Search Results

Search found 1208 results on 49 pages for 'endpoint'.

Page 48/49 | < Previous Page | 44 45 46 47 48 49  | Next Page >

  • WPF: adding Style to a slider

    - by user279244
    Hi I am using a Slider and putting a style element over it as follows... But however, I am not able to figure out why the style is not getting reflected. The RepeatButtons are not still visible. Thanks in advance <ResourceDictionary> <LinearGradientBrush x:Key="Stroke_Gradient" EndPoint="0.5,1" StartPoint="0.5,0"> <GradientStop Color="#FF6E6E6E" Offset="0"/> <GradientStop Color="#FFFFFFFF" Offset="0.496"/> <GradientStop Color="#FF6E6E6E" Offset="1"/> </LinearGradientBrush> <Style x:Key="ScrollBar_RepeatButtonStyle1" d:IsControlPart="True" TargetType="{x:Type RepeatButton}"> <Setter Property="Background" Value="#FF6E6E6E"/> <Setter Property="BorderBrush" Value="#FFFFFFFF"/> <Setter Property="IsTabStop" Value="false"/> <Setter Property="Focusable" Value="false"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type RepeatButton}"> <Grid> <Rectangle Fill="{TemplateBinding Background}" Stroke="{TemplateBinding BorderBrush}" StrokeThickness="{TemplateBinding BorderThickness}"/> </Grid> </ControlTemplate> </Setter.Value> </Setter> </Style> <ImageBrush x:Key="zoomBkgrnd" TileMode="None" ImageSource="zoombg.png" Stretch="Uniform"/> <Style x:Key="{x:Type Slider}" TargetType="{x:Type Slider}"> <Setter Property="Background" Value="{StaticResource zoomBkgrnd}"/> <Setter Property="BorderBrush" Value="{StaticResource zoomBkgrnd}"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type Slider}"> <Grid x:Name="GridRoot"> <Grid.RowDefinitions> <RowDefinition Height="Auto"/> <RowDefinition Height="Auto" /> <RowDefinition Height="Auto"/> </Grid.RowDefinitions> <!-- TickBar shows the ticks for Slider --> <TickBar Visibility="Collapsed" x:Name="TopTick" Height="4" SnapsToDevicePixels="True" Placement="Top" Fill="{StaticResource zoomBkgrnd}"/> <Border Grid.Row="1" Margin="0" x:Name="Border" Height="4" Background="{StaticResource zoomBkgrnd}" BorderBrush="{TemplateBinding BorderBrush}" BorderThickness="{TemplateBinding BorderThickness}" CornerRadius="2"/> <!-- The Track lays out the repeat buttons and thumb --> <Track Grid.Row="1" x:Name="PART_Track"> <Track.Thumb> <Thumb Width="10" Height="20" /> </Track.Thumb> <Track.IncreaseRepeatButton> <RepeatButton Style="{DynamicResource ScrollBar_RepeatButtonStyle1}" Command="Slider.IncreaseLarge"/> </Track.IncreaseRepeatButton> <Track.DecreaseRepeatButton> <RepeatButton Style="{DynamicResource ScrollBar_RepeatButtonStyle1}" Command="Slider.DecreaseLarge"/> </Track.DecreaseRepeatButton> </Track> <TickBar Visibility="Collapsed" Grid.Row="2" x:Name="BottomTick" Height="4" SnapsToDevicePixels="True" Placement="Bottom" Fill="{TemplateBinding Foreground}"/> </Grid> <ControlTemplate.Triggers> <Trigger Property="TickPlacement" Value="TopLeft"> <Setter Property="Visibility" Value="Visible" TargetName="TopTick"/> </Trigger> <Trigger Property="TickPlacement" Value="BottomRight"> <Setter Property="Visibility" Value="Visible" TargetName="BottomTick"/> </Trigger> <Trigger Property="TickPlacement" Value="Both"> <Setter Property="Visibility" Value="Visible" TargetName="TopTick"/> <Setter Property="Visibility" Value="Visible" TargetName="BottomTick"/> </Trigger> <Trigger Property="IsEnabled" Value="false"> <Setter Property="Background" Value="{StaticResource zoomBkgrnd}" TargetName="Border"/> <Setter Property="BorderBrush" Value="{StaticResource zoomBkgrnd}" TargetName="Border"/> </Trigger> <!-- Use a rotation to create a Vertical Slider form the default Horizontal --> <Trigger Property="Orientation" Value="Vertical"> <Setter Property="LayoutTransform" TargetName="GridRoot"> <Setter.Value> <RotateTransform Angle="-90"/> </Setter.Value> </Setter> <!-- Track rotates itself based on orientation so need to force it back --> <Setter TargetName="PART_Track" Property="Orientation" Value="Horizontal"/> </Trigger> </ControlTemplate.Triggers> </ControlTemplate> </Setter.Value> </Setter> </Style> </ResourceDictionary>

    Read the article

  • Installing .NET 3.5 SP1 on server broke WCF

    - by Doron
    I installed .NET 3.5 SP1 on server which previously had .NET 3.0 SP2. Before install site was working perfectly. After install and subsequeny server restart, site displays but anything that makes use of the WCF service has stopped working. The exception log reports exceptions like the following when any calls are made to the client proxy: The communication object, System.ServiceModel.Channels.ServiceChannel, cannot be used for communication because it is in the Faulted state. The server's application event log gave the following errors after the install: Configuration section system.serviceModel.activation already exists in c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Config\machine.config. Configuration section system.runtime.serialization already exists in c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Config\machine.config. Configuration section system.serviceModel already exists in c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Config\machine.config. which seems to be inline with the fact that anything WCF related has stopped working. I am not experienced in server configurations or WCF so looking for any assistance with this. Thanks!! From machine.config: <sectionGroup name="system.serviceModel" type="System.ServiceModel.Configuration.ServiceModelSectionGroup, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <section name="behaviors" type="System.ServiceModel.Configuration.BehaviorsSection, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> <section name="bindings" type="System.ServiceModel.Configuration.BindingsSection, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> <section name="client" type="System.ServiceModel.Configuration.ClientSection, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> <section name="comContracts" type="System.ServiceModel.Configuration.ComContractsSection, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> <section name="commonBehaviors" type="System.ServiceModel.Configuration.CommonBehaviorsSection, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" allowDefinition="MachineOnly" allowExeDefinition="MachineOnly"/> <section name="diagnostics" type="System.ServiceModel.Configuration.DiagnosticSection, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> <section name="extensions" type="System.ServiceModel.Configuration.ExtensionsSection, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> <section name="machineSettings" type="System.ServiceModel.Configuration.MachineSettingsSection, SMDiagnostics, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" allowDefinition="MachineOnly" allowExeDefinition="MachineOnly"/> <section name="serviceHostingEnvironment" type="System.ServiceModel.Configuration.ServiceHostingEnvironmentSection, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> <section name="services" type="System.ServiceModel.Configuration.ServicesSection, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> </sectionGroup> <sectionGroup name="system.serviceModel.activation" type="System.ServiceModel.Activation.Configuration.ServiceModelActivationSectionGroup, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <section name="diagnostics" type="System.ServiceModel.Activation.Configuration.DiagnosticSection, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> <section name="net.pipe" type="System.ServiceModel.Activation.Configuration.NetPipeSection, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> <section name="net.tcp" type="System.ServiceModel.Activation.Configuration.NetTcpSection, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> </sectionGroup> <sectionGroup name="system.runtime.serialization" type="System.Runtime.Serialization.Configuration.SerializationSectionGroup, System.Runtime.Serialization, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <section name="dataContractSerializer" type="System.Runtime.Serialization.Configuration.DataContractSerializerSection, System.Runtime.Serialization, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> </sectionGroup> from site's web.config <sectionGroup name="system.web.extensions" type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="scriptResourceHandler" type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <sectionGroup name="webServices" type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="jsonSerialization" type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="Everywhere" /> <section name="profileService" type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <section name="authenticationService" type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <section name="roleService" type="System.Web.Configuration.ScriptingRoleServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> </sectionGroup> </sectionGroup> </sectionGroup> . . . <system.serviceModel> <bindings> <wsHttpBinding> <binding name="WSHttpBinding_IService" closeTimeout="00:03:00" openTimeout="00:03:00" receiveTimeout="00:10:00" sendTimeout="00:03:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="524288" maxReceivedMessageSize="131072" messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" /> <security mode="Message"> <transport clientCredentialType="Windows" proxyCredentialType="None" realm="" /> <message clientCredentialType="Windows" negotiateServiceCredential="true" algorithmSuite="Default" establishSecurityContext="true" /> </security> </binding> </wsHttpBinding> </bindings> <client> <endpoint address="some address" binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_IService" contract="some contact" name="WSHttpBinding_IService" /> </client> Pertinant Exception Section: Exception information: Exception type: TypeLoadException Exception message: Could not load type 'System.Web.UI.ScriptReferenceBase' from assembly 'System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35'.

    Read the article

  • In apache cxf, How do i know the soap request message is gzip compressed?

    - by aspirant75
    I'm using Apache CXF to send soap message. in specific case, i have to send a soap message gzip compressed. Using log4j, i printed detailed info. would you let me know how i can know the message is gzip compressed and transfered to server. thanks in advance. Below is my java code for gzip and log info. java code Client cxfClient = ClientProxy.getClient(port); /** Logging Interceptor */ cxfClient.getInInterceptors().add(new GZIPInInterceptor()); cxfClient.getOutInterceptors().add(new GZIPOutInterceptor()); log info 20120814 18:56:15,351 DEBUG Interceptors contributed by bus: [] 20120814 18:56:15,351 DEBUG Interceptors contributed by client: [org.apache.cxf.transport.http.gzip.GZIPOutInterceptor@1682a53] 20120814 18:56:15,351 DEBUG Interceptors contributed by endpoint: [org.apache.cxf.interceptor.MessageSenderInterceptor@1b2d7df, org.apache.cxf.jaxws.interceptors.SwAOutInterceptor@7a9224, org.apache.cxf.jaxws.interceptors.WrapperClassOutInterceptor@110b640, org.apache.cxf.jaxws.interceptors.HolderOutInterceptor@2d59a3] 20120814 18:56:15,351 DEBUG Interceptors contributed by binding: [org.apache.cxf.interceptor.AttachmentOutInterceptor@158015a, org.apache.cxf.interceptor.StaxOutInterceptor@c0c8b5, org.apache.cxf.binding.soap.interceptor.SoapHeaderOutFilterInterceptor@b914b3, org.apache.cxf.interceptor.BareOutInterceptor@fdfc58, org.apache.cxf.binding.soap.interceptor.SoapPreProtocolOutInterceptor@c22a3b, org.apache.cxf.binding.soap.interceptor.SoapOutInterceptor@1629e71] 20120814 18:56:15,351 DEBUG Interceptors contributed by databinding: [] 20120814 18:56:15,357 DEBUG Adding interceptor org.apache.cxf.transport.http.gzip.GZIPOutInterceptor@1682a53 to phase prepare-send 20120814 18:56:15,358 DEBUG Adding interceptor org.apache.cxf.interceptor.MessageSenderInterceptor@1b2d7df to phase prepare-send 20120814 18:56:15,358 DEBUG Adding interceptor org.apache.cxf.jaxws.interceptors.SwAOutInterceptor@7a9224 to phase pre-logical 20120814 18:56:15,358 DEBUG Adding interceptor org.apache.cxf.jaxws.interceptors.WrapperClassOutInterceptor@110b640 to phase pre-logical 20120814 18:56:15,358 DEBUG Adding interceptor org.apache.cxf.jaxws.interceptors.HolderOutInterceptor@2d59a3 to phase pre-logical 20120814 18:56:15,358 DEBUG Adding interceptor org.apache.cxf.interceptor.AttachmentOutInterceptor@158015a to phase pre-stream 20120814 18:56:15,358 DEBUG Adding interceptor org.apache.cxf.interceptor.StaxOutInterceptor@c0c8b5 to phase pre-stream 20120814 18:56:15,358 DEBUG Adding interceptor org.apache.cxf.binding.soap.interceptor.SoapHeaderOutFilterInterceptor@b914b3 to phase pre-logical 20120814 18:56:15,358 DEBUG Adding interceptor org.apache.cxf.interceptor.BareOutInterceptor@fdfc58 to phase marshal 20120814 18:56:15,358 DEBUG Adding interceptor org.apache.cxf.binding.soap.interceptor.SoapPreProtocolOutInterceptor@c22a3b to phase post-logical 20120814 18:56:15,359 DEBUG Adding interceptor org.apache.cxf.binding.soap.interceptor.SoapOutInterceptor@1629e71 to phase write 20120814 18:56:15,360 DEBUG Chain org.apache.cxf.phase.PhaseInterceptorChain@31688f was created. Current flow: pre-logical [HolderOutInterceptor, SwAOutInterceptor, WrapperClassOutInterceptor, SoapHeaderOutFilterInterceptor] post-logical [SoapPreProtocolOutInterceptor] prepare-send [MessageSenderInterceptor, GZIPOutInterceptor] pre-stream [AttachmentOutInterceptor, StaxOutInterceptor] write [SoapOutInterceptor] marshal [BareOutInterceptor] 20120814 18:56:15,361 DEBUG Invoking handleMessage on interceptor org.apache.cxf.jaxws.interceptors.HolderOutInterceptor@2d59a3 20120814 18:56:15,361 DEBUG op: [OperationInfo: {https://asp.cyberbooking.co.kr/TopasApiSvc/services}getAirAvail] 20120814 18:56:15,361 DEBUG op.hasOutput(): true 20120814 18:56:15,361 DEBUG op.getOutput().size(): 2 20120814 18:56:15,361 DEBUG Invoking handleMessage on interceptor org.apache.cxf.jaxws.interceptors.SwAOutInterceptor@7a9224 20120814 18:56:15,364 DEBUG Invoking handleMessage on interceptor org.apache.cxf.jaxws.interceptors.WrapperClassOutInterceptor@110b640 20120814 18:56:15,364 DEBUG Invoking handleMessage on interceptor org.apache.cxf.binding.soap.interceptor.SoapHeaderOutFilterInterceptor@b914b3 20120814 18:56:15,365 DEBUG Invoking handleMessage on interceptor org.apache.cxf.binding.soap.interceptor.SoapPreProtocolOutInterceptor@c22a3b 20120814 18:56:15,365 DEBUG Invoking handleMessage on interceptor org.apache.cxf.interceptor.MessageSenderInterceptor@1b2d7df 20120814 18:56:15,365 DEBUG Adding interceptor org.apache.cxf.interceptor.MessageSenderInterceptor$MessageSenderEndingInterceptor@dc9065 to phase prepare-send-ending 20120814 18:56:15,366 DEBUG Chain org.apache.cxf.phase.PhaseInterceptorChain@31688f was modified. Current flow: pre-logical [HolderOutInterceptor, SwAOutInterceptor, WrapperClassOutInterceptor, SoapHeaderOutFilterInterceptor] post-logical [SoapPreProtocolOutInterceptor] prepare-send [MessageSenderInterceptor, GZIPOutInterceptor] pre-stream [AttachmentOutInterceptor, StaxOutInterceptor] write [SoapOutInterceptor] marshal [BareOutInterceptor] prepare-send-ending [MessageSenderEndingInterceptor] 20120814 18:56:15,366 DEBUG Invoking handleMessage on interceptor org.apache.cxf.transport.http.gzip.GZIPOutInterceptor@1682a53 20120814 18:56:15,366 DEBUG Requestor role, so gzip enabled 20120814 18:56:15,366 DEBUG gzip permitted: YES 20120814 18:56:15,367 DEBUG Invoking handleMessage on interceptor org.apache.cxf.interceptor.AttachmentOutInterceptor@158015a 20120814 18:56:15,367 DEBUG Invoking handleMessage on interceptor org.apache.cxf.interceptor.StaxOutInterceptor@c0c8b5 20120814 18:56:15,370 DEBUG Adding interceptor org.apache.cxf.interceptor.StaxOutInterceptor$StaxOutEndingInterceptor@1f488f1 to phase pre-stream-ending 20120814 18:56:15,370 DEBUG Chain org.apache.cxf.phase.PhaseInterceptorChain@31688f was modified. Current flow: pre-logical [HolderOutInterceptor, SwAOutInterceptor, WrapperClassOutInterceptor, SoapHeaderOutFilterInterceptor] post-logical [SoapPreProtocolOutInterceptor] prepare-send [MessageSenderInterceptor, GZIPOutInterceptor] pre-stream [AttachmentOutInterceptor, StaxOutInterceptor] write [SoapOutInterceptor] marshal [BareOutInterceptor] pre-stream-ending [StaxOutEndingInterceptor] prepare-send-ending [MessageSenderEndingInterceptor] 20120814 18:56:15,370 DEBUG Invoking handleMessage on interceptor org.apache.cxf.binding.soap.interceptor.SoapOutInterceptor@1629e71 20120814 18:56:15,383 DEBUG Adding interceptor org.apache.cxf.binding.soap.interceptor.SoapOutInterceptor$SoapOutEndingInterceptor@1ce663c to phase write-ending 20120814 18:56:15,384 DEBUG Chain org.apache.cxf.phase.PhaseInterceptorChain@31688f was modified. Current flow: pre-logical [HolderOutInterceptor, SwAOutInterceptor, WrapperClassOutInterceptor, SoapHeaderOutFilterInterceptor] post-logical [SoapPreProtocolOutInterceptor] prepare-send [MessageSenderInterceptor, GZIPOutInterceptor] pre-stream [AttachmentOutInterceptor, StaxOutInterceptor] write [SoapOutInterceptor] marshal [BareOutInterceptor] write-ending [SoapOutEndingInterceptor] pre-stream-ending [StaxOutEndingInterceptor] prepare-send-ending [MessageSenderEndingInterceptor] 20120814 18:56:15,384 DEBUG Invoking handleMessage on interceptor org.apache.cxf.interceptor.BareOutInterceptor@fdfc58 20120814 18:56:15,387 DEBUG Compressing message. 20120814 18:56:15,388 DEBUG Sending POST Message with Headers to http://test.co.kr:80/###/###/###Conduit :{https://test.co.kr/###/####}###.http-conduit Content-Type: text/xml; charset=UTF-8 20120814 18:56:15,388 DEBUG SOAPAction: "getAirAvail" 20120814 18:56:15,388 DEBUG Accept: */* 20120814 18:56:15,388 DEBUG Accept-Encoding: gzip;q=1.0, identity; q=0.5, *;q=0 20120814 18:56:15,388 DEBUG Content-Encoding: gzip 20120814 18:56:15,388 DEBUG No Trust Decider for Conduit '{https://test.co.kr/###/###}###.http-conduit'. An afirmative Trust Decision is assumed. 20120814 18:56:15,394 DEBUG Invoking handleMessage on interceptor org.apache.cxf.binding.soap.interceptor.SoapOutInterceptor$SoapOutEndingInterceptor@1ce663c 20120814 18:56:15,394 DEBUG Invoking handleMessage on interceptor org.apache.cxf.interceptor.StaxOutInterceptor$StaxOutEndingInterceptor@1f488f1 20120814 18:56:15,394 DEBUG Invoking handleMessage on interceptor org.apache.cxf.interceptor.MessageSenderInterceptor$MessageSenderEndingInterceptor@dc9065 20120814 18:56:15,459 DEBUG Response Code: 200 Conduit: {https://test.co.kr/###/###}###.http-conduit 20120814 18:56:15,459 DEBUG Content length: 11034 20120814 18:56:15,459 DEBUG Header fields: null: [HTTP/1.1 200 OK] Content-Language: [ko-KR] Date: [Tue, 14 Aug 2012 09:56:15 GMT] Content-Length: [11034] P3P: [CP='CAO PSA CONi OTR OUR DEM ONL'] Expires: [Thu, 01 Dec 1994 16:00:00 GMT] Keep-Alive: [timeout=10, max=100] Set-Cookie: [WMONID=mL6rq_Irpa_; Expires=Wed, 14 Aug 2013 09:56:15 GMT; Path=/] Connection: [Keep-Alive] Content-Type: [text/xml; charset=utf-8] Server: [IBM_HTTP_Server] Cache-Control: [no-cache="set-cookie, set-cookie2"]

    Read the article

  • WCF fails to deserialize correct(?) response message security headers (Security header is empty)

    - by Soeteman
    I'm communicating with an OC4J webservice, using a WCF client. The client is configured as follows: <basicHttpBinding> <binding name="MyBinding"> <security mode="TransportWithMessageCredential"> <transport clientCredentialType="None" proxyCredentialType="None" realm=""/> <message clientCredentialType="UserName" algorithmSuite="Default"/> </security> </binding> My clientcode looks as follows: ServicePointManager.CertificatePolicy = new AcceptAllCertificatePolicy(); string username = ConfigurationManager.AppSettings["user"]; string password = ConfigurationManager.AppSettings["pass"]; // client instance maken WebserviceClient client = new WebserviceClient(); client.Endpoint.Binding = new BasicHttpBinding("MyBinding"); // credentials toevoegen client.ClientCredentials.UserName.UserName = username; client.ClientCredentials.UserName.Password = password; //uitvoeren request var response = client.Ping(); I've altered the CertificatePolicy to accept all certificates, because I need to insert Charles (ssl proxy) in between client and server to intercept the actual Xml that is sent across te wire. My request looks as follows: <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <s:Header> <o:Security s:mustUnderstand="1" xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <u:Timestamp u:Id="_0"> <u:Created>2010-04-01T09:47:01.161Z</u:Created> <u:Expires>2010-04-01T09:52:01.161Z</u:Expires> </u:Timestamp> <o:UsernameToken u:Id="uuid-9b39760f-d504-4e53-908d-6125a1827aea-21"> <o:Username>user</o:Username> <o:Password o:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username- token-profile-1.0#PasswordText">pass</o:Password> </o:UsernameToken> </o:Security> </s:Header> <s:Body> <getPrdStatus xmlns="http://mynamespace.org/wsdl"> <request xmlns="" xmlns:a="http://mynamespace.org/wsdl" xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <a:IsgrStsRequestTypeUser> <a:prdCode>LEPTO</a:prdCode> <a:sequenceNumber i:nil="true" /> <a:productionType i:nil="true" /> <a:statusDate>2010-04-01T11:47:01.1617641+02:00</a:statusDate> <a:ubn>123456</a:ubn> <a:animalSpeciesCode>RU</a:animalSpeciesCode> </a:IsgrStsRequestTypeUser> </request> </getPrdStatus> </s:Body> </s:Envelope> In return, I receive the following response: <env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ns0="http://mynamespace.org/wsdl"> <env:Header> <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" env:mustUnderstand="1" /> </env:Header> <env:Body> <ns0:getPrdStatusResponse> <result> <ns0:IsgrStsResponseTypeUser> <ns0:prdCode>LEPTO</ns0:prdCode> <ns0:color>green</ns0:color> <ns0:stsCode>LEP1</ns0:stsCode> <ns0:sequenceNumber xsi:nil="1" /> <ns0:productionType xsi:nil="1" /> <ns0:IAndRCode>00</ns0:IAndRCode> <ns0:statusDate>2010-04-01T00:00:00.000+02:00</ns0:statusDate> <ns0:description>Gecertificeerd vrij</ns0:description> <ns0:ubn>123456</ns0:ubn> <ns0:animalSpeciesCode>RU</ns0:animalSpeciesCode> <ns0:name>gecertificeerd vrij</ns0:name> <ns0:ranking>17</ns0:ranking> </ns0:IsgrStsResponseTypeUser> </result> </ns0:getPrdStatusResponse> </env:Body> </env:Envelope> Why can't WCF deserialize this response header? I'm getting a "Security header is empty" exception: Server stack trace: at System.ServiceModel.Security.ReceiveSecurityHeader.Process(TimeSpan timeout) at System.ServiceModel.Security.TransportSecurityProtocol.VerifyIncomingMessageCore(Message& message, TimeSpan timeout) at System.ServiceModel.Security.TransportSecurityProtocol.VerifyIncomingMessage(Message& message, TimeSpan timeout) at System.ServiceModel.Security.SecurityProtocol.VerifyIncomingMessage(Message& message, TimeSpan timeout, SecurityProtocolCorrelationState[] correlationStates) at System.ServiceModel.Channels.SecurityChannelFactory`1.SecurityRequestChannel.ProcessReply(Message reply, SecurityProtocolCorrelationState correlationState, TimeSpan timeout) at System.ServiceModel.Channels.SecurityChannelFactory`1.SecurityRequestChannel.Request(Message message, TimeSpan timeout) at System.ServiceModel.Dispatcher.RequestChannelBinder.Request(Message message, TimeSpan timeout) at System.ServiceModel.Channels.ServiceChannel.Call(String action, Boolean oneway, ProxyOperationRuntime operation, Object[] ins, Object[] outs, TimeSpan timeout) at System.ServiceModel.Channels.ServiceChannel.Call(String action, Boolean oneway, ProxyOperationRuntime operation, Object[] ins, Object[] outs) at System.ServiceModel.Channels.ServiceChannelProxy.InvokeService(IMethodCallMessage methodCall, ProxyOperationRuntime operation) at System.ServiceModel.Channels.ServiceChannelProxy.Invoke(IMessage message) Who knows what is going on here? I've already tried Rick Strahl's suggestion and removed the timestamp from the request header. Any help greatly appreciated!

    Read the article

  • DataGrid rendering fails

    - by patryk.beza
    I have DataGrid with groups of data. The problem is that after binding data I have strange effect (text was blured by me; the problem are cells' paddings/margins). This effect can be easily 'fixed' by user because after one click on top expander data hides and after second click on the expander, rows in DataGrid are displayed correctly. My XAML code: <DataGrid Name="myDataGrid" Grid.Row="0" ItemsSource="{Binding}" AutoGenerateColumns="False" Background="White" RowBackground="#FBFFFA" AlternatingRowBackground="#EEFAEB" VerticalAlignment="Stretch" HorizontalAlignment="Stretch"> <DataGrid.Columns> <!-- Columns definitions with binding ( . . . ) --> </DataGrid.Columns> <DataGrid.CellStyle> <Style TargetType="{x:Type DataGridCell}"> <Setter Property="Padding" Value="7,3"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type DataGridCell}"> <Border Padding="{TemplateBinding Padding}" BorderBrush="{TemplateBinding BorderBrush}" BorderThickness="{TemplateBinding BorderThickness}" Background="{TemplateBinding Background}" SnapsToDevicePixels="True"> <ContentPresenter SnapsToDevicePixels="{TemplateBinding SnapsToDevicePixels}" VerticalAlignment="Center" /> </Border> </ControlTemplate> </Setter.Value> </Setter> <Style.Triggers> <Trigger Property="DataGridCell.IsSelected" Value="True"> <Setter Property="Background"> <Setter.Value> <LinearGradientBrush EndPoint="0.504,1.5" StartPoint="0.504,0.03"> <GradientStop Color="#008C13" Offset="0"/> <GradientStop Color="#19FF38" Offset="0.8"/> </LinearGradientBrush> </Setter.Value> </Setter> </Trigger> </Style.Triggers> </Style> </DataGrid.CellStyle> <DataGrid.GroupStyle> <GroupStyle> <GroupStyle.HeaderTemplate> <DataTemplate> <StackPanel> <TextBlock Text="{Binding Path=Name}" FontWeight="Bold" Padding="3" /> </StackPanel> </DataTemplate> </GroupStyle.HeaderTemplate> <GroupStyle.ContainerStyle> <Style TargetType="{x:Type GroupItem}"> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type GroupItem}"> <Expander> <Expander.Header> <StackPanel Orientation="Horizontal"> <TextBlock Text="Rok " /> <TextBlock Text="{Binding Name}" /> </StackPanel> </Expander.Header> <ItemsPresenter /> </Expander> </ControlTemplate> </Setter.Value> </Setter> </Style> </GroupStyle.ContainerStyle> </GroupStyle> </DataGrid.GroupStyle> </DataGrid> DataGrid's DataContext is set from code (rows with data in DataGrid are displayed after clicking proper button): ICollectionView myView = CollectionViewSource.GetDefaultView(myList); if (operationsView.GroupDescriptions.Count > 0) operationsView.GroupDescriptions.Clear(); operationsView.GroupDescriptions.Add(new PropertyGroupDescription("myGroupDescProperty")); FinancialIncomeOperationsListDataGrid.DataContext = operationsView; Is there any way to manually update layout of the DataGrid? Or maybe there is a better solution?

    Read the article

  • Has glassfish 2.1.1 a bug handling http request and handle them twice?

    - by marabol
    I'm using glassfish 2.1.1. I've watched a mysterious http/webservice-call handling. It seams an http request is handled by two different threads. After http basic authentication the first thread is faster. Persisting some data end, but writing response fails in glassfish internal. The second thread fails, because it tries to persist identical data and there are (unique) constrain failures. The response (the failure) of second thread was delivered to client. I don't won't discuss the behavior with the unique constrain failure. I've improve the webservice, so it can handle this better, because it could be happen anytime, that the client send the ws call a second time. But I think, glassfish 2.1.1 has an bug handling http request. Is there any known issue? Have I done an mistake? [#|2010-03-22T10:40:54.150+0000|INFO|sun-appserver2.1|javax.enterprise.system.core|_ThreadID=10;_ThreadName=main;|Starting Sun GlassFish Enterprise Server v2.1.1 ((v2.1 Patch06)(9.1_02 Patch12)) (build b31g-fcs) ...|#] ... [#|2010-03-22T11:18:44.220+0000|FINE|sun-appserver2.1|mypackage.module.security.auth.realm.YaJdbcRealm|_ThreadID=26;_ThreadName=httpSSLWorkerThread-8080-1;ClassName=mypackage.module.security.auth.realm.YaJdbcRealm;MethodName=authenticate;_RequestID=4d8f23e9-5106-4d64-b865-1638d7075bde;|JDBC authenticate successful for: 8002 groups:[roleUser]|#] [#|2010-03-22T11:18:44.220+0000|FINE|sun-appserver2.1|mypackage.module.security.auth.login.YaJdbcLoginModule|_ThreadID=26;_ThreadName=httpSSLWorkerThread-8080-1;ClassName=mypackage.module.security.auth.login.YaJdbcLoginModule;MethodName=authenticate;_RequestID=4d8f23e9-5106-4d64-b865-1638d7075bde;|JDBC login succeeded for: 8002 groups:[roleUser]|#] [#|2010-03-22T11:18:44.220+0000|FINE|sun-appserver2.1|mypackage.module.security.auth.realm.YaJdbcRealm|_ThreadID=39;_ThreadName=httpSSLWorkerThread-8080-2;ClassName=mypackage.module.security.auth.realm.YaJdbcRealm;MethodName=authenticate;_RequestID=4ca7e3e5-5ab7-41ec-b3c9-d9260b1164c9;|JDBC authenticate successful for: 8002 groups:[roleUser]|#] [#|2010-03-22T11:18:44.220+0000|FINE|sun-appserver2.1|mypackage.module.security.auth.login.YaJdbcLoginModule|_ThreadID=39;_ThreadName=httpSSLWorkerThread-8080-2;ClassName=mypackage.module.security.auth.login.YaJdbcLoginModule;MethodName=authenticate;_RequestID=4ca7e3e5-5ab7-41ec-b3c9-d9260b1164c9;|JDBC login succeeded for: 8002 groups:[roleUser]|#] [#|2010-03-22T11:18:44.220+0000|FINE|sun-appserver2.1|mypackage.MyWebService|_ThreadID=26;_ThreadName=httpSSLWorkerThread-8080-1;ClassName=mypackage.MyWebService;MethodName=enqueue;_RequestID=4d8f23e9-5106-4d64-b865-1638d7075bde;|Received WebService call to enqueue() from client 59|#] [#|2010-03-22T11:18:44.220+0000|FINE|sun-appserver2.1|mypackage.MyWebService|_ThreadID=39;_ThreadName=httpSSLWorkerThread-8080-2;ClassName=mypackage.MyWebService;MethodName=enqueue;_RequestID=4ca7e3e5-5ab7-41ec-b3c9-d9260b1164c9;|Received WebService call to enqueue() from client 59|#] ... [#|2010-03-22T11:18:44.267+0000|FINE|sun-appserver2.1|mypackage.MyWebService|_ThreadID=26;_ThreadName=httpSSLWorkerThread-8080-1;ClassName=mypackage.MyWebService;MethodName=enqueue;_RequestID=4d8f23e9-5106-4d64-b865-1638d7075bde;|Successfully finished WebService call to enqueue() from client 59|#] [#|2010-03-22T11:18:44.329+0000|WARNING|sun-appserver2.1|javax.enterprise.system.container.ejb|_ThreadID=26;_ThreadName=httpSSLWorkerThread-8080-1;_RequestID=4d8f23e9-5106-4d64-b865-1638d7075bde;|invocation error on ejb endpoint MyWebService at /MyWebserviceService/MyWebservice : com.sun.xml.stream.XMLStreamException2 javax.xml.ws.WebServiceException: com.sun.xml.stream.XMLStreamException2 at com.sun.xml.ws.encoding.StreamSOAPCodec.encode(StreamSOAPCodec.java:111) at com.sun.xml.ws.encoding.SOAPBindingCodec.encode(SOAPBindingCodec.java:281) at com.sun.xml.ws.transport.http.HttpAdapter.encodePacket(HttpAdapter.java:320) at com.sun.xml.ws.transport.http.HttpAdapter.access$100(HttpAdapter.java:93) at com.sun.xml.ws.transport.http.HttpAdapter$HttpToolkit.handle(HttpAdapter.java:454) at com.sun.xml.ws.transport.http.HttpAdapter.handle(HttpAdapter.java:244) at com.sun.xml.ws.transport.http.servlet.ServletAdapter.handle(ServletAdapter.java:135) at com.sun.enterprise.webservice.Ejb3MessageDispatcher.handlePost(Ejb3MessageDispatcher.java:113) at com.sun.enterprise.webservice.Ejb3MessageDispatcher.invoke(Ejb3MessageDispatcher.java:87) at com.sun.enterprise.webservice.EjbWebServiceServlet.dispatchToEjbEndpoint(EjbWebServiceServlet.java:231) at com.sun.enterprise.webservice.EjbWebServiceServlet.service(EjbWebServiceServlet.java:157) at javax.servlet.http.HttpServlet.service(HttpServlet.java:847) at com.sun.enterprise.web.AdHocContextValve.invoke(AdHocContextValve.java:114) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:648) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:593) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:587) at com.sun.enterprise.web.WebPipeline.invoke(WebPipeline.java:87) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:222) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:648) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:593) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:587) at org.apache.catalina.core.ContainerBase.invoke(ContainerBase.java:1093) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:166) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:648) at org.apache.catalina.core.StandardPipeline.doInvoke(StandardPipeline.java:593) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:587) at org.apache.catalina.core.ContainerBase.invoke(ContainerBase.java:1093) at org.apache.coyote.tomcat5.CoyoteAdapter.service(CoyoteAdapter.java:291) at com.sun.enterprise.web.connector.grizzly.DefaultProcessorTask.invokeAdapter(DefaultProcessorTask.java:666) at com.sun.enterprise.web.connector.grizzly.comet.CometEngine.executeServlet(CometEngine.java:616) at com.sun.enterprise.web.connector.grizzly.comet.CometEngine.handle(CometEngine.java:362) at com.sun.enterprise.web.connector.grizzly.comet.CometAsyncFilter.doFilter(CometAsyncFilter.java:84) at com.sun.enterprise.web.connector.grizzly.async.DefaultAsyncExecutor.invokeFilters(DefaultAsyncExecutor.java:189) at com.sun.enterprise.web.connector.grizzly.async.DefaultAsyncExecutor.interrupt(DefaultAsyncExecutor.java:164) at com.sun.enterprise.web.connector.grizzly.async.AsyncProcessorTask.doTask(AsyncProcessorTask.java:92) at com.sun.enterprise.web.connector.grizzly.TaskBase.run(TaskBase.java:264) at com.sun.enterprise.web.connector.grizzly.ssl.SSLWorkerThread.run(SSLWorkerThread.java:106) Caused by: com.sun.xml.stream.XMLStreamException2 at com.sun.xml.stream.writers.XMLStreamWriterImpl.flush(XMLStreamWriterImpl.java:416) at com.sun.xml.ws.encoding.StreamSOAPCodec.encode(StreamSOAPCodec.java:109) ... 36 more Caused by: ClientAbortException: java.nio.channels.ClosedChannelException at org.apache.coyote.tomcat5.OutputBuffer.doFlush(OutputBuffer.java:385) at org.apache.coyote.tomcat5.OutputBuffer.flush(OutputBuffer.java:351) at org.apache.coyote.tomcat5.CoyoteOutputStream.flush(CoyoteOutputStream.java:176) at com.sun.xml.stream.writers.UTF8OutputStreamWriter.flush(UTF8OutputStreamWriter.java:153) at com.sun.xml.stream.writers.XMLStreamWriterImpl.flush(XMLStreamWriterImpl.java:414) ... 37 more Caused by: java.nio.channels.ClosedChannelException at sun.nio.ch.SocketChannelImpl.ensureWriteOpen(SocketChannelImpl.java:126) at sun.nio.ch.SocketChannelImpl.write(SocketChannelImpl.java:324) at com.sun.enterprise.web.connector.grizzly.OutputWriter.flushChannel(OutputWriter.java:91) at com.sun.enterprise.web.connector.grizzly.OutputWriter.flushChannel(OutputWriter.java:66) at com.sun.enterprise.web.connector.grizzly.SocketChannelOutputBuffer.flushChannel(SocketChannelOutputBuffer.java:172) at com.sun.enterprise.web.connector.grizzly.async.AsynchronousOutputBuffer.flushChannel(AsynchronousOutputBuffer.java:81) at com.sun.enterprise.web.connector.grizzly.SocketChannelOutputBuffer.flushBuffer(SocketChannelOutputBuffer.java:205) at com.sun.enterprise.web.connector.grizzly.async.AsynchronousOutputBuffer.flushBuffer(AsynchronousOutputBuffer.java:114) at com.sun.enterprise.web.connector.grizzly.SocketChannelOutputBuffer.flush(SocketChannelOutputBuffer.java:183) at com.sun.enterprise.web.connector.grizzly.async.AsynchronousOutputBuffer.flush(AsynchronousOutputBuffer.java:104) at com.sun.enterprise.web.connector.grizzly.DefaultProcessorTask.action(DefaultProcessorTask.java:1100) at org.apache.coyote.Response.action(Response.java:237) at org.apache.coyote.tomcat5.OutputBuffer.doFlush(OutputBuffer.java:381) ... 41 more |#] [#|2010-03-22T11:18:44.376+0000|WARNING|sun-appserver2.1|oracle.toplink.essentials.session.file:/mygf-211/domains/mydomain/applications/j2ee-apps/myear/myjar-myPu|_ThreadID=39;_ThreadName=httpSSLWorkerThread-8080-2;_RequestID=4ca7e3e5-5ab7-41ec-b3c9-d9260b1164c9;| Local Exception Stack: Exception [TOPLINK-4002] (Oracle TopLink Essentials - 2.1 (Build b31g-fcs (10/19/2009))): oracle.toplink.essentials.exceptions.DatabaseException Internal Exception: com.microsoft.sqlserver.jdbc.SQLServerException: Eine Zeile mit doppeltem Schlüssel kann in das 'dbo.MY_TABLE'-Objekt mit dem eindeutigen 'MY_INDEX'-Index nicht eingefügt werden.

    Read the article

  • The remote server returned an error: (400) Bad Request - uploading less 2MB file size?

    - by fiberOptics
    The file succeed to upload when it is 2KB or lower in size. The main reason why I use streaming is to be able to upload file up to at least 1 GB. But when I try to upload file with less 1MB size, I get bad request. It is my first time to deal with downloading and uploading process, so I can't easily find the cause of error. Testing part: private void button24_Click(object sender, EventArgs e) { try { OpenFileDialog openfile = new OpenFileDialog(); if (openfile.ShowDialog() == System.Windows.Forms.DialogResult.OK) { string port = "3445"; byte[] fileStream; using (FileStream fs = new FileStream(openfile.FileName, FileMode.Open, FileAccess.Read, FileShare.Read)) { fileStream = new byte[fs.Length]; fs.Read(fileStream, 0, (int)fs.Length); fs.Close(); fs.Dispose(); } string baseAddress = "http://localhost:" + port + "/File/AddStream?fileID=9"; HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create(baseAddress); request.Method = "POST"; request.ContentType = "text/plain"; //request.ContentType = "application/octet-stream"; Stream serverStream = request.GetRequestStream(); serverStream.Write(fileStream, 0, fileStream.Length); serverStream.Close(); using (HttpWebResponse response = request.GetResponse() as HttpWebResponse) { int statusCode = (int)response.StatusCode; StreamReader reader = new StreamReader(response.GetResponseStream()); } } } catch (Exception ex) { MessageBox.Show(ex.Message); } } Service: [WebInvoke(UriTemplate = "AddStream?fileID={fileID}", Method = "POST", BodyStyle = WebMessageBodyStyle.Bare)] public bool AddStream(long fileID, System.IO.Stream fileStream) { ClasslLogic.FileComponent svc = new ClasslLogic.FileComponent(); return svc.AddStream(fileID, fileStream); } Server code for streaming: namespace ClasslLogic { public class StreamObject : IStreamObject { public bool UploadFile(string filename, Stream fileStream) { try { FileStream fileToupload = new FileStream(filename, FileMode.Create); byte[] bytearray = new byte[10000]; int bytesRead, totalBytesRead = 0; do { bytesRead = fileStream.Read(bytearray, 0, bytearray.Length); totalBytesRead += bytesRead; } while (bytesRead > 0); fileToupload.Write(bytearray, 0, bytearray.Length); fileToupload.Close(); fileToupload.Dispose(); } catch (Exception ex) { throw new Exception(ex.Message); } return true; } } } Web config: <system.serviceModel> <bindings> <basicHttpBinding> <binding> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="2097152" maxBytesPerRead="4096" maxNameTableCharCount="2097152" /> <security mode="None" /> </binding> <binding name="ClassLogicBasicTransfer" closeTimeout="00:05:00" openTimeout="00:05:00" receiveTimeout="00:15:00" sendTimeout="00:01:00" allowCookies="false" bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="67108864" maxReceivedMessageSize="67108864" messageEncoding="Mtom" textEncoding="utf-8" useDefaultWebProxy="true"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="67108864" maxBytesPerRead="4096" maxNameTableCharCount="67108864" /> <security mode="None"> <transport clientCredentialType="None" proxyCredentialType="None" realm="" /> <message clientCredentialType="UserName" algorithmSuite="Default" /> </security> </binding> <binding name="BaseLogicWSHTTP"> <security mode="None" /> </binding> <binding name="BaseLogicWSHTTPSec" /> </basicHttpBinding> </bindings> <behaviors> <serviceBehaviors> <behavior> <!-- To avoid disclosing metadata information, set the value below to false and remove the metadata endpoint above before deployment --> <serviceMetadata httpGetEnabled="true" /> <!-- To receive exception details in faults for debugging purposes, set the value below to true. Set to false before deployment to avoid disclosing exception information --> <serviceDebug includeExceptionDetailInFaults="true" /> </behavior> </serviceBehaviors> </behaviors> <serviceHostingEnvironment multipleSiteBindingsEnabled="true" aspNetCompatibilityEnabled="true" /> </system.serviceModel> I'm not sure if this affects the streaming function, because I'm using WCF4.0 rest template which config is dependent in Global.asax. One more thing is this, whether I run the service and passing a stream or not, the created file always contain this thing. How could I remove the "NUL" data? Thanks in advance. Edit public bool UploadFile(string filename, Stream fileStream) { try { FileStream fileToupload = new FileStream(filename, FileMode.Create); byte[] bytearray = new byte[10000]; int bytesRead, totalBytesRead = 0; do { bytesRead = fileStream.Read(bytearray, totalBytesRead, bytearray.Length - totalBytesRead); totalBytesRead += bytesRead; } while (bytesRead > 0); fileToupload.Write(bytearray, 0, totalBytesRead); fileToupload.Close(); fileToupload.Dispose(); } catch (Exception ex) { throw new Exception(ex.Message); } return true; }

    Read the article

  • Integrate openid4java to GWT Project

    - by Slyker
    Hi, I created an GWT project in eclipse. Now I tried to implement openId with using the openid4java library. I imported the .jar files via properties--java build path: openid4java-0.9.5.jar lib/*.jar In addition I copied the .jar files into the war/WEB-INF/lib directory. The problem at hand comes up when I call the authenticate() method. Then I get a: HTTP ERROR 500 Problem accessing /openid/openid. Reason: access denied (java.lang.RuntimePermission modifyThreadGroup)Caused by:java.security.AccessControlException: access denied (java.lang.RuntimePermission modifyThreadGroup) at java.security.AccessControlContext.checkPermission(Unknown Source) at java.security.AccessController.checkPermission(Unknown Source) at java.lang.SecurityManager.checkPermission(Unknown Source) at com.google.appengine.tools.development.DevAppServerFactory$CustomSecurityManager.checkPermission(DevAppServerFactory.java:166) at com.google.appengine.tools.development.DevAppServerFactory$CustomSecurityManager.checkAccess(DevAppServerFactory.java:191) at java.lang.ThreadGroup.checkAccess(Unknown Source) at java.lang.Thread.init(Unknown Source) at java.lang.Thread.<init>(Unknown Source) at org.apache.commons.httpclient.MultiThreadedHttpConnectionManager$ReferenceQueueThread.<init>(MultiThreadedHttpConnectionManager.java:1039) at org.apache.commons.httpclient.MultiThreadedHttpConnectionManager.storeReferenceToConnection(MultiThreadedHttpConnectionManager.java:164) at org.apache.commons.httpclient.MultiThreadedHttpConnectionManager.access$900(MultiThreadedHttpConnectionManager.java:64) at org.apache.commons.httpclient.MultiThreadedHttpConnectionManager$ConnectionPool.createConnection(MultiThreadedHttpConnectionManager.java:750) at org.apache.commons.httpclient.MultiThreadedHttpConnectionManager.doGetConnection(MultiThreadedHttpConnectionManager.java:469) at org.apache.commons.httpclient.MultiThreadedHttpConnectionManager.getConnectionWithTimeout(MultiThreadedHttpConnectionManager.java:394) at org.apache.commons.httpclient.HttpMethodDirector.executeMethod(HttpMethodDirector.java:152) at org.apache.commons.httpclient.HttpClient.executeMethod(HttpClient.java:396) at org.apache.commons.httpclient.HttpClient.executeMethod(HttpClient.java:324) at org.openid4java.util.HttpCache.head(HttpCache.java:296) at org.openid4java.discovery.yadis.YadisResolver.retrieveXrdsLocation(YadisResolver.java:360) at org.openid4java.discovery.yadis.YadisResolver.discover(YadisResolver.java:229) at org.openid4java.discovery.yadis.YadisResolver.discover(YadisResolver.java:221) at org.openid4java.discovery.yadis.YadisResolver.discover(YadisResolver.java:179) at org.openid4java.discovery.Discovery.discover(Discovery.java:134) at org.openid4java.discovery.Discovery.discover(Discovery.java:114) at org.openid4java.consumer.ConsumerManager.discover(ConsumerManager.java:527) at auth.openid.server.OpenIDServlet.authenticate(OpenIDServlet.java:138) at auth.openid.server.OpenIDServlet.doGet(OpenIDServlet.java:101) at javax.servlet.http.HttpServlet.service(HttpServlet.java:693) at javax.servlet.http.HttpServlet.service(HttpServlet.java:806) at org.mortbay.jetty.servlet.ServletHolder.handle(ServletHolder.java:511) at org.mortbay.jetty.servlet.ServletHandler$CachedChain.doFilter(ServletHandler.java:1166) at com.google.appengine.api.blobstore.dev.ServeBlobFilter.doFilter(ServeBlobFilter.java:51) at org.mortbay.jetty.servlet.ServletHandler$CachedChain.doFilter(ServletHandler.java:1157) at com.google.apphosting.utils.servlet.TransactionCleanupFilter.doFilter(TransactionCleanupFilter.java:43) at org.mortbay.jetty.servlet.ServletHandler$CachedChain.doFilter(ServletHandler.java:1157) at com.google.appengine.tools.development.StaticFileFilter.doFilter(StaticFileFilter.java:122) at org.mortbay.jetty.servlet.ServletHandler$CachedChain.doFilter(ServletHandler.java:1157) at org.mortbay.jetty.servlet.ServletHandler.handle(ServletHandler.java:388) at org.mortbay.jetty.security.SecurityHandler.handle(SecurityHandler.java:216) at org.mortbay.jetty.servlet.SessionHandler.handle(SessionHandler.java:182) at org.mortbay.jetty.handler.ContextHandler.handle(ContextHandler.java:765) at org.mortbay.jetty.webapp.WebAppContext.handle(WebAppContext.java:418) at com.google.apphosting.utils.jetty.DevAppEngineWebAppContext.handle(DevAppEngineWebAppContext.java:70) at org.mortbay.jetty.handler.HandlerWrapper.handle(HandlerWrapper.java:152) at com.google.appengine.tools.development.JettyContainerService$ApiProxyHandler.handle(JettyContainerService.java:349) at org.mortbay.jetty.handler.HandlerWrapper.handle(HandlerWrapper.java:152) at org.mortbay.jetty.Server.handle(Server.java:326) at org.mortbay.jetty.HttpConnection.handleRequest(HttpConnection.java:542) at org.mortbay.jetty.HttpConnection$RequestHandler.headerComplete(HttpConnection.java:923) at org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:547) at org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:212) at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:404) at org.mortbay.io.nio.SelectChannelEndPoint.run(SelectChannelEndPoint.java:409) at org.mortbay.thread.QueuedThreadPool$PoolThread.run(QueuedThreadPool.java:582) Here my servlet source: import com.google.gwt.user.client.rpc.RemoteService; import org.openid4java.OpenIDException; import org.openid4java.consumer.ConsumerException; import org.openid4java.consumer.ConsumerManager; import org.openid4java.consumer.VerificationResult; import org.openid4java.discovery.DiscoveryInformation; import org.openid4java.discovery.Identifier; import org.openid4java.message.AuthRequest; import org.openid4java.message.ParameterList; import javax.servlet.ServletException; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import java.io.IOException; import java.text.MessageFormat; import java.util.List; public final class OpenIDServlet extends HttpServlet implements RemoteService { private final ConsumerManager manager; public OpenIDServlet() { try { manager = new ConsumerManager(); } catch (ConsumerException e) { throw new RuntimeException("Error creating consumer manager", e); } } ... private void authenticate(HttpServletRequest request, HttpServletResponse response) throws IOException, ServletException { final String loginString = request.getParameter(nameParameter); try { // perform discovery on the user-supplied identifier List discoveries = manager.discover(loginString); // attempt to associate with the OpenID provider // and retrieve one service endpoint for authentication DiscoveryInformation discovered = manager.associate(discoveries); // obtain a AuthRequest message to be sent to the OpenID provider AuthRequest authReq = manager.authenticate(discovered, "openid", null); // redirect to OpenID for authentication response.sendRedirect(authReq.getDestinationUrl(true)); } catch (OpenIDException e) { throw new ServletException("Login string probably caused an error. loginString = " + loginString, e); } } My question now is: What could be my fault? Did I make any mistakes in importing the openid4java library? (which?) All other methods in the servlet which do not use the openid4java implementation work fine. Thanks, Andreas

    Read the article

  • Prim's MST algorithm implementation with Java

    - by user1290164
    I'm trying to write a program that'll find the MST of a given undirected weighted graph with Kruskal's and Prim's algorithms. I've successfully implemented Kruskal's algorithm in the program, but I'm having trouble with Prim's. To be more precise, I can't figure out how to actually build the Prim function so that it'll iterate through all the vertices in the graph. I'm getting some IndexOutOfBoundsException errors during program execution. I'm not sure how much information is needed for others to get the idea of what I have done so far, but hopefully there won't be too much useless information. This is what I have so far: I have a Graph, Edge and a Vertex class. Vertex class mostly just an information storage that contains the name (number) of the vertex. Edge class can create a new Edge that has gets parameters (Vertex start, Vertex end, int edgeWeight). The class has methods to return the usual info like start vertex, end vertex and the weight. Graph class reads data from a text file and adds new Edges to an ArrayList. The text file also tells us how many vertecis the graph has, and that gets stored too. In the Graph class, I have a Prim() -method that's supposed to calculate the MST: public ArrayList<Edge> Prim(Graph G) { ArrayList<Edge> edges = G.graph; // Copies the ArrayList with all edges in it. ArrayList<Edge> MST = new ArrayList<Edge>(); Random rnd = new Random(); Vertex startingVertex = edges.get(rnd.nextInt(G.returnVertexCount())).returnStartingVertex(); // This is just to randomize the starting vertex. // This is supposed to be the main loop to find the MST, but this is probably horribly wrong.. while (MST.size() < returnVertexCount()) { Edge e = findClosestNeighbour(startingVertex); MST.add(e); visited.add(e.returnStartingVertex()); visited.add(e.returnEndingVertex()); edges.remove(e); } return MST; } The method findClosesNeighbour() looks like this: public Edge findClosestNeighbour(Vertex v) { ArrayList<Edge> neighbours = new ArrayList<Edge>(); ArrayList<Edge> edges = graph; for (int i = 0; i < edges.size() -1; ++i) { if (edges.get(i).endPoint() == s.returnVertexID() && !visited(edges.get(i).returnEndingVertex())) { neighbours.add(edges.get(i)); } } return neighbours.get(0); // This is the minimum weight edge in the list. } ArrayList<Vertex> visited and ArrayList<Edges> graph get constructed when creating a new graph. Visited() -method is simply a boolean check to see if ArrayList visited contains the Vertex we're thinking about moving to. I tested the findClosestNeighbour() independantly and it seemed to be working but if someone finds something wrong with it then that feedback is welcome also. Mainly though as I mentioned my problem is with actually building the main loop in the Prim() -method, and if there's any additional info needed I'm happy to provide it. Thank you. Edit: To clarify what my train of thought with the Prim() method is. What I want to do is first randomize the starting point in the graph. After that, I will find the closest neighbor to that starting point. Then we'll add the edge connecting those two points to the MST, and also add the vertices to the visited list for checking later, so that we won't form any loops in the graph. Here's the error that gets thrown: Exception in thread "main" java.lang.IndexOutOfBoundsException: Index: 0, Size: 0 at java.util.ArrayList.rangeCheck(Unknown Source) at java.util.ArrayList.get(Unknown Source) at Graph.findClosestNeighbour(graph.java:203) at Graph.Prim(graph.java:179) at MST.main(MST.java:49) Line 203: return neighbour.get(0); in findClosestNeighbour() Line 179: Edge e = findClosestNeighbour(startingVertex); in Prim()

    Read the article

  • wcf rest service 400 error : There might be a typing error in the address

    - by Lokesh Kondapalli
    I am trying to invoke wcf rest service from url but its showing error like this Error : Most likely causes: •There might be a typing error in the address. •If you clicked on a link, it may be out of date. ** I need JSON responce Here my code : Iservice.cs using System; using System.Collections.Generic; using System.Linq; using System.Runtime.Serialization; using System.ServiceModel; using System.ServiceModel.Web; using System.Text; namespace SampleRestSample { interface name "IService1" in both code and config file together. [ServiceContract] public interface IService1 { [OperationContract] [WebInvoke(Method = "GET", UriTemplate = "Book/{id}", BodyStyle = WebMessageBodyStyle.Wrapped, ResponseFormat = WebMessageFormat.Json)] List<Prasad> GetBookById(string id); } [DataContract] public class Prasad { [DataMember] public string Name { get; set; } [DataMember] public string Age { get; set; } } } Service1.svc.cs using System; using System.Collections.Generic; using System.Linq; using System.Runtime.Serialization; using System.ServiceModel; using System.ServiceModel.Web; using System.Text; namespace LoginRestSample { // NOTE: You can use the "Rename" command on the "Refactor" menu to change the class name "Service1" in code, svc and config file together. public class Service1 : SampleRestSample { List<Prasad> list = new List<Prasad>(); public List<Prasad> GetBookById(string id) { try { Prasad cls = new Prasad(); cls.Age = "24"; cls.Name = "prasad"; list.Add(cls); //int bookId = Convert.ToInt32(id); //using (SampleDbEntities entities = new SampleDbEntities()) //{ // return entities.Books.SingleOrDefault(book => book.ID == bookId); //} } catch { throw new FaultException("Something went wrong"); } return list; } } } web.config <?xml version="1.0" encoding="utf-8"?> <configuration> <system.web> <compilation debug="true" targetFramework="4.0"> <assemblies> <add assembly="System.Data.Entity, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" /> </assemblies> </compilation> </system.web> <system.serviceModel> <services> <service name="WcfRestSample.SampleRestSample"> <endpoint address="" behaviorConfiguration="restfulBehavior" binding="webHttpBinding" bindingConfiguration="" contract="WcfRestSample.ISampleRestSample" /> <host> <baseAddresses> <add baseAddress="http://localhost/SampleRestSample" /> </baseAddresses> </host> </service> </services> <behaviors> <endpointBehaviors> <behavior name="restfulBehavior"> <webHttp automaticFormatSelectionEnabled="true" /> </behavior> </endpointBehaviors> <serviceBehaviors> <behavior name=""> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> <serviceHostingEnvironment multipleSiteBindingsEnabled="true" /> </system.serviceModel> <system.webServer> <modules runAllManagedModulesForAllRequests="true" /> </system.webServer> </configuration> Any solutions? Thank you in advance.

    Read the article

  • Will creating a background thread in a WCF service during a call, take up a thread in the ASP .NET t

    - by Nate Pinchot
    The following code is part of a WCF service. Will eventWatcher take up a thread in the ASP .NET thread pool, even if it is set IsBackground = true? /// <summary> /// Provides methods to work with the PhoneSystem web services SDK. /// This is a singleton since we need to keep track of what lines (extensions) are open. /// </summary> public sealed class PhoneSystemWebServiceFactory : IDisposable { // singleton instance reference private static readonly PhoneSystemWebServiceFactory instance = new PhoneSystemWebServiceFactory(); private static readonly object l = new object(); private static volatile Hashtable monitoredExtensions = new Hashtable(); private static readonly PhoneSystemWebServiceClient webServiceClient = CreateWebServiceClient(); private static volatile bool isClientRegistered; private static volatile string clientHandle; private static readonly Thread eventWatcherThread = new Thread(EventPoller) {IsBackground = true}; #region Constructor // these constructors are hacks to make the C# compiler not mark beforefieldinit // more info: http://www.yoda.arachsys.com/csharp/singleton.html static PhoneSystemWebServiceFactory() { } PhoneSystemWebServiceFactory() { } #endregion #region Properties /// <summary> /// Gets a thread safe instance of PhoneSystemWebServiceFactory /// </summary> public static PhoneSystemWebServiceFactory Instance { get { return instance; } } #endregion #region Private methods /// <summary> /// Create and configure a PhoneSystemWebServiceClient with basic http binding and endpoint from app settings. /// </summary> /// <returns>PhoneSystemWebServiceClient</returns> private static PhoneSystemWebServiceClient CreateWebServiceClient() { string url = ConfigurationManager.AppSettings["PhoneSystemWebService_Url"]; if (string.IsNullOrEmpty(url)) { throw new ConfigurationErrorsException( "The AppSetting \"PhoneSystemWebService_Url\" could not be found. Check the application configuration and ensure that the element exists. Example: <appSettings><add key=\"PhoneSystemWebService_Url\" value=\"http://xyz\" /></appSettings>"); } return new PhoneSystemWebServiceClient(new BasicHttpBinding(), new EndpointAddress(url)); } #endregion #region Event poller public static void EventPoller() { while (true) { if (Thread.CurrentThread.ThreadState == ThreadState.Aborted || Thread.CurrentThread.ThreadState == ThreadState.AbortRequested || Thread.CurrentThread.ThreadState == ThreadState.Stopped || Thread.CurrentThread.ThreadState == ThreadState.StopRequested) break; // get events //webServiceClient.GetEvents(clientHandle, 30, 100); } Thread.Sleep(5000); } #endregion #region Client registration methods private static void RegisterClientIfNeeded() { if (isClientRegistered) { return; } lock (l) { // double lock check if (isClientRegistered) { return; } //clientHandle = webServiceClient.RegisterClient("PhoneSystemWebServiceFactoryInternal", null); isClientRegistered = true; } } private static void UnregisterClient() { if (!isClientRegistered) { return; } lock (l) { // double lock check if (!isClientRegistered) { return; } //webServiceClient.UnegisterClient(clientHandle); } } #endregion #region Phone extension methods public bool SubscribeToEventsForExtension(string extension) { if (monitoredExtensions.Contains(extension)) { return false; } lock (monitoredExtensions.SyncRoot) { // double lock check if (monitoredExtensions.Contains(extension)) { return false; } RegisterClientIfNeeded(); // open line so we receive events for extension LineInfo lineInfo; try { //lineInfo = webServiceClient.OpenLine(clientHandle, extension); } catch (FaultException<PhoneSystemWebSDKErrorDetail>) { // TODO: log error return false; } // add extension to list of monitored extensions //monitoredExtensions.Add(extension, lineInfo.lineID); monitoredExtensions.Add(extension, 1); // start event poller thread if not already started if (eventWatcherThread.ThreadState == ThreadState.Stopped || eventWatcherThread.ThreadState == ThreadState.Unstarted) { eventWatcherThread.Start(); } return true; } } public bool UnsubscribeFromEventsForExtension(string extension) { if (!monitoredExtensions.Contains(extension)) { return false; } lock (monitoredExtensions.SyncRoot) { if (!monitoredExtensions.Contains(extension)) { return false; } // close line try { //webServiceClient.CloseLine(clientHandle, (int) monitoredExtensions[extension]); } catch (FaultException<PhoneSystemWebSDKErrorDetail>) { // TODO: log error return false; } // remove extension from list of monitored extensions monitoredExtensions.Remove(extension); // if we are not monitoring anything else, stop the poller and unregister the client if (monitoredExtensions.Count == 0) { eventWatcherThread.Abort(); UnregisterClient(); } return true; } } public bool IsExtensionMonitored(string extension) { lock (monitoredExtensions.SyncRoot) { return monitoredExtensions.Contains(extension); } } #endregion #region Dispose public void Dispose() { lock (l) { // close any open lines var extensions = monitoredExtensions.Keys.Cast<string>().ToList(); while (extensions.Count > 0) { UnsubscribeFromEventsForExtension(extensions[0]); extensions.RemoveAt(0); } if (!isClientRegistered) { return; } // unregister web service client UnregisterClient(); } } #endregion }

    Read the article

  • Camera for 2.5D Game

    - by me--
    I'm hoping someone can explain this to me like I'm 5, because I've been struggling with this for hours and simply cannot understand what I'm doing wrong. I've written a Camera class for my 2.5D game. The intention is to support world and screen spaces like this: The camera is the black thing on the right. The +Z axis is upwards in that image, with -Z heading downwards. As you can see, both world space and screen space have (0, 0) at their top-left. I started writing some unit tests to prove that my camera was working as expected, and that's where things started getting...strange. My tests plot coordinates in world, view, and screen spaces. Eventually I will use image comparison to assert that they are correct, but for now my test just displays the result. The render logic uses Camera.ViewMatrix to transform world space to view space, and Camera.WorldPointToScreen to transform world space to screen space. Here is an example test: [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render(camera, out worldRender, out viewRender, out screenRender, new Vector3(30, 0, 0), new Vector3(30, 40, 0)); this.ShowRenders(camera, worldRender, viewRender, screenRender); } And here's what pops up when I run this test: World space looks OK, although I suspect the z axis is going into the screen instead of towards the viewer. View space has me completely baffled. I was expecting the camera to be sitting above (0, 0) and looking towards the center of the scene. Instead, the z axis seems to be the wrong way around, and the camera is positioned in the opposite corner to what I expect! I suspect screen space will be another thing altogether, but can anyone explain what I'm doing wrong in my Camera class? UPDATE I made some progress in terms of getting things to look visually as I expect, but only through intuition: not an actual understanding of what I'm doing. Any enlightenment would be greatly appreciated. I realized that my view space was flipped both vertically and horizontally compared to what I expected, so I changed my view matrix to scale accordingly: this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom, this.zoom, 1) * Matrix.CreateScale(-1, -1, 1); I could combine the two CreateScale calls, but have left them separate for clarity. Again, I have no idea why this is necessary, but it fixed my view space: But now my screen space needs to be flipped vertically, so I modified my projection matrix accordingly: this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); And this results in what I was expecting from my first attempt: I have also just tried using Camera to render sprites via a SpriteBatch to make sure everything works there too, and it does. But the question remains: why do I need to do all this flipping of axes to get the space coordinates the way I expect? UPDATE 2 I've since improved my rendering logic in my test suite so that it supports geometries and so that lines get lighter the further away they are from the camera. I wanted to do this to avoid optical illusions and to further prove to myself that I'm looking at what I think I am. Here is an example: In this case, I have 3 geometries: a cube, a sphere, and a polyline on the top face of the cube. Notice how the darkening and lightening of the lines correctly identifies those portions of the geometries closer to the camera. If I remove the negative scaling I had to put in, I see: So you can see I'm still in the same boat - I still need those vertical and horizontal flips in my matrices to get things to appear correctly. In the interests of giving people a repro to play with, here is the complete code needed to generate the above. If you want to run via the test harness, just install the xunit package: Camera.cs: using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using System.Diagnostics; public sealed class Camera { private readonly Viewport viewport; private readonly Matrix projectionMatrix; private Matrix? viewMatrix; private Vector3 location; private Vector3 target; private Vector3 up; private float zoom; public Camera(Viewport viewport) { this.viewport = viewport; // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); // defaults this.location = new Vector3(this.viewport.Width / 2, this.viewport.Height, 100); this.target = new Vector3(this.viewport.Width / 2, this.viewport.Height / 2, 0); this.up = new Vector3(0, 0, 1); this.zoom = 1; } public Viewport Viewport { get { return this.viewport; } } public Vector3 Location { get { return this.location; } set { this.location = value; this.viewMatrix = null; } } public Vector3 Target { get { return this.target; } set { this.target = value; this.viewMatrix = null; } } public Vector3 Up { get { return this.up; } set { this.up = value; this.viewMatrix = null; } } public float Zoom { get { return this.zoom; } set { this.zoom = value; this.viewMatrix = null; } } public Matrix ProjectionMatrix { get { return this.projectionMatrix; } } public Matrix ViewMatrix { get { if (this.viewMatrix == null) { // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom) * Matrix.CreateScale(-1, -1, 1); } return this.viewMatrix.Value; } } public Vector2 WorldPointToScreen(Vector3 point) { var result = viewport.Project(point, this.ProjectionMatrix, this.ViewMatrix, Matrix.Identity); return new Vector2(result.X, result.Y); } public void WorldPointsToScreen(Vector3[] points, Vector2[] destination) { Debug.Assert(points != null); Debug.Assert(destination != null); Debug.Assert(points.Length == destination.Length); for (var i = 0; i < points.Length; ++i) { destination[i] = this.WorldPointToScreen(points[i]); } } } CameraFixture.cs: using Microsoft.Xna.Framework.Graphics; using System; using System.Collections.Generic; using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Xunit; using XNA = Microsoft.Xna.Framework; public sealed class CameraFixture { [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render( camera, out worldRender, out viewRender, out screenRender, new Sphere(30, 15) { WorldMatrix = XNA.Matrix.CreateTranslation(155, 50, 0) }, new Cube(30) { WorldMatrix = XNA.Matrix.CreateTranslation(75, 60, 15) }, new PolyLine(new XNA.Vector3(0, 0, 0), new XNA.Vector3(10, 10, 0), new XNA.Vector3(20, 0, 0), new XNA.Vector3(0, 0, 0)) { WorldMatrix = XNA.Matrix.CreateTranslation(65, 55, 30) }); this.ShowRenders(worldRender, viewRender, screenRender); } #region Supporting Fields private static readonly Pen xAxisPen = new Pen(Brushes.Red, 2); private static readonly Pen yAxisPen = new Pen(Brushes.Green, 2); private static readonly Pen zAxisPen = new Pen(Brushes.Blue, 2); private static readonly Pen viewportPen = new Pen(Brushes.Gray, 1); private static readonly Pen nonScreenSpacePen = new Pen(Brushes.Black, 0.5); private static readonly Color geometryBaseColor = Colors.Black; #endregion #region Supporting Methods private void Render(Camera camera, out DrawingVisual worldRender, out DrawingVisual viewRender, out DrawingVisual screenRender, params Geometry[] geometries) { var worldDrawingVisual = new DrawingVisual(); var viewDrawingVisual = new DrawingVisual(); var screenDrawingVisual = new DrawingVisual(); const int axisLength = 15; using (var worldDrawingContext = worldDrawingVisual.RenderOpen()) using (var viewDrawingContext = viewDrawingVisual.RenderOpen()) using (var screenDrawingContext = screenDrawingVisual.RenderOpen()) { // draw lines around the camera's viewport var viewportBounds = camera.Viewport.Bounds; var viewportLines = new Tuple<int, int, int, int>[] { Tuple.Create(viewportBounds.Left, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Top), Tuple.Create(viewportBounds.Left, viewportBounds.Top, viewportBounds.Right, viewportBounds.Top), Tuple.Create(viewportBounds.Right, viewportBounds.Top, viewportBounds.Right, viewportBounds.Bottom), Tuple.Create(viewportBounds.Right, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Bottom) }; foreach (var viewportLine in viewportLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0)); worldDrawingContext.DrawLine(viewportPen, new Point(viewportLine.Item1, viewportLine.Item2), new Point(viewportLine.Item3, viewportLine.Item4)); viewDrawingContext.DrawLine(viewportPen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(viewportPen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // draw axes var axisLines = new Tuple<int, int, int, int, int, int, Pen>[] { Tuple.Create(0, 0, 0, axisLength, 0, 0, xAxisPen), Tuple.Create(0, 0, 0, 0, axisLength, 0, yAxisPen), Tuple.Create(0, 0, 0, 0, 0, axisLength, zAxisPen) }; foreach (var axisLine in axisLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6)); worldDrawingContext.DrawLine(axisLine.Item7, new Point(axisLine.Item1, axisLine.Item2), new Point(axisLine.Item4, axisLine.Item5)); viewDrawingContext.DrawLine(axisLine.Item7, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(axisLine.Item7, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // for all points in all geometries to be rendered, find the closest and furthest away from the camera so we can lighten lines that are further away var distancesToAllGeometrySections = from geometry in geometries let geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix from section in geometry.Sections from point in new XNA.Vector3[] { section.Item1, section.Item2 } let viewPoint = XNA.Vector3.Transform(point, geometryViewMatrix) select viewPoint.Length(); var furthestDistance = distancesToAllGeometrySections.Max(); var closestDistance = distancesToAllGeometrySections.Min(); var deltaDistance = Math.Max(0.000001f, furthestDistance - closestDistance); // draw each geometry for (var i = 0; i < geometries.Length; ++i) { var geometry = geometries[i]; // there's probably a more correct name for this, but basically this gets the geometry relative to the camera so we can check how far away each point is from the camera var geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix; // we order roughly by those sections furthest from the camera to those closest, so that the closer ones "overwrite" the ones further away var orderedSections = from section in geometry.Sections let startPointRelativeToCamera = XNA.Vector3.Transform(section.Item1, geometryViewMatrix) let endPointRelativeToCamera = XNA.Vector3.Transform(section.Item2, geometryViewMatrix) let startPointDistance = startPointRelativeToCamera.Length() let endPointDistance = endPointRelativeToCamera.Length() orderby (startPointDistance + endPointDistance) descending select new { Section = section, DistanceToStart = startPointDistance, DistanceToEnd = endPointDistance }; foreach (var orderedSection in orderedSections) { var start = XNA.Vector3.Transform(orderedSection.Section.Item1, geometry.WorldMatrix); var end = XNA.Vector3.Transform(orderedSection.Section.Item2, geometry.WorldMatrix); var viewStart = XNA.Vector3.Transform(start, camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(end, camera.ViewMatrix); worldDrawingContext.DrawLine(nonScreenSpacePen, new Point(start.X, start.Y), new Point(end.X, end.Y)); viewDrawingContext.DrawLine(nonScreenSpacePen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); // screen rendering is more complicated purely because I wanted geometry to fade the further away it is from the camera // otherwise, it's very hard to tell whether the rendering is actually correct or not var startDistanceRatio = (orderedSection.DistanceToStart - closestDistance) / deltaDistance; var endDistanceRatio = (orderedSection.DistanceToEnd - closestDistance) / deltaDistance; // lerp towards white based on distance from camera, but only to a maximum of 90% var startColor = Lerp(geometryBaseColor, Colors.White, startDistanceRatio * 0.9f); var endColor = Lerp(geometryBaseColor, Colors.White, endDistanceRatio * 0.9f); var screenStart = camera.WorldPointToScreen(start); var screenEnd = camera.WorldPointToScreen(end); var brush = new LinearGradientBrush { StartPoint = new Point(screenStart.X, screenStart.Y), EndPoint = new Point(screenEnd.X, screenEnd.Y), MappingMode = BrushMappingMode.Absolute }; brush.GradientStops.Add(new GradientStop(startColor, 0)); brush.GradientStops.Add(new GradientStop(endColor, 1)); var pen = new Pen(brush, 1); brush.Freeze(); pen.Freeze(); screenDrawingContext.DrawLine(pen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } } } worldRender = worldDrawingVisual; viewRender = viewDrawingVisual; screenRender = screenDrawingVisual; } private static float Lerp(float start, float end, float amount) { var difference = end - start; var adjusted = difference * amount; return start + adjusted; } private static Color Lerp(Color color, Color to, float amount) { var sr = color.R; var sg = color.G; var sb = color.B; var er = to.R; var eg = to.G; var eb = to.B; var r = (byte)Lerp(sr, er, amount); var g = (byte)Lerp(sg, eg, amount); var b = (byte)Lerp(sb, eb, amount); return Color.FromArgb(255, r, g, b); } private void ShowRenders(DrawingVisual worldRender, DrawingVisual viewRender, DrawingVisual screenRender) { var itemsControl = new ItemsControl(); itemsControl.Items.Add(new HeaderedContentControl { Header = "World", Content = new DrawingVisualHost(worldRender)}); itemsControl.Items.Add(new HeaderedContentControl { Header = "View", Content = new DrawingVisualHost(viewRender) }); itemsControl.Items.Add(new HeaderedContentControl { Header = "Screen", Content = new DrawingVisualHost(screenRender) }); var window = new Window { Title = "Renders", Content = itemsControl, ShowInTaskbar = true, SizeToContent = SizeToContent.WidthAndHeight }; window.ShowDialog(); } #endregion #region Supporting Types // stupidly simple 3D geometry class, consisting of a series of sections that will be connected by lines private abstract class Geometry { public abstract IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get; } public XNA.Matrix WorldMatrix { get; set; } } private sealed class Line : Geometry { private readonly XNA.Vector3 magnitude; public Line(XNA.Vector3 magnitude) { this.magnitude = magnitude; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { yield return Tuple.Create(XNA.Vector3.Zero, this.magnitude); } } } private sealed class PolyLine : Geometry { private readonly XNA.Vector3[] points; public PolyLine(params XNA.Vector3[] points) { this.points = points; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { if (this.points.Length < 2) { yield break; } var end = this.points[0]; for (var i = 1; i < this.points.Length; ++i) { var start = end; end = this.points[i]; yield return Tuple.Create(start, end); } } } } private sealed class Cube : Geometry { private readonly float size; public Cube(float size) { this.size = size; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var halfSize = this.size / 2; var frontBottomLeft = new XNA.Vector3(-halfSize, halfSize, -halfSize); var frontBottomRight = new XNA.Vector3(halfSize, halfSize, -halfSize); var frontTopLeft = new XNA.Vector3(-halfSize, halfSize, halfSize); var frontTopRight = new XNA.Vector3(halfSize, halfSize, halfSize); var backBottomLeft = new XNA.Vector3(-halfSize, -halfSize, -halfSize); var backBottomRight = new XNA.Vector3(halfSize, -halfSize, -halfSize); var backTopLeft = new XNA.Vector3(-halfSize, -halfSize, halfSize); var backTopRight = new XNA.Vector3(halfSize, -halfSize, halfSize); // front face yield return Tuple.Create(frontBottomLeft, frontBottomRight); yield return Tuple.Create(frontBottomLeft, frontTopLeft); yield return Tuple.Create(frontTopLeft, frontTopRight); yield return Tuple.Create(frontTopRight, frontBottomRight); // left face yield return Tuple.Create(frontTopLeft, backTopLeft); yield return Tuple.Create(backTopLeft, backBottomLeft); yield return Tuple.Create(backBottomLeft, frontBottomLeft); // right face yield return Tuple.Create(frontTopRight, backTopRight); yield return Tuple.Create(backTopRight, backBottomRight); yield return Tuple.Create(backBottomRight, frontBottomRight); // back face yield return Tuple.Create(backBottomLeft, backBottomRight); yield return Tuple.Create(backTopLeft, backTopRight); } } } private sealed class Sphere : Geometry { private readonly float radius; private readonly int subsections; public Sphere(float radius, int subsections) { this.radius = radius; this.subsections = subsections; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var latitudeLines = this.subsections; var longitudeLines = this.subsections; // see http://stackoverflow.com/a/4082020/5380 var results = from latitudeLine in Enumerable.Range(0, latitudeLines) from longitudeLine in Enumerable.Range(0, longitudeLines) let latitudeRatio = latitudeLine / (float)latitudeLines let longitudeRatio = longitudeLine / (float)longitudeLines let nextLatitudeRatio = (latitudeLine + 1) / (float)latitudeLines let nextLongitudeRatio = (longitudeLine + 1) / (float)longitudeLines let z1 = Math.Cos(Math.PI * latitudeRatio) let z2 = Math.Cos(Math.PI * nextLatitudeRatio) let x1 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y1 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x3 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * nextLongitudeRatio) let y3 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * nextLongitudeRatio) let start = new XNA.Vector3((float)x1 * radius, (float)y1 * radius, (float)z1 * radius) let firstEnd = new XNA.Vector3((float)x2 * radius, (float)y2 * radius, (float)z2 * radius) let secondEnd = new XNA.Vector3((float)x3 * radius, (float)y3 * radius, (float)z1 * radius) select new { First = Tuple.Create(start, firstEnd), Second = Tuple.Create(start, secondEnd) }; foreach (var result in results) { yield return result.First; yield return result.Second; } } } } #endregion }

    Read the article

  • Using jQuery to POST Form Data to an ASP.NET ASMX AJAX Web Service

    - by Rick Strahl
    The other day I got a question about how to call an ASP.NET ASMX Web Service or PageMethods with the POST data from a Web Form (or any HTML form for that matter). The idea is that you should be able to call an endpoint URL, send it regular urlencoded POST data and then use Request.Form[] to retrieve the posted data as needed. My first reaction was that you can’t do it, because ASP.NET ASMX AJAX services (as well as Page Methods and WCF REST AJAX Services) require that the content POSTed to the server is posted as JSON and sent with an application/json or application/x-javascript content type. IOW, you can’t directly call an ASP.NET AJAX service with regular urlencoded data. Note that there are other ways to accomplish this. You can use ASP.NET MVC and a custom route, an HTTP Handler or separate ASPX page, or even a WCF REST service that’s configured to use non-JSON inputs. However if you want to use an ASP.NET AJAX service (or Page Methods) with a little bit of setup work it’s actually quite easy to capture all the form variables on the client and ship them up to the server. The basic steps needed to make this happen are: Capture form variables into an array on the client with jQuery’s .serializeArray() function Use $.ajax() or my ServiceProxy class to make an AJAX call to the server to send this array On the server create a custom type that matches the .serializeArray() name/value structure Create extension methods on NameValue[] to easily extract form variables Create a [WebMethod] that accepts this name/value type as an array (NameValue[]) This seems like a lot of work but realize that steps 3 and 4 are a one time setup step that can be reused in your entire site or multiple applications. Let’s look at a short example that looks like this as a base form of fields to ship to the server: The HTML for this form looks something like this: <div id="divMessage" class="errordisplay" style="display: none"> </div> <div> <div class="label">Name:</div> <div><asp:TextBox runat="server" ID="txtName" /></div> </div> <div> <div class="label">Company:</div> <div><asp:TextBox runat="server" ID="txtCompany"/></div> </div> <div> <div class="label" ></div> <div> <asp:DropDownList runat="server" ID="lstAttending"> <asp:ListItem Text="Attending" Value="Attending"/> <asp:ListItem Text="Not Attending" Value="NotAttending" /> <asp:ListItem Text="Maybe Attending" Value="MaybeAttending" /> <asp:ListItem Text="Not Sure Yet" Value="NotSureYet" /> </asp:DropDownList> </div> </div> <div> <div class="label">Special Needs:<br /> <small>(check all that apply)</small></div> <div> <asp:ListBox runat="server" ID="lstSpecialNeeds" SelectionMode="Multiple"> <asp:ListItem Text="Vegitarian" Value="Vegitarian" /> <asp:ListItem Text="Vegan" Value="Vegan" /> <asp:ListItem Text="Kosher" Value="Kosher" /> <asp:ListItem Text="Special Access" Value="SpecialAccess" /> <asp:ListItem Text="No Binder" Value="NoBinder" /> </asp:ListBox> </div> </div> <div> <div class="label"></div> <div> <asp:CheckBox ID="chkAdditionalGuests" Text="Additional Guests" runat="server" /> </div> </div> <hr /> <input type="button" id="btnSubmit" value="Send Registration" /> The form includes a few different kinds of form fields including a multi-selection listbox to demonstrate retrieving multiple values. Setting up the Server Side [WebMethod] The [WebMethod] on the server we’re going to call is going to be very simple and just capture the content of these values and echo then back as a formatted HTML string. Obviously this is overly simplistic but it serves to demonstrate the simple point of capturing the POST data on the server in an AJAX callback. public class PageMethodsService : System.Web.Services.WebService { [WebMethod] public string SendRegistration(NameValue[] formVars) { StringBuilder sb = new StringBuilder(); sb.AppendFormat("Thank you {0}, <br/><br/>", HttpUtility.HtmlEncode(formVars.Form("txtName"))); sb.AppendLine("You've entered the following: <hr/>"); foreach (NameValue nv in formVars) { // strip out ASP.NET form vars like _ViewState/_EventValidation if (!nv.name.StartsWith("__")) { if (nv.name.StartsWith("txt") || nv.name.StartsWith("lst") || nv.name.StartsWith("chk")) sb.Append(nv.name.Substring(3)); else sb.Append(nv.name); sb.AppendLine(": " + HttpUtility.HtmlEncode(nv.value) + "<br/>"); } } sb.AppendLine("<hr/>"); string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs == null) sb.AppendLine("No Special Needs"); else { sb.AppendLine("Special Needs: <br/>"); foreach (string need in needs) { sb.AppendLine("&nbsp;&nbsp;" + need + "<br/>"); } } return sb.ToString(); } } The key feature of this method is that it receives a custom type called NameValue[] which is an array of NameValue objects that map the structure that the jQuery .serializeArray() function generates. There are two custom types involved in this: The actual NameValue type and a NameValueExtensions class that defines a couple of extension methods for the NameValue[] array type to allow for single (.Form()) and multiple (.FormMultiple()) value retrieval by name. The NameValue class is as simple as this and simply maps the structure of the array elements of .serializeArray(): public class NameValue { public string name { get; set; } public string value { get; set; } } The extension method class defines the .Form() and .FormMultiple() methods to allow easy retrieval of form variables from the returned array: /// <summary> /// Simple NameValue class that maps name and value /// properties that can be used with jQuery's /// $.serializeArray() function and JSON requests /// </summary> public static class NameValueExtensionMethods { /// <summary> /// Retrieves a single form variable from the list of /// form variables stored /// </summary> /// <param name="formVars"></param> /// <param name="name">formvar to retrieve</param> /// <returns>value or string.Empty if not found</returns> public static string Form(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).FirstOrDefault(); if (matches != null) return matches.value; return string.Empty; } /// <summary> /// Retrieves multiple selection form variables from the list of /// form variables stored. /// </summary> /// <param name="formVars"></param> /// <param name="name">The name of the form var to retrieve</param> /// <returns>values as string[] or null if no match is found</returns> public static string[] FormMultiple(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).Select(nv => nv.value).ToArray(); if (matches.Length == 0) return null; return matches; } } Using these extension methods it’s easy to retrieve individual values from the array: string name = formVars.Form("txtName"); or multiple values: string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs != null) { // do something with matches } Using these functions in the SendRegistration method it’s easy to retrieve a few form variables directly (txtName and the multiple selections of lstSpecialNeeds) or to iterate over the whole list of values. Of course this is an overly simple example – in typical app you’d probably want to validate the input data and save it to the database and then return some sort of confirmation or possibly an updated data list back to the client. Since this is a full AJAX service callback realize that you don’t have to return simple string values – you can return any of the supported result types (which are most serializable types) including complex hierarchical objects and arrays that make sense to your client code. POSTing Form Variables from the Client to the AJAX Service To call the AJAX service method on the client is straight forward and requires only use of little native jQuery plus JSON serialization functionality. To start add jQuery and the json2.js library to your page: <script src="Scripts/jquery.min.js" type="text/javascript"></script> <script src="Scripts/json2.js" type="text/javascript"></script> json2.js can be found here (be sure to remove the first line from the file): http://www.json.org/json2.js It’s required to handle JSON serialization for those browsers that don’t support it natively. With those script references in the document let’s hookup the button click handler and call the service: $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); $.ajax({ url: "PageMethodsService.asmx/SendRegistration", type: "POST", contentType: "application/json", data: JSON.stringify({ formVars: arForm }), dataType: "json", success: function (result) { var jEl = $("#divMessage"); jEl.html(result.d).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, error: function (xhr, status) { alert("An error occurred: " + status); } }); } The key feature in this code is the $("#form1").serializeArray();  call which serializes all the form fields of form1 into an array. Each form var is represented as an object with a name/value property. This array is then serialized into JSON with: JSON.stringify({ formVars: arForm }) The format for the parameter list in AJAX service calls is an object with one property for each parameter of the method. In this case its a single parameter called formVars and we’re assigning the array of form variables to it. The URL to call on the server is the name of the Service (or ASPX Page for Page Methods) plus the name of the method to call. On return the success callback receives the result from the AJAX callback which in this case is the formatted string which is simply assigned to an element in the form and displayed. Remember the result type is whatever the method returns – it doesn’t have to be a string. Note that ASP.NET AJAX and WCF REST return JSON data as a wrapped object so the result has a ‘d’ property that holds the actual response: jEl.html(result.d).fadeIn(1000); Slightly simpler: Using ServiceProxy.js If you want things slightly cleaner you can use the ServiceProxy.js class I’ve mentioned here before. The ServiceProxy class handles a few things for calling ASP.NET and WCF services more cleanly: Automatic JSON encoding Automatic fix up of ‘d’ wrapper property Automatic Date conversion on the client Simplified error handling Reusable and abstracted To add the service proxy add: <script src="Scripts/ServiceProxy.js" type="text/javascript"></script> and then change the code to this slightly simpler version: <script type="text/javascript"> proxy = new ServiceProxy("PageMethodsService.asmx/"); $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); proxy.invoke("SendRegistration", { formVars: arForm }, function (result) { var jEl = $("#divMessage"); jEl.html(result).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, function (error) { alert(error.message); } ); } The code is not very different but it makes the call as simple as specifying the method to call, the parameters to pass and the actions to take on success and error. No more remembering which content type and data types to use and manually serializing to JSON. This code also removes the “d” property processing in the response and provides more consistent error handling in that the call always returns an error object regardless of a server error or a communication error unlike the native $.ajax() call. Either approach works and both are pretty easy. The ServiceProxy really pays off if you use lots of service calls and especially if you need to deal with date values returned from the server  on the client. Summary Making Web Service calls and getting POST data to the server is not always the best option – ASP.NET and WCF AJAX services are meant to work with data in objects. However, in some situations it’s simply easier to POST all the captured form data to the server instead of mapping all properties from the input fields to some sort of message object first. For this approach the above POST mechanism is useful as it puts the parsing of the data on the server and leaves the client code lean and mean. It’s even easy to build a custom model binder on the server that can map the array values to properties on an object generically with some relatively simple Reflection code and without having to manually map form vars to properties and do string conversions. Keep in mind though that other approaches also abound. ASP.NET MVC makes it pretty easy to create custom routes to data and the built in model binder makes it very easy to deal with inbound form POST data in its original urlencoded format. The West Wind West Wind Web Toolkit also includes functionality for AJAX callbacks using plain POST values. All that’s needed is a Method parameter to query/form value to specify the method to be called on the server. After that the content type is completely optional and up to the consumer. It’d be nice if the ASP.NET AJAX Service and WCF AJAX Services weren’t so tightly bound to the content type so that you could more easily create open access service endpoints that can take advantage of urlencoded data that is everywhere in existing pages. It would make it much easier to create basic REST endpoints without complicated service configuration. Ah one can dream! In the meantime I hope this article has given you some ideas on how you can transfer POST data from the client to the server using JSON – it might be useful in other scenarios beyond ASP.NET AJAX services as well. Additional Resources ServiceProxy.js A small JavaScript library that wraps $.ajax() to call ASP.NET AJAX and WCF AJAX Services. Includes date parsing extensions to the JSON object, a global dataFilter for processing dates on all jQuery JSON requests, provides cleanup for the .NET wrapped message format and handles errors in a consistent fashion. Making jQuery Calls to WCF/ASMX with a ServiceProxy Client More information on calling ASMX and WCF AJAX services with jQuery and some more background on ServiceProxy.js. Note the implementation has slightly changed since the article was written. ww.jquery.js The West Wind West Wind Web Toolkit also includes ServiceProxy.js in the West Wind jQuery extension library. This version is slightly different and includes embedded json encoding/decoding based on json2.js.© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  AJAX  

    Read the article

  • Windows Azure: Backup Services Release, Hyper-V Recovery Manager, VM Enhancements, Enhanced Enterprise Management Support

    - by ScottGu
    This morning we released a huge set of updates to Windows Azure.  These new capabilities include: Backup Services: General Availability of Windows Azure Backup Services Hyper-V Recovery Manager: Public preview of Windows Azure Hyper-V Recovery Manager Virtual Machines: Delete Attached Disks, Availability Set Warnings, SQL AlwaysOn Configuration Active Directory: Securely manage hundreds of SaaS applications Enterprise Management: Use Active Directory to Better Manage Windows Azure Windows Azure SDK 2.2: A massive update of our SDK + Visual Studio tooling support All of these improvements are now available to use immediately.  Below are more details about them. Backup Service: General Availability Release of Windows Azure Backup Today we are releasing Windows Azure Backup Service as a general availability service.  This release is now live in production, backed by an enterprise SLA, supported by Microsoft Support, and is ready to use for production scenarios. Windows Azure Backup is a cloud based backup solution for Windows Server which allows files and folders to be backed up and recovered from the cloud, and provides off-site protection against data loss. The service provides IT administrators and developers with the option to back up and protect critical data in an easily recoverable way from any location with no upfront hardware cost. Windows Azure Backup is built on the Windows Azure platform and uses Windows Azure blob storage for storing customer data. Windows Server uses the downloadable Windows Azure Backup Agent to transfer file and folder data securely and efficiently to the Windows Azure Backup Service. Along with providing cloud backup for Windows Server, Windows Azure Backup Service also provides capability to backup data from System Center Data Protection Manager and Windows Server Essentials, to the cloud. All data is encrypted onsite before it is sent to the cloud, and customers retain and manage the encryption key (meaning the data is stored entirely secured and can’t be decrypted by anyone but yourself). Getting Started To get started with the Windows Azure Backup Service, create a new Backup Vault within the Windows Azure Management Portal.  Click New->Data Services->Recovery Services->Backup Vault to do this: Once the backup vault is created you’ll be presented with a simple tutorial that will help guide you on how to register your Windows Servers with it: Once the servers you want to backup are registered, you can use the appropriate local management interface (such as the Microsoft Management Console snap-in, System Center Data Protection Manager Console, or Windows Server Essentials Dashboard) to configure the scheduled backups and to optionally initiate recoveries. You can follow these tutorials to learn more about how to do this: Tutorial: Schedule Backups Using the Windows Azure Backup Agent This tutorial helps you with setting up a backup schedule for your registered Windows Servers. Additionally, it also explains how to use Windows PowerShell cmdlets to set up a custom backup schedule. Tutorial: Recover Files and Folders Using the Windows Azure Backup Agent This tutorial helps you with recovering data from a backup. Additionally, it also explains how to use Windows PowerShell cmdlets to do the same tasks. Below are some of the key benefits the Windows Azure Backup Service provides: Simple configuration and management. Windows Azure Backup Service integrates with the familiar Windows Server Backup utility in Windows Server, the Data Protection Manager component in System Center and Windows Server Essentials, in order to provide a seamless backup and recovery experience to a local disk, or to the cloud. Block level incremental backups. The Windows Azure Backup Agent performs incremental backups by tracking file and block level changes and only transferring the changed blocks, hence reducing the storage and bandwidth utilization. Different point-in-time versions of the backups use storage efficiently by only storing the changes blocks between these versions. Data compression, encryption and throttling. The Windows Azure Backup Agent ensures that data is compressed and encrypted on the server before being sent to the Windows Azure Backup Service over the network. As a result, the Windows Azure Backup Service only stores encrypted data in the cloud storage. The encryption key is not available to the Windows Azure Backup Service, and as a result the data is never decrypted in the service. Also, users can setup throttling and configure how the Windows Azure Backup service utilizes the network bandwidth when backing up or restoring information. Data integrity is verified in the cloud. In addition to the secure backups, the backed up data is also automatically checked for integrity once the backup is done. As a result, any corruptions which may arise due to data transfer can be easily identified and are fixed automatically. Configurable retention policies for storing data in the cloud. The Windows Azure Backup Service accepts and implements retention policies to recycle backups that exceed the desired retention range, thereby meeting business policies and managing backup costs. Hyper-V Recovery Manager: Now Available in Public Preview I’m excited to also announce the public preview of a new Windows Azure Service – the Windows Azure Hyper-V Recovery Manager (HRM). Windows Azure Hyper-V Recovery Manager helps protect your business critical services by coordinating the replication and recovery of System Center Virtual Machine Manager 2012 SP1 and System Center Virtual Machine Manager 2012 R2 private clouds at a secondary location. With automated protection, asynchronous ongoing replication, and orderly recovery, the Hyper-V Recovery Manager service can help you implement Disaster Recovery and restore important services accurately, consistently, and with minimal downtime. Application data in an Hyper-V Recovery Manager scenarios always travels on your on-premise replication channel. Only metadata (such as names of logical clouds, virtual machines, networks etc.) that is needed for orchestration is sent to Azure. All traffic sent to/from Azure is encrypted. You can begin using Windows Azure Hyper-V Recovery today by clicking New->Data Services->Recovery Services->Hyper-V Recovery Manager within the Windows Azure Management Portal.  You can read more about Windows Azure Hyper-V Recovery Manager in Brad Anderson’s 9-part series, Transform the datacenter. To learn more about setting up Hyper-V Recovery Manager follow our detailed step-by-step guide. Virtual Machines: Delete Attached Disks, Availability Set Warnings, SQL AlwaysOn Today’s Windows Azure release includes a number of nice updates to Windows Azure Virtual Machines.  These improvements include: Ability to Delete both VM Instances + Attached Disks in One Operation Prior to today’s release, when you deleted VMs within Windows Azure we would delete the VM instance – but not delete the drives attached to the VM.  You had to manually delete these yourself from the storage account.  With today’s update we’ve added a convenience option that now allows you to either retain or delete the attached disks when you delete the VM:   We’ve also added the ability to delete a cloud service, its deployments, and its role instances with a single action. This can either be a cloud service that has production and staging deployments with web and worker roles, or a cloud service that contains virtual machines.  To do this, simply select the Cloud Service within the Windows Azure Management Portal and click the “Delete” button: Warnings on Availability Sets with Only One Virtual Machine In Them One of the nice features that Windows Azure Virtual Machines supports is the concept of “Availability Sets”.  An “availability set” allows you to define a tier/role (e.g. webfrontends, databaseservers, etc) that you can map Virtual Machines into – and when you do this Windows Azure separates them across fault domains and ensures that at least one of them is always available during servicing operations.  This enables you to deploy applications in a high availability way. One issue we’ve seen some customers run into is where they define an availability set, but then forget to map more than one VM into it (which defeats the purpose of having an availability set).  With today’s release we now display a warning in the Windows Azure Management Portal if you have only one virtual machine deployed in an availability set to help highlight this: You can learn more about configuring the availability of your virtual machines here. Configuring SQL Server Always On SQL Server Always On is a great feature that you can use with Windows Azure to enable high availability and DR scenarios with SQL Server. Today’s Windows Azure release makes it even easier to configure SQL Server Always On by enabling “Direct Server Return” endpoints to be configured and managed within the Windows Azure Management Portal.  Previously, setting this up required using PowerShell to complete the endpoint configuration.  Starting today you can enable this simply by checking the “Direct Server Return” checkbox: You can learn more about how to use direct server return for SQL Server AlwaysOn availability groups here. Active Directory: Application Access Enhancements This summer we released our initial preview of our Application Access Enhancements for Windows Azure Active Directory.  This service enables you to securely implement single-sign-on (SSO) support against SaaS applications (including Office 365, SalesForce, Workday, Box, Google Apps, GitHub, etc) as well as LOB based applications (including ones built with the new Windows Azure AD support we shipped last week with ASP.NET and VS 2013). Since the initial preview we’ve enhanced our SAML federation capabilities, integrated our new password vaulting system, and shipped multi-factor authentication support. We've also turned on our outbound identity provisioning system and have it working with hundreds of additional SaaS Applications: Earlier this month we published an update on dates and pricing for when the service will be released in general availability form.  In this blog post we announced our intention to release the service in general availability form by the end of the year.  We also announced that the below features would be available in a free tier with it: SSO to every SaaS app we integrate with – Users can Single Sign On to any app we are integrated with at no charge. This includes all the top SAAS Apps and every app in our application gallery whether they use federation or password vaulting. Application access assignment and removal – IT Admins can assign access privileges to web applications to the users in their active directory assuring that every employee has access to the SAAS Apps they need. And when a user leaves the company or changes jobs, the admin can just as easily remove their access privileges assuring data security and minimizing IP loss User provisioning (and de-provisioning) – IT admins will be able to automatically provision users in 3rd party SaaS applications like Box, Salesforce.com, GoToMeeting, DropBox and others. We are working with key partners in the ecosystem to establish these connections, meaning you no longer have to continually update user records in multiple systems. Security and auditing reports – Security is a key priority for us. With the free version of these enhancements you'll get access to our standard set of access reports giving you visibility into which users are using which applications, when they were using them and where they are using them from. In addition, we'll alert you to un-usual usage patterns for instance when a user logs in from multiple locations at the same time. Our Application Access Panel – Users are logging in from every type of devices including Windows, iOS, & Android. Not all of these devices handle authentication in the same manner but the user doesn't care. They need to access their apps from the devices they love. Our Application Access Panel will support the ability for users to access access and launch their apps from any device and anywhere. You can learn more about our plans for application management with Windows Azure Active Directory here.  Try out the preview and start using it today. Enterprise Management: Use Active Directory to Better Manage Windows Azure Windows Azure Active Directory provides the ability to manage your organization in a directory which is hosted entirely in the cloud, or alternatively kept in sync with an on-premises Windows Server Active Directory solution (allowing you to seamlessly integrate with the directory you already have).  With today’s Windows Azure release we are integrating Windows Azure Active Directory even more within the core Windows Azure management experience, and enabling an even richer enterprise security offering.  Specifically: 1) All Windows Azure accounts now have a default Windows Azure Active Directory created for them.  You can create and map any users you want into this directory, and grant administrative rights to manage resources in Windows Azure to these users. 2) You can keep this directory entirely hosted in the cloud – or optionally sync it with your on-premises Windows Server Active Directory.  Both options are free.  The later approach is ideal for companies that wish to use their corporate user identities to sign-in and manage Windows Azure resources.  It also ensures that if an employee leaves an organization, his or her access control rights to the company’s Windows Azure resources are immediately revoked. 3) The Windows Azure Service Management APIs have been updated to support using Windows Azure Active Directory credentials to sign-in and perform management operations.  Prior to today’s release customers had to download and use management certificates (which were not scoped to individual users) to perform management operations.  We still support this management certificate approach (don’t worry – nothing will stop working).  But we think the new Windows Azure Active Directory authentication support enables an even easier and more secure way for customers to manage resources going forward.  4) The Windows Azure SDK 2.2 release (which is also shipping today) includes built-in support for the new Service Management APIs that authenticate with Windows Azure Active Directory, and now allow you to create and manage Windows Azure applications and resources directly within Visual Studio using your Active Directory credentials.  This, combined with updated PowerShell scripts that also support Active Directory, enables an end-to-end enterprise authentication story with Windows Azure. Below are some details on how all of this works: Subscriptions within a Directory As part of today’s update, we have associated all existing Window Azure accounts with a Windows Azure Active Directory (and created one for you if you don’t already have one). When you login to the Windows Azure Management Portal you’ll now see the directory name in the URI of the browser.  For example, in the screen-shot below you can see that I have a “scottgu” directory that my subscriptions are hosted within: Note that you can continue to use Microsoft Accounts (formerly known as Microsoft Live IDs) to sign-into Windows Azure.  These map just fine to a Windows Azure Active Directory – so there is no need to create new usernames that are specific to a directory if you don’t want to.  In the scenario above I’m actually logged in using my @hotmail.com based Microsoft ID which is now mapped to a “scottgu” active directory that was created for me.  By default everything will continue to work just like you used to before. Manage your Directory You can manage an Active Directory (including the one we now create for you by default) by clicking the “Active Directory” tab in the left-hand side of the portal.  This will list all of the directories in your account.  Clicking one the first time will display a getting started page that provides documentation and links to perform common tasks with it: You can use the built-in directory management support within the Windows Azure Management Portal to add/remove/manage users within the directory, enable multi-factor authentication, associate a custom domain (e.g. mycompanyname.com) with the directory, and/or rename the directory to whatever friendly name you want (just click the configure tab to do this).  You can also setup the directory to automatically sync with an on-premises Active Directory using the “Directory Integration” tab. Note that users within a directory by default do not have admin rights to login or manage Windows Azure based resources.  You still need to explicitly grant them co-admin permissions on a subscription for them to login or manage resources in Windows Azure.  You can do this by clicking the Settings tab on the left-hand side of the portal and then by clicking the administrators tab within it. Sign-In Integration within Visual Studio If you install the new Windows Azure SDK 2.2 release, you can now connect to Windows Azure from directly inside Visual Studio without having to download any management certificates.  You can now just right-click on the “Windows Azure” icon within the Server Explorer and choose the “Connect to Windows Azure” context menu option to do so: Doing this will prompt you to enter the email address of the username you wish to sign-in with (make sure this account is a user in your directory with co-admin rights on a subscription): You can use either a Microsoft Account (e.g. Windows Live ID) or an Active Directory based Organizational account as the email.  The dialog will update with an appropriate login prompt depending on which type of email address you enter: Once you sign-in you’ll see the Windows Azure resources that you have permissions to manage show up automatically within the Visual Studio server explorer and be available to start using: No downloading of management certificates required.  All of the authentication was handled using your Windows Azure Active Directory! Manage Subscriptions across Multiple Directories If you have already have multiple directories and multiple subscriptions within your Windows Azure account, we have done our best to create a good default mapping of your subscriptions->directories as part of today’s update.  If you don’t like the default subscription-to-directory mapping we have done you can click the Settings tab in the left-hand navigation of the Windows Azure Management Portal and browse to the Subscriptions tab within it: If you want to map a subscription under a different directory in your account, simply select the subscription from the list, and then click the “Edit Directory” button to choose which directory to map it to.  Mapping a subscription to a different directory takes only seconds and will not cause any of the resources within the subscription to recycle or stop working.  We’ve made the directory->subscription mapping process self-service so that you always have complete control and can map things however you want. Filtering By Directory and Subscription Within the Windows Azure Management Portal you can filter resources in the portal by subscription (allowing you to show/hide different subscriptions).  If you have subscriptions mapped to multiple directory tenants, we also now have a filter drop-down that allows you to filter the subscription list by directory tenant.  This filter is only available if you have multiple subscriptions mapped to multiple directories within your Windows Azure Account:   Windows Azure SDK 2.2 Today we are also releasing a major update of our Windows Azure SDK.  The Windows Azure SDK 2.2 release adds some great new features including: Visual Studio 2013 Support Integrated Windows Azure Sign-In support within Visual Studio Remote Debugging Cloud Services with Visual Studio Firewall Management support within Visual Studio for SQL Databases Visual Studio 2013 RTM VM Images for MSDN Subscribers Windows Azure Management Libraries for .NET Updated Windows Azure PowerShell Cmdlets and ScriptCenter I’ll post a follow-up blog shortly with more details about all of the above. Additional Updates In addition to the above enhancements, today’s release also includes a number of additional improvements: AutoScale: Richer time and date based scheduling support (set different rules on different dates) AutoScale: Ability to Scale to Zero Virtual Machines (very useful for Dev/Test scenarios) AutoScale: Support for time-based scheduling of Mobile Service AutoScale rules Operation Logs: Auditing support for Service Bus management operations Today we also shipped a major update to the Windows Azure SDK – Windows Azure SDK 2.2.  It has so much goodness in it that I have a whole second blog post coming shortly on it! :-) Summary Today’s Windows Azure release enables a bunch of great new scenarios, and enables a much richer enterprise authentication offering. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • NoSQL with RavenDB and ASP.NET MVC - Part 2

    - by shiju
    In my previous post, we have discussed on how to work with RavenDB document database in an ASP.NET MVC application. We have setup RavenDB for our ASP.NET MVC application and did basic CRUD operations against a simple domain entity. In this post, let’s discuss on domain entity with deep object graph and how to query against RavenDB documents using Indexes.Let's create two domain entities for our demo ASP.NET MVC appplication  public class Category {       public string Id { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public List<Expense> Expenses { get; set; }       public Category()     {         Expenses = new List<Expense>();     } }    public class Expense {       public string Id { get; set; }     public Category Category { get; set; }     public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }   }  We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category.Let's create  ASP.NET MVC view model  for Expense transaction public class ExpenseViewModel {     public string Id { get; set; }       public string CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]            public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]            public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } Let's create a contract type for Expense Repository  public interface IExpenseRepository {     Expense Load(string id);     IEnumerable<Expense> GetExpenseTransactions(DateTime startDate,DateTime endDate);     void Save(Expense expense,string categoryId);     void Delete(string id);  } Let's create a concrete type for Expense Repository for handling CRUD operations. public class ExpenseRepository : IExpenseRepository {   private IDocumentSession session; public ExpenseRepository() {         session = MvcApplication.CurrentSession; } public Expense Load(string id) {     return session.Load<Expense>(id); } public IEnumerable<Expense> GetExpenseTransactions(DateTime startDate, DateTime endDate) {             //Querying using the Index name "ExpenseTransactions"     //filtering with dates     var expenses = session.LuceneQuery<Expense>("ExpenseTransactions")         .WaitForNonStaleResults()         .Where(exp => exp.Date >= startDate && exp.Date <= endDate)         .ToArray();     return expenses; } public void Save(Expense expense,string categoryId) {     var category = session.Load<Category>(categoryId);     if (string.IsNullOrEmpty(expense.Id))     {         //new expense transaction         expense.Category = category;         session.Store(expense);     }     else     {         //modifying an existing expense transaction         var expenseToEdit = Load(expense.Id);         //Copy values to  expenseToEdit         ModelCopier.CopyModel(expense, expenseToEdit);         //set category object         expenseToEdit.Category = category;       }     //save changes     session.SaveChanges(); } public void Delete(string id) {     var expense = Load(id);     session.Delete<Expense>(expense);     session.SaveChanges(); }   }  Insert/Update Expense Transaction The Save method is used for both insert a new expense record and modifying an existing expense transaction. For a new expense transaction, we store the expense object with associated category into document session object and load the existing expense object and assign values to it for editing a existing record.  public void Save(Expense expense,string categoryId) {     var category = session.Load<Category>(categoryId);     if (string.IsNullOrEmpty(expense.Id))     {         //new expense transaction         expense.Category = category;         session.Store(expense);     }     else     {         //modifying an existing expense transaction         var expenseToEdit = Load(expense.Id);         //Copy values to  expenseToEdit         ModelCopier.CopyModel(expense, expenseToEdit);         //set category object         expenseToEdit.Category = category;       }     //save changes     session.SaveChanges(); } Querying Expense transactions   public IEnumerable<Expense> GetExpenseTransactions(DateTime startDate, DateTime endDate) {             //Querying using the Index name "ExpenseTransactions"     //filtering with dates     var expenses = session.LuceneQuery<Expense>("ExpenseTransactions")         .WaitForNonStaleResults()         .Where(exp => exp.Date >= startDate && exp.Date <= endDate)         .ToArray();     return expenses; }  The GetExpenseTransactions method returns expense transactions using a LINQ query expression with a Date comparison filter. The Lucene Query is using a index named "ExpenseTransactions" for getting the result set. In RavenDB, Indexes are LINQ queries stored in the RavenDB server and would be  executed on the background and will perform query against the JSON documents. Indexes will be working with a lucene query expression or a set operation. Indexes are composed using a Map and Reduce function. Check out Ayende's blog post on Map/Reduce We can create index using RavenDB web admin tool as well as programmitically using its Client API. The below shows the screen shot of creating index using web admin tool. We can also create Indexes using Raven Cleint API as shown in the following code documentStore.DatabaseCommands.PutIndex("ExpenseTransactions",     new IndexDefinition<Expense,Expense>() {     Map = Expenses => from exp in Expenses                     select new { exp.Date } });  In the Map function, we used a Linq expression as shown in the following from exp in docs.Expensesselect new { exp.Date };We have not used a Reduce function for the above index. A Reduce function is useful while performing aggregate functions based on the results from the Map function. Indexes can be use with set operations of RavenDB.SET OperationsUnlike other document databases, RavenDB supports set based operations that lets you to perform updates, deletes and inserts to the bulk_docs endpoint of RavenDB. For doing this, you just pass a query to a Index as shown in the following commandDELETE http://localhost:8080/bulk_docs/ExpenseTransactions?query=Date:20100531The above command using the Index named "ExpenseTransactions" for querying the documents with Date filter and  will delete all the documents that match the query criteria. The above command is equivalent of the following queryDELETE FROM ExpensesWHERE Date='2010-05-31' Controller & ActionsWe have created Expense Repository class for performing CRUD operations for the Expense transactions. Let's create a controller class for handling expense transactions.   public class ExpenseController : Controller { private ICategoryRepository categoyRepository; private IExpenseRepository expenseRepository; public ExpenseController(ICategoryRepository categoyRepository, IExpenseRepository expenseRepository) {     this.categoyRepository = categoyRepository;     this.expenseRepository = expenseRepository; } //Get Expense transactions based on dates public ActionResult Index(DateTime? StartDate, DateTime? EndDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!StartDate.HasValue)     {         StartDate = new DateTime(dtNow.Year, dtNow.Month, 1);         EndDate = StartDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of startdate's month, if endate is not passed     if (StartDate.HasValue && !EndDate.HasValue)     {         EndDate = (new DateTime(StartDate.Value.Year, StartDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }       var expenses = expenseRepository.GetExpenseTransactions(StartDate.Value, EndDate.Value);     if (Request.IsAjaxRequest())     {           return PartialView("ExpenseList", expenses);     }     ViewData.Add("StartDate", StartDate.Value.ToShortDateString());     ViewData.Add("EndDate", EndDate.Value.ToShortDateString());             return View(expenses);            }   // GET: /Expense/Edit public ActionResult Edit(string id) {       var expenseModel = new ExpenseViewModel();     var expense = expenseRepository.Load(id);     ModelCopier.CopyModel(expense, expenseModel);     var categories = categoyRepository.GetCategories();     expenseModel.Category = categories.ToSelectListItems(expense.Category.Id.ToString());                    return View("Save", expenseModel);          }   // // GET: /Expense/Create   public ActionResult Create() {     var expenseModel = new ExpenseViewModel();               var categories = categoyRepository.GetCategories();     expenseModel.Category = categories.ToSelectListItems("-1");     expenseModel.Date = DateTime.Today;     return View("Save", expenseModel); }   // // POST: /Expense/Save // Insert/Update Expense Tansaction [HttpPost] public ActionResult Save(ExpenseViewModel expenseViewModel) {     try     {         if (!ModelState.IsValid)         {               var categories = categoyRepository.GetCategories();                 expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);                               return View("Save", expenseViewModel);         }           var expense=new Expense();         ModelCopier.CopyModel(expenseViewModel, expense);          expenseRepository.Save(expense, expenseViewModel.CategoryId);                       return RedirectToAction("Index");     }     catch     {         return View();     } } //Delete a Expense Transaction public ActionResult Delete(string id) {     expenseRepository.Delete(id);     return RedirectToAction("Index");     }     }     Download the Source - You can download the source code from http://ravenmvc.codeplex.com

    Read the article

  • An Honest look at SharePoint Web Services

    - by juanlarios
    INTRODUCTION If you are a SharePoint developer you know that there are two basic ways to develop against SharePoint. 1) The object Model 2) Web services. SharePoint object model has the advantage of being quite rich. Anything you can do through the SharePoint UI as an administrator or end user, you can do through the object model. In fact everything that is done through the UI is done through the object model behind the scenes. The major disadvantage to getting at SharePoint this way is that the code needs to run on the server. This means that all web parts, event receivers, features, etc… all of this is code that is deployed to the server. The second way to get to SharePoint is through the built in web services. There are many articles on how to manipulate web services, how to authenticate to them and interact with them. The basic idea is that a remote application or process can contact SharePoint through a web service. Lots has been written about how great these web services are. This article is written to document the limitations, some of the issues and frustrations with working with SharePoint built in web services. Ultimately, for the tasks I was given to , SharePoint built in web services did not suffice. My evaluation of SharePoint built in services was compared against creating my own WCF Services to do what I needed. The current project I'm working on right now involved several "integration points". A remote application, installed on a separate server was to contact SharePoint and perform an task or operation. So I decided to start up Visual Studio and built a DLL and basically have 2 layers of logic. An integration layer and a data layer. A good friend of mine pointed me to SOLID principles and referred me to some videos and tutorials about it. I decided to implement the methodology (although a lot of the principles are common sense and I already incorporated in my coding practices). I was to deliver this dll to the application team and they would simply call the methods exposed by this dll and voila! it would do some task or operation in SharePoint. SOLUTION My integration layer implemented an interface that defined some of the basic integration tasks that I was to put together. My data layer was about the same, it implemented an interface with some of the tasks that I was going to develop. This gave me the opportunity to develop different data layers, ultimately different ways to get at SharePoint if I needed to. This is a classic SOLID principle. In this case it proved to be quite helpful because I wrote one data layer completely implementing SharePoint built in Web Services and another implementing my own WCF Service that I wrote. I should mention there is another layer underneath the data layer. In referencing SharePoint or WCF services in my visual studio project I created a class for every web service call. So for example, if I used List.asx. I created a class called "DocumentRetreival" this class would do the grunt work to connect to the correct URL, It would perform the basic operation of contacting the service and so on. If I used a view.asmx, I implemented a class called "ViewRetrieval" with the same idea as the last class but it would now interact with all he operations in view.asmx. This gave my data layer the ability to perform multiple calls without really worrying about some of the grunt work each class performs. This again, is a classic SOLID principle. So, in order to compare them side by side we can look at both data layers and with is involved in each. Lets take a look at the "Create Project" task or operation. The integration point is described as , "dll is to provide a way to create a project in SharePoint". Projects , in this case are basically document libraries. I am to implement a way in which a remote application can create a document library in SharePoint. Easy enough right? Use the list.asmx Web service in SharePoint. So here we go! Lets take a look at the code. I added the List.asmx web service reference to my project and this is the class that contacts it:  class DocumentRetrieval     {         private ListsSoapClient _service;      d   private bool _impersonation;         public DocumentRetrieval(bool impersonation, string endpt)         {             _service = new ListsSoapClient();             this.SetEndPoint(string.Format("{0}/{1}", endpt, ConfigurationManager.AppSettings["List"]));             _impersonation = impersonation;             if (_impersonation)             {                 _service.ClientCredentials.Windows.ClientCredential.Password = ConfigurationManager.AppSettings["password"];                 _service.ClientCredentials.Windows.ClientCredential.UserName = ConfigurationManager.AppSettings["username"];                 _service.ClientCredentials.Windows.AllowedImpersonationLevel =                     System.Security.Principal.TokenImpersonationLevel.Impersonation;             }     private void SetEndPoint(string p)          {             _service.Endpoint.Address = new EndpointAddress(p);          }          /// <summary>         /// Creates a document library with specific name and templateID         /// </summary>         /// <param name="listName">New list name</param>         /// <param name="templateID">Template ID</param>         /// <returns></returns>         public XmlElement CreateLibrary(string listName, int templateID, ref ExceptionContract exContract)         {             XmlDocument sample = new XmlDocument();             XmlElement viewCol = sample.CreateElement("Empty");             try             {                 _service.Open();                 viewCol = _service.AddList(listName, "", templateID);             }             catch (Exception ex)             {                 exContract = new ExceptionContract("DocumentRetrieval/CreateLibrary", ex.GetType(), "Connection Error", ex.StackTrace, ExceptionContract.ExceptionCode.error);                             }finally             {                 _service.Close();             }                                      return viewCol;         } } There was a lot more in this class (that I am not including) because i was reusing the grunt work and making other operations with LIst.asmx, For example, updating content types, changing or configuring lists or document libraries. One of the first things I noticed about working with the built in services is that you are really at the mercy of what is available to you. Before creating a document library (Project) I wanted to expose a IsProjectExisting method. This way the integration or data layer could recognize if a library already exists. Well there is no service call or method available to do that check. So this is what I wrote:   public bool DocLibExists(string listName, ref ExceptionContract exContract)         {             try             {                 var allLists = _service.GetListCollection();                                return allLists.ChildNodes.OfType<XmlElement>().ToList().Exists(x => x.Attributes["Title"].Value ==listName);             }             catch (Exception ex)             {                 exContract = new ExceptionContract("DocumentRetrieval/GetList/GetListWSCall", ex.GetType(), "Unable to Retrieve List Collection", ex.StackTrace, ExceptionContract.ExceptionCode.error);             }             return false;         } This really just gets an XMLElement with all the lists. It was then up to me to sift through the clutter and noise and see if Document library already existed. This took a little bit of getting used to. Now instead of working with code, you are working with XMLElement response format from web service. I wrote a LINQ query to go through and find if the attribute "Title" existed and had a value of the listname then it would return True, if not False. I didn't particularly like working this way. Dealing with XMLElement responses and then having to manipulate it to get at the exact data I was looking for. Once the check for the DocLibExists, was done, I would either create the document library or send back an error indicating the document library already existed. Now lets examine the code that actually creates the document library. It does what you are really after, it creates a document library. Notice how the template ID is really an integer. Every document library template in SharePoint has an ID associated with it. Document libraries, Image Library, Custom List, Project Tasks, etc… they all he a unique integer associated with it. Well, that's great but the client came back to me and gave me some specifics that each "project" or document library, should have. They specified they had 3 types of projects. Each project would have unique views, about 10 views for each project. Each Project specified unique configurations (auditing, versioning, content types, etc…) So what turned out to be a simple implementation of creating a document library as a repository for a project, turned out to be quite involved.  The first thing I thought of was to create a template for document library. There are other ways you can do this too. Using the web Service call, you could configure views, versioning, even content types, etc… the only catch is, you have to be working quite extensively with CAML. I am not fond of CAML. I can do it and work with it, I just don't like doing it. It is quite touchy and at times it is quite tough to understand where errors were made with CAML statements. Working with Web Services and CAML proved to be quite annoying. The service call would return a generic error message that did not particularly point me to a CAML statement syntax error, or even a CAML error. I was not sure if it was a security , performance or code based issue. It was quite tough to work with. At times it was difficult to work with because of the way SharePoint handles metadata. There are "Names", "Display Name", and "StaticName" fields. It was quite tough to understand at times, which one to use. So it took a lot of trial and error. There are tools that can help with CAML generation. There is also now intellisense for CAML statements in Visual Studio that might help but ultimately I'm not fond of CAML with Web Services.   So I decided on the template. So my plan was to create create a document library, configure it accordingly and then use The Template Builder that comes with the SharePoint SDK. This tool allows you to create site templates, list template etc… It is quite interesting because it does not generate an STP file, it actually generates an xml definition and a feature you can activate and make that template available on a site or site collection. The first issue I experienced with this is that one of the specifications to this template was that the "All Documents" view was to have 2 web parts on it. Well, it turns out that using the template builder , it did not include the web parts as part of the list template definition it generated. It backed up the settings, the views, the content types but not the custom web parts. I still decided to try this even without the web parts on the page. This new template defined a new Document library definition with a unique ID. The problem was that the service call accepts an int but it only has access to the built in library int definitions. Any new ones added or created will not be available to create. So this made it impossible for me to approach the problem this way.     I should also mention that one of the nice features about SharePoint is the ability to create list templates, back them up and then create lists based on that template. It can all be done by end user administrators. These templates are quite unique because they are saved as an STP file and not an xml definition. I also went this route and tried to see if there was another service call where I could create a document library based no given template name. Nope! none.      After some thinking I decide to implement a WCF service to do this creation for me. I was quite certain that the object model would allow me to create document libraries base on a template in which an ID was required and also templates saved as STP files. Now I don't want to bother with posting the code to contact WCF service because it's self explanatory, but I will post the code that I used to create a list with custom template. public ServiceResult CreateProject(string name, string templateName, string projectId)         {             string siteurl = SPContext.Current.Site.Url;             Guid webguid = SPContext.Current.Web.ID;                        using (SPSite site = new SPSite(siteurl))             {                 using (SPWeb rootweb = site.RootWeb)                 {                     SPListTemplateCollection temps = site.GetCustomListTemplates(rootweb);                     ProcessWeb(siteurl, webguid, web => Act_CreateProject(web, name, templateName, projectId, temps));                 }//SpWeb             }//SPSite              return _globalResult;                   }         private void Act_CreateProject(SPWeb targetsite, string name, string templateName, string projectId, SPListTemplateCollection temps) {                         var temp = temps.Cast<SPListTemplate>().FirstOrDefault(x => x.Name.Equals(templateName));             if (temp != null)             {                             try                 {                                         Guid listGuid = targetsite.Lists.Add(name, "", temp);                     SPList newList = targetsite.Lists[listGuid];                     _globalResult = new ServiceResult(true, "Success", "Success");                 }                 catch (Exception ex)                 {                     _globalResult = new ServiceResult(false, (string.IsNullOrEmpty(ex.Message) ? "None" : ex.Message + " " + templateName), ex.StackTrace.ToString());                 }                                       }        private void ProcessWeb(string siteurl, Guid webguid, Action<SPWeb> action) {                        using (SPSite sitecollection = new SPSite(siteurl)) {                 using (SPWeb web = sitecollection.AllWebs[webguid]) {                     action(web);                 }                     }                  } This code is actually some of the code I implemented for the service. there was a lot more I did on Project Creation which I will cover in my next blog post. I implemented an ACTION method to process the web. This allowed me to properly dispose the SPWEb and SPSite objects and not rewrite this code over and over again. So I implemented a WCF service to create projects for me, this allowed me to do a lot more than just create a document library with a template, it now gave me the flexibility to do just about anything the client wanted at project creation. Once this was implemented , the client came back to me and said, "we reference all our projects with ID's in our application. we want SharePoint to do the same". This has been something I have been doing for a little while now but I do hope that SharePoint 2010 can have more of an answer to this and address it properly. I have been adding metadata to SPWebs through property bag. I believe I have blogged about it before. This time it required metadata added to a document library. No problem!!! I also mentioned these web parts that were to go on the "All Documents" View. I took the opportunity to configure them to the appropriate settings. There were two settings that needed to be set on these web parts. One of them was a Project ID configured in the webpart properties. The following code enhances and replaces the "Act_CreateProject " method above:  private void Act_CreateProject(SPWeb targetsite, string name, string templateName, string projectId, SPListTemplateCollection temps) {                         var temp = temps.Cast<SPListTemplate>().FirstOrDefault(x => x.Name.Equals(templateName));             if (temp != null)             {                 SPLimitedWebPartManager wpmgr = null;                               try                 {                                         Guid listGuid = targetsite.Lists.Add(name, "", temp);                     SPList newList = targetsite.Lists[listGuid];                     SPFolder rootFolder = newList.RootFolder;                     rootFolder.Properties.Add(KEY, projectId);                     rootFolder.Update();                     if (rootFolder.ParentWeb != targetsite)                         rootFolder.ParentWeb.Dispose();                     if (!templateName.Contains("Natural"))                     {                         SPView alldocumentsview = newList.Views.Cast<SPView>().FirstOrDefault(x => x.Title.Equals(ALLDOCUMENTS));                         SPFile alldocfile = targetsite.GetFile(alldocumentsview.ServerRelativeUrl);                         wpmgr = alldocfile.GetLimitedWebPartManager(PersonalizationScope.Shared);                         ConfigureWebPart(wpmgr, projectId, CUSTOMWPNAME);                                              alldocfile.Update();                     }                                        if (newList.ParentWeb != targetsite)                         newList.ParentWeb.Dispose();                     _globalResult = new ServiceResult(true, "Success", "Success");                 }                 catch (Exception ex)                 {                     _globalResult = new ServiceResult(false, (string.IsNullOrEmpty(ex.Message) ? "None" : ex.Message + " " + templateName), ex.StackTrace.ToString());                 }                 finally                 {                     if (wpmgr != null)                     {                         wpmgr.Web.Dispose();                         wpmgr.Dispose();                     }                 }             }                         }       private void ConfigureWebPart(SPLimitedWebPartManager mgr, string prjId, string webpartname)         {             var wp = mgr.WebParts.Cast<System.Web.UI.WebControls.WebParts.WebPart>().FirstOrDefault(x => x.DisplayTitle.Equals(webpartname));             if (wp != null)             {                           (wp as ListRelationshipWebPart.ListRelationshipWebPart).ProjectID = prjId;                 mgr.SaveChanges(wp);             }         }   This Shows you how I was able to set metadata on the document library. It has to be added to the RootFolder of the document library, Unfortunately, the SPList does not have a Property bag that I can add a key\value pair to. It has to be done on the root folder. Now everything in the integration will reference projects by ID's and will not care about names. My, "DocLibExists" will now need to be changed because a web service is not set up to look at property bags.  I had to write another method on the Service to do the equivalent but with ID's instead of names.  The second thing you will notice about the code is the use of the Webpartmanager. I have seen several examples online, and also read a lot about memory leaks, The above code does not produce memory leaks. The web part manager creates an SPWeb, so just dispose it like I did. CONCLUSION This is a long long post so I will stop here for now, I will continue with more comparisons and limitations in my next post. My conclusion for this example is that Web Services will do the trick if you can suffer through CAML and if you are doing some simple operations. For Everything else, there's WCF! **** fireI apologize for the disorganization of this post, I was on a bus on a 12 hour trip to IOWA while I wrote it, I was half asleep and half awake, hopefully it makes enough sense to someone.

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Linux e1000e (Intel networking driver) problems galore, where do I start?

    - by Evan Carroll
    I'm currently having a major problem with e1000e (not working at all) in Ubuntu Maverick (1.0.2-k4), after resume I'm getting a lot of stuff in dmesg: [ 9085.820197] e1000e 0000:02:00.0: PCI INT A disabled [ 9089.907756] e1000e: Intel(R) PRO/1000 Network Driver - 1.0.2-k4 [ 9089.907762] e1000e: Copyright (c) 1999 - 2009 Intel Corporation. [ 9089.907797] e1000e 0000:02:00.0: Disabling ASPM L1 [ 9089.907827] e1000e 0000:02:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 9089.907857] e1000e 0000:02:00.0: setting latency timer to 64 [ 9089.908529] e1000e 0000:02:00.0: irq 44 for MSI/MSI-X [ 9089.908922] e1000e 0000:02:00.0: Disabling ASPM L0s [ 9089.908954] e1000e 0000:02:00.0: (unregistered net_device): PHY reset is blocked due to SOL/IDER session. [ 9090.024625] e1000e 0000:02:00.0: eth0: (PCI Express:2.5GB/s:Width x1) 00:0a:e4:3e:ce:74 [ 9090.024630] e1000e 0000:02:00.0: eth0: Intel(R) PRO/1000 Network Connection [ 9090.024712] e1000e 0000:02:00.0: eth0: MAC: 2, PHY: 2, PBA No: 005302-003 [ 9090.109492] e1000e 0000:02:00.0: irq 44 for MSI/MSI-X [ 9090.164219] e1000e 0000:02:00.0: irq 44 for MSI/MSI-X and, a bunch of [ 2128.005447] e1000e 0000:02:00.0: eth0: Detected Hardware Unit Hang: [ 2128.005452] TDH <89> [ 2128.005454] TDT <27> [ 2128.005456] next_to_use <27> [ 2128.005458] next_to_clean <88> [ 2128.005460] buffer_info[next_to_clean]: [ 2128.005463] time_stamp <6e608> [ 2128.005465] next_to_watch <8a> [ 2128.005467] jiffies <6f929> [ 2128.005469] next_to_watch.status <0> [ 2128.005471] MAC Status <80080703> [ 2128.005473] PHY Status <796d> [ 2128.005475] PHY 1000BASE-T Status <4000> [ 2128.005477] PHY Extended Status <3000> [ 2128.005480] PCI Status <10> I decided to compile the latest stable e1000e to 1.2.17, now I'm getting: [ 9895.678050] e1000e: Intel(R) PRO/1000 Network Driver - 1.2.17-NAPI [ 9895.678055] e1000e: Copyright(c) 1999 - 2010 Intel Corporation. [ 9895.678098] e1000e 0000:02:00.0: Disabling ASPM L1 [ 9895.678129] e1000e 0000:02:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 9895.678162] e1000e 0000:02:00.0: setting latency timer to 64 [ 9895.679136] e1000e 0000:02:00.0: irq 44 for MSI/MSI-X [ 9895.679160] e1000e 0000:02:00.0: Disabling ASPM L0s [ 9895.679192] e1000e 0000:02:00.0: (unregistered net_device): PHY reset is blocked due to SOL/IDER session. [ 9895.791758] e1000e 0000:02:00.0: eth0: (PCI Express:2.5GB/s:Width x1) 00:0a:e4:3e:ce:74 [ 9895.791766] e1000e 0000:02:00.0: eth0: Intel(R) PRO/1000 Network Connection [ 9895.791850] e1000e 0000:02:00.0: eth0: MAC: 3, PHY: 2, PBA No: 005302-003 [ 9895.892464] e1000e 0000:02:00.0: irq 44 for MSI/MSI-X [ 9895.948175] e1000e 0000:02:00.0: irq 44 for MSI/MSI-X [ 9895.949111] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 9895.954694] e1000e: eth0 NIC Link is Up 10 Mbps Full Duplex, Flow Control: RX/TX [ 9895.954703] e1000e 0000:02:00.0: eth0: 10/100 speed: disabling TSO [ 9895.955157] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 9906.832056] eth0: no IPv6 routers present With 1.2.20 I get: [ 9711.525465] e1000e: Intel(R) PRO/1000 Network Driver - 1.2.20-NAPI [ 9711.525472] e1000e: Copyright(c) 1999 - 2010 Intel Corporation. [ 9711.525521] e1000e 0000:02:00.0: Disabling ASPM L1 [ 9711.525554] e1000e 0000:02:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 9711.525586] e1000e 0000:02:00.0: setting latency timer to 64 [ 9711.526460] e1000e 0000:02:00.0: irq 45 for MSI/MSI-X [ 9711.526487] e1000e 0000:02:00.0: Disabling ASPM L0s [ 9711.526523] e1000e 0000:02:00.0: (unregistered net_device): PHY reset is blocked due to SOL/IDER session. [ 9711.639763] e1000e 0000:02:00.0: eth0: (PCI Express:2.5GB/s:Width x1) 00:0a:e4:3e:ce:74 [ 9711.639771] e1000e 0000:02:00.0: eth0: Intel(R) PRO/1000 Network Connection [ 9711.639854] e1000e 0000:02:00.0: eth0: MAC: 3, PHY: 2, PBA No: 005302-003 [ 9712.060770] e1000e 0000:02:00.0: irq 45 for MSI/MSI-X [ 9712.116195] e1000e 0000:02:00.0: irq 45 for MSI/MSI-X [ 9712.117098] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 9712.122684] e1000e: eth0 NIC Link is Up 100 Mbps Full Duplex, Flow Control: RX/TX [ 9712.122693] e1000e 0000:02:00.0: eth0: 10/100 speed: disabling TSO [ 9712.123142] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 9722.920014] eth0: no IPv6 routers present But, I'm still getting these [ 9982.992851] PCI Status <10> [ 9984.993602] e1000e 0000:02:00.0: eth0: Detected Hardware Unit Hang: [ 9984.993606] TDH <5d> [ 9984.993608] TDT <6b> [ 9984.993611] next_to_use <6b> [ 9984.993613] next_to_clean <5b> [ 9984.993615] buffer_info[next_to_clean]: [ 9984.993617] time_stamp <24da80> [ 9984.993619] next_to_watch <5d> [ 9984.993621] jiffies <24f200> [ 9984.993624] next_to_watch.status <0> [ 9984.993626] MAC Status <80080703> [ 9984.993628] PHY Status <796d> [ 9984.993630] PHY 1000BASE-T Status <4000> [ 9984.993632] PHY Extended Status <3000> [ 9984.993635] PCI Status <10> [ 9986.001047] e1000e 0000:02:00.0: eth0: Reset adapter [ 9986.176202] e1000e: eth0 NIC Link is Up 10 Mbps Full Duplex, Flow Control: RX/TX [ 9986.176211] e1000e 0000:02:00.0: eth0: 10/100 speed: disabling TSO I'm not sure where to start troubleshooting this. Any ideas? Here is the result of ethtool -d eth0 MAC Registers ------------- 0x00000: CTRL (Device control register) 0x18100248 Endian mode (buffers): little Link reset: reset Set link up: 1 Invert Loss-Of-Signal: no Receive flow control: enabled Transmit flow control: enabled VLAN mode: disabled Auto speed detect: disabled Speed select: 1000Mb/s Force speed: no Force duplex: no 0x00008: STATUS (Device status register) 0x80080703 Duplex: full Link up: link config TBI mode: disabled Link speed: 10Mb/s Bus type: PCI Express Port number: 0 0x00100: RCTL (Receive control register) 0x04048002 Receiver: enabled Store bad packets: disabled Unicast promiscuous: disabled Multicast promiscuous: disabled Long packet: disabled Descriptor minimum threshold size: 1/2 Broadcast accept mode: accept VLAN filter: enabled Canonical form indicator: disabled Discard pause frames: filtered Pass MAC control frames: don't pass Receive buffer size: 2048 0x02808: RDLEN (Receive desc length) 0x00001000 0x02810: RDH (Receive desc head) 0x00000001 0x02818: RDT (Receive desc tail) 0x000000F0 0x02820: RDTR (Receive delay timer) 0x00000000 0x00400: TCTL (Transmit ctrl register) 0x3103F0FA Transmitter: enabled Pad short packets: enabled Software XOFF Transmission: disabled Re-transmit on late collision: enabled 0x03808: TDLEN (Transmit desc length) 0x00001000 0x03810: TDH (Transmit desc head) 0x00000000 0x03818: TDT (Transmit desc tail) 0x00000000 0x03820: TIDV (Transmit delay timer) 0x00000008 PHY type: IGP2 and ethtool -c eth0 Coalesce parameters for eth0: Adaptive RX: off TX: off stats-block-usecs: 0 sample-interval: 0 pkt-rate-low: 0 pkt-rate-high: 0 rx-usecs: 3 rx-frames: 0 rx-usecs-irq: 0 rx-frames-irq: 0 tx-usecs: 0 tx-frames: 0 tx-usecs-irq: 0 tx-frames-irq: 0 rx-usecs-low: 0 rx-frame-low: 0 tx-usecs-low: 0 tx-frame-low: 0 rx-usecs-high: 0 rx-frame-high: 0 tx-usecs-high: 0 tx-frame-high: 0 Here is also the lspci -vvv for this controller 02:00.0 Ethernet controller: Intel Corporation 82573L Gigabit Ethernet Controller Subsystem: Lenovo ThinkPad X60s Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Interrupt: pin A routed to IRQ 45 Region 0: Memory at ee000000 (32-bit, non-prefetchable) [size=128K] Region 2: I/O ports at 2000 [size=32] Capabilities: [c8] Power Management version 2 Flags: PMEClk- DSI+ D1- D2- AuxCurrent=0mA PME(D0+,D1-,D2-,D3hot+,D3cold+) Status: D0 NoSoftRst- PME-Enable- DSel=0 DScale=1 PME- Capabilities: [d0] MSI: Enable+ Count=1/1 Maskable- 64bit+ Address: 00000000fee0300c Data: 415a Capabilities: [e0] Express (v1) Endpoint, MSI 00 DevCap: MaxPayload 256 bytes, PhantFunc 0, Latency L0s <512ns, L1 <64us ExtTag- AttnBtn- AttnInd- PwrInd- RBE- FLReset- DevCtl: Report errors: Correctable+ Non-Fatal+ Fatal+ Unsupported+ RlxdOrd+ ExtTag- PhantFunc- AuxPwr- NoSnoop+ MaxPayload 128 bytes, MaxReadReq 512 bytes DevSta: CorrErr- UncorrErr- FatalErr- UnsuppReq- AuxPwr+ TransPend- LnkCap: Port #0, Speed 2.5GT/s, Width x1, ASPM L0s L1, Latency L0 <128ns, L1 <64us ClockPM+ Surprise- LLActRep- BwNot- LnkCtl: ASPM Disabled; RCB 64 bytes Disabled- Retrain- CommClk+ ExtSynch- ClockPM+ AutWidDis- BWInt- AutBWInt- LnkSta: Speed 2.5GT/s, Width x1, TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt- Capabilities: [100 v1] Advanced Error Reporting UESta: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF- MalfTLP- ECRC- UnsupReq+ ACSViol- UEMsk: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF- MalfTLP- ECRC- UnsupReq- ACSViol- UESvrt: DLP+ SDES- TLP- FCP+ CmpltTO- CmpltAbrt- UnxCmplt- RxOF+ MalfTLP+ ECRC- UnsupReq- ACSViol- CESta: RxErr- BadTLP- BadDLLP- Rollover- Timeout- NonFatalErr- CEMsk: RxErr- BadTLP- BadDLLP- Rollover- Timeout- NonFatalErr- AERCap: First Error Pointer: 14, GenCap- CGenEn- ChkCap- ChkEn- Capabilities: [140 v1] Device Serial Number 00-0a-e4-ff-ff-3e-ce-74 Kernel driver in use: e1000e Kernel modules: e1000e I filed a bug on this upstream, still no idea how to get more useful information. Here is a the result of the running that script EEPROM FIX UPDATE $ sudo bash fixeep-82573-dspd.sh eth0 eth0: is a "82573L Gigabit Ethernet Controller" This fixup is applicable to your hardware Your eeprom is up to date, no changes were made Do I still need to do anything? Also here is my EEPROM dump $ sudo ethtool -e eth0 Offset Values ------ ------ 0x0000 00 0a e4 3e ce 74 30 0b b2 ff 51 00 ff ff ff ff 0x0010 53 00 03 02 6b 02 7e 20 aa 17 9a 10 86 80 df 80 0x0020 00 00 00 20 54 7e 00 00 14 00 da 00 04 00 00 27 0x0030 c9 6c 50 31 3e 07 0b 04 8b 29 00 00 00 f0 02 0f 0x0040 08 10 00 00 04 0f ff 7f 01 4d ff ff ff ff ff ff 0x0050 14 00 1d 00 14 00 1d 00 af aa 1e 00 00 00 1d 00 0x0060 00 01 00 40 1f 12 07 40 ff ff ff ff ff ff ff ff 0x0070 ff ff ff ff ff ff ff ff ff ff ff ff ff ff 4a e0 I'd also like to note that I used eth0 every day for years and until recently never had an issue.

    Read the article

  • Setting a Visual State from a data bound enum in WPF

    - by firoso
    Hey all, I've got a scenario where I want to switch the visiblity of 4 different content controls. The visual states I have set opacity, and collapsed based on each given state (See code.) What I'd like to do is have the visual state bound to a property of my View Model of type Enum. I tried using DataStateBehavior, but it requires true/false, which doesn't work for me. So I tried DataStateSwitchBehavior, which seems to be totally broken for WPF4 from what I could tell. Is there a better way to be doing this? I'm really open to different approaches if need be, but I'd really like to keep this enum in the equation. Edit: The code shouldn't be too important, I just need to know if there's a well known solution to this problem. <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:Custom="http://schemas.microsoft.com/expression/2010/interactivity" xmlns:ei="http://schemas.microsoft.com/expression/2010/interactions" xmlns:ee="http://schemas.microsoft.com/expression/2010/effects" xmlns:customBehaviors="clr-namespace:SEL.MfgTestDev.ESS.Behaviors" x:Class="SEL.MfgTestDev.ESS.View.PresenterControl" mc:Ignorable="d" d:DesignHeight="624" d:DesignWidth="1104" d:DataContext="{Binding ApplicationViewModel, Mode=OneWay, Source={StaticResource Locator}}"> <Grid> <Grid.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source="Layout/TerminalViewTemplate.xaml"/> <ResourceDictionary Source="Layout/DebugViewTemplate.xaml"/> <ResourceDictionary Source="Layout/ProgressViewTemplate.xaml"/> <ResourceDictionary Source="Layout/LoadoutViewTemplate.xaml"/> </ResourceDictionary.MergedDictionaries> </ResourceDictionary> </Grid.Resources> <Custom:Interaction.Behaviors> <customBehaviors:DataStateSwitchBehavior Binding="{Binding ApplicationViewState}"> <customBehaviors:DataStateSwitchCase State="LoadoutState" Value="Loadout"/> </customBehaviors:DataStateSwitchBehavior> </Custom:Interaction.Behaviors> <VisualStateManager.VisualStateGroups> <VisualStateGroup x:Name="ApplicationStates" ei:ExtendedVisualStateManager.UseFluidLayout="True"> <VisualStateGroup.Transitions> <VisualTransition GeneratedDuration="0:0:1"> <VisualTransition.GeneratedEasingFunction> <SineEase EasingMode="EaseInOut"/> </VisualTransition.GeneratedEasingFunction> <ei:ExtendedVisualStateManager.TransitionEffect> <ee:SmoothSwirlGridTransitionEffect/> </ei:ExtendedVisualStateManager.TransitionEffect> </VisualTransition> </VisualStateGroup.Transitions> <VisualState x:Name="LoadoutState"> <Storyboard> <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Opacity)" Storyboard.TargetName="LoadoutPage"> <EasingDoubleKeyFrame KeyTime="0" Value="1"/> </DoubleAnimationUsingKeyFrames> <ObjectAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Visibility)" Storyboard.TargetName="LoadoutPage"> <DiscreteObjectKeyFrame KeyTime="0" Value="{x:Static Visibility.Visible}"/> </ObjectAnimationUsingKeyFrames> </Storyboard> </VisualState> <VisualState x:Name="ProgressState"> <Storyboard> <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Opacity)" Storyboard.TargetName="ProgressPage"> <EasingDoubleKeyFrame KeyTime="0" Value="1"/> </DoubleAnimationUsingKeyFrames> <ObjectAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Visibility)" Storyboard.TargetName="ProgressPage"> <DiscreteObjectKeyFrame KeyTime="0" Value="{x:Static Visibility.Visible}"/> </ObjectAnimationUsingKeyFrames> </Storyboard> </VisualState> <VisualState x:Name="DebugState"> <Storyboard> <ObjectAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Visibility)" Storyboard.TargetName="DebugPage"> <DiscreteObjectKeyFrame KeyTime="0" Value="{x:Static Visibility.Visible}"/> </ObjectAnimationUsingKeyFrames> <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Opacity)" Storyboard.TargetName="DebugPage"> <EasingDoubleKeyFrame KeyTime="0" Value="1"/> </DoubleAnimationUsingKeyFrames> </Storyboard> </VisualState> <VisualState x:Name="TerminalState"> <Storyboard> <ObjectAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Visibility)" Storyboard.TargetName="TerminalPage"> <DiscreteObjectKeyFrame KeyTime="0" Value="{x:Static Visibility.Visible}"/> </ObjectAnimationUsingKeyFrames> <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty="(UIElement.Opacity)" Storyboard.TargetName="TerminalPage"> <EasingDoubleKeyFrame KeyTime="0" Value="1"/> </DoubleAnimationUsingKeyFrames> </Storyboard> </VisualState> </VisualStateGroup> </VisualStateManager.VisualStateGroups> <ContentControl x:Name="LoadoutPage" ContentTemplate="{StaticResource LoadoutViewTemplate}" Opacity="0" Content="{Binding}" Visibility="Collapsed"/> <ContentControl x:Name="ProgressPage" ContentTemplate="{StaticResource ProgressViewTemplate}" Opacity="0" Content="{Binding}" Visibility="Collapsed"/> <ContentControl x:Name="DebugPage" ContentTemplate="{StaticResource DebugViewTemplate}" Opacity="0" Content="{Binding}" Visibility="Collapsed"/> <ContentControl x:Name="TerminalPage" ContentTemplate="{StaticResource TerminalViewTemplate}" Opacity="0" Content="{Binding}" Visibility="Collapsed"/> <TextBlock HorizontalAlignment="Left" TextWrapping="Wrap" VerticalAlignment="Top" Text="{Binding ApplicationViewState}"> <TextBlock.Background> <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0"> <GradientStop Color="Black" Offset="0"/> <GradientStop Color="White" Offset="1"/> </LinearGradientBrush> </TextBlock.Background> </TextBlock> </Grid>

    Read the article

  • Why is my WCF Rest Service on IIS7 Authenticating TWICE!?!?

    - by TheAggie
    Ok, if someone could shed some light on this for me, I would greatly appreciate it. So here we go. I had a rest service running fine the other day but after I accidentally overwrote the web.config all hell broke loose. I've spent the past day and a half trying to sort things out but I can't seem to figure out what is missing or misplaced. So, I've designed this service around WCF Rest Contrib (http://wcfrestcontrib.codeplex.com)'s authentication process. Now, I can get this working fine on my localhost w/ the current web.config (minus the endpoint entry) but once I upload it to discountasp and select "basic authorization" in the ISS7 Manager, it appears that I'm getting authenticated twice! Once using my discount asp.net user/pass and then the next time using the application user/pass. Unfortunately I only provide one set of credentials and don't want to hard code my discountasp account info into the app. Like I said before, this worked fine a few days ago. Anyway. here is my web.config as it is now: <?xml version="1.0"?> <configuration> <connectionStrings> <add name="SQL2008_ConnectionString" connectionString="Data Source=sql2k8xx.discountasp.net;Initial Catalog=SQL2008_xx;Persist Security Info=True;User ID=SQL2008_xx_user;Password=myPass" providerName="System.Data.SqlClient" /> </connectionStrings> <system.web> <httpRuntime maxRequestLength="204800" executionTimeout="3600"/> <compilation debug="true"> <assemblies> <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </assemblies> </compilation> <httpModules> <add name="ServiceAnonymityModule" type="WcfRestContrib.Web.ServiceAnonymityModule, WcfRestContrib"/> </httpModules> </system.web> <system.codedom> <compilers> <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4" type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <providerOption name="CompilerVersion" value="v3.5"/> <providerOption name="WarnAsError" value="false"/> </compiler> </compilers> </system.codedom> <system.webServer> <validation validateIntegratedModeConfiguration="false"/> <modules> <remove name="ServiceAnonymityModule"/> <add name="ServiceAnonymityModule" type="WcfRestContrib.Web.ServiceAnonymityModule, WcfRestContrib"/> </modules> <handlers> <remove name="WebServiceHandlerFactory-Integrated"/> </handlers> </system.webServer> <system.diagnostics> <trace autoflush="true" /> </system.diagnostics> <system.serviceModel> <serviceHostingEnvironment aspNetCompatibilityEnabled="false"> <baseAddressPrefixFilters> <add prefix="http://www.mydomain.com/myServiceBaseAddress"/> </baseAddressPrefixFilters> </serviceHostingEnvironment> <extensions> <behaviorExtensions> <add name="webAuthentication" type="WcfRestContrib.ServiceModel.Configuration.WebAuthentication.ConfigurationBehaviorElement, WcfRestContrib, Version=1.0.5.0, Culture=neutral, PublicKeyToken=89183999a8dc93b5"/> <add name="errorHandler" type="WcfRestContrib.ServiceModel.Configuration.ErrorHandler.BehaviorElement, WcfRestContrib, Version=1.0.5.0, Culture=neutral, PublicKeyToken=89183999a8dc93b5"/> <add name="webFormatter" type="WcfRestContrib.ServiceModel.Configuration.WebDispatchFormatter.ConfigurationBehaviorElement, WcfRestContrib, Version=1.0.5.0, Culture=neutral, PublicKeyToken=89183999a8dc93b5"/> <add name="webErrorHandler" type="WcfRestContrib.ServiceModel.Configuration.WebErrorHandler.ConfigurationBehaviorElement, WcfRestContrib, Version=1.0.5.0, Culture=neutral, PublicKeyToken=89183999a8dc93b5"/> </behaviorExtensions> </extensions> <bindings> <customBinding> <binding name="HttpStreamedRest"> <httpTransport maxReceivedMessageSize="209715200" manualAddressing="true" /> </binding> <binding name="HttpsStreamedRest"> <httpsTransport maxReceivedMessageSize="209715200" manualAddressing="true" /> </binding> </customBinding> </bindings> <behaviors> <serviceBehaviors> <behavior name="Rest"> <webAuthentication requireSecureTransport="false" authenticationHandlerType="WcfRestContrib.ServiceModel.Dispatcher.WebBasicAuthenticationHandler, WcfRestContrib" usernamePasswordValidatorType="MyLibrary.Runtime.SecurityValidator, MyLibrary" source="MyRESTServiceRealm"/> <webFormatter> <formatters defaultMimeType="application/xml"> <formatter mimeTypes="application/xml,text/xml" type="WcfRestContrib.ServiceModel.Dispatcher.Formatters.PoxDataContract, WcfRestContrib"/> <formatter mimeTypes="application/json" type="WcfRestContrib.ServiceModel.Dispatcher.Formatters.DataContractJson, WcfRestContrib"/> <formatter mimeTypes="application/x-www-form-urlencoded" type="WcfRestContrib.ServiceModel.Dispatcher.Formatters.FormUrlEncoded, WcfRestContrib"/> </formatters> </webFormatter> <errorHandler errorHandlerType="WcfRestContrib.ServiceModel.Web.WebErrorHandler, WcfRestContrib"/> <webErrorHandler returnRawException="true" logHandlerType="MyLibrary.Runtime.LogHandler, MyLibrary" unhandledErrorMessage="An error has occured processing your request. Please contact technical support for further assistance."/> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> </configuration> So, whenever I upload this and change the ISS setting to Basic Authentication, it looks like it is trying to use the default handler for authentication as if I try to enter my web app user/pass, I get an error screen which has the following detailed information about the moduel/handler Detailed Error Information Module: IIS Web Core Notification: AuthenticateRequest Handler: svc-ISAPI-2.0 Error Code: 0x80070005 Requested URL: http://www.mydomain.com:80/MyService.../MyService.svc Physical Path: E:\web\xxxxxx\htdocs\MyServiceBaseAddress\MyService.svc Logon Method: Not yet determined Logon User: Not yet determined Now for the fun stuff... i tried providing my discountasp.net account username/password for kicks and sure enough it responded properly for any [OperationContract] which doesn't have [OperationAuthentication] defined (which is only one or two of the operations I have). I thought this was strange, so I looked at fiddler and saw something interesting. Whenever I try request a procedure with [OperationAuthentication] defined and provide my discountasp.net username/pass I get two different "WWW-Authenticate" headers back in Fiddler: WWW-Authenticate: Basic realm="MyRESTServiceRealm" WWW-Authenticate: Basic realm="www.mydomain.com" On the other hand, if I try to access the same procedures with only my application's user/pass, I only get the site's header: WWW-Authenticate: Basic realm="www.mydomain.com" My hypothesis is that for some reason I'm having to pass through the default "Basic Authorization" layer set by IIS before I can get to the application's "Custom Basic Authorization" layer. After verifying this by created an identical user/pass for my service that I use for my discountasp.net account, I was able to successfully pass both layers of authentication without any issues... so I think I can conclude that this is indeed the issue. Now how do I disable the default one? Do I need to do this in the IIS Manager, or in the web.config? Anyway, I have absolutely no idea how this is possible or what I need to do to resolve the issue, but I know that something is seriously out of whack. Any suggestions would be greatly appreciated! Thanks.

    Read the article

  • TreeViewItem - Use ControlTemplate and HierarchicalDataTemplate together

    - by CrownJ
    I'm using HierarchicalDataTemplate in my TreeView, and I wanted to also overwrite the default template for the TreeViewItem so that when an item is selected, it only highlights the text, not including the icon next to it. <TreeView.ItemTemplate> <HierarchicalDataTemplate ItemsSource="{Binding Children}"> <TreeViewItem Style="{StaticResource TreeViewItemStyle}" Header="{Binding DisplayText}" /> </HierarchicalDataTemplate> </TreeView.ItemTemplate> <TreeView.Resources> <Style x:Key="TreeViewItemFocusVisual"> <Setter Property="Control.Template"> <Setter.Value> <ControlTemplate> <Rectangle/> </ControlTemplate> </Setter.Value> </Setter> </Style> <Style x:Key="ExpandCollapseToggleStyle" TargetType="{x:Type ToggleButton}"> <Setter Property="Focusable" Value="False"/> <Setter Property="Width" Value="19"/> <Setter Property="Height" Value="13"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type ToggleButton}"> <Border Width="19" Height="13" Background="Transparent"> <Border Width="9" Height="9" SnapsToDevicePixels="true" BorderBrush="#FF7898B5" BorderThickness="1" CornerRadius="1"> <Border.Background> <LinearGradientBrush EndPoint="1,1" StartPoint="0,0"> <GradientStop Color="White" Offset=".2"/> <GradientStop Color="#FFC0B7A6" Offset="1"/> </LinearGradientBrush> </Border.Background> <Path x:Name="ExpandPath" Fill="Black" Margin="1,1,1,1" Data="M 0 2 L 0 3 L 2 3 L 2 5 L 3 5 L 3 3 L 5 3 L 5 2 L 3 2 L 3 0 L 2 0 L 2 2 Z"/> </Border> </Border> <ControlTemplate.Triggers> <Trigger Property="IsChecked" Value="True"> <Setter Property="Data" TargetName="ExpandPath" Value="M 0 2 L 0 3 L 5 3 L 5 2 Z"/> </Trigger> </ControlTemplate.Triggers> </ControlTemplate> </Setter.Value> </Setter> </Style> <Style x:Key="{x:Type TreeViewItem}" TargetType="{x:Type TreeViewItem}"> <Setter Property="Background" Value="Transparent"/> <Setter Property="HorizontalContentAlignment" Value="{Binding HorizontalContentAlignment, RelativeSource={RelativeSource AncestorType={x:Type ItemsControl}}}"/> <Setter Property="VerticalContentAlignment" Value="{Binding VerticalContentAlignment, RelativeSource={RelativeSource AncestorType={x:Type ItemsControl}}}"/> <Setter Property="Padding" Value="1,0,0,0"/> <Setter Property="Foreground" Value="{DynamicResource {x:Static SystemColors.ControlTextBrushKey}}"/> <Setter Property="FocusVisualStyle" Value="{StaticResource TreeViewItemFocusVisual}"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type TreeViewItem}"> <Grid> <Grid.ColumnDefinitions> <ColumnDefinition Width="Auto"/> <ColumnDefinition Width="Auto"/> <ColumnDefinition Width="*"/> </Grid.ColumnDefinitions> <Grid.RowDefinitions> <RowDefinition Height="Auto"/> <RowDefinition/> </Grid.RowDefinitions> <ToggleButton x:Name="Expander" Style="{StaticResource ExpandCollapseToggleStyle}" ClickMode="Press" IsChecked="{Binding IsExpanded, RelativeSource={RelativeSource TemplatedParent}}"/> <StackPanel Orientation="Horizontal" Grid.Column="1" > <Image Width="16" Height="16" Margin="3,0" Source="{Binding Path=ImageSource}" /> <Border x:Name="Bd" SnapsToDevicePixels="true" Background="{TemplateBinding Background}" BorderBrush="{TemplateBinding BorderBrush}" BorderThickness="{TemplateBinding BorderThickness}" Margin="0" Padding="0"> <ContentPresenter x:Name="PART_Header" HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}" SnapsToDevicePixels="{TemplateBinding SnapsToDevicePixels}" ContentSource="Header"/> </Border> </StackPanel> <ItemsPresenter x:Name="ItemsHost" Grid.Column="1" Grid.ColumnSpan="2" Grid.Row="1"/> </Grid> <ControlTemplate.Triggers> <Trigger Property="IsExpanded" Value="false"> <Setter Property="Visibility" TargetName="ItemsHost" Value="Collapsed"/> </Trigger> <Trigger Property="HasItems" Value="false"> <Setter Property="Visibility" TargetName="Expander" Value="Hidden"/> </Trigger> <Trigger Property="IsSelected" Value="true"> <Setter Property="Background" TargetName="Bd" Value="{DynamicResource {x:Static SystemColors.HighlightBrushKey}}"/> <Setter Property="Control.Foreground" TargetName="Bd" Value="{DynamicResource {x:Static SystemColors.HighlightTextBrushKey}}"/> </Trigger> <MultiTrigger> <MultiTrigger.Conditions> <Condition Property="IsSelected" Value="true"/> <Condition Property="IsSelectionActive" Value="false"/> </MultiTrigger.Conditions> <Setter Property="Background" TargetName="Bd" Value="{DynamicResource {x:Static SystemColors.ControlBrushKey}}"/> <Setter Property="Control.Foreground" TargetName="Bd" Value="{DynamicResource {x:Static SystemColors.ControlTextBrushKey}}"/> </MultiTrigger> <Trigger Property="IsEnabled" Value="false"> <Setter Property="Foreground" Value="{DynamicResource {x:Static SystemColors.GrayTextBrushKey}}"/> </Trigger> </ControlTemplate.Triggers> </ControlTemplate> </Setter.Value> </Setter> <Style.Triggers> <Trigger Property="VirtualizingStackPanel.IsVirtualizing" Value="true"> <Setter Property="ItemsPanel"> <Setter.Value> <ItemsPanelTemplate> <VirtualizingStackPanel/> </ItemsPanelTemplate> </Setter.Value> </Setter> </Trigger> </Style.Triggers> </Style> </TreeView.Resources> I couldn't find a way to use both the HierarchicalDataTemplate and ControlTemplate together so I can specify the ItemsSource and also change parts of the control's behavior. When I do the above code, it won't select the treeviewitem at all.

    Read the article

  • How to customize and reuse a DataGridColumnHeader style?

    - by instcode
    Hi all, I'm trying to customize the column headers of a DataGrid to show sub-column headers as in the following screenshot: I've made a style for 2 sub-column as in the following XAML: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:data="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data" xmlns:primitives="clr-namespace:System.Windows.Controls.Primitives;assembly=System.Windows.Controls.Data" xmlns:sl="clr-namespace:UI" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" x:Class="UI.ColumnHeaderGrid" mc:Ignorable="d"> <UserControl.Resources> <Style x:Key="SplitColumnHeaderStyle" TargetType="primitives:DataGridColumnHeader"> <Setter Property="Foreground" Value="#FF000000"/> <Setter Property="HorizontalContentAlignment" Value="Center"/> <Setter Property="VerticalContentAlignment" Value="Center"/> <Setter Property="IsTabStop" Value="False"/> <Setter Property="SeparatorBrush" Value="#FFC9CACA"/> <Setter Property="Padding" Value="4"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="primitives:DataGridColumnHeader"> <Grid x:Name="Root"> <Grid.ColumnDefinitions> <ColumnDefinition/> <ColumnDefinition Width="Auto"/> </Grid.ColumnDefinitions> <Rectangle x:Name="BackgroundRectangle" Fill="#FF1F3B53" Stretch="Fill" Grid.ColumnSpan="2"/> <Rectangle x:Name="BackgroundGradient" Stretch="Fill" Grid.ColumnSpan="2"> <Rectangle.Fill> <LinearGradientBrush EndPoint=".7,1" StartPoint=".7,0"> <GradientStop Color="#FCFFFFFF" Offset="0.015"/> <GradientStop Color="#F7FFFFFF" Offset="0.375"/> <GradientStop Color="#E5FFFFFF" Offset="0.6"/> <GradientStop Color="#D1FFFFFF" Offset="1"/> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Grid> <Grid.ColumnDefinitions> <ColumnDefinition/> <ColumnDefinition Width="1"/> <ColumnDefinition/> </Grid.ColumnDefinitions> <Grid.RowDefinitions> <RowDefinition/> <RowDefinition/> <RowDefinition/> </Grid.RowDefinitions> <TextBlock Grid.Row="0" Grid.ColumnSpan="3" Text="Headers" TextAlignment="Center"/> <Rectangle Grid.Row="1" Grid.ColumnSpan="3" Fill="{TemplateBinding SeparatorBrush}" Height="1"/> <TextBlock Grid.Row="2" Grid.Column="0" Text="Header 1" TextAlignment="Center"/> <Rectangle Grid.Row="2" Grid.Column="1" Fill="{TemplateBinding SeparatorBrush}" Width="1"/> <TextBlock Grid.Row="2" Grid.Column="2" Text="Header 2" TextAlignment="Center"/> <Path x:Name="SortIcon" Grid.Column="2" Fill="#FF444444" Stretch="Uniform" HorizontalAlignment="Left" Margin="4,0,0,0" VerticalAlignment="Center" Width="8" Opacity="0" RenderTransformOrigin=".5,.5" Data="F1 M -5.215,6.099L 5.215,6.099L 0,0L -5.215,6.099 Z "/> </Grid> <Rectangle x:Name="VerticalSeparator" Fill="{TemplateBinding SeparatorBrush}" VerticalAlignment="Stretch" Width="1" Visibility="{TemplateBinding SeparatorVisibility}" Grid.Column="1"/> </Grid> </ControlTemplate> </Setter.Value> </Setter> </Style> </UserControl.Resources> <data:DataGrid x:Name="LayoutRoot"> <data:DataGrid.Columns> <data:DataGridTemplateColumn HeaderStyle="{StaticResource SplitColumnHeaderStyle}"> <data:DataGridTemplateColumn.CellTemplate> <DataTemplate> <Grid> <Grid.ColumnDefinitions> <ColumnDefinition/> <ColumnDefinition/> </Grid.ColumnDefinitions> <Border Grid.Column="0" BorderBrush="#FFC9CACA" BorderThickness="0,0,0,0"> <TextBlock Grid.Column="0" Text="{Binding GridData.Column1}"/> </Border> <Border Grid.Column="1" BorderBrush="#FFC9CACA" BorderThickness="1,0,0,0"> <TextBlock Grid.Column="0" Text="{Binding GridData.Column2}"/> </Border> </Grid> </DataTemplate> </data:DataGridTemplateColumn.CellTemplate> </data:DataGridTemplateColumn> </data:DataGrid.Columns> </data:DataGrid> Now I want to reuse & extend this style to support 2-6 sub-column headers but I don't know if there is a way to do this, like ContentPresenter "overriding": <Style x:Key="SplitColumnHeaderStyle" TargetType="primitives:DataGridColumnHeader"> <Setter property="Template"> <Setter.Value> ... <ContentPresenter Content="{TemplateBinding Content}".../> ... </Setter.Value> </Setter> </Style> <Style x:Key="TwoSubColumnHeaderStyle" BasedOn="SplitColumnHeaderStyle"> <Setter property="Content"> <Setter.Value> <Grid 2x2.../> </Setter.Value> </Setter> </Style> <Style x:Key="ThreeSubColumnHeaderStyle" BasedOn="SplitColumnHeaderStyle"> <Setter property="Content"> <Setter.Value> <Grid 2x3.../> </Setter.Value> </Setter> </Style> Anyway, please help me on these issues: Given the template above, how to support more sub-column headers without having to create new new new new template for each? Assume that the issue above is solved. How could I attach column names outside the styles? I see that some parts, properties & visualization rules in the XAML are just copies from the original Silverlight component's style, i.e. BackgroundGradient, BackgroundRectangle, VisualStateManager... They must be there in order to support default behaviors or effects but... does anyone know how to remove them, but keep all the default behaviors/effects? Please be specific because I'm just getting start with C# & Silverlight. Thanks.

    Read the article

  • JBoss https on port other than 8080 not working

    - by MilindaD
    We have a server with two JBoss instances where one runs on 8080, the other on 8081. We need to have HTTPS enabled for the 8081 server, firstly we tried enabling https on the 8080 port instance by generating the keystore and editing the server.xml and it successfully worked. However when we tried the same thing for 8081 it did not, note that we removed https for the 8080 server first before enabling it for 8081. This is what was used for both server.xml for 8080 and 8081. The only difference was that the port was changed from 8080 to 8081 when trying to enable https for 8081 port instance. What am I doing wrong and what needs to be changed? NOTE : When I meant enabled for 8080 I meant when you visit https:// URL:8484 you will actually be visiting the 8080 port instance. However when ssl is enabled for 8081 and I visit https:// URL:8484 I get that the web page is unavailable. COMMENTLESS VERSION <Server> <Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" /> <Listener className="org.apache.catalina.core.JasperListener" /> <Service name="jboss.web"> <!-- https --> <Connector port="8080" address="${jboss.bind.address}" maxThreads="350" maxHttpHeaderSize="8192" emptySessionPath="true" protocol="HTTP/1.1" enableLookups="false" redirectPort="8443" acceptCount="100" connectionTimeout="20000" disableUploadTimeout="true" compression="on" ompressableMimeType="text/html,text/css,text/javascript,application/json,text/xml,text/plain,application/x-javascript,application/javascript"/> <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" maxThreads="150" scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" address="${jboss.bind.address}" keystoreFile="${jboss.server.home.dir}/conf/supun1.keystore" keystorePass="aaaaaa" truststoreFile="${jboss.server.home.dir}/conf/supun1.keystore" truststorePass="aaaaaa" /> <!-- https1 --> <Connector port="8009" address="${jboss.bind.address}" protocol="AJP/1.3" emptySessionPath="true" enableLookups="false" redirectPort="8443" /> <Engine name="jboss.web" defaultHost="localhost" jvmRoute="khms1"> <Realm className="org.jboss.web.tomcat.security.JBossSecurityMgrRealm" certificatePrincipal="org.jboss.security.auth.certs.SubjectDNMapping" allRolesMode="authOnly" /> <Host name="localhost" autoDeploy="false" deployOnStartup="false" deployXML="false" configClass="org.jboss.web.tomcat.security.config.JBossContextConfig" > <Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn" /> <Valve className="org.jboss.web.tomcat.service.jca.CachedConnectionValve" cachedConnectionManagerObjectName="jboss.jca:service=CachedConnectionManager" transactionManagerObjectName="jboss:service=TransactionManager" /> </Host> </Engine> </Service> </Server> WITH COMMENTS VERSION <Server> <!--APR library loader. Documentation at /docs/apr.html --> <Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" /> <!--Initialize Jasper prior to webapps are loaded. Documentation at /docs/jasper-howto.html --> <Listener className="org.apache.catalina.core.JasperListener" /> <!-- Use a custom version of StandardService that allows the connectors to be started independent of the normal lifecycle start to allow web apps to be deployed before starting the connectors. --> <Service name="jboss.web"> <!-- A "Connector" represents an endpoint by which requests are received and responses are returned. Documentation at : Java HTTP Connector: /docs/config/http.html (blocking & non-blocking) Java AJP Connector: /docs/config/ajp.html APR (HTTP/AJP) Connector: /docs/apr.html Define a non-SSL HTTP/1.1 Connector on port 8080 --> <Connector port="8080" address="${jboss.bind.address}" maxThreads="350" maxHttpHeaderSize="8192" emptySessionPath="true" protocol="HTTP/1.1" enableLookups="false" redirectPort="8443" acceptCount="100" connectionTimeout="20000" disableUploadTimeout="true" compression="on" ompressableMimeType="text/html,text/css,text/javascript,application/json,text/xml,text/plain,application/x-javascript,application/javascript"/> <!-- Define a SSL HTTP/1.1 Connector on port 8443 This connector uses the JSSE configuration, when using APR, the connector should be using the OpenSSL style configuration described in the APR documentation --> <!-- <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" maxThreads="150" scheme="https" secure="true" keystoreFile="${jboss.server.home.dir}/conf/zara.keystore" keystorePass="zara2010" clientAuth="false" sslProtocol="TLS" compression="on" /> --> <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" maxThreads="150" scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" address="${jboss.bind.address}" keystoreFile="${jboss.server.home.dir}/conf/supun1.keystore" keystorePass="aaaaaa" truststoreFile="${jboss.server.home.dir}/conf/supun1.keystore" truststorePass="aaaaaa" /> <!-- Define an AJP 1.3 Connector on port 8009 --> <Connector port="8009" address="${jboss.bind.address}" protocol="AJP/1.3" emptySessionPath="true" enableLookups="false" redirectPort="8443" /> <Engine name="jboss.web" defaultHost="localhost" jvmRoute="khms1"> <!-- The JAAS based authentication and authorization realm implementation that is compatible with the jboss 3.2.x realm implementation. - certificatePrincipal : the class name of the org.jboss.security.auth.certs.CertificatePrincipal impl used for mapping X509[] cert chains to a Princpal. - allRolesMode : how to handle an auth-constraint with a role-name=*, one of strict, authOnly, strictAuthOnly + strict = Use the strict servlet spec interpretation which requires that the user have one of the web-app/security-role/role-name + authOnly = Allow any authenticated user + strictAuthOnly = Allow any authenticated user only if there are no web-app/security-roles --> <Realm className="org.jboss.web.tomcat.security.JBossSecurityMgrRealm" certificatePrincipal="org.jboss.security.auth.certs.SubjectDNMapping" allRolesMode="authOnly" /> <!-- A subclass of JBossSecurityMgrRealm that uses the authentication behavior of JBossSecurityMgrRealm, but overrides the authorization checks to use JACC permissions with the current java.security.Policy to determine authorized access. - allRolesMode : how to handle an auth-constraint with a role-name=*, one of strict, authOnly, strictAuthOnly + strict = Use the strict servlet spec interpretation which requires that the user have one of the web-app/security-role/role-name + authOnly = Allow any authenticated user + strictAuthOnly = Allow any authenticated user only if there are no web-app/security-roles <Realm className="org.jboss.web.tomcat.security.JaccAuthorizationRealm" certificatePrincipal="org.jboss.security.auth.certs.SubjectDNMapping" allRolesMode="authOnly" /> --> <Host name="localhost" autoDeploy="false" deployOnStartup="false" deployXML="false" configClass="org.jboss.web.tomcat.security.config.JBossContextConfig" > <!-- Uncomment to enable request dumper. This Valve "logs interesting contents from the specified Request (before processing) and the corresponding Response (after processing). It is especially useful in debugging problems related to headers and cookies." --> <!-- <Valve className="org.apache.catalina.valves.RequestDumperValve" /> --> <!-- Access logger --> <!-- <Valve className="org.apache.catalina.valves.AccessLogValve" prefix="localhost_access_log." suffix=".log" pattern="common" directory="${jboss.server.log.dir}" resolveHosts="false" /> --> <!-- Uncomment to enable single sign-on across web apps deployed to this host. Does not provide SSO across a cluster. If this valve is used, do not use the JBoss ClusteredSingleSignOn valve shown below. A new configuration attribute is available beginning with release 4.0.4: cookieDomain configures the domain to which the SSO cookie will be scoped (i.e. the set of hosts to which the cookie will be presented). By default the cookie is scoped to "/", meaning the host that presented it. Set cookieDomain to a wider domain (e.g. "xyz.com") to allow an SSO to span more than one hostname. --> <!-- <Valve className="org.apache.catalina.authenticator.SingleSignOn" /> --> <!-- Uncomment to enable single sign-on across web apps deployed to this host AND to all other hosts in the cluster. If this valve is used, do not use the standard Tomcat SingleSignOn valve shown above. Valve uses a JBossCache instance to support SSO credential caching and replication across the cluster. The JBossCache instance must be configured separately. By default, the valve shares a JBossCache with the service that supports HttpSession replication. See the "jboss-web-cluster-service.xml" file in the server/all/deploy directory for cache configuration details. Besides the attributes supported by the standard Tomcat SingleSignOn valve (see the Tomcat docs), this version also supports the following attributes: cookieDomain see above treeCacheName JMX ObjectName of the JBossCache MBean used to support credential caching and replication across the cluster. If not set, the default value is "jboss.cache:service=TomcatClusteringCache", the standard ObjectName of the JBossCache MBean used to support session replication. --> <Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn" /> <!-- Check for unclosed connections and transaction terminated checks in servlets/jsps. Important: The dependency on the CachedConnectionManager in META-INF/jboss-service.xml must be uncommented, too --> <Valve className="org.jboss.web.tomcat.service.jca.CachedConnectionValve" cachedConnectionManagerObjectName="jboss.jca:service=CachedConnectionManager" transactionManagerObjectName="jboss:service=TransactionManager" /> </Host> </Engine> </Service> </Server>

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Windows Azure: Import/Export Hard Drives, VM ACLs, Web Sockets, Remote Debugging, Continuous Delivery, New Relic, Billing Alerts and More

    - by ScottGu
    Two weeks ago we released a giant set of improvements to Windows Azure, as well as a significant update of the Windows Azure SDK. This morning we released another massive set of enhancements to Windows Azure.  Today’s new capabilities include: Storage: Import/Export Hard Disk Drives to your Storage Accounts HDInsight: General Availability of our Hadoop Service in the cloud Virtual Machines: New VM Gallery, ACL support for VIPs Web Sites: WebSocket and Remote Debugging Support Notification Hubs: Segmented customer push notification support with tag expressions TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services Developer Analytics: New Relic support for Web Sites + Mobile Services Service Bus: Support for partitioned queues and topics Billing: New Billing Alert Service that sends emails notifications when your bill hits a threshold you define All of these improvements are now available to use immediately (note that some features are still in preview).  Below are more details about them. Storage: Import/Export Hard Disk Drives to Windows Azure I am excited to announce the preview of our new Windows Azure Import/Export Service! The Windows Azure Import/Export Service enables you to move large amounts of on-premises data into and out of your Windows Azure Storage accounts. It does this by enabling you to securely ship hard disk drives directly to our Windows Azure data centers. Once we receive the drives we’ll automatically transfer the data to or from your Windows Azure Storage account.  This enables you to import or export massive amounts of data more quickly and cost effectively (and not be constrained by available network bandwidth). Encrypted Transport Our Import/Export service provides built-in support for BitLocker disk encryption – which enables you to securely encrypt data on the hard drives before you send it, and not have to worry about it being compromised even if the disk is lost/stolen in transit (since the content on the transported hard drives is completely encrypted and you are the only one who has the key to it).  The drive preparation tool we are shipping today makes setting up bitlocker encryption on these hard drives easy. How to Import/Export your first Hard Drive of Data You can read our Getting Started Guide to learn more about how to begin using the import/export service.  You can create import and export jobs via the Windows Azure Management Portal as well as programmatically using our Server Management APIs. It is really easy to create a new import or export job using the Windows Azure Management Portal.  Simply navigate to a Windows Azure storage account, and then click the new Import/Export tab now available within it (note: if you don’t have this tab make sure to sign-up for the Import/Export preview): Then click the “Create Import Job” or “Create Export Job” commands at the bottom of it.  This will launch a wizard that easily walks you through the steps required: For more comprehensive information about Import/Export, refer to Windows Azure Storage team blog.  You can also send questions and comments to the [email protected] email address. We think you’ll find this new service makes it much easier to move data into and out of Windows Azure, and it will dramatically cut down the network bandwidth required when working on large data migration projects.  We hope you like it. HDInsight: 100% Compatible Hadoop Service in the Cloud Last week we announced the general availability release of Windows Azure HDInsight. HDInsight is a 100% compatible Hadoop service that allows you to easily provision and manage Hadoop clusters for big data processing in Windows Azure.  This release is now live in production, backed by an enterprise SLA, supported 24x7 by Microsoft Support, and is ready to use for production scenarios. HDInsight allows you to use Apache Hadoop tools, such as Pig and Hive, to process large amounts of data in Windows Azure Blob Storage. Because data is stored in Windows Azure Blob Storage, you can choose to dynamically create Hadoop clusters only when you need them, and then shut them down when they are no longer required (since you pay only for the time the Hadoop cluster instances are running this provides a super cost effective way to use them).  You can create Hadoop clusters using either the Windows Azure Management Portal (see below) or using our PowerShell and Cross Platform Command line tools: The import/export hard drive support that came out today is a perfect companion service to use with HDInsight – the combination allows you to easily ingest, process and optionally export a limitless amount of data.  We’ve also integrated HDInsight with our Business Intelligence tools, so users can leverage familiar tools like Excel in order to analyze the output of jobs.  You can find out more about how to get started with HDInsight here. Virtual Machines: VM Gallery Enhancements Today’s update of Windows Azure brings with it a new Virtual Machine gallery that you can use to create new VMs in the cloud.  You can launch the gallery by doing New->Compute->Virtual Machine->From Gallery within the Windows Azure Management Portal: The new Virtual Machine Gallery includes some nice enhancements that make it even easier to use: Search: You can now easily search and filter images using the search box in the top-right of the dialog.  For example, simply type “SQL” and we’ll filter to show those images in the gallery that contain that substring. Category Tree-view: Each month we add more built-in VM images to the gallery.  You can continue to browse these using the “All” view within the VM Gallery – or now quickly filter them using the category tree-view on the left-hand side of the dialog.  For example, by selecting “Oracle” in the tree-view you can now quickly filter to see the official Oracle supplied images. MSDN and Supported checkboxes: With today’s update we are also introducing filters that makes it easy to filter out types of images that you may not be interested in. The first checkbox is MSDN: using this filter you can exclude any image that is not part of the Windows Azure benefits for MSDN subscribers (which have highly discounted pricing - you can learn more about the MSDN pricing here). The second checkbox is Supported: this filter will exclude any image that contains prerelease software, so you can feel confident that the software you choose to deploy is fully supported by Windows Azure and our partners. Sort options: We sort gallery images by what we think customers are most interested in, but sometimes you might want to sort using different views. So we’re providing some additional sort options, like “Newest,” to customize the image list for what suits you best. Pricing information: We now provide additional pricing information about images and options on how to cost effectively run them directly within the VM Gallery. The above improvements make it even easier to use the VM Gallery and quickly create launch and run Virtual Machines in the cloud. Virtual Machines: ACL Support for VIPs A few months ago we exposed the ability to configure Access Control Lists (ACLs) for Virtual Machines using Windows PowerShell cmdlets and our Service Management API. With today’s release, you can now configure VM ACLs using the Windows Azure Management Portal as well. You can now do this by clicking the new Manage ACL command in the Endpoints tab of a virtual machine instance: This will enable you to configure an ordered list of permit and deny rules to scope the traffic that can access your VM’s network endpoints. For example, if you were on a virtual network, you could limit RDP access to a Windows Azure virtual machine to only a few computers attached to your enterprise. Or if you weren’t on a virtual network you could alternatively limit traffic from public IPs that can access your workloads: Here is the default behaviors for ACLs in Windows Azure: By default (i.e. no rules specified), all traffic is permitted. When using only Permit rules, all other traffic is denied. When using only Deny rules, all other traffic is permitted. When there is a combination of Permit and Deny rules, all other traffic is denied. Lastly, remember that configuring endpoints does not automatically configure them within the VM if it also has firewall rules enabled at the OS level.  So if you create an endpoint using the Windows Azure Management Portal, Windows PowerShell, or REST API, be sure to also configure your guest VM firewall appropriately as well. Web Sites: Web Sockets Support With today’s release you can now use Web Sockets with Windows Azure Web Sites.  This feature enables you to easily integrate real-time communication scenarios within your web based applications, and is available at no extra charge (it even works with the free tier).  Higher level programming libraries like SignalR and socket.io are also now supported with it. You can enable Web Sockets support on a web site by navigating to the Configure tab of a Web Site, and by toggling Web Sockets support to “on”: Once Web Sockets is enabled you can start to integrate some really cool scenarios into your web applications.  Check out the new SignalR documentation hub on www.asp.net to learn more about some of the awesome scenarios you can do with it. Web Sites: Remote Debugging Support The Windows Azure SDK 2.2 we released two weeks ago introduced remote debugging support for Windows Azure Cloud Services. With today’s Windows Azure release we are extending this remote debugging support to also work with Windows Azure Web Sites. With live, remote debugging support inside of Visual Studio, you are able to have more visibility than ever before into how your code is operating live in Windows Azure. It is now super easy to attach the debugger and quickly see what is going on with your application in the cloud. Remote Debugging of a Windows Azure Web Site using VS 2013 Enabling the remote debugging of a Windows Azure Web Site using VS 2013 is really easy.  Start by opening up your web application’s project within Visual Studio. Then navigate to the “Server Explorer” tab within Visual Studio, and click on the deployed web-site you want to debug that is running within Windows Azure using the Windows Azure->Web Sites node in the Server Explorer.  Then right-click and choose the “Attach Debugger” option on it: When you do this Visual Studio will remotely attach the debugger to the Web Site running within Windows Azure.  The debugger will then stop the web site’s execution when it hits any break points that you have set within your web application’s project inside Visual Studio.  For example, below I set a breakpoint on the “ViewBag.Message” assignment statement within the HomeController of the standard ASP.NET MVC project template.  When I hit refresh on the “About” page of the web site within the browser, the breakpoint was triggered and I am now able to debug the app remotely using Visual Studio: Note above how we can debug variables (including autos/watchlist/etc), as well as use the Immediate and Command Windows. In the debug session above I used the Immediate Window to explore some of the request object state, as well as to dynamically change the ViewBag.Message property.  When we click the the “Continue” button (or press F5) the app will continue execution and the Web Site will render the content back to the browser.  This makes it super easy to debug web apps remotely. Tips for Better Debugging To get the best experience while debugging, we recommend publishing your site using the Debug configuration within Visual Studio’s Web Publish dialog. This will ensure that debug symbol information is uploaded to the Web Site which will enable a richer debug experience within Visual Studio.  You can find this option on the Web Publish dialog on the Settings tab: When you ultimately deploy/run the application in production we recommend using the “Release” configuration setting – the release configuration is memory optimized and will provide the best production performance.  To learn more about diagnosing and debugging Windows Azure Web Sites read our new Troubleshooting Windows Azure Web Sites in Visual Studio guide. Notification Hubs: Segmented Push Notification support with tag expressions In August we announced the General Availability of Windows Azure Notification Hubs - a powerful Mobile Push Notifications service that makes it easy to send high volume push notifications with low latency from any mobile app back-end.  Notification hubs can be used with any mobile app back-end (including ones built using our Mobile Services capability) and can also be used with back-ends that run in the cloud as well as on-premises. Beginning with the initial release, Notification Hubs allowed developers to send personalized push notifications to both individual users as well as groups of users by interest, by associating their devices with tags representing the logical target of the notification. For example, by registering all devices of customers interested in a favorite MLB team with a corresponding tag, it is possible to broadcast one message to millions of Boston Red Sox fans and another message to millions of St. Louis Cardinals fans with a single API call respectively. New support for using tag expressions to enable advanced customer segmentation With today’s release we are adding support for even more advanced customer targeting.  You can now identify customers that you want to send push notifications to by defining rich tag expressions. With tag expressions, you can now not only broadcast notifications to Boston Red Sox fans, but take that segmenting a step farther and reach more granular segments. This opens up a variety of scenarios, for example: Offers based on multiple preferences—e.g. send a game day vegetarian special to users tagged as both a Boston Red Sox fan AND a vegetarian Push content to multiple segments in a single message—e.g. rain delay information only to users who are tagged as either a Boston Red Sox fan OR a St. Louis Cardinal fan Avoid presenting subsets of a segment with irrelevant content—e.g. season ticket availability reminder to users who are tagged as a Boston Red Sox fan but NOT also a season ticket holder To illustrate with code, consider a restaurant chain app that sends an offer related to a Red Sox vs Cardinals game for users in Boston. Devices can be tagged by your app with location tags (e.g. “Loc:Boston”) and interest tags (e.g. “Follows:RedSox”, “Follows:Cardinals”), and then a notification can be sent by your back-end to “(Follows:RedSox || Follows:Cardinals) && Loc:Boston” in order to deliver an offer to all devices in Boston that follow either the RedSox or the Cardinals. This can be done directly in your server backend send logic using the code below: var notification = new WindowsNotification(messagePayload); hub.SendNotificationAsync(notification, "(Follows:RedSox || Follows:Cardinals) && Loc:Boston"); In your expressions you can use all Boolean operators: AND (&&), OR (||), and NOT (!).  Some other cool use cases for tag expressions that are now supported include: Social: To “all my group except me” - group:id && !user:id Events: Touchdown event is sent to everybody following either team or any of the players involved in the action: Followteam:A || Followteam:B || followplayer:1 || followplayer:2 … Hours: Send notifications at specific times. E.g. Tag devices with time zone and when it is 12pm in Seattle send to: GMT8 && follows:thaifood Versions and platforms: Send a reminder to people still using your first version for Android - version:1.0 && platform:Android For help on getting started with Notification Hubs, visit the Notification Hub documentation center.  Then download the latest NuGet package (or use the Notification Hubs REST APIs directly) to start sending push notifications using tag expressions.  They are really powerful and enable a bunch of great new scenarios. TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services With today’s Windows Azure release we are making it really easy to enable continuous delivery support with Windows Azure and Team Foundation Services.  Team Foundation Services is a cloud based offering from Microsoft that provides integrated source control (with both TFS and Git support), build server, test execution, collaboration tools, and agile planning support.  It makes it really easy to setup a team project (complete with automated builds and test runners) in the cloud, and it has really rich integration with Visual Studio. With today’s Windows Azure release it is now really easy to enable continuous delivery support with both TFS and Git based repositories hosted using Team Foundation Services.  This enables a workflow where when code is checked in, built successfully on an automated build server, and all tests pass on it – I can automatically have the app deployed on Windows Azure with zero manual intervention or work required. The below screen-shots demonstrate how to quickly setup a continuous delivery workflow to Windows Azure with a Git-based ASP.NET MVC project hosted using Team Foundation Services. Enabling Continuous Delivery to Windows Azure with Team Foundation Services The project I’m going to enable continuous delivery with is a simple ASP.NET MVC project whose source code I’m hosting using Team Foundation Services.  I did this by creating a “SimpleContinuousDeploymentTest” repository there using Git – and then used the new built-in Git tooling support within Visual Studio 2013 to push the source code to it.  Below is a screen-shot of the Git repository hosted within Team Foundation Services: I can access the repository within Visual Studio 2013 and easily make commits with it (as well as branch, merge and do other tasks).  Using VS 2013 I can also setup automated builds to take place in the cloud using Team Foundation Services every time someone checks in code to the repository: The cool thing about this is that I don’t have to buy or rent my own build server – Team Foundation Services automatically maintains its own build server farm and can automatically queue up a build for me (for free) every time someone checks in code using the above settings.  This build server (and automated testing) support now works with both TFS and Git based source control repositories. Connecting a Team Foundation Services project to Windows Azure Once I have a source repository hosted in Team Foundation Services with Automated Builds and Testing set up, I can then go even further and set it up so that it will be automatically deployed to Windows Azure when a source code commit is made to the repository (assuming the Build + Tests pass).  Enabling this is now really easy.  To set this up with a Windows Azure Web Site simply use the New->Compute->Web Site->Custom Create command inside the Windows Azure Management Portal.  This will create a dialog like below.  I gave the web site a name and then made sure the “Publish from source control” checkbox was selected: When we click next we’ll be prompted for the location of the source repository.  We’ll select “Team Foundation Services”: Once we do this we’ll be prompted for our Team Foundation Services account that our source repository is hosted under (in this case my TFS account is “scottguthrie”): When we click the “Authorize Now” button we’ll be prompted to give Windows Azure permissions to connect to the Team Foundation Services account.  Once we do this we’ll be prompted to pick the source repository we want to connect to.  Starting with today’s Windows Azure release you can now connect to both TFS and Git based source repositories.  This new support allows me to connect to the “SimpleContinuousDeploymentTest” respository we created earlier: Clicking the finish button will then create the Web Site with the continuous delivery hooks setup with Team Foundation Services.  Now every time someone pushes source control to the repository in Team Foundation Services, it will kick off an automated build, run all of the unit tests in the solution , and if they pass the app will be automatically deployed to our Web Site in Windows Azure.  You can monitor the history and status of these automated deployments using the Deployments tab within the Web Site: This enables a really slick continuous delivery workflow, and enables you to build and deploy apps in a really nice way. Developer Analytics: New Relic support for Web Sites + Mobile Services With today’s Windows Azure release we are making it really easy to enable Developer Analytics and Monitoring support with both Windows Azure Web Site and Windows Azure Mobile Services.  We are partnering with New Relic, who provide a great dev analytics and app performance monitoring offering, to enable this - and we have updated the Windows Azure Management Portal to make it really easy to configure. Enabling New Relic with a Windows Azure Web Site Enabling New Relic support with a Windows Azure Web Site is now really easy.  Simply navigate to the Configure tab of a Web Site and scroll down to the “developer analytics” section that is now within it: Clicking the “add-on” button will display some additional UI.  If you don’t already have a New Relic subscription, you can click the “view windows azure store” button to obtain a subscription (note: New Relic has a perpetually free tier so you can enable it even without paying anything): Clicking the “view windows azure store” button will launch the integrated Windows Azure Store experience we have within the Windows Azure Management Portal.  You can use this to browse from a variety of great add-on services – including New Relic: Select “New Relic” within the dialog above, then click the next button, and you’ll be able to choose which type of New Relic subscription you wish to purchase.  For this demo we’ll simply select the “Free Standard Version” – which does not cost anything and can be used forever:  Once we’ve signed-up for our New Relic subscription and added it to our Windows Azure account, we can go back to the Web Site’s configuration tab and choose to use the New Relic add-on with our Windows Azure Web Site.  We can do this by simply selecting it from the “add-on” dropdown (it is automatically populated within it once we have a New Relic subscription in our account): Clicking the “Save” button will then cause the Windows Azure Management Portal to automatically populate all of the needed New Relic configuration settings to our Web Site: Deploying the New Relic Agent as part of a Web Site The final step to enable developer analytics using New Relic is to add the New Relic runtime agent to our web app.  We can do this within Visual Studio by right-clicking on our web project and selecting the “Manage NuGet Packages” context menu: This will bring up the NuGet package manager.  You can search for “New Relic” within it to find the New Relic agent.  Note that there is both a 32-bit and 64-bit edition of it – make sure to install the version that matches how your Web Site is running within Windows Azure (note: you can configure your Web Site to run in either 32-bit or 64-bit mode using the Web Site’s “Configuration” tab within the Windows Azure Management Portal): Once we install the NuGet package we are all set to go.  We’ll simply re-publish the web site again to Windows Azure and New Relic will now automatically start monitoring the application Monitoring a Web Site using New Relic Now that the application has developer analytics support with New Relic enabled, we can launch the New Relic monitoring portal to start monitoring the health of it.  We can do this by clicking on the “Add Ons” tab in the left-hand side of the Windows Azure Management Portal.  Then select the New Relic add-on we signed-up for within it.  The Windows Azure Management Portal will provide some default information about the add-on when we do this.  Clicking the “Manage” button in the tray at the bottom will launch a new browser tab and single-sign us into the New Relic monitoring portal associated with our account: When we do this a new browser tab will launch with the New Relic admin tool loaded within it: We can now see insights into how our app is performing – without having to have written a single line of monitoring code.  The New Relic service provides a ton of great built-in monitoring features allowing us to quickly see: Performance times (including browser rendering speed) for the overall site and individual pages.  You can optionally set alert thresholds to trigger if the speed does not meet a threshold you specify. Information about where in the world your customers are hitting the site from (and how performance varies by region) Details on the latency performance of external services your web apps are using (for example: SQL, Storage, Twitter, etc) Error information including call stack details for exceptions that have occurred at runtime SQL Server profiling information – including which queries executed against your database and what their performance was And a whole bunch more… The cool thing about New Relic is that you don’t need to write monitoring code within your application to get all of the above reports (plus a lot more).  The New Relic agent automatically enables the CLR profiler within applications and automatically captures the information necessary to identify these.  This makes it super easy to get started and immediately have a rich developer analytics view for your solutions with very little effort. If you haven’t tried New Relic out yet with Windows Azure I recommend you do so – I think you’ll find it helps you build even better cloud applications.  Following the above steps will help you get started and deliver you a really good application monitoring solution in only minutes. Service Bus: Support for partitioned queues and topics With today’s release, we are enabling support within Service Bus for partitioned queues and topics. Enabling partitioning enables you to achieve a higher message throughput and better availability from your queues and topics. Higher message throughput is achieved by implementing multiple message brokers for each partitioned queue and topic.  The  multiple messaging stores will also provide higher availability. You can create a partitioned queue or topic by simply checking the Enable Partitioning option in the custom create wizard for a Queue or Topic: Read this article to learn more about partitioned queues and topics and how to take advantage of them today. Billing: New Billing Alert Service Today’s Windows Azure update enables a new Billing Alert Service Preview that enables you to get proactive email notifications when your Windows Azure bill goes above a certain monetary threshold that you configure.  This makes it easier to manage your bill and avoid potential surprises at the end of the month. With the Billing Alert Service Preview, you can now create email alerts to monitor and manage your monetary credits or your current bill total.  To set up an alert first sign-up for the free Billing Alert Service Preview.  Then visit the account management page, click on a subscription you have setup, and then navigate to the new Alerts tab that is available: The alerts tab allows you to setup email alerts that will be sent automatically once a certain threshold is hit.  For example, by clicking the “add alert” button above I can setup a rule to send myself email anytime my Windows Azure bill goes above $100 for the month: The Billing Alert Service will evolve to support additional aspects of your bill as well as support multiple forms of alerts such as SMS.  Try out the new Billing Alert Service Preview today and give us feedback. Summary Today’s Windows Azure release enables a ton of great new scenarios, and makes building applications hosted in the cloud even easier. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

< Previous Page | 44 45 46 47 48 49  | Next Page >