectangle(tile.X, tile.Y, TileWidth, TileHeight), Color.White); // End of draw code public Point IsoToScreen(int isoX, int isoY, int widthHalf, int heightHalf, int xOffset, int yOffset) { Point newPoint = new Point(); newPoint.X = widthHalf * (isoX + isoY) + xOffset; newPoint.Y = heightHalf * (-isoX + isoY) + yOffset; return newPoint; } This code draws the tiles correctly. Now I wanted to do picking to select the tiles. For this, I tried coming up with equations of my own (including reversing the drawing equation) and I tried multiple solutions I found on the internet and none of these solutions worked. Trying out lots of solutions, I came upon one that didn't work, but it seemed like an axis was just inverted. I fiddled around with the equations and somehow managed to get it to actually work (but have no idea why it works), but while it's close, it still doesn't work. I'm not really sure how to describe the behaviour, but it changes the selection at wrong places, while being fairly close (sometimes spot on, sometimes a tile off, I believe never more off than the adjacent tile). This is the code I have for getting which tile coordinates are selected: public Point? ScreenToIso(int screenX, int screenY, int tileHeight, int offsetX, int offsetY) { Point? newPoint = null; int nX = -1; int nY = -1; int tX = screenX - offsetX; int tY = screenY - offsetY; nX = -(tY - tX / 2) / tileHeight; nY = (tY + tX / 2) / tileHeight; newPoint = new Point(nX, nY); return newPoint; } I have no idea why this code is so close, especially considering it doesn't even use the tile width and all my attempts to write an equation myself or use a solution I googled failed. Also, I don't think this code accounts for the area outside the "tile" (the transparent part of the tile image), for which I intend to add a color map, but even if that's true, it's not the problem as the selection sometimes switches on approx 25% or 75% of width or height. I'm thinking I've stumbled upon a wrong path and need to backtrack, but at this point, I'm not sure what to do so I hope someone can shed some light on my error or point me to the right path. It may be worth mentioning that my goal is to not only pick the tile. Each main tile will be divided into 5x5 smaller tiles which won't be drawn seperately from the whole main tile, but they will need to be picked out. I think a color map of a main tile with different colors for different coordinates within the main tile should take care of that though, which would fall within using a color map for the main tile (for the transparent parts of the tile, meaning parts that possibly belong to other tiles).

    Read the article

  • List has no value after adding values in

    - by Sigh-AniDe
    I am creating a a ghost sprite that will mimic the main sprite after 10 seconds of the game. I am storing the users movements in a List<string> and i am using a foreach loop to run the movements. The problem is when i run through the game by adding breakpoints the movements are being added to the List<string> but when the foreach runs it shows that the list has nothing in it. Why does it do that? How can i fix it? this is what i have: public List<string> ghostMovements = new List<string>(); public void UpdateGhost(float scalingFactor, int[,] map) { // At this foreach, ghostMovements has nothing in it foreach (string s in ghostMovements) { // current position of the ghost on the tiles int mapX = (int)(ghostPostition.X / scalingFactor); int mapY = (int)(ghostPostition.Y / scalingFactor); if (s == "left") { switch (ghostDirection) { case ghostFacingUp: angle = 1.6f; ghostDirection = ghostFacingRight; Program.form.direction = ""; break; case ghostFacingRight: angle = 3.15f; ghostDirection = ghostFacingDown; Program.form.direction = ""; break; case ghostFacingDown: angle = -1.6f; ghostDirection = ghostFacingLeft; Program.form.direction = ""; break; case ghostFacingLeft: angle = 0.0f; ghostDirection = ghostFacingUp; Program.form.direction = ""; break; } } } } // The movement is captured here and added to the list public void captureMovement() { ghostMovements.Add(Program.form.direction); }

    Read the article

  • Delaying a Foreach loop half a second

    - by Sigh-AniDe
    I have created a game that has a ghost that mimics the movement of the player after 10 seconds. The movements are stored in a list and i use a foreach loop to go through the commands. The ghost mimics the movements but it does the movements way too fast, in split second from spawn time it catches up to my current movement. How do i slow down the foreach so that it only does a command every half a second? I don't know how else to do it. Please help this is what i tried : The foreach runs inside the update method DateTime dt = DateTime.Now; foreach ( string commandDirection in ghostMovements ) { int mapX = ( int )( ghostPostition.X / scalingFactor ); int mapY = ( int )( ghostPostition.Y / scalingFactor ); // If the dt is the same as current time if ( dt == DateTime.Now ) { if ( commandDirection == "left" ) { switch ( ghostDirection ) { case ghostFacingUp: angle = 1.6f; ghostDirection = ghostFacingRight; Program.form.direction = ""; dt.AddMilliseconds( 500 );// add half a second to dt break; case ghostFacingRight: angle = 3.15f; ghostDirection = ghostFacingDown; Program.form.direction = ""; dt.AddMilliseconds( 500 ); break; case ghostFacingDown: angle = -1.6f; ghostDirection = ghostFacingLeft; Program.form.direction = ""; dt.AddMilliseconds( 500 ); break; case ghostFacingLeft: angle = 0.0f; ghostDirection = ghostFacingUp; Program.form.direction = ""; dt.AddMilliseconds( 500 ); break; } } } }

    Read the article

  • Balancing agressive invites

    - by Nils Munch
    I am designing a trading card game for mobiles, with the possibility to add cards to your collection using Gems, aquired through victories and inapp purchases. I am thinking to increase the spread of the game with a tracking system on game invites, enabling the user to invite a friend to play the game. If the friend doesn't own the game client (which is free) he will be offered to download it. If he joins the game, the original player earns X amount of gems as an reward. There can only be one player per mobile device, which should rule out some harvesting. My question is, how do you think the structure of this would be recieved ? All invites are mail based, unless the player already exists in the game world (then he gets a ingame invitation.) I have set a flood filter, so a player can only invite a friend (without the client installed) once a month.

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • How do I design a game framework for fast reaction to user input?

    - by Miro
    I've played some games at cca 30 fps and some of them had low reaction time - cca 0.1sec. I hadn't knew why. Now when I'm designing my framework for crossplatform game, I know why. Probably they've been preparing new frame during rendering the previous. RENDER 1 | RENDER 2 | RENDER 3 | RENDER 4 PREPARE 2 | PREPARE 3 | PREPARE 4 | PREPARE 5 I see first frame when second frame is being rendered and third frame being prepared. If I react in that time to 1st frame it will result in forth frame. So it takes 3/FPS seconds to appear results. In 30 fps it would be 100ms, what is quite bad. So i'm wondering what should I design my framework to response to user interaction quickly?

    Read the article

  • Enemy Spawning method in a Top-Down Shooter

    - by Chris Waters
    I'm working on a top-down shooter akin to DoDonPachi, Ikaruga, etc. The camera movement through the world is handled automatically with the player able to move inside of the camera's visible region. Along the way, enemies are scripted to spawn at particular points along the path. While this sounds straightforward, I could see two ways to define these points: Camera's position: 'trigger' spawning as the camera passes by the points Time along path: "30 seconds in, spawn 2 enemies" In both cases, the camera-relative positions would be defined as well as the behavior of the enemy. The way I see it, the way you define these points will directly affect how the 'level editor', or what have you, will work. Would there be any benefits of one approach over the other?

    Read the article

  • Creating my own kill cam

    - by DalexL
    I plan on creating my own kill cam system for a sandbox tool set. After thinking about the mechanics of the kill cam itself, however, I'm quite lost. I'm trying to recreate the ones commonly seen in call of duty games that show, from the view of the killer, the actual killing scene. My Thoughts: -I can't just keep in memory when people kill others because I wouldn't know when to start the 'recording process'. There is on way for me to accurately determine when somebody is 'about' to kill someone. -My only real idea so far is to have a complete duplicate of everything loaded off to the side copying all the movement from the original world but with a 10 second delay. That way, all the kill cams would be 10 seconds long and the persons camera would just be moved to the second world of their killer. My Questions: Is there already an accepted way to do this? Does anybody have any good ideas for something like this? Thanks if you can!

    Read the article

  • How do I implement SkyBox in xna 4.0 Reach Profile (for Windows Phone 7)?

    - by Biny
    I'm trying to Implement SkyBox in my phone game. Most of the samples in the web are for HiDef profile, and they are using custom effects (that not supported on Windows Phone). I've tried to follow this guide. But for some reason my SkyBox is not rendered. This is my SkyBox class: using System; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Rocuna.Core; using Rocuna.GameEngine.Graphics; using Rocuna.GameEngine.Graphics.Components; namespace Rocuna.GameEngine.Extension.WP7.Graphics { /// <summary> /// Sky box element for phone games. /// </summary> public class SkyBox : SkyBoxBase { /// <summary> /// Initializes a new instance of the <see cref="SkyBoxBase"/> class. /// </summary> /// <param name="game">The Game that the game component should be attached to.</param> public SkyBox(TextureCube cube, Game game) : base(game) { Cube = cube; CubeFaces = new Texture2D[6]; PositionOffset = new Vector3(20, 20, 20); CreateGraphic(512); StripTexturesFromCube(); InitializeData(Game.GraphicsDevice); } #region Properties /// <summary> /// Gets or sets the position offset. /// </summary> /// <value> /// The position offset. /// </value> public Vector3 PositionOffset { get; set; } /// <summary> /// Gets or sets the position. /// </summary> /// <value> /// The position. /// </value> public Vector3 Position { get; set; } /// <summary> /// Gets or sets the cube. /// </summary> /// <value> /// The cube. /// </value> public TextureCube Cube { get; set; } /// <summary> /// Gets or sets the pixel array. /// </summary> /// <value> /// The pixel array. /// </value> public Color[] PixelArray { get; set; } /// <summary> /// Gets or sets the cube faces. /// </summary> /// <value> /// The cube faces. /// </value> public Texture2D[] CubeFaces { get; set; } /// <summary> /// Gets or sets the vertex buffer. /// </summary> /// <value> /// The vertex buffer. /// </value> public VertexBuffer VertexBuffer { get; set; } /// <summary> /// Gets or sets the index buffer. /// </summary> /// <value> /// The index buffer. /// </value> public IndexBuffer IndexBuffer { get; set; } /// <summary> /// Gets or sets the effect. /// </summary> /// <value> /// The effect. /// </value> public BasicEffect Effect { get; set; } #endregion protected override void LoadContent() { } public override void Update(GameTime gameTime) { var camera = Game.GetService<GraphicManager>().CurrentCamera; this.Position = camera.Position + PositionOffset; base.Update(gameTime); } public override void Draw(GameTime gameTime) { DrawOrder = int.MaxValue; var graphics = Effect.GraphicsDevice; graphics.DepthStencilState = new DepthStencilState() { DepthBufferEnable = false }; graphics.RasterizerState = new RasterizerState() { CullMode = CullMode.None }; graphics.BlendState = new BlendState(); graphics.SamplerStates[0] = SamplerState.AnisotropicClamp; graphics.SetVertexBuffer(VertexBuffer); graphics.Indices = IndexBuffer; Effect.Texture = CubeFaces[0]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 0, 2); Effect.Texture = CubeFaces[1]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 6, 2); Effect.Texture = CubeFaces[2]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 12, 2); Effect.Texture = CubeFaces[3]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 18, 2); Effect.Texture = CubeFaces[4]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 24, 2); Effect.Texture = CubeFaces[5]; Effect.CurrentTechnique.Passes[0].Apply(); graphics.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, _vertices.Count, 30, 2); base.Draw(gameTime); } #region Fields private List<VertexPositionNormalTexture> _vertices = new List<VertexPositionNormalTexture>(); private List<ushort> _indices = new List<ushort>(); #endregion #region Private methods private void InitializeData(GraphicsDevice graphicsDevice) { VertexBuffer = new VertexBuffer(graphicsDevice, typeof(VertexPositionNormalTexture), _vertices.Count, BufferUsage.None); VertexBuffer.SetData<VertexPositionNormalTexture>(_vertices.ToArray()); // Create an index buffer, and copy our index data into it. IndexBuffer = new IndexBuffer(graphicsDevice, typeof(ushort), _indices.Count, BufferUsage.None); IndexBuffer.SetData<ushort>(_indices.ToArray()); // Create a BasicEffect, which will be used to render the primitive. Effect = new BasicEffect(graphicsDevice); Effect.TextureEnabled = true; Effect.EnableDefaultLighting(); } private void CreateGraphic(float size) { Vector3[] normals = { Vector3.Right, Vector3.Left, Vector3.Up, Vector3.Down, Vector3.Backward, Vector3.Forward, }; Vector2[] textureCoordinates = { Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, Vector2.UnitY, Vector2.Zero, Vector2.UnitX, Vector2.One, }; var index = 0; foreach (var normal in normals) { var side1 = new Vector3(normal.Z, normal.X, normal.Y); var side2 = Vector3.Cross(normal, side1); AddIndex(CurrentVertex + 0); AddIndex(CurrentVertex + 1); AddIndex(CurrentVertex + 2); AddIndex(CurrentVertex + 0); AddIndex(CurrentVertex + 2); AddIndex(CurrentVertex + 3); AddVertex((normal - side1 - side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal - side1 + side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal + side1 + side2) * size / 2, normal, textureCoordinates[index++]); AddVertex((normal + side1 - side2) * size / 2, normal, textureCoordinates[index++]); } } protected void StripTexturesFromCube() { PixelArray = new Color[Cube.Size * Cube.Size]; for (int s = 0; s < CubeFaces.Length; s++) { CubeFaces[s] = new Texture2D(Game.GraphicsDevice, Cube.Size, Cube.Size, false, SurfaceFormat.Color); switch (s) { case 0: Cube.GetData<Color>(CubeMapFace.PositiveX, PixelArray); CubeFaces[s].SetData<Color>(PixelArray); break; case 1: Cube.GetData(CubeMapFace.NegativeX, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 2: Cube.GetData(CubeMapFace.PositiveY, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 3: Cube.GetData(CubeMapFace.NegativeY, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 4: Cube.GetData(CubeMapFace.PositiveZ, PixelArray); CubeFaces[s].SetData(PixelArray); break; case 5: Cube.GetData(CubeMapFace.NegativeZ, PixelArray); CubeFaces[s].SetData(PixelArray); break; } } } protected void AddVertex(Vector3 position, Vector3 normal, Vector2 textureCoordinates) { _vertices.Add(new VertexPositionNormalTexture(position, normal, textureCoordinates)); } protected void AddIndex(int index) { if (index > ushort.MaxValue) throw new ArgumentOutOfRangeException("index"); _indices.Add((ushort)index); } protected int CurrentVertex { get { return _vertices.Count; } } #endregion } }

    Read the article

  • Depth is disabled - How to turn on?

    - by marc wellman
    In XNA 3.1 is there any other way to disable depth in 3D Worlds using DirectX models other than GraphicsDevice.RenderState.DepthBufferEnable = false; ? The reason for my question is I have quite a huge program which offers a 3D World with a couple of 3D DirectX models inside. Depth was never an issue since it ever worked fine but since a few days after doing some modifications my models are all depth-translucent i.e. depth-buffering and/or culling seems to be disabled. But in my whole source code I never touch any of the options related to Depth or Culling which means I never turn these settings on explicitly nor turn it off somewhere. So I am searching for some other statement maybe related to the GraphicsDevice that implicitly turns depth off - but I can't find it. (Sorry that I don't post any source code but I have too much source code and I simply don't know where to search) UPDATE: These are a couple of simple objects seen with correct depth. These are the same objects in their current state.

    Read the article

  • Where to implement storable items

    - by James Hay
    I'm creating a multiplayer online trading game. The things that are traded range from raw items to complex products. For example Steel is a raw item. Mechanical Assembly is a more complex item that requires 2x Steel and maybe 1x Rubber. Then Hydraulics is an item that contains 2x Mechanical Assemblies and 1x Electronics (which is another complex item). So and so forth. These items will be created by me, players can't create their own items, so it doesn't need to be able to handle arbitrary layers of complexity for items. If my example isn't clear, think Minecraft. You have wooden planks, which can be made into sticks. From there the sticks - combined with metals - can be made into tools. My game is nothing to do with minecraft or any sandbox building game, but it uses a similar progressive complexity to creating items that I want to have in my game. My question is basically, how do you store something like this assuming that I will want to add more items in the future? Do you store it in a database or in a seperate library that the game uses? EDIT None of the items actually "do" anything, they are simply there to either sell, purchase, or combine with other items to make a more complex item, which can then be sold, purchased or combined... you get the idea. The items themselves would not have any properties, but the instances of the items would. For example an item that one player has would have a certain "quality" and if they were selling it a certain "price". An instance of that same item that a different player had would need to have a different "quality" and "price" if they were selling it. I think the price part will not be required on an individual item because instead I would have a "sale" object which was for a price and contained certain items.

    Read the article

  • Pattern for performing game actions

    - by Arkiliknam
    Is there a generally accepted pattern for performing various actions within a game? A way a player can perform actions and also that an AI might perform actions, such as move, attack, self-destruct, etc. I currently have an abstract BaseAction which uses .NET generics to specify the different objects that get returned by the various actions. This is all implemented in a pattern similar to the Command, where each action is responsible for itself and does all that it needs. My reasoning for being abstract is so that I may have a single ActionHandler, and AI can just queue up different action implementing the baseAction. And the reason it is generic is so that the different actions can return result information relevant to the action (as different actions can have totally different outcomes in the game), along with some common beforeAction and afterAction implementations. So... is there a more accepted way of doing this, or does this sound alright?

    Read the article

  • Incorrect results for frustum cull

    - by DeadMG
    Previously, I had a problem with my frustum culling producing too optimistic results- that is, including many objects that were not in the view volume. Now I have refactored that code and produced a cull that should be accurate to the actual frustum, instead of an axis-aligned box approximation. The problem is that now it never returns anything to be in the view volume. As the mathematical support library I'm using does not provide plane support functions, I had to code much of this functionality myself, and I'm not really the mathematical type, so it's likely that I've made some silly error somewhere. As follows is the relevant code: class Plane { public: Plane() { r0 = Math::Vector(0,0,0); normal = Math::Vector(0,1,0); } Plane(Math::Vector p1, Math::Vector p2, Math::Vector p3) { r0 = p1; normal = Math::Cross((p2 - p1), (p3 - p1)); } Math::Vector r0; Math::Vector normal; }; This class represents one plane as a point and a normal vector. class Frustum { public: Frustum( const std::array<Math::Vector, 8>& points ) { planes[0] = Plane(points[0], points[1], points[2]); planes[1] = Plane(points[4], points[5], points[6]); planes[2] = Plane(points[0], points[1], points[4]); planes[3] = Plane(points[2], points[3], points[6]); planes[4] = Plane(points[0], points[2], points[4]); planes[5] = Plane(points[1], points[3], points[5]); } Plane planes[6]; }; The points are passed in order where (the inverse of) each bit of the index of each point indicates whether it's the left, top, and back of the frustum, respectively. As such, I just picked any three points where they all shared one bit in common to define the planes. My intersection test is as follows (based on this): bool Intersects(Math::AABB lhs, const Frustum& rhs) const { for(int i = 0; i < 6; i++) { Math::Vector pvertex = lhs.TopRightFurthest; Math::Vector nvertex = lhs.BottomLeftClosest; if (rhs.planes[i].normal.x <= -0.0f) { std::swap(pvertex.x, nvertex.x); } if (rhs.planes[i].normal.y <= -0.0f) { std::swap(pvertex.y, nvertex.y); } if (rhs.planes[i].normal.z <= -0.0f) { std::swap(pvertex.z, nvertex.z); } if (Math::Dot(rhs.planes[i].r0, nvertex) < 0.0f) { return false; } } return true; } Also of note is that because I'm using a left-handed co-ordinate system, I wrote my Cross function to return the negative of the formula given on Wikipedia. Any suggestions as to where I've made a mistake?

    Read the article

  • Architecture of an action multiplayer game from scratch

    - by lcf
    Not sure whether it's a good place to ask (do point me to a better one if it's not), but since what we're developing is a game - here it goes. So this is a "real-time" action multiplayer game. I have familiarized myself with concepts like lag compensation, view interpolation, input prediction and pretty much everything that I need for this. I have also prepared a set of prototypes to confirm that I understood everything correctly. My question is about the situation when game engine must be rewind to the past to find out whether there was a "hit" (sometimes it may involve the whole 'recomputation' of the world from that moment in the past up to the present moment. I already have a piece of code that does it, but it's not as neat as I need it to be. The domain logic of the app (the physics of the game) must be separated from the presentation (render) and infrastructure tools (e.g. the remote server interaction specifics). How do I organize all this? :) Is there any worthy implementation with open sources I can take a look at? What I'm thinking is something like this: -> Render / User Input -> Game Engine (this is the so called service layer) -> Processing User Commands & Remote Server -> Domain (Physics) How would you add into this scheme the concept of "ticks" or "interactions" with the possibility to rewind and recalculate "the game"? Remember, I cannot change the Domain/Physics but only the Game Engine. Should I store an array of "World's States"? Should they be just some representations of the world, optimized for this purpose somehow (how?) or should they be actual instances of the world (i.e. including behavior and all that). Has anybody had similar experience? (never worked on a game before if that matters)

    Read the article

  • The purpose of using invert and transpose

    - by user699215
    In openGl ES and the World of 3D - why use the invers matrix? The thing is that I dont have any intuition to, why it is used, therefore please correct me: As fare as I understand, it is used in shaders - and can help you to figure out the opposite direction of the normals? Invers in ordinary numbers is like; The product of a number and its multiplicative inverse is 1. Observe that 3/5 * 5/3 = 1. In a matrix this will give you the Identity Matrix, which is the base coordinate system or the orion of the World space - right. But the invers is - some other coordinate system? You can use the transpose(Row-major order to Column-major order) of a square matrix to find the inverted matrix, as calculating the invers is process heavy - and the transpose is giving you the inverted matrix as a bi product? Again, I am looking for getting some intuition of this - and therefore be able to use it as intended. Thank you for any reply that will guide me in the right direction. Regards

    Read the article

  • Linear search vs Octree (Frustum cull)

    - by Dave
    I am wondering whether I should look into implementing an octree of some kind. I have a very simple game which consists of a 3d plane for the floor. There are multiple objects scattered around on the ground, each one has an aabb in world space. Currently I just do a loop through the list of all these objects and check if its bounding box intersects with the frustum, it works great but I am wondering if if it would be a good investment in an octree. I only have max 512 of these objects on the map and they all contain bounding boxes. I am not sure if an octree would make it faster since I have so little objects in the scene.

    Read the article

  • Adding 'swerve' to a direction

    - by Skoder
    Hey. I'm not much of a maths expert, so this is probably quite straight forward. I was playing a soccer flash game where you take free kicks. You provide Power, Swerve and Direction. I'm reading up on vectors and such so I can use the direction and power information to shoot the ball with the correct velocity. What I don't understand is how the 'Swerve' information is used. What formula connects the Swerve information with the Direction and Power? (This is all in 2D) Thanks for any advice.

    Read the article

  • Circle collision detection and Vector math: HELP?

    - by Griffin
    Hey so i'm currently going through the wildbunny blog to learn about collision detection, but i'm a bit confused on how the vectors he's talking about come into play QUOTED BLOG: p = ||A-B|| – (r1+r2) The two spheres are penetrating by distance p. We would also like the penetration vector so that we can correct the penetration once we discover it. This is the vector that moves both circles to the point where they just touch, correcting the penetration. Importantly it is not only just a vector that does this, it is the only vector which corrects the penetration by moving the minimum amount. This is important because we only want to correct the error, not introduce more by moving too much when we correct, or too little. N = (A-B) / ||A-B|| P = N*p Here we have calculated the normalised vector N between the two centres and the penetration vector P by multiplying our unit direction by the penetration distance. Ok so i understand that p is the distance each circle is penetrating each other, but i don't get what exactly N and P is. it seems to me N is just the coordinates of the 3rd point of the right trianlge formed by point A and B (A-B) then being divided by the hypotenuse of that triangle or distance between A and B (||A-B||) Whats the significance of this? Also, what is the penetration vector used for? It seems to me like a movement that one of the circles would perform to get un-penetrated.

    Read the article

  • How can I improve my isometric tile-picking algorithm?

    - by Cypher
    I've spent the last few days researching isometric tile-picking algorithms (converting screen-coordinates to tile-coordinates), and have obviously found a lot of the math beyond my grasp. I have come fairly close and what I have is workable, but I would like to improve on this algorithm as it's a little off and seems to pick down and to the right of the mouse pointer. I've uploaded a video to help visualize the current implementation: http://youtu.be/EqwWcq1zuaM My isometric rendering algorithm is based on what is found at this stackoverflow question's answer, with the exception that my x and y axis' are inverted (x increased down-right, while y increased up-right). Here is where I am converting from screen to tiles: // these next few lines convert the mouse pointer position from screen // coordinates to tile-grid coordinates. cameraOffset captures the current // mouse location and takes into consideration the camera's position on screen. System.Drawing.Point cameraOffset = new System.Drawing.Point( 0, 0 ); cameraOffset.X = mouseLocation.X + (int)camera.Left; cameraOffset.Y = ( mouseLocation.Y + (int)camera.Top ); // the camera-aware mouse coordinates are then further converted in an attempt // to select only the "tile" portion of the grid tiles, instead of the entire // rectangle. this algorithm gets close, but could use improvement. mouseTileLocation.X = ( cameraOffset.X + 2 * cameraOffset.Y ) / Global.TileWidth; mouseTileLocation.Y = -( ( 2 * cameraOffset.Y - cameraOffset.X ) / Global.TileWidth ); Things to make note of: mouseLocation is a System.Drawing.Point that represents the screen coordinates of the mouse pointer. cameraOffset is the screen position of the mouse pointer that includes the position of the game camera. mouseTileLocation is a System.Drawing.Point that is supposed to represent the tile coordinates of the mouse pointer. If you check out the above link to youtube, you'll notice that the picking algorithm is off a bit. How can I improve on this?

    Read the article

  • How does one specify raster operations in XNA?

    - by Corey Ogburn
    I'm looking for a way to add a sprite using a particular logic operation (like XOR). I can't find anything on Google and I'm not sure where to look in the documentation. I've looked into SpriteBatch.Begin(...) and its Draw method and several options in the GraphicsDevice class, but I'm not recognizing anything capable of this. I'm still pretty new to XNA so I may just not have recognized the terminology to do this.

    Read the article

  • Game has noticeable frame drops but when through a profiler it always runs smooth

    - by felipedrl
    I'm trying to optimize my PC game but I can find the bottleneck since every time I run it through a profiler (gDEBugger) it runs smooths. When running outside gDEBugger I get these annoying hiccups. It's not just the graphics, the sound also gets choppy. The drops are inconsistent across runs, i.e, sometimes I run the same scenario and get no drops at all, sometimes I get a few drops, and others the game is consistently slow. The only constant is: when running through gDEBugger I ALWAYS get a smooth run. I'm suspecting something outside my game is interfering and causing these drops, but what in the hell does gDEBugger do that nullifies these drops? A higher process priority? Any ideas? Thanks in advance.

    Read the article

  • Collision Detection problems in Voxel Engine (XNA)

    - by Darestium
    I am creating a minecraft like terrain engine in XNA and have had some collision problems for quite some time. I have checked and changed my code based on other peoples collision code and I still have the same problem. It always seems to be off by about a block. for instance, if I walk across a bridge which is one block high I fall through it. Also, if you walk towards a "row" of blocks like this: You are able to stand "inside" the left most one, and you collide with nothing in the right most side (where there is no block and is not visible on this image). Here is all my collision code: private void Move(GameTime gameTime, Vector3 direction) { float speed = playermovespeed * (float)gameTime.ElapsedGameTime.TotalSeconds; Matrix rotationMatrix = Matrix.CreateRotationY(player.Camera.LeftRightRotation); Vector3 rotatedVector = Vector3.Transform(direction, rotationMatrix); rotatedVector.Normalize(); Vector3 testVector = rotatedVector; testVector.Normalize(); Vector3 movePosition = player.position + testVector * speed; Vector3 midBodyPoint = movePosition + new Vector3(0, -0.7f, 0); Vector3 headPosition = movePosition + new Vector3(0, 0.1f, 0); if (!world.GetBlock(movePosition).IsSolid && !world.GetBlock(midBodyPoint).IsSolid && !world.GetBlock(headPosition).IsSolid) { player.position += rotatedVector * speed; } //player.position += rotatedVector * speed; } ... public void UpdatePosition(GameTime gameTime) { player.velocity.Y += playergravity * (float)gameTime.ElapsedGameTime.TotalSeconds; Vector3 footPosition = player.Position + new Vector3(0f, -1.5f, 0f); Vector3 headPosition = player.Position + new Vector3(0f, 0.1f, 0f); // If the block below the player is solid the Y velocity should be zero if (world.GetBlock(footPosition).IsSolid || world.GetBlock(headPosition).IsSolid) { player.velocity.Y = 0; } UpdateJump(gameTime); UpdateCounter(gameTime); ProcessInput(gameTime); player.Position = player.Position + player.velocity * (float)gameTime.ElapsedGameTime.TotalSeconds; velocity = Vector3.Zero; } and the one and only function in the camera class: protected void CalculateView() { Matrix rotationMatrix = Matrix.CreateRotationX(upDownRotation) * Matrix.CreateRotationY(leftRightRotation); lookVector = Vector3.Transform(Vector3.Forward, rotationMatrix); cameraFinalTarget = Position + lookVector; Vector3 cameraRotatedUpVector = Vector3.Transform(Vector3.Up, rotationMatrix); viewMatrix = Matrix.CreateLookAt(Position, cameraFinalTarget, cameraRotatedUpVector); } which is called when the rotation variables are changed: public float LeftRightRotation { get { return leftRightRotation; } set { leftRightRotation = value; CalculateView(); } } public float UpDownRotation { get { return upDownRotation; } set { upDownRotation = value; CalculateView(); } } World class: public Block GetBlock(int x, int y, int z) { if (InBounds(x, y, z)) { Vector3i regionalPosition = GetRegionalPosition(x, y, z); Vector3i region = GetRegionPosition(x, y, z); return regions[region.X, region.Y, region.Z].Blocks[regionalPosition.X, regionalPosition.Y, regionalPosition.Z]; } return new Block(BlockType.none); } public Vector3i GetRegionPosition(int x, int y, int z) { int regionx = x == 0 ? 0 : x / Variables.REGION_SIZE_X; int regiony = y == 0 ? 0 : y / Variables.REGION_SIZE_Y; int regionz = z == 0 ? 0 : z / Variables.REGION_SIZE_Z; return new Vector3i(regionx, regiony, regionz); } public Vector3i GetRegionalPosition(int x, int y, int z) { int regionx = x == 0 ? 0 : x / Variables.REGION_SIZE_X; int X = x % Variables.REGION_SIZE_X; int regiony = y == 0 ? 0 : y / Variables.REGION_SIZE_Y; int Y = y % Variables.REGION_SIZE_Y; int regionz = z == 0 ? 0 : z / Variables.REGION_SIZE_Z; int Z = z % Variables.REGION_SIZE_Z; return new Vector3i(X, Y, Z); } Any ideas how to fix this problem? EDIT 1: Graphic of the problem: EDIT 2 GetBlock, Vector3 version: public Block GetBlock(Vector3 position) { int x = (int)Math.Floor(position.X); int y = (int)Math.Floor(position.Y); int z = (int)Math.Ceiling(position.Z); Block block = GetBlock(x, y, z); return block; } Now, the thing is I tested the theroy that the Z is always "off by one" and by ceiling the value it actually works as intended. Altough it still could be greatly more accurate (when you go down holes you can see through the sides, and I doubt it will work with negitive positions). I also does not feel clean Flooring the X and Y values and just Ceiling the Z. I am surely not doing something correctly still.

    Read the article

  • Any interesting thesis topic?

    - by revers
    Hi, I study Computer Science at Technical University of Lodz (in Poland) with Computer Game and Simulation Technology specialization. I'm going to defend BSc thesis next year and I was wondering what topic I could choose but nothing really interesting is coming to my mind. Maybe You could help me and suggest some subjects related to programming graphics, games or simulations? (or maybe something else that is interesting enough :) ). I would be very grateful for any suggestion!

    Read the article

< Previous Page | 469 470 471 472 473 474 475 476 477 478 479 480  | Next Page >