Search Results

Search found 25377 results on 1016 pages for 'development'.

Page 494/1016 | < Previous Page | 490 491 492 493 494 495 496 497 498 499 500 501  | Next Page >

  • Using NumPy arrays as 2D mathematical vectors?

    - by CorundumGames
    Right now I'm using lists as position, velocity, and acceleration vectors in my game. Is that a better option than using NumPy's arrays (not the standard library's) as vectors (with float data types)? I'm frequently adding vectors and changing their values directly, then placing the values in these vectors into a Pygame Rect. The vector is used for position (because Rects can't hold floats, so we can't go "between" pixels), and the Rect is used for rendering (because Pygame will only take in Rects for rendering positions).

    Read the article

  • HTML5 game programming style

    - by fnx
    I am currently trying learn javascript in form of HTML5 games. Stuff that I've done so far isn't too fancy since I'm still a beginner. My biggest concern so far has been that I don't really know what is the best way to code since I don't know the pros and cons of different methods, nor I've found any good explanations about them. So far I've been using the worst (and propably easiest) method of all (I think) since I'm just starting out, for example like this: var canvas = document.getElementById("canvas"); var ctx = canvas.getContext("2d"); var width = 640; var height = 480; var player = new Player("pic.png", 100, 100, ...); also some other global vars... function Player(imgSrc, x, y, ...) { this.sprite = new Image(); this.sprite.src = imgSrc; this.x = x; this.y = y; ... } Player.prototype.update = function() { // blah blah... } Player.prototype.draw = function() { // yada yada... } function GameLoop() { player.update(); player.draw(); setTimeout(GameLoop, 1000/60); } However, I've seen a few examples on the internet that look interesting, but I don't know how to properly code in these styles, nor do I know if there are names for them. These might not be the best examples but hopefully you'll get the point: 1: Game = { variables: { width: 640, height: 480, stuff: value }, init: function(args) { // some stuff here }, update: function(args) { // some stuff here }, draw: function(args) { // some stuff here }, }; // from http://codeincomplete.com/posts/2011/5/14/javascript_pong/ 2: function Game() { this.Initialize = function () { } this.LoadContent = function () { this.GameLoop = setInterval(this.RunGameLoop, this.DrawInterval); } this.RunGameLoop = function (game) { this.Update(); this.Draw(); } this.Update = function () { // update } this.Draw = function () { // draw game frame } } // from http://www.felinesoft.com/blog/index.php/2010/09/accelerated-game-programming-with-html5-and-canvas/ 3: var engine = {}; engine.canvas = document.getElementById('canvas'); engine.ctx = engine.canvas.getContext('2d'); engine.map = {}; engine.map.draw = function() { // draw map } engine.player = {}; engine.player.draw = function() { // draw player } // from http://that-guy.net/articles/ So I guess my questions are: Which is most CPU efficient, is there any difference between these styles at runtime? Which one allows for easy expandability? Which one is the most safe, or at least harder to hack? Are there any good websites where stuff like this is explained? or... Does it all come to just personal preferance? :)

    Read the article

  • Sensor based vs. AABB based collision

    - by Hillel
    I'm trying to write a simple collision system, which will probably be primarily used for 2D platformers, and I've been planning out an AABB system for a few weeks now, which will work seamlessly with my grid data structure optimization. I picked AABB because I want a simple system, but I also want it to be perfect. Now, I've been hearing a lot lately about a different method to handle collision, using sensors, which are placed in the important parts of the entity. I understand it's a good way to handle slopes, better than AABB collision. The thing is, I can't find a basic explanation of how it works, let alone a comparison of it and the AABB method. If someone could explain it to me, or point me to a good tutorial, I'd very much appreciate it, and also a comparison of the advantages and disadvantages of the two techniques would be nice.

    Read the article

  • Pre baked fractures and explosion : I need an answer for C++

    - by Ken
    What are the prebaked or precomputed explosions or fractures from a programmer viewpoint ? I would like to know how to achieve this in C++ and how this things are usually considered (they are animations? textures?), it would be perfect if there will be some examples available or someone that can picture a broad view about this. I need to add a really small support for this in my code and i need an hint about how to start, i would like to do this on my own without other libraries.

    Read the article

  • Perminantly Sync a wiimote with a computer

    - by Adam Geisweit
    i have tried to look up many ways to sync up my wiimotes to my computer so that i can program games with it, but every time it only syncs them up temporarily, or if it says it can permanently sync it, it doesn't actually do it. it gets tiresome when i have to keep on reconnecting it every time i want to save battery life. how would i be able to sync up my wiimote to my computer so that if i turn off my wiimote, i can just hit any button and it will automatically sync it up?

    Read the article

  • How can be data oriented programming applied for GUI system?

    - by Miro
    I've just learned basics of Data oriented programming design, but I'm not very familiar with that yet. I've also read Pitfalls of Object Oriented Programming GCAP 09. It seems that data oriented programming is much better idea for games, than OOP. I'm just creating my own GUI system and it's completely OOP. I'm thinking if is data oriented programming design applicable for structured things like GUI. The main problem I see is that every type widget has different data, so I can hardly group them into arrays. Also every type of widget renders differently so I still need to call virtual functions.

    Read the article

  • Character with several colliders and rigidbodies

    - by Lautaro
    I am doing a PvP fighting game. This is the GameObject hierarchy of the player character. Player contains: Legs Sword Torso Head I want to be able to Register impacts of the sword on a specific body part Use AddForce on the whole player entity when a body part is struck Change the animation of the player that owns the sword that hit Questions Is it correct that the only rigidbody should be on the root Player GameObject ? Is it correct that The body parts should have colliders and be triggers ? Is it correct that The swords should have colliders but not be trigger ?

    Read the article

  • RTS style fog of war woes

    - by Fricken Hamster
    So I'm trying to make a rts style line of sight fog of war style engine for my grid based game. Currently I am getting a set of vertices by raycasting in 360 degree. Then I use that list of vertices to do a graphics style polygon scanline fill to get a list of all points within the polygon. The I compare the new list of seen tiles and compare that with the old one and increment or decrement the world vision array as needed. The polygon scanline function is giving me trouble. I'm mostly following this http://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/PolygonFilling.html So far this is my code without cleaning anything up var edgeMinX:Vector.<int> = new Vector.<int>; var edgeMinY:Vector.<int> = new Vector.<int>; var edgeMaxY:Vector.<int> = new Vector.<int>; var edgeInvSlope:Vector.<Number> = new Vector.<Number>; var ilen:int = outvert.length; var miny:int = -1; var maxy:int = -1; for (i = 0; i < ilen; i++) { var curpoint:Point = outvert[i]; if (i == ilen -1) { var nextpoint:Point = outvert[0]; } else { nextpoint = outvert[i + 1]; } if (nextpoint.y == curpoint.y) { continue; } if (curpoint.y < nextpoint.y) { var curslope:Number = ((nextpoint.y - curpoint.y) / (nextpoint.x - curpoint.x)); edgeMinY.push(curpoint.y); edgeMinX.push(curpoint.x); edgeMaxY.push(nextpoint.y); edgeInvSlope.push(1 / curslope); if (curpoint.y < miny || miny == -1) { miny = curpoint.y; } if (nextpoint.y > maxy) { maxy = nextpoint.y; } } else { curslope = ((curpoint.y - nextpoint.y) / (curpoint.x - nextpoint.x)); edgeMinY.push(nextpoint.y); edgeMinX.push(nextpoint.x); edgeMaxY.push(curpoint.y); edgeInvSlope.push(1 / curslope); if (nextpoint.y < miny || miny == -1) { miny = curpoint.y; } if (curpoint.y > maxy) { maxy = nextpoint.y; } } } var activeMaxY:Vector.<int> = new Vector.<int>; var activeCurX:Vector.<Number> = new Vector.<Number>; var activeInvSlope:Vector.<Number> = new Vector.<Number>; for (var scanline:int = miny; scanline < maxy + 1; scanline++) { ilen = edgeMinY.length; for (i = 0; i < ilen; i++) { if (edgeMinY[i] == scanline) { activeMaxY.push(edgeMaxY[i]); activeCurX.push(edgeMinX[i]); activeInvSlope.push(edgeInvSlope[i]); //trace("added(" + edgeMinX[i]); edgeMaxY.splice(i, 1); edgeMinX.splice(i, 1); edgeMinY.splice(i, 1); edgeInvSlope.splice(i, 1); i--; ilen--; } } ilen = activeCurX.length; for (i = 0; i < ilen - 1; i++) { for (var j:int = i; j < ilen - 1; j++) { if (activeCurX[j] > activeCurX[j + 1]) { var tempint:int = activeMaxY[j]; activeMaxY[j] = activeMaxY[j + 1]; activeMaxY[j + 1] = tempint; var tempnum:Number = activeCurX[j]; activeCurX[j] = activeCurX[j + 1]; activeCurX[j + 1] = tempnum; tempnum = activeInvSlope[j]; activeInvSlope[j] = activeInvSlope[j + 1]; activeInvSlope[j + 1] = tempnum; } } } var prevx:int = -1; var jlen:int = activeCurX.length; for (j = 0; j < jlen; j++) { if (prevx == -1) { prevx = activeCurX[j]; } else { for (var k:int = prevx; k < activeCurX[j]; k++) { graphics.lineStyle(2, 0x124132); graphics.drawCircle(k * 20 + 10, scanline * 20 + 10, 5); if (k == prevx || k > activeCurX[j] - 1) { graphics.lineStyle(3, 0x004132); graphics.drawCircle(k * 20 + 10, scanline * 20 + 10, 2); } prevx = -1; //tileLightList.push(k, scanline); } } } ilen = activeCurX.length; for (i = 0; i < ilen; i++) { if (activeMaxY[i] == scanline + 1) { activeCurX.splice(i, 1); activeMaxY.splice(i, 1); activeInvSlope.splice(i, 1); i--; ilen--; } else { activeCurX[i] += activeInvSlope[i]; } } } It works in some cases but some of the x intersections are skipped, primarily when there are more than 2 x intersections in one scanline I think. Is there a way to fix this, or a better way to do what I described? Thanks

    Read the article

  • Confusion about Rotation matrices from Euler Angles

    - by xEnOn
    I am trying to learn more about Euler Angles so as to help myself in understanding how I can control my camera better in the game. I came across the following formula that converts Euler Angles to rotation matrices: In the equation, I could see that the first matrix from the left is the rotation matrix about x-axis, the second is about y-axis and the third is about z-axis. From my understanding about ordinary matrix transformations, the later transformation is always applied to the right hand side. And if I'm right about this, then the above equation should have a rotation order starting from rotating about z-axis, y-axis, then finally x-axis. But, from the symbols it seems that the rotation order start rotating about x-axis, then y-axis, then finally z-axis. What should the actual order of the rotation be? Also, I am confuse about if the input vector, in this case, would be a row vector on the left, or a column vector on the right?

    Read the article

  • Android 2D terrain scrolling

    - by Nikola Ninkovic
    I want to make infinite 2D terrain based on my algorithm.Then I want to move it along Y axis (to the left) This is how I did it : public class Terrain { Queue<Integer> _bottom; Paint _paint; Bitmap _texture; Point _screen; int _numberOfColumns = 100; int _columnWidth = 20; public Terrain(int screenWidth, int screenHeight, Bitmap texture) { _bottom = new LinkedList<Integer>(); _screen = new Point(screenWidth, screenHeight); _numberOfColumns = screenWidth / 6; _columnWidth = screenWidth / _numberOfColumns; for(int i=0;i<=_numberOfColumns;i++) { // Generate terrain point and put it into _bottom queue } _paint = new Paint(); _paint.setStyle(Paint.Style.FILL); _paint.setShader(new BitmapShader(texture, Shader.TileMode.REPEAT, Shader.TileMode.REPEAT)); } public void update() { _bottom.remove(); // Algorithm calculates next point _bottom.add(nextPoint); } public void draw(Canvas canvas) { Iterator<Integer> i = _bottom.iterator(); int counter = 0; Path path = new Path(); path.moveTo(0, _screen.y); while (i.hasNext()) { path.lineTo(counter, _screen.y-i.next()); counter += _columnWidth; } path.lineTo(_screen.x, _screen.y); path.lineTo(0, _screen.y); canvas.drawPath(path2, _paint); } } The problem is that the game is too 'fast', so I tried with pausing thread with Thread.sleep(50); in run() method of my game thread but then it looks too torn. Well, is there any way to slow down drawing of my terrain ?

    Read the article

  • Debugging-Setting Consoles in Games

    - by ShrimpCrackers
    Right now I have the graphical and input portions of a console for my game (command parsing hasn't been implemented yet). I was wondering how you would go about making changes to properties in game objects. For example, if I typed in the console: skeletonMonster maxHP 20 That would change all of the existing in-game skeletons' max hit points to 20. After you parse this information what are some ways to change the value? How can I change the variable(s) without violating information hiding? I'd like to implement this so I don't have to change variables in the code and recompile every time while playtesting.

    Read the article

  • Make a turn based system like final fantasy in AS3

    - by Kaoru
    i wanted to make a turn based system like final fantasy tactics. I already created the map, which is 5x5 tiles grid and the characters which is each character places in the end of the tiles. I have 2 teams, which are named Red and Yellow. ------Red-------: First character is at 0,0. Second character is at 0,1. Third character is at0.2, fourth character is at0.3, and the last one is at0.4`. -----Yellow------: First character is at 5.0. Second character is at 5.1. Third character is at 5.2, fourth character is at 5.3, and the last one is at 5.4. I wanted Red team are moving first and make a decision (whether it is attack or wait), and after 5 characters of the Red team is already made a decision, the Yellow team is the one that make a decision (Yellow team is an AI) But, i don't know how to move my characters into the next grid (e.g: from 0,0 to 0,1) by clicking the left mouse button and also how do i display a grid (when select a move selection) that shows how many tiles that the character able to move. Anyone know about this? or how should i know more about this? is there any recommendations books or webs? And also, i don't know how to move the characters using mouse click.

    Read the article

  • Improving the efficiency of my bloom/glow shader

    - by user1157885
    I'm making a neon style game where everything is glowing but the glow I have is kinda small and I want to know if there's an efficient way to increase the size of it other than increasing the pixel sample iterations. Right now I have something like this: float4 glowColor = tex2D(glowSampler, uvPixel); //Makes the inital lines brighter/closer to white if (glowColor.r != 0 || glowColor.g != 0 || glowColor.b != 0) { glowColor += 0.5; } //Loops over the weights and offsets and samples from the pixels based on those numbers for (int i = 0; i < 20; i++) { glowColor += tex2D(glowSampler, uvPixel + glowOffsets[i] + 0.0018) * glowWeights[i]; } finalColor += glowColor; for the offsets it moves up, down, left and right (5 times each so it loops over 20 times) and the weights just lower the glow amount the further away it gets. The method I was using before to increase it was to increase the number of iterations from 20 to 40 and to increase the size of the offset/weight array but my computer started to have FPS drops when I was doing this so I was wondering how can I make the glow bigger/more vibrant without making it so CPU/Gcard intensive?

    Read the article

  • Improving the efficiency of frustum culling

    - by DeadMG
    I've got some code which performs frustum culling. However, this defines the "frustum" way too broadly- when I have ~10 objects on screen, the code returns 42 objects to be rendered. I've tried taking "slices" through the frustum to attempt to increase the accuracy of the technique, but it doesn't seem to have made much impact. I also significantly reduced the far plane, so that the objects are barely at the edge. Here's my code (where size is the size in screen space- the resolution of the client area of the window I'm rendering into). Any suggestions? auto&& size = GetDimensions(); D3DVIEWPORT9 vp = { 0, 0, size.x, size.y, 0, 1 }; D3DCALL(device->SetViewport(&vp)); static const int slices = 10; std::vector<Object*> result; for(int i = 0; i < slices; i++) { D3DXVECTOR3 WorldSpaceFrustrumPoints[8] = { D3DXVECTOR3(0, size.y, static_cast<float>(i) / slices), D3DXVECTOR3(size.x, 0, static_cast<float>(i) / slices), D3DXVECTOR3(size.x, size.y, static_cast<float>(i) / slices), D3DXVECTOR3(0, 0, static_cast<float>(i) / slices), D3DXVECTOR3(0, 0, static_cast<float>(i + 1) / slices), D3DXVECTOR3(size.x, 0, static_cast<float>(i + 1) / slices), D3DXVECTOR3(size.x, size.y, static_cast<float>(i + 1) / slices), D3DXVECTOR3(0, size.y, static_cast<float>(i + 1) / slices) }; D3DXMATRIXA16 Identity; D3DXMatrixIdentity(&Identity); D3DXVec3UnprojectArray( WorldSpaceFrustrumPoints, sizeof(D3DXVECTOR3), WorldSpaceFrustrumPoints, sizeof(D3DXVECTOR3), &vp, &Projection, &View, &Identity, 8 ); Math::AABB Frustrum; auto world_begin = std::begin(WorldSpaceFrustrumPoints); auto world_end = std::end(WorldSpaceFrustrumPoints); auto world_initial = WorldSpaceFrustrumPoints[0]; Frustrum.BottomLeftClosest.x = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.x < rhs.x ? lhs : rhs; }).x; Frustrum.BottomLeftClosest.y = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.y < rhs.y ? lhs : rhs; }).y; Frustrum.BottomLeftClosest.z = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.z < rhs.z ? lhs : rhs; }).z; Frustrum.TopRightFurthest.x = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.x > rhs.x ? lhs : rhs; }).x; Frustrum.TopRightFurthest.y = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.y > rhs.y ? lhs : rhs; }).y; Frustrum.TopRightFurthest.z = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.z > rhs.z ? lhs : rhs; }).z; auto slices_result = ObjectTree.collision(Frustrum); result.insert(result.end(), slices_result.begin(), slices_result.end()); } return result;

    Read the article

  • Changing coordinate system from Z-up to Y-up

    - by Jari Komppa
    Blender's coordinate system is different from what I'm used to, in that Z points upwards instead of Y. What would be the simplest way of converting all the world data (so that all animations, texture coordinates, etc still work) so that Y points upwards? Clarification: Object positions are defined as matrices, so just switching translation/rotation/scale information in matrices is not a trivial task.

    Read the article

  • Per fragment lighting with OpenGL 4.x tessellated model

    - by Finlaybob
    I'm experienced with OpenGL 3+. I'm dabbling with tessellation shaders and have now got to a point where I have a nicely tessellated teapot/plane demo (quick look here) As can be seen from the screenshots, the lighting is broken (though admittedly doesn't look too bad in the image) I've tried to add a normal map to the equation but it still doesn't come out right, I can calculate the normals, tangents and binormals per triangle in the geometry shader but still looks wrong. I think the question would be; How do I add per fragment lighting to a tessellated model? The teapot is 32 16-point patches, the plane is one single 16 point patch. The shaders are here, but they are a complete mess, so I don't blame anyone who cant make sense of them. But peruse at your leisure if you like. Also, if this question is more suited to be somewhere else i.e. Stack Overflow or the Programming stack please let me know.

    Read the article

  • techniques for displaying vehicle damage

    - by norca
    I wonder how I can displaying vehicle damage. I am talking about an good way to show damage on screen. Witch kind of model are common in games and what are the benefits of them. What is state of the art? One way i can imagine is to save a set of textures (normal/color/lightmaps, etc) to a state of the car (normal, damage, burnt out) and switch or blending them. But is this really good without changing the model? Another way i was thinking about is preparing animations for different locations on my car, something like damage on the front, on the leftside/rightside or on the back. And start blending the specific animation. But is this working with good textures? Whats about physik engines? Is it usefull to use it for deforming vertexdata? i think losing parts of my car (doors, sirens, weapons) can looks really nice. my game is a kind of rts in a top down view. vehicles are not the really most importend units (its no racing game), but i have quite a lot in. thx for help

    Read the article

  • Unity: Assigning String value in inspector

    - by Marc Pilgaard
    I got an issue with Unity I can't seem to comprehend, and it is possibly very simple: I am trying to write a simple piece of code in JavaScript where a button toggles the activation of a shield, by dragging a prefab with Resources.load("ActivateShieldPreFab") and destroying it again (Haven't implemented that yet). I wish to assign this button through the inspector, so I have created a string variable which appears as intended in the inspector. Though it doesn't seem to register the inspector input, even though I changed the value through the inspector. It only provides the error: "Input Key named: is unknown" When the button name is assigned within the code, there is no issues. Code as follows: var ShieldOn = false; var stringbutton : String; function Start(){ } function Update () { if(Input.GetKey(stringbutton) && ShieldOn != true) { Instantiate(Resources.load("ActivateShieldPreFab"), Vector3 (0, 0, 0), Quaternion.identity); ShieldOn = true; } } Hope somebody can help, in advance... Thanks

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Whats a good way to do Collision with 2D Rectangles? can someone give me a tip?

    - by Javier
    using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; namespace BreakOut { class Field { public static Field generateField() { List<Block> blocks = new List<Block>(); for (int j = 0; j < BlockType.BLOCK_TYPES.Length; j++) for (int i = 0; i < (Game1.WIDTH / Block.WIDTH); i++) { Block b = new Block(BlockType.BLOCK_TYPES[j], new Vector2(i * Block.WIDTH, (Block.HEIGHT + 2) * j + 5)); blocks.Add(b); } return new Field(blocks); } List<Block> blocks; public Field(List<Block> blocks) { this.blocks = blocks; } public void Update(GameTime gameTime, Ball b) { List<Block> removals = new List<Block>(); foreach (Block o in blocks) { if (o.BoundingBox.Intersects(new Rectangle((int)b.pos.X, (int)b.pos.Y, Ball.WIDTH, Ball.HEIGHT))) //collision with blocks { removals.Add(o); } } foreach(Block o in removals) blocks.Remove(o); //removes the blocks, but i need help hitting one at a time } public void Draw(GameTime gameTime) { foreach (Block b in blocks) b.Draw(gameTime); } } } My problem is that My collision in this sucks. I'm trying to add collision with a ball and hitting against a block and then one of the blocks dissapear. The problem i'm having is: When the ball hits the block, it removes it all in one instance. Please people don't be mean and say mean answers to me, im just in highschool, still a nooby and trying to learn more c#/XNA..

    Read the article

  • Dealing with multiple animation state in one sprite sheet image using html5 canvas

    - by Sora
    I am recently creating a Game using html5 canvas .The player have multiple state it can walk jump kick and push and multiple other states my question is simple but after some deep research i couldn't find the best way to deal with those multiple states this is my jsfiddle : http://jsfiddle.net/Z7a5h/5/ i managed to do one animation but i started my code in a messy way ,can anyone show me a way to deal with multiple state animation for one sprite image or just give a useful link to follow and understand the concept of it please .I appreciate your help if (!this.IsWaiting) { this.IsWaiting = true; this.lastRenderTime = now; this.Pos = 1 + (this.Pos + 1) % 3; } else { if (now - this.lastRenderTime >= this.RenderRate) this.IsWaiting = false; }

    Read the article

  • How to Effectively Create Bullet Patterns

    - by SoulBeaver
    I'm currently creating a top-down shooter like Touhou. The most important factor of the game is that there are many diverse patterns and ways at which bullets are generated and shot at the player, see this video: http://www.youtube.com/watch?v=4Nb5Ohbt1Sg#start=0:60;end=9:53; At the moment, I'm using a class "Pattern" which has a series of steps on moving and shooting. However, I feel this method is quite laborous as I have to create a new Pattern for each attack and perhaps new Bullet classes that will implement a certain behavior. This question received a comment suggesting I should look into BulletML for easy creation and storage of bullets with a specific pattern. It looks decent, but it led me to wonder, what other solutions do you have that I should take into consideration? Update My current design is as follows: An example of an implemented pattern: My GigasPattern first executes a teleport which moves Alice to a certain point (X, Y) on the screen. After this is completed, the pattern starts using the Mover to move the sprite around (whereas teleporting has separate effects and animation). These are of no concern, really, as they are quite simple. The Shooter also creates various Attacks, which are classes again that the Shooter can use to create various patterns of bullets, much like the one in the question I posted. Once the Mover has reached it's destination, both it and the shooter stop and return to an inactive state. The pattern completes, is removed by the AI and a new one gets chosen.

    Read the article

  • What is a good method for coloring textures based on a palette in XNA?

    - by Bob
    I've been trying to work on a game with the look of an 8-bit game using XNA, specifically using the NES as a guide. The NES has a very specific palette and each sprite can use up to 4 colors from that palette. How could I emulate this? The current way I accomplish this is I have a texture with defined values which act as indexes to an array of colors I pass to the GPU. I imagine there must be a better way than this, but maybe this is the best way? I don't want to simply make sure I draw every sprite with the right colors because I want to be able to dynamically alter the palette. I'd also prefer not to alter the texture directly using the CPU.

    Read the article

  • Ray Picking Problems

    - by A Name I Haven't Decided On
    I've read so many answers on here about how to do Ray Picking, that I thought I had the idea of it down. But when I try to implement it in my game, I get garbage. I'm working with LWJGL. Here's the code: public static Ray getPick(int mouseX, int mouseY){ glPushMatrix(); //Setting up the Mouse Clip Vector4f mouseClip = new Vector4f((float)mouseX * 2 / 960f - 1, 1 - (float)mouseY * 2 / 640f ,0 ,1); //Loading Matrices FloatBuffer modMatrix = BufferUtils.createFloatBuffer(16); FloatBuffer projMatrix = BufferUtils.createFloatBuffer(16); glGetFloat(GL_MODELVIEW_MATRIX, modMatrix); glGetFloat(GL_PROJECTION_MATRIX, projMatrix); //Assigning Matrices Matrix4f proj = new Matrix4f(); Matrix4f model = new Matrix4f(); model.load(modMatrix); proj.load(projMatrix); //Multiplying the Projection Matrix by the Model View Matrix Matrix4f tempView = new Matrix4f(); Matrix4f.mul(proj, model, tempView); tempView.invert(); //Getting the Camera Position in World Space. The 4th Column of the Model View Matrix. model.invert(); Point cameraPos = new Point(model.m30, model.m31, model.m32); //Theoretically getting the vector the Picking Ray goes Vector4f rayVector = new Vector4f(); Matrix4f.transform(tempView, mouseClip, rayVector); rayVector.translate((float)-cameraPos.getX(),(float) -cameraPos.getY(),(float) -cameraPos.getZ(), 0f); rayVector.normalise(); glPopMatrix(); //This Basically Spits out a value that changes as the Camera moves. //When the Mouse moves, the values change around 0.001 points from screen edge to edge. System.out.format("Vector: %f %f %f%n", rayVector.x, rayVector.y, rayVector.z); //return new Ray(cameraPos, rayVector); return null; } I don't really know why this isn't working. I was hoping some more experienced eyes might be able to help me out. I can get the camera position like a champ, it's the vector the rays going in that I can't seem to get right. Thanks.

    Read the article

  • NVidia control panel SSAO not working

    - by János Turánszki
    I am just before implementing screen space ambient occlusion in my game, but first I wanted to try enabling it from NVidia control panel only to find out that it is greyed out so that I can not enable it. With this I could enable SSAO for some other games, but not every one. I know this technique requires the depth buffer and (optionally) a normal map texture to sample information from which I already have access to given I have a deferred renderer working. After that I actually thought to roll back to a previous version of my game which still uses forward rendering so the depth buffer is actually bound to the backbuffer which I render to from the get-go so that maybe the NVidia control panel would somehow make use of it. It was not working with forward rendering either. (I also tried FXAA in the control panel and that works - but it doesn't need any depth or normal texture) So my question is that how can I enable this function so that it would work by enabling it in the NVidia control panel?

    Read the article

< Previous Page | 490 491 492 493 494 495 496 497 498 499 500 501  | Next Page >