Search Results

Search found 3521 results on 141 pages for 'parallel computing'.

Page 48/141 | < Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >

  • Free Webinar: A faster, cheaper, better IT Department with Azure

    - by Herve Roggero
    Join me for a free Webinar on Wednesday October 17th at 1:30PM, Eastern Time. I will discuss the benefits of cloud computing with the Azure platform. There isn’t a company out there that would say “No” to reduced IT costs and unlimited scaling bandwidth. This webinar will focus on the specific benefits of the Microsoft Azure cloud platform and will convince you on the sound business rationale behind moving to the cloud. From Infrastructure as a Service (Iaas) to Platform as a Service (Paas), Azure supports quick deployments, virtual machines, native SQL Databases and much more. Topics that will be discussed: - Why use Azure for your Cloud Computing needs - Iaas and Paas Offerings - Differing project approaches to Cloud computing - How Azure’s agility and reduced costs lead to better solutions Attendees of this webinar will also be eligible to receive the following: Free Two Hour Consultation which can include: - Review of Your Cloud Strategy - Cloud Roadmap Review - Review of Data-mart strategies - Review of Mobility Strategies Click Here to Register Now. About Herve Roggero Hervé Roggero, Azure MVP, is the founder of Blue Syntax Consulting, a company specialized in cloud computing products and services. Hervé's experience includes software development, architecture, database administration and senior management with both global corporations and startup companies. Hervé holds multiple certifications, including an MCDBA, MCSE, MCSD. He also holds a Master's degree in Business Administration from Indiana University. Hervé is the co-author of "PRO SQL Azure" from Apress. For more information, visit www.bluesyntax.net.

    Read the article

  • The Increasing Focus on Architecture

    - by Bob Rhubart
    If you follow my updates on Twitter or on the OTN ArchBeat page on Facebook you have probably noticed that I'm a regular reader of Joe McKendrick's SOA blog on ZDNet. Usually I'm content to simply share a link on my social networks when I find one of McKendrick's posts interesting. But with a recent post, In the cloud era, let's start calling IT what it is: 'Innovation Team', McKendrick hit on a point that warrants more than a quick link: "IT is no longer just a department full of people who code, build and maintain systems. IT is the business partner that plans and strategizes what types of technology solutions the business needs to move forward." Of course, what McKendrick is describing is an increased focus on architecture. Assuming that McKendrick's assessment is correct — and I do — that expanding focus, from coding, building, and maintaining systems to planning and strategizing technology solutions that serve the business, isn't limited to the organizational level. The individual roles within the IT organization will also have to shift to a more broadly architectural mindset. McKendrick's post references Dr. Irving Wladawsky-Berger's assessment of cloud computing as a critical "third model" of computing to emerge in the 50-year history of Information Technology. As computing itself evolves, the underlying roles that make computing possible must evolve accordingly. That evolution will be defined by an increased focus on architecture.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • External File Upload Optimizations for Windows Azure

    - by rgillen
    [Cross posted from here: http://rob.gillenfamily.net/post/External-File-Upload-Optimizations-for-Windows-Azure.aspx] I’m wrapping up a bit of the work we’ve been doing on data movement optimizations for cloud computing and the latest set of data yielded some interesting points I thought I’d share. The work done here is not really rocket science but may, in some ways, be slightly counter-intuitive and therefore seemed worthy of posting. Summary: for those who don’t like to read detailed posts or don’t have time, the synopsis is that if you are uploading data to Azure, block your data (even down to 1MB) and upload in parallel. Set your block size based on your source file size, but if you must choose a fixed value, use 1MB. Following the above will result in significant performance gains… upwards of 10x-24x and a reduction in overall file transfer time of upwards of 90% (eg, uploading a 1GB file averaged 46.37 minutes prior to optimizations and averaged 1.86 minutes afterwards). Detail: For those of you who want more detail, or think that the claims at the end of the preceding paragraph are over-reaching, what follows is information and code supporting these claims. As the title would indicate, these tests were run from our research facility pointing to the Azure cloud (specifically US North Central as it is physically closest to us) and do not represent intra-cloud results… we have performed intra-cloud tests and the overall results are similar in notion but the data rates are significantly different as well as the tipping points for the various block sizes… this will be detailed separately). We started by building a very simple console application that would loop through a directory and upload each file to Azure storage. This application used the shipping storage client library from the 1.1 version of the azure tools. The only real variation from the client library is that we added code to collect and record the duration (in ms) and size (in bytes) for each file transferred. The code is available here. We then created a directory that had a collection of files for the following sizes: 2KB, 32KB, 64KB, 128KB, 512KB, 1MB, 5MB, 10MB, 25MB, 50MB, 100MB, 250MB, 500MB, 750MB, and 1GB (50 files for each size listed). These files contained randomly-generated binary data and do not benefit from compression (a separate discussion topic). Our file generation tool is available here. The baseline was established by running the application described above against the directory containing all of the data files. This application uploads the files in a random order so as to avoid transferring all of the files of a given size sequentially and thereby spreading the affects of periodic Internet delays across the collection of results.  We then ran some scripts to split the resulting data and generate some reports. The raw data collected for our non-optimized tests is available via the links in the Related Resources section at the bottom of this post. For each file size, we calculated the average upload time (and standard deviation) and the average transfer rate (and standard deviation). As you likely are aware, transferring data across the Internet is susceptible to many transient delays which can cause anomalies in the resulting data. It is for this reason that we randomized the order of source file processing as well as executed the tests 50x for each file size. We expect that these steps will yield a sufficiently balanced set of results. Once the baseline was collected and analyzed, we updated the test harness application with some methods to split the source file into user-defined block sizes and then to upload those blocks in parallel (using the PutBlock() method of Azure storage). The parallelization was handled by simply relying on the Parallel Extensions to .NET to provide a Parallel.For loop (see linked source for specific implementation details in Program.cs, line 173 and following… less than 100 lines total). Once all of the blocks were uploaded, we called PutBlockList() to assemble/commit the file in Azure storage. For each block transferred, the MD5 was calculated and sent ensuring that the bits that arrived matched was was intended. The timer for the blocked/parallelized transfer method wraps the entire process (source file splitting, block transfer, MD5 validation, file committal). A diagram of the process is as follows: We then tested the affects of blocking & parallelizing the transfers by running the updated application against the same source set and did a parameter sweep on the block size including 256KB, 512KB, 1MB, 2MB, and 4MB (our assumption was that anything lower than 256KB wasn’t worth the trouble and 4MB is the maximum size of a block supported by Azure). The raw data for the parallel tests is available via the links in the Related Resources section at the bottom of this post. This data was processed and then compared against the single-threaded / non-optimized transfer numbers and the results were encouraging. The Excel version of the results is available here. Two semi-obvious points need to be made prior to reviewing the data. The first is that if the block size is larger than the source file size you will end up with a “negative optimization” due to the overhead of attempting to block and parallelize. The second is that as the files get smaller, the clock-time cost of blocking and parallelizing (overhead) is more apparent and can tend towards negative optimizations. For this reason (and is supported in the raw data provided in the linked worksheet) the charts and dialog below ignore source file sizes less than 1MB. (click chart for full size image) The chart above illustrates some interesting points about the results: When the block size is smaller than the source file, performance increases but as the block size approaches and then passes the source file size, you see decreasing benefit to the point of negative gains (see the values for the 1MB file size) For some of the moderately-sized source files, small blocks (256KB) are best As the size of the source file gets larger (see values for 50MB and up), the smallest block size is not the most efficient (presumably due, at least in part, to the increased number of blocks, increased number of individual transfer requests, and reassembly/committal costs). Once you pass the 250MB source file size, the difference in rate for 1MB to 4MB blocks is more-or-less constant The 1MB block size gives the best average improvement (~16x) but the optimal approach would be to vary the block size based on the size of the source file.    (click chart for full size image) The above is another view of the same data as the prior chart just with the axis changed (x-axis represents file size and plotted data shows improvement by block size). It again highlights the fact that the 1MB block size is probably the best overall size but highlights the benefits of some of the other block sizes at different source file sizes. This last chart shows the change in total duration of the file uploads based on different block sizes for the source file sizes. Nothing really new here other than this view of the data highlights the negative affects of poorly choosing a block size for smaller files.   Summary What we have found so far is that blocking your file uploads and uploading them in parallel results in significant performance improvements. Further, utilizing extension methods and the Task Parallel Library (.NET 4.0) make short work of altering the shipping client library to provide this functionality while minimizing the amount of change to existing applications that might be using the client library for other interactions.   Related Resources Source code for upload test application Source code for random file generator ODatas feed of raw data from non-optimized transfer tests Experiment Metadata Experiment Datasets 2KB Uploads 32KB Uploads 64KB Uploads 128KB Uploads 256KB Uploads 512KB Uploads 1MB Uploads 5MB Uploads 10MB Uploads 25MB Uploads 50MB Uploads 100MB Uploads 250MB Uploads 500MB Uploads 750MB Uploads 1GB Uploads Raw Data OData feeds of raw data from blocked/parallelized transfer tests Experiment Metadata Experiment Datasets Raw Data 256KB Blocks 512KB Blocks 1MB Blocks 2MB Blocks 4MB Blocks Excel worksheet showing summarizations and comparisons

    Read the article

  • OTN Architect Day Headed to Reston, VA - May 16

    - by Bob Rhubart
    In 2011 OTN Architect Day made stops in Chicago, Denver, Phoenix, Redwood Shores, and Toronto. The 2012 series begins with OTN Architect Day in Reston, VA on Wednesday May 16. Registration is now open for this free event, but don't get caught napping -- seating is limited, and the event is just 5 weeks away. The information below reflects the most recent updates to the event agenda, including the addition of Oracle ACE Director Kai Yu as the guest keynote speaker. Kai is Senior System Engineer / Architect at Dell, Inc., and has been very busy of late as a speaker at various industry and Oracle User Group events. I'm very happy Kai has agreed to make the trek from his hometown in Austin, TX to share his insight at the Architect Day event in Reston.  If you're in the area, put this one on your calendar. You won't be sorry.   Venue Sheraton Reston Hotel 11810 Sunrise Valley Drive Reston, VA 20191 Event Agenda 8:30 am - 9:00 am Registration and Continental Breakfast 9:00 am - 9:15 am Welcome and Opening Comments 9:15 am - 10:00 am Engineered Systems: Oracle's Vision for the Future | Ralf Dossman Oracle's Exadata and Exalogic are impressive products in their own right. But working in combination they deliver unparalleled transaction processing performance with up to a 30x increase over existing legacy systems, with the lowest cost of ownership over a 3 or 5 year basis than any other hardware. In this session you'll learn how to leverage Oracle's Engineered Systems within your enterprise to deliver record-breaking performance at the lowest TCO. 10:00 am - 10:30 am High Availability Infrastructure for Cloud Computing | Kai Yu Infrastructure high availability is extremely critical to Cloud Computing. In a Cloud system that hosts a large number of databases and applications with different SLAs, any unplanned outage can be devastating, and even a small planned downtime may be unacceptable. This presentation will discuss various technology solutions and the related best practices that system architects should consider in cloud infrastructure design to ensure high availability. 10:30 am - 10:45 am Break 10:45 am - 11:30 am Breakout Sessions: (pick one) Innovations in Grid Computing with Oracle Coherence | Bjorn Boe Learn how Coherence can increase the availability, scalability and performance of your existing applications with its advanced low-latency data-grid technologies. Also hear some interesting industry-specific use cases that customers had implemented and how Oracle is integrating Coherence into its Enterprise Java stack. Cloud Computing - Making IT Simple | Scott Mattoon The road to Cloud Computing is not without a few bumps. This session will help to smooth out your journey by tackling some of the potential complications. We'll examine whether standardization is a prerequisite for the Cloud. We'll look at why refactoring isn't just for application code. We'll check out deployable entities and their simplification via higher levels of abstraction. And we'll close out the session with a look at engineered systems and modular clouds. 11:30 pm - 12:15 pm Breakout Sessions: (pick one) Oracle Enterprise Manager | Joe Diemer Oracle Enterprise Manager (EM) provides complete lifecycle management for the cloud - from automated cloud setup to self-service delivery to cloud operations. In this session you'll learn how to take control of your cloud infrastructure with EM features including Consolidation Planning and Self-Service provisioning with Metering and Chargeback. Come hear how Oracle is expanding its management capabilities into the cloud! Rationalization and Defense in Depth - Two Steps Closer to the Clouds | Dave Chappelle Security represents one of the biggest concerns about cloud computing. In this session we'll get past the FUD with a real-world look at some key issues. We'll discuss the infrastructure necessary to support rationalization and security services, explore architecture for defense -in-depth, and deal frankly with the good, the bad, and the ugly in Cloud security. 12:15 pm - 1:15 pm Lunch 1:40 pm - 2:00 pm Panel Discussion - Q&A 2:00 pm - 2:45 pm Breakout Sessions: (pick one) 21st Century SOA | Peter Belknap Service Oriented Architecture has evolved from concept to reality in the last decade. The right methodology coupled with mature SOA technologies has helped customers demonstrate success in both innovation and ROI. In this session you will learn how Oracle SOA Suite's orchestration, virtualization, and governance capabilities provide the infrastructure to run mission critical business and system applications. And we'll take a special look at the convergence of SOA & BPM using Oracle's Unified technology stack. Track B: Oracle Cloud Reference Architecture | Anbu Krishnaswamy Cloud initiatives are beginning to dominate enterprise IT roadmaps. Successful adoption of Cloud and the subsequent governance challenges warrant a Cloud reference architecture that is applied consistently across the enterprise. This presentation gives an overview of Oracle's Cloud Reference Architecture, which is part of the Cloud Enterprise Technology Strategy (ETS). Concepts covered include common management layer capabilities, service models, resource pools, and use cases. 2:45 pm - 3:00 pm Break 3:00 pm - 4:00 pm Roundtable Discussions 4:00 pm - 4:15 pm Closing Comments & Readouts from Roundtable 4:15 pm - 5:00 pm Cocktail Reception / Networking Session schedule and content subject to change.

    Read the article

  • Podcast Show Notes: The Role of the Cloud Architect

    - by Bob Rhubart
    Ron Batra James Baty If you want to understand what a cloud architect does, what better way than to talk to people in that role? In this program that’s exactly what we’ll do. Joining me for this conversation are cloud architects Ron Batra and Dr. James Baty. Ron is an Oracle ACE Director and product director for cloud computing at AT&T , and Jim is Vice President of Oracle’s Global Enterprise Architecture Program . This interview was recorded on June 12, 2012. The Conversation Listen to Part 1: How cloud computing is driving the supply-chaining of IT and the democratization of the activity of architecture. Listen to Part 2 (July 12): A discussion of DevOps, cloud computing, and the increasing velocity of IT. Listen to Part 3 (July 19): Why architects need to up their game to thrive and succeed in a cloud-driven world. Coming Soon A conversation about the International SOA, Cloud & Service Technology Symposium with a panel that features Thomas Erl and several Oracle community members who will be presenting at that event.

    Read the article

  • await, WhenAll, WaitAll, oh my!!

    - by cibrax
    If you are dealing with asynchronous work in .NET, you might know that the Task class has become the main driver for wrapping asynchronous calls. Although this class was officially introduced in .NET 4.0, the programming model for consuming tasks was much more simplified in C# 5.0 in .NET 4.5 with the addition of the new async/await keywords. In a nutshell, you can use these keywords to make asynchronous calls as if they were sequential, and avoiding in that way any fork or callback in the code. The compiler takes care of the rest. I was yesterday writing some code for making multiple asynchronous calls to backend services in parallel. The code looked as follow, var allResults = new List<Result>(); foreach(var provider in providers) { var results = await provider.GetResults(); allResults.AddRange(results); } return allResults; You see, I was using the await keyword to make multiple calls in parallel. Something I did not consider was the overhead this code implied after being compiled. I started an interesting discussion with some smart folks in twitter. One of them, Tugberk Ugurlu, had the brilliant idea of actually write some code to make a performance comparison with another approach using Task.WhenAll. There are two additional methods you can use to wait for the results of multiple calls in parallel, WhenAll and WaitAll. WhenAll creates a new task and waits for results in that new task, so it does not block the calling thread. WaitAll, on the other hand, blocks the calling thread. This is the code Tugberk initially wrote, and I modified afterwards to also show the results of WaitAll. class Program { private static Func<Stopwatch, Task>[] funcs = new Func<Stopwatch, Task>[] { async (watch) => { watch.Start(); await Task.Delay(1000); Console.WriteLine("1000 one has been completed."); }, async (watch) => { await Task.Delay(1500); Console.WriteLine("1500 one has been completed."); }, async (watch) => { await Task.Delay(2000); Console.WriteLine("2000 one has been completed."); watch.Stop(); Console.WriteLine(watch.ElapsedMilliseconds + "ms has been elapsed."); } }; static void Main(string[] args) { Console.WriteLine("Await in loop work starts..."); DoWorkAsync().ContinueWith(task => { Console.WriteLine("Parallel work starts..."); DoWorkInParallelAsync().ContinueWith(t => { Console.WriteLine("WaitAll work starts..."); WaitForAll(); }); }); Console.ReadLine(); } static async Task DoWorkAsync() { Stopwatch watch = new Stopwatch(); foreach (var func in funcs) { await func(watch); } } static async Task DoWorkInParallelAsync() { Stopwatch watch = new Stopwatch(); await Task.WhenAll(funcs[0](watch), funcs[1](watch), funcs[2](watch)); } static void WaitForAll() { Stopwatch watch = new Stopwatch(); Task.WaitAll(funcs[0](watch), funcs[1](watch), funcs[2](watch)); } } After running this code, the results were very concluding. Await in loop work starts... 1000 one has been completed. 1500 one has been completed. 2000 one has been completed. 4532ms has been elapsed. Parallel work starts... 1000 one has been completed. 1500 one has been completed. 2000 one has been completed. 2007ms has been elapsed. WaitAll work starts... 1000 one has been completed. 1500 one has been completed. 2000 one has been completed. 2009ms has been elapsed. The await keyword in a loop does not really make the calls in parallel.

    Read the article

  • 2 New Resources Added to IT Strategies from Oracle Library

    - by Bob Rhubart
    IT Strategies from Oracle, an authorized library of guidelines and reference architectures, has just been updated to include two new documents: A Pragmatic Approach to Cloud Adoption For enterprises that seek to transform their own IT capabilities and avoid adverse disruption in the process, a structured and pragmatic approach to Cloud computing is required. This practitioner guide details a framework that can be used within any organization for developing such an approach to Cloud adoption. Oracle's Approach to Cloud Successful adoption of Cloud computing requires the definition of an approach that aligns with business drivers and operational capabilities. This is why Oracle has developed a pragmatic approach, based on experience with numerous companies, to help customers successfully adopt Cloud. This data sheet provides an executive overview of Oracle's proven approach to Cloud. These two new resources join a collection of dozens of documents covering Service-Oriented Architecture, Event-Driven Architecture, Business Process Management, and Cloud Computing. Registration is required to access the material, but it's all free.

    Read the article

  • ???????Oracle Exadata??????????????·???????

    - by mamoru.kobayashi
    ???????????????????????????Oracle Exadata?????? ??????????·?????????????????????? ??????????20???????1?????8,000??????????? ???????????1?8??????????? ?????1983?????20?????????????????? ?????·????????????????? ?????????1?????????350?????????? ???????????????????????????????? ???????????????????????????????????? ???????????????????????????????????? ?Oracle Exadata???????????????????? ????????????????? - - - ???????????????????????Oracle Cloud Computing Summit - Database & Exadata Day ~????????????????????????????? ???????????????????? ?Oracle Cloud Computing Summit - Database & Exadata Day? ??????????????? 1?8000??????????????Oracle Exadata?????(??????:B-3) ? ?:2010?6?15?(?)15:40~16:30 ???Oracle Cloud Computing Summit - Database & Exadata Day ?????? ???????

    Read the article

  • The WaitForAll Roadshow

    - by adweigert
    OK, so I took for granted some imaginative uses of WaitForAll but lacking that, here is how I am using. First, I have a nice little class called Parallel that allows me to spin together a list of tasks (actions) and then use WaitForAll, so here it is, WaitForAll's 15 minutes of fame ... First Parallel that allows me to spin together several Action delegates to execute, well in parallel.   public static class Parallel { public static ParallelQuery Task(Action action) { return new Action[] { action }.AsParallel(); } public static ParallelQuery> Task(Action action) { return new Action[] { action }.AsParallel(); } public static ParallelQuery Task(this ParallelQuery actions, Action action) { var list = new List(actions); list.Add(action); return list.AsParallel(); } public static ParallelQuery> Task(this ParallelQuery> actions, Action action) { var list = new List>(actions); list.Add(action); return list.AsParallel(); } }   Next, this is an example usage from an app I'm working on that just is rendering some basic computer information via WMI and performance counters. The WMI calls can be expensive given the distance and link speed of some of the computers it will be trying to communicate with. This is the actual MVC action from my controller to return the data for an individual computer.  public PartialViewResult Detail(string computerName) { var computer = this.Computers.Get(computerName); var perf = Factory.GetInstance(); var detail = new ComputerDetailViewModel() { Computer = computer }; try { var work = Parallel .Task(delegate { // Win32_ComputerSystem var key = computer.Name + "_Win32_ComputerSystem"; var system = this.Cache.Get(key); if (system == null) { using (var impersonation = computer.ImpersonateElevatedIdentity()) { system = computer.GetWmiContext().GetInstances().Single(); } this.Cache.Set(key, system); } detail.TotalMemory = system.TotalPhysicalMemory; detail.Manufacturer = system.Manufacturer; detail.Model = system.Model; detail.NumberOfProcessors = system.NumberOfProcessors; }) .Task(delegate { // Win32_OperatingSystem var key = computer.Name + "_Win32_OperatingSystem"; var os = this.Cache.Get(key); if (os == null) { using (var impersonation = computer.ImpersonateElevatedIdentity()) { os = computer.GetWmiContext().GetInstances().Single(); } this.Cache.Set(key, os); } detail.OperatingSystem = os.Caption; detail.OSVersion = os.Version; }) // Performance Counters .Task(delegate { using (var impersonation = computer.ImpersonateElevatedIdentity()) { detail.AvailableBytes = perf.GetSample(computer, "Memory", "Available Bytes"); } }) .Task(delegate { using (var impersonation = computer.ImpersonateElevatedIdentity()) { detail.TotalProcessorUtilization = perf.GetValue(computer, "Processor", "% Processor Time", "_Total"); } }).WithExecutionMode(ParallelExecutionMode.ForceParallelism); if (!work.WaitForAll(TimeSpan.FromSeconds(15), task => task())) { return PartialView("Timeout"); } } catch (Exception ex) { this.LogException(ex); return PartialView("Error.ascx"); } return PartialView(detail); }

    Read the article

  • Queueing Effect.Parallels in Scriptaculous doesn't work

    - by Matthew Robertson
    Each block of animations, grouped in an Effect.Parallel, runs simultaneously. That works fine. Then, I want each of the Effect.Parallels to trigger sequentially, with a delay. The second block doesn't wait its turn. It fires when the function is run. Why?! ///// FIRST BLOCK ///// new Effect.Parallel([ new Effect.Morph... ], { queue: 'front' }); ///// SECOND BLOCK ///// new Effect.Parallel([ Element.toggleClassName($$('#add_comment_button .glyph').first(), 'yay') ], { sync: true, queue: 'end', delay: 1 }); ///// THIRD BLOCK ///// new Effect.Parallel([ new Effect.SlideUp... ], { queue: 'end', delay: 4 });

    Read the article

  • CUDA not working in 64 bit windows 7

    - by Programmer
    I have cuda toolkit 4.0 installed in a 64 bit windows 7. I try building my cuda code, #include<iostream> #include"cuda_runtime.h" #include"cuda.h" __global__ void kernel(){ } int main(){ kernel<<<1,1>>>(); int c = 0; cudaGetDeviceCount(&c); cudaDeviceProp prop; cudaGetDeviceProperties(&prop, 0); std::cout<<"the name is"<<prop.name; std::cout<<"Hello World!"<<c<<std::endl; system("pause"); return 0; } but operation fails. Below is the build log: Build Log Rebuild started: Project: god, Configuration: Debug|Win32 Command Lines Creating temporary file "c:\Users\t-sudhk\Documents\Visual Studio 2008\Projects\god\god\Debug\BAT0000482007500.bat" with contents [ @echo off echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v4.0\bin\nvcc.exe" -gencode=arch=compute_10,code=\"sm_10,compute_10\" -gencode=arch=compute_20,code=\"sm_20,compute_20\" --machine 32 -ccbin "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin" -Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT " -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v4.0\include" -maxrregcount=0 --compile -o "Debug/sample.cu.obj" sample.cu "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v4.0\bin\nvcc.exe" -gencode=arch=compute_10,code=\"sm_10,compute_10\" -gencode=arch=compute_20,code=\"sm_20,compute_20\" --machine 32 -ccbin "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin" -Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT " -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v4.0\include" -maxrregcount=0 --compile -o "Debug/sample.cu.obj" "c:\Users\t-sudhk\Documents\Visual Studio 2008\Projects\god\god\sample.cu" if errorlevel 1 goto VCReportError goto VCEnd :VCReportError echo Project : error PRJ0019: A tool returned an error code from "Compiling with CUDA Build Rule..." exit 1 :VCEnd ] Creating command line """c:\Users\t-sudhk\Documents\Visual Studio 2008\Projects\god\god\Debug\BAT0000482007500.bat""" Creating temporary file "c:\Users\t-sudhk\Documents\Visual Studio 2008\Projects\god\god\Debug\RSP0000492007500.rsp" with contents [ /OUT:"C:\Users\t-sudhk\Documents\Visual Studio 2008\Projects\god\Debug\god.exe" /LIBPATH:"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v4.0\lib\x64" /MANIFEST /MANIFESTFILE:"Debug\god.exe.intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" /DEBUG /PDB:"C:\Users\t-sudhk\Documents\Visual Studio 2008\Projects\god\Debug\god.pdb" /DYNAMICBASE /NXCOMPAT /MACHINE:X86 cudart.lib cuda.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib ".\Debug\sample.cu.obj" ] Creating command line "link.exe @"c:\Users\t-sudhk\Documents\Visual Studio 2008\Projects\god\god\Debug\RSP0000492007500.rsp" /NOLOGO /ERRORREPORT:PROMPT" Output Window Compiling with CUDA Build Rule... "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v4.0\bin\nvcc.exe" -gencode=arch=compute_10,code=\"sm_10,compute_10\" -gencode=arch=compute_20,code=\"sm_20,compute_20\" --machine 32 -ccbin "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin" -Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT " -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v4.0\include" -maxrregcount=0 --compile -o "Debug/sample.cu.obj" sample.cu sample.cu sample.cu.obj : error LNK2019: unresolved external symbol _cudaLaunch@4 referenced in function "enum cudaError cdecl cudaLaunch(char *)" (??$cudaLaunch@D@@YA?AW4cudaError@@PAD@Z) sample.cu.obj : error LNK2019: unresolved external symbol ___cudaRegisterFunction@40 referenced in function "void __cdecl _sti_cudaRegisterAll_52_tmpxft_00001c68_00000000_8_sample_compute_10_cpp1_ii_b81a68a1(void)" (?sti__cudaRegisterAll_52_tmpxft_00001c68_00000000_8_sample_compute_10_cpp1_ii_b81a68a1@@YAXXZ) sample.cu.obj : error LNK2019: unresolved external symbol _cudaRegisterFatBinary@4 referenced in function "void __cdecl _sti_cudaRegisterAll_52_tmpxft_00001c68_00000000_8_sample_compute_10_cpp1_ii_b81a68a1(void)" (?sti__cudaRegisterAll_52_tmpxft_00001c68_00000000_8_sample_compute_10_cpp1_ii_b81a68a1@@YAXXZ) sample.cu.obj : error LNK2019: unresolved external symbol _cudaGetDeviceProperties@8 referenced in function _main sample.cu.obj : error LNK2019: unresolved external symbol _cudaGetDeviceCount@4 referenced in function _main sample.cu.obj : error LNK2019: unresolved external symbol _cudaConfigureCall@32 referenced in function _main C:\Users\t-sudhk\Documents\Visual Studio 2008\Projects\god\Debug\god.exe : fatal error LNK1120: 7 unresolved externals Results Build log was saved at "file://c:\Users\t-sudhk\Documents\Visual Studio 2008\Projects\god\god\Debug\BuildLog.htm" god - 8 error(s), 0 warning(s) I will be highly obliged if someone could help me. Thanks

    Read the article

  • High Throughput and Windows Workflow Foundation

    - by SometimesUseful
    Can WWF handle high throughput scenarios where several dozen records are 'actively' being processed in parallel at any one time? We want to build a workflow process which handles a few thousand records per hour. Each record takes up to a minute to process, because it makes external web service calls. We are testing Windows Workflow Foundation to do this. But our demo programs show processing of each record appear to be running in sequence not in parallel, when we use parallel activities to process several records at once within one workflow instance. Should we use multiple workflow instances or parallel activities? Are there any known patterns for high performance WWF processing?

    Read the article

  • Parallelism in .NET – Part 7, Some Differences between PLINQ and LINQ to Objects

    - by Reed
    In my previous post on Declarative Data Parallelism, I mentioned that PLINQ extends LINQ to Objects to support parallel operations.  Although nearly all of the same operations are supported, there are some differences between PLINQ and LINQ to Objects.  By introducing Parallelism to our declarative model, we add some extra complexity.  This, in turn, adds some extra requirements that must be addressed. In order to illustrate the main differences, and why they exist, let’s begin by discussing some differences in how the two technologies operate, and look at the underlying types involved in LINQ to Objects and PLINQ . LINQ to Objects is mainly built upon a single class: Enumerable.  The Enumerable class is a static class that defines a large set of extension methods, nearly all of which work upon an IEnumerable<T>.  Many of these methods return a new IEnumerable<T>, allowing the methods to be chained together into a fluent style interface.  This is what allows us to write statements that chain together, and lead to the nice declarative programming model of LINQ: double min = collection .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Other LINQ variants work in a similar fashion.  For example, most data-oriented LINQ providers are built upon an implementation of IQueryable<T>, which allows the database provider to turn a LINQ statement into an underlying SQL query, to be performed directly on the remote database. PLINQ is similar, but instead of being built upon the Enumerable class, most of PLINQ is built upon a new static class: ParallelEnumerable.  When using PLINQ, you typically begin with any collection which implements IEnumerable<T>, and convert it to a new type using an extension method defined on ParallelEnumerable: AsParallel().  This method takes any IEnumerable<T>, and converts it into a ParallelQuery<T>, the core class for PLINQ.  There is a similar ParallelQuery class for working with non-generic IEnumerable implementations. This brings us to our first subtle, but important difference between PLINQ and LINQ – PLINQ always works upon specific types, which must be explicitly created. Typically, the type you’ll use with PLINQ is ParallelQuery<T>, but it can sometimes be a ParallelQuery or an OrderedParallelQuery<T>.  Instead of dealing with an interface, implemented by an unknown class, we’re dealing with a specific class type.  This works seamlessly from a usage standpoint – ParallelQuery<T> implements IEnumerable<T>, so you can always “switch back” to an IEnumerable<T>.  The difference only arises at the beginning of our parallelization.  When we’re using LINQ, and we want to process a normal collection via PLINQ, we need to explicitly convert the collection into a ParallelQuery<T> by calling AsParallel().  There is an important consideration here – AsParallel() does not need to be called on your specific collection, but rather any IEnumerable<T>.  This allows you to place it anywhere in the chain of methods involved in a LINQ statement, not just at the beginning.  This can be useful if you have an operation which will not parallelize well or is not thread safe.  For example, the following is perfectly valid, and similar to our previous examples: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); However, if SomeOperation() is not thread safe, we could just as easily do: double min = collection .Select(item => item.SomeOperation()) .AsParallel() .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); In this case, we’re using standard LINQ to Objects for the Select(…) method, then converting the results of that map routine to a ParallelQuery<T>, and processing our filter (the Where method) and our aggregation (the Min method) in parallel. PLINQ also provides us with a way to convert a ParallelQuery<T> back into a standard IEnumerable<T>, forcing sequential processing via standard LINQ to Objects.  If SomeOperation() was thread-safe, but PerformComputation() was not thread-safe, we would need to handle this by using the AsEnumerable() method: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .AsEnumerable() .Min(item => item.PerformComputation()); Here, we’re converting our collection into a ParallelQuery<T>, doing our map operation (the Select(…) method) and our filtering in parallel, then converting the collection back into a standard IEnumerable<T>, which causes our aggregation via Min() to be performed sequentially. This could also be written as two statements, as well, which would allow us to use the language integrated syntax for the first portion: var tempCollection = from item in collection.AsParallel() let e = item.SomeOperation() where (e.SomeProperty > 6 && e.SomeProperty < 24) select e; double min = tempCollection.AsEnumerable().Min(item => item.PerformComputation()); This allows us to use the standard LINQ style language integrated query syntax, but control whether it’s performed in parallel or serial by adding AsParallel() and AsEnumerable() appropriately. The second important difference between PLINQ and LINQ deals with order preservation.  PLINQ, by default, does not preserve the order of of source collection. This is by design.  In order to process a collection in parallel, the system needs to naturally deal with multiple elements at the same time.  Maintaining the original ordering of the sequence adds overhead, which is, in many cases, unnecessary.  Therefore, by default, the system is allowed to completely change the order of your sequence during processing.  If you are doing a standard query operation, this is usually not an issue.  However, there are times when keeping a specific ordering in place is important.  If this is required, you can explicitly request the ordering be preserved throughout all operations done on a ParallelQuery<T> by using the AsOrdered() extension method.  This will cause our sequence ordering to be preserved. For example, suppose we wanted to take a collection, perform an expensive operation which converts it to a new type, and display the first 100 elements.  In LINQ to Objects, our code might look something like: // Using IEnumerable<SourceClass> collection IEnumerable<ResultClass> results = collection .Select(e => e.CreateResult()) .Take(100); If we just converted this to a parallel query naively, like so: IEnumerable<ResultClass> results = collection .AsParallel() .Select(e => e.CreateResult()) .Take(100); We could very easily get a very different, and non-reproducable, set of results, since the ordering of elements in the input collection is not preserved.  To get the same results as our original query, we need to use: IEnumerable<ResultClass> results = collection .AsParallel() .AsOrdered() .Select(e => e.CreateResult()) .Take(100); This requests that PLINQ process our sequence in a way that verifies that our resulting collection is ordered as if it were processed serially.  This will cause our query to run slower, since there is overhead involved in maintaining the ordering.  However, in this case, it is required, since the ordering is required for correctness. PLINQ is incredibly useful.  It allows us to easily take nearly any LINQ to Objects query and run it in parallel, using the same methods and syntax we’ve used previously.  There are some important differences in operation that must be considered, however – it is not a free pass to parallelize everything.  When using PLINQ in order to parallelize your routines declaratively, the same guideline I mentioned before still applies: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Parallelism in .NET – Part 15, Making Tasks Run: The TaskScheduler

    - by Reed
    In my introduction to the Task class, I specifically made mention that the Task class does not directly provide it’s own execution.  In addition, I made a strong point that the Task class itself is not directly related to threads or multithreading.  Rather, the Task class is used to implement our decomposition of tasks.  Once we’ve implemented our tasks, we need to execute them.  In the Task Parallel Library, the execution of Tasks is handled via an instance of the TaskScheduler class. The TaskScheduler class is an abstract class which provides a single function: it schedules the tasks and executes them within an appropriate context.  This class is the class which actually runs individual Task instances.  The .NET Framework provides two (internal) implementations of the TaskScheduler class. Since a Task, based on our decomposition, should be a self-contained piece of code, parallel execution makes sense when executing tasks.  The default implementation of the TaskScheduler class, and the one most often used, is based on the ThreadPool.  This can be retrieved via the TaskScheduler.Default property, and is, by default, what is used when we just start a Task instance with Task.Start(). Normally, when a Task is started by the default TaskScheduler, the task will be treated as a single work item, and run on a ThreadPool thread.  This pools tasks, and provides Task instances all of the advantages of the ThreadPool, including thread pooling for reduced resource usage, and an upper cap on the number of work items.  In addition, .NET 4 brings us a much improved thread pool, providing work stealing and reduced locking within the thread pool queues.  By using the default TaskScheduler, our Tasks are run asynchronously on the ThreadPool. There is one notable exception to my above statements when using the default TaskScheduler.  If a Task is created with the TaskCreationOptions set to TaskCreationOptions.LongRunning, the default TaskScheduler will generate a new thread for that Task, at least in the current implementation.  This is useful for Tasks which will persist for most of the lifetime of your application, since it prevents your Task from starving the ThreadPool of one of it’s work threads. The Task Parallel Library provides one other implementation of the TaskScheduler class.  In addition to providing a way to schedule tasks on the ThreadPool, the framework allows you to create a TaskScheduler which works within a specified SynchronizationContext.  This scheduler can be retrieved within a thread that provides a valid SynchronizationContext by calling the TaskScheduler.FromCurrentSynchronizationContext() method. This implementation of TaskScheduler is intended for use with user interface development.  Windows Forms and Windows Presentation Foundation both require any access to user interface controls to occur on the same thread that created the control.  For example, if you want to set the text within a Windows Forms TextBox, and you’re working on a background thread, that UI call must be marshaled back onto the UI thread.  The most common way this is handled depends on the framework being used.  In Windows Forms, Control.Invoke or Control.BeginInvoke is most often used.  In WPF, the equivelent calls are Dispatcher.Invoke or Dispatcher.BeginInvoke. As an example, say we’re working on a background thread, and we want to update a TextBlock in our user interface with a status label.  The code would typically look something like: // Within background thread work... string status = GetUpdatedStatus(); Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action( () => { statusLabel.Text = status; })); // Continue on in background method .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This works fine, but forces your method to take a dependency on WPF or Windows Forms.  There is an alternative option, however.  Both Windows Forms and WPF, when initialized, setup a SynchronizationContext in their thread, which is available on the UI thread via the SynchronizationContext.Current property.  This context is used by classes such as BackgroundWorker to marshal calls back onto the UI thread in a framework-agnostic manner. The Task Parallel Library provides the same functionality via the TaskScheduler.FromCurrentSynchronizationContext() method.  When setting up our Tasks, as long as we’re working on the UI thread, we can construct a TaskScheduler via: TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); We then can use this scheduler on any thread to marshal data back onto the UI thread.  For example, our code above can then be rewritten as: string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); // Continue on in background method This is nice since it allows us to write code that isn’t tied to Windows Forms or WPF, but is still fully functional with those technologies.  I’ll discuss even more uses for the SynchronizationContext based TaskScheduler when I demonstrate task continuations, but even without continuations, this is a very useful construct. In addition to the two implementations provided by the Task Parallel Library, it is possible to implement your own TaskScheduler.  The ParallelExtensionsExtras project within the Samples for Parallel Programming provides nine sample TaskScheduler implementations.  These include schedulers which restrict the maximum number of concurrent tasks, run tasks on a single threaded apartment thread, use a new thread per task, and more.

    Read the article

  • Microsoft F#

    - by Aamir Hasan
    F# brings you type safe, succinct, efficient and expressive functional programming language on the .NET platform. It is a simple and pragmatic language, and has particular strengths in data-oriented programming, parallel I/O programming, parallel CPU programming, scripting and algorithmic development. F# cannot solve any problem C# could. F# is a functional language, statically typed. F# is a functional language that supports O-O-Programming References:http://msdn.microsoft.com/en-us/fsharp/cc835246.aspx http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

    Read the article

  • Excellent Windows Azure benchmarks

    - by Sarang
    The Extreme computing group has released a fairly comprehensive set of benchmarks  for almost all aspects of WA. They have also provided the source code to alleviate all doubts that may surface with the MSFT logo lurking around the top right of their homepage :) (Which also resides at a cloudapp.net url). The code is simple and the tests comprehensive enough to hold as data points for customer interactions. Add to it the clean no nonsense Silverlight charts to render the benchmarks and you are set to sell. Technorati Tags: Azure,Benchmark,Extreme Computing Group

    Read the article

  • A Real-Time HPC Approach for Optimizing Multicore Architectures

    Complex math is at the heart of many of the biggest technical challenges. With multicore processors, the type of calculations that would have required a supercomputer can now be performed in real-time, embedded environments. High-performance computing - Supercomputer - Real-time computing - Operating system - Companies

    Read the article

  • Windows Azure – Write, Run or Use Software

    - by BuckWoody
    Windows Azure is a platform that has you covered, whether you need to write software, run software that is already written, or Install and use “canned” software whether you or someone else wrote it. Like any platform, it’s a set of tools you can use where it makes sense to solve a problem. The primary location for Windows Azure information is located at http://windowsazure.com. You can find everything there from the development kits for writing software to pricing, licensing and tutorials on all of that. I have a few links here for learning to use Windows Azure – although it’s best if you focus not on the tools, but what you want to solve. I’ve got it broken down here into various sections, so you can quickly locate things you want to know. I’ll include resources here from Microsoft and elsewhere – I use these same resources in the Architectural Design Sessions (ADS) I do with my clients worldwide. Write Software Also called “Platform as a Service” (PaaS), Windows Azure has lots of components you can use together or separately that allow you to write software in .NET or various Open Source languages to work completely online, or in partnership with code you have on-premises or both – even if you’re using other cloud providers. Keep in mind that all of the features you see here can be used together, or independently. For instance, you might only use a Web Site, or use Storage, but you can use both together. You can access all of these components through standard REST API calls, or using our Software Development Kit’s API’s, which are a lot easier. In any case, you simply use Visual Studio, Eclipse, Cloud9 IDE, or even a text editor to write your code from a Mac, PC or Linux.  Components you can use: Azure Web Sites: Windows Azure Web Sites allow you to quickly write an deploy websites, without setting a Virtual Machine, installing a web server or configuring complex settings. They work alone, with other Windows Azure Web Sites, or with other parts of Windows Azure. Web and Worker Roles: Windows Azure Web Roles give you a full stateless computing instance with Internet Information Services (IIS) installed and configured. Windows Azure Worker Roles give you a full stateless computing instance without Information Services (IIS) installed, often used in a "Services" mode. Scale-out is achieved either manually or programmatically under your control. Storage: Windows Azure Storage types include Blobs to store raw binary data, Tables to use key/value pair data (like NoSQL data structures), Queues that allow interaction between stateless roles, and a relational SQL Server database. Other Services: Windows Azure has many other services such as a security mechanism, a Cache (memcacheD compliant), a Service Bus, a Traffic Manager and more. Once again, these features can be used with a Windows Azure project, or alone based on your needs. Various Languages: Windows Azure supports the .NET stack of languages, as well as many Open-Source languages like Java, Python, PHP, Ruby, NodeJS, C++ and more.   Use Software Also called “Software as a Service” (SaaS) this often means consumer or business-level software like Hotmail or Office 365. In other words, you simply log on, use the software, and log off – there’s nothing to install, and little to even configure. For the Information Technology professional, however, It’s not quite the same. We want software that provides services, but in a platform. That means we want things like Hadoop or other software we don’t want to have to install and configure.  Components you can use: Kits: Various software “kits” or packages are supported with just a few clicks, such as Umbraco, Wordpress, and others. Windows Azure Media Services: Windows Azure Media Services is a suite of services that allows you to upload media for encoding, processing and even streaming – or even one or more of those functions. We can add DRM and even commercials to your media if you like. Windows Azure Media Services is used to stream large events all the way down to small training videos. High Performance Computing and “Big Data”: Windows Azure allows you to scale to huge workloads using a few clicks to deploy Hadoop Clusters or the High Performance Computing (HPC) nodes, accepting HPC Jobs, Pig and Hive Jobs, and even interfacing with Microsoft Excel. Windows Azure Marketplace: Windows Azure Marketplace offers data and programs you can quickly implement and use – some free, some for-fee.   Run Software Also known as “Infrastructure as a Service” (IaaS), this offering allows you to build or simply choose a Virtual Machine to run server-based software.  Components you can use: Persistent Virtual Machines: You can choose to install Windows Server, Windows Server with Active Directory, with SQL Server, or even SharePoint from a pre-configured gallery. You can configure your own server images with standard Hyper-V technology and load them yourselves – and even bring them back when you’re done. As a new offering, we also even allow you to select various distributions of Linux – a first for Microsoft. Windows Azure Connect: You can connect your on-premises networks to Windows Azure Instances. Storage: Windows Azure Storage can be used as a remote backup, a hybrid storage location and more using software or even hardware appliances.   Decision Matrix With all of these options, you can use Windows Azure to solve just about any computing problem. It’s often hard to know when to use something on-premises, in the cloud, and what kind of service to use. I’ve used a decision matrix in the last couple of years to take a particular problem and choose the proper technology to solve it. It’s all about options – there is no “silver bullet”, whether that’s Windows Azure or any other set of functions. I take the problem, decide which particular component I want to own and control – and choose the column that has that box darkened. For instance, if I have to control the wiring for a solution (a requirement in some military and government installations), that means the “Networking” component needs to be dark, and so I select the “On Premises” column for that particular solution. If I just need the solution provided and I want no control at all, I can look as “Software as a Service” solutions. Security, Pricing, and Other Info  Security: Security is one of the first questions you should ask in any distributed computing environment. We have certification info, coding guidelines and more, even a general “Request for Information” RFI Response already created for you.   Pricing: Are there licenses? How much does this cost? Is there a way to estimate the costs in this new environment? New Features: Many new features were added to Windows Azure - a good roundup of those changes can be found here. Support: Software Support on Virtual Machines, general support.    

    Read the article

  • Data Virtualization: Federated and Hybrid

    - by Krishnamoorthy
    Data becomes useful when it can be leveraged at the right time. Not only enterprises application stores operate on large volume, velocity and variety of data. Mobile and social computing are in the need of operating in foresaid data. Replicating and transferring large swaths of data is one challenge faced in the field of data integration. However, smaller chunks of data aggregated from a variety of sources presents and even more interesting challenge in the industry. Over the past few decades, technology trends focused on best user experience, operating systems, high performance computing, high performance web sites, analysis of warehouse data, service oriented architecture, social computing, cloud computing, and big data. Operating on the ‘dark data’ becomes mandatory in the future technology trend, although, no solution can make dark data useful data in a single day. Useful data can be quantified by the facts of contextual, personalized and on time delivery. In most cases, data from a single source may not be complete the picture. Data has to be combined and computed from various sources, where data may be captured as hybrid data, meaning the combination of structured and unstructured data. Since related data is often found across disparate sources, effectively integrating these sources determines how useful this data ultimately becomes. Technology trends in 2013 are expected to focus on big data and private cloud. Consumers are not merely interested in where data is located or how data is retrieved and computed. Consumers are interested in how quick and how the data can be leveraged. In many cases, data virtualization is the right solution, and is expected to play a foundational role for SOA, Cloud integration, and Big Data. The Oracle Data Integration portfolio includes a data virtualization product called ODSI (Oracle Data Service Integrator). Unlike other data virtualization solutions, ODSI can perform both read and write operations on federated/hybrid data (RDBMS, Webservices,  delimited file and XML). The ODSI Engine is built on XQuery, hence ODSI user can perform computations on data either using XQuery or SQL. Built in data and query caching features, which reduces latency in repetitive calls. Rightly positioning ODSI, can results in a highly scalable model, reducing spend on additional hardware infrastructure.

    Read the article

  • Les risques du Cloud sont plus importants que ses avantages, pour les responsables IT interrogés par

    Mise à jour du 08/04/10 [Les commentaires sur cette mise à jour commencent ici] Les risques du Cloud Computing sont plus grands que ses avantages Pour les responsables IT interrogés par l'ISACA Près de la moitié (45%) des responsables IT interrogés dans une étude de l'ISACA (la Information Systems Audit and Control Association) considèrent que les risques liés au Cloud Computing sont plus importants que ses avantages, 38% pensent que risques et bénéfices s'équilibrent, et seulement 12% pensent que...

    Read the article

  • JavaOne 2011 - Moscow and Hyderabad Editions

    - by Cassandra Clark
    Connect with Java developers at JavaOne - JavaOne will be held in Moscow, April 12-13th, 2011 and again in Hyderabad, May 10th - 11th, 2011. Enjoy two days of technical content and hands-on learning focused on Java and next-generation development trends and technologies, including rich enterprise applications (REAs), service-oriented architecture (SOA), and the database.JavaOne Moscow Tracks - Java EE, Enterprise Computing, and the CloudJava SE, Client Side Technologies, and Rich User ExperiencesJava ME, Mobile, and EmbeddedJavaOne Hyderabad Tracks - Core Java PlatformJava EE, Enterprise Computing, and the CloudJava SE, Client Side Technologies, and Rich User ExperiencesJava ME, Mobile, and EmbeddedRegister Now for JavaOne Moscow!Register Now for JavaOne Hyderabad!

    Read the article

  • Properly Analyze the Value of the Cloud

    Most analyses of the benefits of cloud computing are based on unrealistic total cost of ownership (TCO), return on investment (ROI), and capex/opex calculations. To fully understand the potential benefits of cloud computing, a new metric is required.

    Read the article

< Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >