Search Results

Search found 26124 results on 1045 pages for 'unreal development kit'.

Page 497/1045 | < Previous Page | 493 494 495 496 497 498 499 500 501 502 503 504  | Next Page >

  • Finding vectors with two points

    - by Christian Careaga
    We're are trying to get the direction of a projectile but we can't find out how For example: [1,1] will go SE [1,-1] will go NE [-1,-1] will go NW and [-1,1] will go SW we need an equation of some sort that will take the player pos and the mouse pos and find which direction the projectile needs to go. Here is where we are plugging in the vectors: def update(self): self.rect.x += self.vector[0] self.rect.y += self.vector[1] Then we are blitting the projectile at the rects coords.

    Read the article

  • Rendering problems with Java LWJGL

    - by pangaea
    I'm new to rendering and so I don't know if I can speed up the code or that what I'm doing is bad. This is what it looks like But, if I have say 100-200 triangles everything is fine. Yet, when I get to 400 triangles it becomes very laggy. At 1,000 triangles it becomes 5fps at max. Also, when I try to close it everything becomes extremely laggy and the game breaks my computer. Is this normal? The code is here http://pastebin.com/9N6qdEbd game http://pastebin.com/fdkSrPGT mobs I haven't even adding collision detection.

    Read the article

  • Kinect joint coordinates and XNA animation

    - by Sweta Dwivedi
    I have written a program to record the x,y,z coordinated of the Hand joint and I want to animate my models 2D or 3D according to these coordinates. . .However the output of the x,y,z coordinates are fluctuating from -0 to 1 but not more than that.. So i assume I will need to multiply them back with the screen width and height, however it still doesnt seem to animate according to the original x,y,z points Any transformations I might be missing out? while ((line = r.ReadLine()) != null) { string[] temp = line.Split(','); int x = (int) float.Parse(temp[0]))* maxWidth); int y = (int) float.Parse(temp[1])) * maxHeight); }

    Read the article

  • It's possible to fulfill the social necessity of a human being through a social game in 3D like IMVU?

    - by Totty
    (I'm not advertising nor promoting this game, as it's just an example of my experience and I would like to have your opinion about the matter if possible) I've been started researching "things" about games and I've decided to begin to play IMVU as a friend of mine said it's cool. At first it seemed just another 3d social game, not so cool.. But I've "tried to like" and after 1 day I can say I'm addicted to it! Yes; I will explain better: About the game: You can go in chat-rooms, move to positions. Some positions are like sitting in a sofa, floor, dancing alone or with a partner, kissing and more in this way. In the free version of the game there is no nudity. You can even listen to music, view youtube... The 3d graphics are quite low end, so it's not as real as the paid PC games of today. About my experience: At first I was going with my friend in chat-rooms, they seemed very nice. There were people talking about general stuff, quite like in a real life. Well, I begin to know some girls (yes, virtual girls commanded by a real girl, I hope!). Things happened: Some girls are just crazy, not like in real life, they make out in before even talking; Other girls you can speak a little bit, then they add you to their friend-list. Sometimes they invite to their virtual places. Some girls have really IMVU boyfriends only (but not in reality) and most of them don't even make up in the game, so it's really a level of commitment involved here! But from what my friend told they last for him, at least, about 3 days... Some others have real and IMVU boyfriends that are the same. Until now I haven't find a girl with different boyfriend in the IMVU and reality. Nor multiple boyfriends. There are rooms where the same people find each selves every day and speak about general stuff, relationships and so on... They are nice with you, they "feel" you and show careness. This is what amazes me, they treat you like a real human being and as being their friend in the real world. (of course it's not always like this) There are jealous girls too and competitiveness between females lol, I know you loled! This is kind of social. So today I closed my door in my room and I've played it all day long and guess what, I didn't feel a need to stay with a real person at all. Normally, If I would stay a full day alone I would get quite crazy... So the question is: It's just me that seemed to be able to fulfill my social needs or there is something more? thanks for your precious time for reading my full question,

    Read the article

  • Repairing back-facing triangles without user input

    - by LTR
    My 3D application works with user-imported 3D models. Frequently, those models have a few vertices facing into the wrong direction. (For example, there is a 3D roof and a few triangles of that roof are facing inside the building). I want to repair those automatically. We can make several assumptions about these 3D models: they are completely closed without holes, and the camera is always on the outside. My idea: Shoot 500 rays from every triangle outwards into all directions. From the back side of the triangle, all rays will hit another part of the model. From the front side, at least one ray will hit nothing. Is there a better algorithm? Are there any papers about something like this?

    Read the article

  • Example of DOD design

    - by Jeffrey
    I can't seem to find a nice explanation of the Data Oriented Design for a generic zombie game (it's just an example, pretty common example). Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombie list class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie } Or would creating a generic World container that contains every action from bite(zombieId, playerId) to moveTo(playerId, vector) to createPlayer() to shoot(playerId, vector) to face(radians)/face(vector); and contains: std::vector<zombie> std::vector<player> ... std::vector<mapchunk> ... std::vector<vbobufferid> player_run_animation; ... be a good example? Whats the proper way to organize a game with DOD?

    Read the article

  • I Don't Understand Anything About Randomly Generated Worlds [closed]

    - by Alex Larsen
    What tools do I need to make a Minecraft-like generated world? I heard about Perlin noise and Simplex, but I don't understand anything about them. So far all I found on the internet was a Simplex version for C#, and all it has is functions, and this is what I get: Console.WriteLine(Noise.Generate(SomeNumber, SomeNumber, SumNumber)); Outputs random floats. I'm really lost. I don't understand the whole random generated worlds concept. Can someone help me? And if I use the noise thing I don't understand how to use it.

    Read the article

  • What are some good resources for creating a game engine in XNA?

    - by Glasser
    I'm currently a student game programmer working on an indie project. We have a team of eleven people (five programmers, four artists, and two audio designers) aboard, all working hard to help design this game. We've been meeting for months now and so far we have a pretty buffed out Game Design Document as well as much audio/visual concept art. Our programmers are itching to progress on our own end. Each person in our programming team is well versed in C++, but is very familiar with C#. We have enough experience and skill that we're confident that we will be successful with our game, and we're looking to build our own game engine in XNA as it seems like it would be worth our time and effort in the end. The game itself will be a 2D beat 'em up style game to be released over xbox live and the PC. It's play style will be similar to that of Castle Crashers or Scott Pilgrim vs The World. We want to design the game engine to allow us to better implement our assets into the game as well as to simplify the creation of design elements/mechanics. Currently between our programmers, we have books such as "XNA 4.0" and "Game Coding Complete, Third Edition," but we'd still like more information on both XNA and (especially) building a game engine from scratch. What are any other good books, websites, or resources we could use to further map out and program our game engine?

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • How to implement Fog Of War with an shader?

    - by Cambrano
    Okay, I'm creating a RTS game and want to implement an AgeOfEmpires-like Fog Of War(FOW). That means a tile(or pixel) can be: 0% transparent (unexplored) 50% transparent black (explored but not in viewrange) 100% transparent(explored and in viewrange) RTS means I'll have many explorers (NPCs, buildings, ...). Okay, so I have an 2d array of bytes byte[,] explored. The byte value correlates the transparency. The question is, how do I pass this array to my shader? Well I think it is not possible to pass an entire array. So: what technique shall I use to let my shader know if a pixel/tile is visible or not?

    Read the article

  • Different bounding volumes for culling and collision detection

    - by Serthy
    Should an object in a 3D-engine use different bounding volumes for collision-detection (broad-phase) and culling? Basically class renderBounds and class physBounds versus class boundingVolume? Each of this classes then could either contain the same type of volumes (AABB's, kDOP's, sphere's etc.) or a special fitting one for the particular object. (note: without considering of using an external physics engine)

    Read the article

  • HLSL 5 interpolation issues

    - by metredigm
    I'm having issues with the depth components of my shadowmapping shaders. The shadow map rendering shader is fine, and works very well. The world rendering shader is more problematic. The only value which seems to definitely be off is the pixel's position from the light's perspective, which I pass in parallel to the position. struct Pixel { float4 position : SV_Position; float4 light_pos : TEXCOORD2; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; The reason that I used the semantic 'TEXCOORD2' on the light's pixel position is because I believe that the problem lies with Direct3D's interpolation of values between shaders, and I started trying random semantics and also forcing linear and noperspective interpolations. In the world rendering shader, I observed in the pixel shader that the Z value of light_pos was always extremely close to, but less than the W value. This resulted in a depth result of 0.999 or similar for every pixel. Here is the vertex shader code : struct Vertex { float3 position : POSITION; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; struct Pixel { float4 position : SV_Position; float4 light_pos : TEXCOORD2; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; cbuffer Camera : register (b0) { matrix world; matrix view; matrix projection; }; cbuffer Light : register (b1) { matrix light_world; matrix light_view; matrix light_projection; }; Pixel RenderVertexShader(Vertex input) { Pixel output; output.position = mul(float4(input.position, 1.0f), world); output.position = mul(output.position, view); output.position = mul(output.position, projection); output.world_pos = mul(float4(input.position, 1.0f), world); output.world_pos = mul(output.world_pos, light_view); output.world_pos = mul(output.world_pos, light_projection); output.texcoord = input.texcoord; output.normal = input.normal; return output; } I suspect interpolation to be the culprit, as I used the camera matrices in place of the light matrices in the vertex shader, and had the same problem. The problem is evident as both of the same vectors were passed to a pixel from the VS, but only one of them showed a change in the PS. I have already thoroughly debugged the matrices' validity, the cbuffers' validity, and the multiplicative validity. I'm very stumped and have been trying to solve this for quite some time. Misc info : The light projection matrix and the camera projection matrix are the same, generated from D3DXMatrixPerspectiveFovLH(), with an FOV of 60.0f * 3.141f / 180.0f, a near clipping plane of 0.1f, and a far clipping plane of 1000.0f. Any ideas on what is happening? (This is a repost from my question on Stack Overflow)

    Read the article

  • this.BoundingBox.Intersects(Wall[0].BoundingBox) not working properly

    - by Pieter
    I seem to be having this problem a lot, I'm still learning XNA / C# and well, trying to make a classic paddle and ball game. The problem I run into (and after debugging have no answer) is that everytime I run my game and press either of the movement keys, the Paddle won't move. Debugging shows that it never gets to the movement part, but I can't understand why not? Here's my code: // This is the If statement for checking Left movement. if (keyboardState.IsKeyDown(Keys.Left) || keyboardState.IsKeyDown(Keys.A)) { if (!CheckCollision(walls[0])) { Location.X -= Velocity; } } //This is the CheckCollision(Wall wall) boolean public bool CheckCollision(Wall wall) { if (this.BoundingBox.Intersects(wall.BoundingBox)) { return true; } return false; } As far as I can tell there should be absolutely no problem with this, I initialize the bounding box in the constructor whenever a new instance of Walls and Paddle is created. this.BoundingBox = new Rectangle(0, 0, Sprite.Width, Sprite.Height); Any idea as to why this isn't working? I have previously succeeded with using the whole Location.X < Wall.Location.X + Wall.Texture.Width code... But to me that seems like too much coding if a simple boolean check could be done.

    Read the article

  • Random Position between ranges.

    - by blakey87
    Does anyone have a good algorithm for generating a random y position for spawning a block, which takes into account a minimum and maximum height, allowing player to to jump on the block. Blocks will continually be spawned, so the player must always be able to jump onto the next block, bearing in mind the minimum position which would be the ground, and the maximum which would the players jump height bearing in mind the ceiling

    Read the article

  • Line Intersection from parametric equation

    - by Sidar
    I'm sure this question has been asked before. However, I'm trying to connect the dots by translating an equation on paper into an actual function. I thought It would be interesting to ask here instead on the Math sites (since it's going to be used for games anyway ). Let's say we have our vector equation : x = s + Lr; where x is the resulting vector, s our starting point/vector. L our parameter and r our direction vector. The ( not sure it's called like this, please correct me ) normal equation is : x.n = c; If we substitute our vector equation we get: (s+Lr).n = c. We now need to isolate L which results in L = (c - s.n) / (r.n); L needs to be 0 < L < 1. Meaning it needs to be between 0 and 1. My question: I want to know what L is so if I were to substitute L for both vector equation (or two lines) they should give me the same intersection coordinates. That is if they intersect. But I can't wrap my head around on how to use this for two lines and find the parameter that fits the intersection point. Could someone with a simple example show how I could translate this to a function/method?

    Read the article

  • HUD layer not being added on my scene

    - by Shailesh_ios
    I have a CCScene which already holds my gameLayer and I am trying to add HUD layer on that.But the HUD layer is not getting added in my scene, I can say that because I have set up a CCLabel on HUD layer and when I run my project, I cannot see that label. Here's what I am doing : In my gameLayer: +(id) scene { CCScene *scene = [CCScene node]; GameScreen *layer = [GameScreen node]; [scene addChild: layer]; HUDclass * otherLayer = [HUDclass node]; [scene addChild:otherLayer]; layer.HC = otherLayer;// HC is reference to my HUD layer in @Interface of gameLayer return scene; } And then in my HUD layer I have just added a CCLabelTTF in its init method like this : -(id)init { if ((self = [super init])) { CCLabelTTF * label = [CCLabelTTF labelWithString:@"IN WEAPON CLASS" fontName:@"Arial" fontSize:15]; label.position = ccp(240,160); [self addChild:label]; } return self; } But now when I run my project I dont see that label, What am I doing wrong here ..? Any Ideas.. ? Thanks in advance for your time.

    Read the article

  • Best way to go for simple online multi-player games?

    - by Mr_CryptoPrime
    I want to create a trivia game for my website. The graphic design does not have to be too fancy, probably no more advanced than a typical flash game. It needs to be secure because I want users to be able to play for real money. It also needs to run fast so users don't spend their time frustrated with game freezing. Compatibility, as with almost all online products, is key because of the large target market. I am most acquainted with Java programming, but I don't want to do it in Java if there is something much better. I am assuming I will have to utilize a variety of different languages in order for everything to come together. If someone could point out the main structure of everything so I could get a good start that would be great! 1) Language choice for simple secure online multiplayer games? 2) Perhaps use a database like MySQL, stored on a secure server for the trivia questions? 3) Free educational resources and even simpler projects to practice? Any ideas or suggestions would be helpful...Thanks!

    Read the article

  • How should I structure moving from overworld to menu system / combat?

    - by persepolis
    I'm making a text-based "Arena" game where the player is the owner of 5 creatures that battle other teams for loot, experience and glory. The game is very simple, using Python and a curses emulator. I have a static ASCII map of an "overworld" of sorts. My character, represented by a glyph, can move about this static map. There are locations all over the map that the character can visit, that break down into two types: 1) Towns, which are a series of menus that will allow the player to buy equipment for his team, hire new recruits or do other things. 2) Arenas, where the player's team will have a "battle" interface with actions he can perform, messages about the fight, etc. Maybe later, an ASCII representation of the fight but for now, just screens of information with action prompts. My main problem is what kind of design or structure I should use to implement this? Right now, the game goes through a master loop which waits for keyboard input and then moves the player about the screen. My current thinking is this: 1) Upon keyboard input, the Player coordinates are checked against a list of Location objects and if the Player coords match the Location coords then... 2) ??? I'm not sure if I should then call a seperate function to initiate a "menu" or "combat" mode. Or should I create some kind of new GameMode object that contains a method itself for drawing the screen, printing the necessary info? How do I pass my player's team data into this object? My main concern is passing around the program flow into all these objects. Should I be calling straight functions for different parts of my game, and objects to represent "things" within my game? I was reading about the MVC pattern and how this kind of problem might benefit - decouple the GUI from the game logic and user input but I have no idea how this applies to my game.

    Read the article

  • Trouble with speed and vectors

    - by Eegabooga
    I'm working on adding bullets to my game. Right now I can shoot bullets in the direction that I would like from a ship by getting the ship's angle: int speed = 5; int dx = -(cos(degreesToRadians(ship.angle)) * speed); // rate of change in the x direction int dy = -(sin(degreesToRadians(ship.angle)) * speed); // rate of change in the y direction bulletPosition.addX(dx); // addX(dx) is simply bulletPosition.x += dx bulletPosition.addY(dy); The ship is pretty much the exact same thing, except I use the += operator: int dx += -(cos(degreesToRadians(angle)) * 0.15) int dy += -(sin(degreesToRadians(angle)) * 0.15); shipPosition.addX(dx); shipPosition.addY(dy); I would like to be able to add the ship's velocity to the bullet's velocity, but I'm a little confused as to how should get the speed from the ship's vector. I thought that adding the ship's dx to the bullet's dx like int dx = -(cos(degreesToRadians(ship.angle)) * speed * dx) would work because I'm adding the rate of change of the ship to the rate of change of the bullet, but that doesn't work. So here's the final question: How can I get the speed of my ship and apply it to my bullet's speed? Thanks in advance for all help :)

    Read the article

  • Multiple objects listening for the same key press

    - by xiaohouzi79
    I want to learn the best way to implement this: I have a hero and an enemy on the screen. Say the hero presses "k" to get out a knife, I want the enemy to react in a certain way. Now, if in my game loop I have a listener for the key press event and I identify a "k" was pressed, the quick and easy way would be to do: // If K pressed // hero.getOoutKnife() // enemy.getAngry() But what is commonly done in more complex games, where say I have 10 types of character on screen and they all need to react in a unique way when the letter "k" is pressed? I can think of a bunch of hacky ways to do this, but would love to know how it should be done properly. I am using C++, but I'm not looking for a code implementation, just some ideas on how it should be done the right way.

    Read the article

  • What causes the iOS OpenGLES driver to allocate extra memory?

    - by Martin Linklater
    I'm trying to optimize the memory usage of our iOS game and I'm puzzled about when/why the iOS GLES driver allocates extra memory at runtime... When I run our game through Instruments with the OpenGL ES Driver instrument the gartUsedBytes value can fluctuate quite wildly. We preload all our textures and build the buffer objects up front, so it's not the game engine requesting extra memory from GL. Currently we are manually requesting around 50MB of GL memory, yet the gartUsedBytes value sits at around 90MB most of the time, peaking at 125MB from time to time. It seems to be linked to what you are rendering that frame - our PVS only submits VBO's for visible meshes. Can anyone shed some light on what the driver is doing in the background ? Like I said earlier, all our game engine allocations are done on level load, so in theory there shouldn't be any fluctuation on GL memory usage while the level is running. Thanks.

    Read the article

  • Displaying a grid based map using C++ and sdl

    - by user15386
    I am trying to create a roguelike game using c++ and SDL. However, I am having trouble getting it to display the map, which is represented by a 2d array of a tile class. Currently, my code is this: for (int y = 0; y!=MAPHEIGHT; y++) { for (int x = 0; x!=MAPWIDTH 1; x++) { apply_surface( x * TILEWIDTH, y * TILEHEIGHT, mymap[x][y].image, screen ); } } However, running this code causes it to both dither for a while before opening the SDL window, and (usually) tell me there is an access violation. How can I display my map?

    Read the article

  • Could someone explain why my world reconstructed from depth position is incorrect?

    - by yuumei
    I am attempting to reconstruct the world position in the fragment shader from a depth texture. I pass in the 8 frustum points in world space and interpolate them across fragments and then interpolate from near to far by the depth: highp float depth = (2.0 * CameraPlanes.x) / (CameraPlanes.y + CameraPlanes.x - texture( depthTexture, textureCoord ).x * (CameraPlanes.y - CameraPlanes.x)); // Reconstruct the world position from the linear depth highp vec3 world = mix( nearWorldPos, farWorldPos, depth ); CameraPlanes.x is the near plane CameraPlanes.y is the far. Assuming that my frustum positions are correct, and my depth looks correct, why is my world position wrong? (My depth texture is of format GL_DEPTH_COMPONENT32F if that matters) Thanks! :D Update: Screenshot of world position http://imgur.com/sSlHd So you can see it looks nearly correct. However as the camera moves, the colours (positions) change, which they shouldnt. I can get this to work, if I do the following: Write this into the depth attachment in the previous pass: gl_FragDepth = gl_FragCoord.z / gl_FragCoord.w / CameraPlanes.y; and then read the depth texture like so: depth = texture( depthTexture, textureCoord ).x However this will kill the hardware z buffer optimizations.

    Read the article

  • Using glReadBuffer/glReadPixels returns black image instead of the actual image only on Intel cards

    - by cloudraven
    I have this piece of code glReadBuffer( GL_FRONT ); glReadPixels( 0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, buffer ); Which works just perfectly in all the Nvidia and AMD GPUs I have tried, but it fails in almost every single Intel built-in video that I have tried. It actually works in a very old 945GME, but fails in all the others. Instead of getting a screenshot I am actually getting a black screen. If it helps, I am working with the Doom3 Engine, and that code is derived from the built-in screen capture code. By the way, even with the original game I cannot do screen capture on those intel devices anyway. My guess is that they are not implementing the standard correctly or something. Is there a workaround for this?

    Read the article

  • GestureListener's fling method doesn't get called

    - by nosferat
    I'm using SimpleGestureDetector from the libgdx-users Wiki as my InputProcessor. I set it in the created() method: Gdx.input.setInputProcess(new SimpleDirectionGestureDetector(charController)); charController is my class which implements the DirectionListener interface defined in the SimpleDirectionGestureDetector class and it is responsible for moving the player character. However the character doesn't change direction when I'm performing a fling action in any direction. I've checked and the fling() method in the SimpleDirectionGesture class doesn't get called and I have no idea why, since everything seems good. What am I doing wrong?

    Read the article

< Previous Page | 493 494 495 496 497 498 499 500 501 502 503 504  | Next Page >