Search Results

Search found 112 results on 5 pages for 'approximation'.

Page 5/5 | < Previous Page | 1 2 3 4 5 

  • Estimating the boundary of arbitrarily distributed data

    - by Dave
    I have two dimensional discrete spatial data. I would like to make an approximation of the spatial boundaries of this data so that I can produce a plot with another dataset on top of it. Ideally, this would be an ordered set of (x,y) points that matplotlib can plot with the plt.Polygon() patch. My initial attempt is very inelegant: I place a fine grid over the data, and where data is found in a cell, a square matplotlib patch is created of that cell. The resolution of the boundary thus depends on the sampling frequency of the grid. Here is an example, where the grey region are the cells containing data, black where no data exists. OK, problem solved - why am I still here? Well.... I'd like a more "elegant" solution, or at least one that is faster (ie. I don't want to get on with "real" work, I'd like to have some fun with this!). The best way I can think of is a ray-tracing approach - eg: from xmin to xmax, at y=ymin, check if data boundary crossed in intervals dx y=ymin+dy, do 1 do 1-2, but now sample in y An alternative is defining a centre, and sampling in r-theta space - ie radial spokes in dtheta increments. Both would produce a set of (x,y) points, but then how do I order/link neighbouring points them to create the boundary? A nearest neighbour approach is not appropriate as, for example (to borrow from Geography), an isthmus (think of Panama connecting N&S America) could then close off and isolate regions. This also might not deal very well with the holes seen in the data, which I would like to represent as a different plt.Polygon. The solution perhaps comes from solving an area maximisation problem. For a set of points defining the data limits, what is the maximum contiguous area contained within those points To form the enclosed area, what are the neighbouring points for the nth point? How will the holes be treated in this scheme - is this erring into topology now? Apologies, much of this is me thinking out loud. I'd be grateful for some hints, suggestions or solutions. I suspect this is an oft-studied problem with many solution techniques, but I'm looking for something simple to code and quick to run... I guess everyone is, really! Cheers, David

    Read the article

  • RAID and Partitions, guidance Needed

    - by beauregarde
    Alright I have a Biostar TA790GX3A2+ Mobo 2x Seagate 750Gb Hard drive (with 2 different speeds) an X4 9750 A GeForce 9800GT and 2GB RAM Hardware Specs link text I want to configure my computer with partitions in various RAID arrays. The Partitions I know i want (disk letters are mostly for reference here) C: XP Boot D: XP Swap E: XP Run F: Games G: Data The Partitions I think I want (repeat caveat) H: small FAT for Win Legacy and DOS I: Linux J: Linux Swap K-?M?: Other Linux /whatever partitions N & O: Attic for D1 and D2 What I'd like to do, is have C: written on Disk 1 (D1),.. D: on D2,.. E: and F: striped on D1 & D2,.. G: mirrored or D1 & D2,.. I: on D2 (so i can just switch disc boot priority to open in Ubuntu),.. J: on D1,.. and H: somewhere low on D1 I am inexperienced with VMs, so i am unsure as to whether those run out of XP, or whether i need to reserve a primary partition for them. However, I think they would be preferable for testing new OS's to scheduling a partition for the same purpose. I'm also not married to XP, but -64 IS pretty important to me. QUestion Time 1) Ignoring the irrationality of it all, is such a configuration possible? If not, can some pseudo-approximation be achieved? 2) My RAID is software, isnt it? 3) How much should I short a 750GB HD? And should i use that space for my attics, or for my attics and something else, or for something else (.iso's perhaps?)? 4) if XP is striped on D1 & D2, will that interfere egregiously with my Swap writes on D2? If so, would striping both XP and Swap relieve (or at least mitigate) that issue? Should XP and Swap just be written normally on 2 different HDs? 5) Should I keep DL's and Drivers on E: (XP Run), F: (Games), or elsewhere? 6) Is 4GB enough for C:? 7) Is 30GB enough (or too much) for E:? 8) How much to reserve for the Linux and sub-Linux partitions? Also, where on the platter do you think i should put them? 9) Am I a fool to use FAT16 instead of FAT32 for H: because I'd rather run 95 than 98SE? If not, do you think 2GB or 4GB? 10) I cant predict what my Max Commit Charge will be, so recommendations for Pagefile size? 5GB? 12GB? 11) VMs, where do I run them? do they exacerbate anything? Would it be better to just emulate Linux, 95, and DOS? EC) What havent I considered that I really should? Notes: computer is mostly for playing games and watching media, though I wouldnt rule out the use of particularly blah-intensive anything.

    Read the article

  • June 2013 Release of the Ajax Control Toolkit

    - by Stephen.Walther
    I’m happy to announce the June 2013 release of the Ajax Control Toolkit. For this release, we enhanced the AjaxFileUpload control to support uploading files directly to Windows Azure. We also improved the SlideShow control by adding support for CSS3 animations. You can get the latest release of the Ajax Control Toolkit by visiting the project page at CodePlex (http://AjaxControlToolkit.CodePlex.com). Alternatively, you can execute the following NuGet command from the Visual Studio Library Package Manager window: Uploading Files to Azure The AjaxFileUpload control enables you to efficiently upload large files and display progress while uploading. With this release, we’ve added support for uploading large files directly to Windows Azure Blob Storage (You can continue to upload to your server hard drive if you prefer). Imagine, for example, that you have created an Azure Blob Storage container named pictures. In that case, you can use the following AjaxFileUpload control to upload to the container: <toolkit:ToolkitScriptManager runat="server" /> <toolkit:AjaxFileUpload ID="AjaxFileUpload1" StoreToAzure="true" AzureContainerName="pictures" runat="server" /> Notice that the AjaxFileUpload control is declared with two properties related to Azure. The StoreToAzure property causes the AjaxFileUpload control to upload a file to Azure instead of the local computer. The AzureContainerName property points to the blob container where the file is uploaded. .int3{position:absolute;clip:rect(487px,auto,auto,444px);}SMALL cash advance VERY CHEAP To use the AjaxFileUpload control, you need to modify your web.config file so it contains some additional settings. You need to configure the AjaxFileUpload handler and you need to point your Windows Azure connection string to your Blob Storage account. <configuration> <appSettings> <!--<add key="AjaxFileUploadAzureConnectionString" value="UseDevelopmentStorage=true"/>--> <add key="AjaxFileUploadAzureConnectionString" value="DefaultEndpointsProtocol=https;AccountName=testact;AccountKey=RvqL89Iw4npvPlAAtpOIPzrinHkhkb6rtRZmD0+ojZupUWuuAVJRyyF/LIVzzkoN38I4LSr8qvvl68sZtA152A=="/> </appSettings> <system.web> <compilation debug="true" targetFramework="4.5" /> <httpRuntime targetFramework="4.5" /> <httpHandlers> <add verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit"/> </httpHandlers> </system.web> <system.webServer> <validation validateIntegratedModeConfiguration="false" /> <handlers> <add name="AjaxFileUploadHandler" verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit"/> </handlers> <security> <requestFiltering> <requestLimits maxAllowedContentLength="4294967295"/> </requestFiltering> </security> </system.webServer> </configuration> You supply the connection string for your Azure Blob Storage account with the AjaxFileUploadAzureConnectionString property. If you set the value “UseDevelopmentStorage=true” then the AjaxFileUpload will upload to the simulated Blob Storage on your local machine. After you create the necessary configuration settings, you can use the AjaxFileUpload control to upload files directly to Azure (even very large files). Here’s a screen capture of how the AjaxFileUpload control appears in Google Chrome: After the files are uploaded, you can view the uploaded files in the Windows Azure Portal. You can see that all 5 files were uploaded successfully: New AjaxFileUpload Events In response to user feedback, we added two new events to the AjaxFileUpload control (on both the server and the client): · UploadStart – Raised on the server before any files have been uploaded. · UploadCompleteAll – Raised on the server when all files have been uploaded. · OnClientUploadStart – The name of a function on the client which is called before any files have been uploaded. · OnClientUploadCompleteAll – The name of a function on the client which is called after all files have been uploaded. These new events are most useful when uploading multiple files at a time. The updated AjaxFileUpload sample page demonstrates how to use these events to show the total amount of time required to upload multiple files (see the AjaxFileUpload.aspx file in the Ajax Control Toolkit sample site). SlideShow Animated Slide Transitions With this release of the Ajax Control Toolkit, we also added support for CSS3 animations to the SlideShow control. The animation is used when transitioning from one slide to another. Here’s the complete list of animations: · FadeInFadeOut · ScaleX · ScaleY · ZoomInOut · Rotate · SlideLeft · SlideDown You specify the animation which you want to use by setting the SlideShowAnimationType property. For example, here is how you would use the Rotate animation when displaying a set of slides: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSlideShow.aspx.cs" Inherits="TestACTJune2013.ShowSlideShow" %> <%@ Register TagPrefix="toolkit" Namespace="AjaxControlToolkit" Assembly="AjaxControlToolkit" %> <script runat="Server" type="text/C#"> [System.Web.Services.WebMethod] [System.Web.Script.Services.ScriptMethod] public static AjaxControlToolkit.Slide[] GetSlides() { return new AjaxControlToolkit.Slide[] { new AjaxControlToolkit.Slide("slides/Blue hills.jpg", "Blue Hills", "Go Blue"), new AjaxControlToolkit.Slide("slides/Sunset.jpg", "Sunset", "Setting sun"), new AjaxControlToolkit.Slide("slides/Winter.jpg", "Winter", "Wintery..."), new AjaxControlToolkit.Slide("slides/Water lilies.jpg", "Water lillies", "Lillies in the water"), new AjaxControlToolkit.Slide("slides/VerticalPicture.jpg", "Sedona", "Portrait style picture") }; } </script> <!DOCTYPE html> <html > <head runat="server"> <title></title> </head> <body> <form id="form1" runat="server"> <div> <toolkit:ToolkitScriptManager ID="ToolkitScriptManager1" runat="server" /> <asp:Image ID="Image1" Height="300" Runat="server" /> <toolkit:SlideShowExtender ID="SlideShowExtender1" TargetControlID="Image1" SlideShowServiceMethod="GetSlides" AutoPlay="true" Loop="true" SlideShowAnimationType="Rotate" runat="server" /> </div> </form> </body> </html> In the code above, the set of slides is exposed by a page method named GetSlides(). The SlideShowAnimationType property is set to the value Rotate. The following animated GIF gives you an idea of the resulting slideshow: If you want to use either the SlideDown or SlideRight animations, then you must supply both an explicit width and height for the Image control which is the target of the SlideShow extender. For example, here is how you would declare an Image and SlideShow control to use a SlideRight animation: <toolkit:ToolkitScriptManager ID="ToolkitScriptManager1" runat="server" /> <asp:Image ID="Image1" Height="300" Width="300" Runat="server" /> <toolkit:SlideShowExtender ID="SlideShowExtender1" TargetControlID="Image1" SlideShowServiceMethod="GetSlides" AutoPlay="true" Loop="true" SlideShowAnimationType="SlideRight" runat="server" /> Notice that the Image control includes both a Height and Width property. Here’s an approximation of this animation using an animated GIF: Summary The Superexpert team worked hard on this release. We hope you like the new improvements to both the AjaxFileUpload and the SlideShow controls. We’d love to hear your feedback in the comments. On to the next sprint!

    Read the article

  • .NET to iOS: From WinForms to the iPad

    - by RobertChipperfield
    One of the great things about working at Red Gate is getting to play with new technology - and right now, that means mobile. A few weeks ago, we decided that a little research into the tablet computing arena was due, and purely from a numbers point of view, that suggested the iPad as a good target device. A quick trip to iPhoneDevCon in San Diego later, and Marine and I came back full of ideas, and with some concept of how iOS development was meant to work. Here's how we went from there to the release of Stacks & Heaps, our geeky take on the classic "Snakes & Ladders" game. Step 1: Buy a Mac I've played with many operating systems in my time: from the original BBC Model B, through DOS, Windows, Linux, and others, but I'd so far managed to avoid buying fruit-flavoured computer hardware! If you want to develop for the iPhone, iPad or iPod Touch, that's the first thing that needs to change. If you've not used OS X before, the first thing you'll realise is that everything is different! In the interests of avoiding a flame war in the comments section, I'll only go so far as to say that a lot of my Windows-flavoured muscle memory no longer worked. If you're in the UK, you'll also realise your keyboard is lacking a # key, and that " and @ are the other way around from normal. The wonderful Ukelele keyboard layout editor restores some sanity here, as long as you don't look at the keyboard when you're typing. I couldn't give up the PC entirely, but a handy application called Synergy comes to the rescue - it lets you share a single keyboard and mouse between multiple machines. There's a few limitations: Alt-Tab always seems to go to the Mac, and Windows 7's UAC dialogs require the local mouse for security reasons, but it gets you a long way at least. Step 2: Register as an Apple Developer You can register as an Apple Developer free of charge, and that lets you download XCode and the iOS SDK. You also get the iPhone / iPad emulator, which is handy, since you'll need to be a paid member before you can deploy your apps to a real device. You can either enroll as an individual, or as a company. They both cost the same ($99/year), but there's a few differences between them. If you register as a company, you can add multiple developers to your team (all for the same $99 - not $99 per developer), and you get to use your company name in the App Store. However, you'll need to send off significantly more documentation to Apple, and I suspect the process takes rather longer than for an individual, where they just need to verify some credit card details. Here's a tip: if you're registering as a company, do so as early as possible. The approval process can take a while to complete, so get the application in in plenty of time. Step 3: Learn to love the square brackets! Objective-C is the language of the iPad. C and C++ are also supported, and if you're doing some serious game development, you'll probably spend most of your time in C++ talking OpenGL, but for forms-based apps, you'll be interacting with a lot of the Objective-C SDK. Like shifting from Ctrl-C to Cmd-C, it feels a little odd at first, with the familiar string.format(.) turning into: NSString *myString = [NSString stringWithFormat:@"Hello world, it's %@", [NSDate date]]; Thankfully XCode's auto-complete is normally passable, if not up to Visual Studio's standards, which coupled with a huge amount of content on Stack Overflow means you'll soon get to grips with the API. You'll need to get used to some terminology changes, though; here's an incomplete approximation: Coming from a .NET background, there's some luxuries you no longer have developing Objective C in XCode: Generics! Remember back in .NET 1.1, when all collections were just objects? Yup, we're back there now. ReSharper. Or, more generally, very much refactoring support. The not-many-keystrokes to rename a class, its file, and al references to it in Visual Studio turns into a much more painful experience in XCode. Garbage collection. This is actually rather less of an issue than you might expect: if you follow the rules, the reference counting provided by Objective C gets you a long way without too much pain. Circular references are their usual problematic self, though. Decent exception handling. You do have exceptions, but they're nowhere near as widely used. Generally, if something goes wrong, you get nil (see translation table above) back. Which brings me on to. Calling a method on a nil object isn't a failure - it just returns nil itself! There's many arguments for and against this, but personally I fall into the "stuff should fail as quickly and explicitly as possible" camp. Less specifically, I found that there's more chance of code failing at runtime rather than getting caught at compile-time: using the @selector(.) syntax to pass a method signature isn't (can't be) checked at compile-time, so the first you know about a typo is a crash when you try and call it. The solution to this is of course lots of great testing, both automated and manual, but I still find comfort in provably correct type safety being enforced in addition to testing. Step 4: Submit to the App Store Assuming you want to distribute to more than a handful of devices, you're going to need to submit your app to the Apple App Store. There's a few gotchas in terms of getting builds signed with the right certificates, and you'll be bouncing around between XCode and iTunes Connect a fair bit, but eventually you get everything checked off the to-do list, and are ready to upload your first binary! With some amount of anticipation, I pressed the Upload button in XCode, ready to release our creation into the world, but was instead greeted by an error informing me my XML file was malformed. Uh. A little Googling later, and it turned out that a simple rename from "Stacks&Heaps.app" to "StacksAndHeaps.app" worked around an XML escaping bug, and we were good to go. The next step is to wait for approval (or otherwise). After a couple of weeks of intensive development, this part is agonising. Did we make it? The Apple jury is still out at the moment, but our fingers are firmly crossed! In the meantime, you can see some screenshots and leave us your email address if you'd like us to get in touch when it does go live at the MobileFoo website. Step 5: Profit! Actually, that wasn't the idea here: Stacks & Heaps is free; there's no adverts, and we're not going to sell all your data either. So why did we do it? We wanted to get an idea of what it's like to move from coding for a desktop environment, to something completely different. We don't know whether in a year's time, the iPad will still be the dominant force, or whether Android will have smoothed out some bugs, tweaked the performance, and polished the UI, but I think it's a fairly sure bet that the tablet form factor is here to stay. We want to meet people who are using it, start chatting to them, and find out about some of the pain they're feeling. What better way to do that than do it ourselves, and get to write a cool game in the process?

    Read the article

  • SQL Server and Hyper-V Dynamic Memory Part 2

    - by SQLOS Team
    Part 1 of this series was an introduction and overview of Hyper-V Dynamic Memory. This part looks at SQL Server memory management and how the SQL engine responds to changing OS memory conditions.   Part 2: SQL Server Memory Management As with any Windows process, sqlserver.exe has a virtual address space (VAS) of 4GB on 32-bit and 8TB in 64-bit editions. Pages in its VAS are mapped to pages in physical memory when the memory is committed and referenced for the first time. The collection of VAS pages that have been recently referenced is known as the Working Set. How and when SQL Server allocates virtual memory and grows its working set depends on the memory model it uses. SQL Server supports three basic memory models:   1. Conventional Memory Model   The Conventional model is the default SQL Server memory model and has the following properties: - Dynamic - can grow or shrink its working set in response to load and external (operating system) memory conditions. - OS uses 4K pages – (not to be confused with SQL Server “pages” which are 8K regions of committed memory).- Pageable - Can be paged out to disk by the operating system.   2. Locked Page Model The locked page memory model is set when SQL Server is started with "Lock Pages in Memory" privilege*. It has the following characteristics: - Dynamic - can grow or shrink its working set in the same way as the Conventional model.- OS uses 4K pages - Non-Pageable – When memory is committed it is locked in memory, meaning that it will remain backed by physical memory and will not be paged out by the operating system. A common misconception is to interpret "locked" as non-dynamic. A SQL Server instance using the locked page memory model will grow and shrink (allocate memory and release memory) in response to changing workload and OS memory conditions in the same way as it does with the conventional model.   This is an important consideration when we look at Hyper-V Dynamic Memory – “locked” memory works perfectly well with “dynamic” memory.   * Note in “Denali” (Standard Edition and above), and in SQL 2008 R2 64-bit (Enterprise and above editions) the Lock Pages in Memory privilege is all that is required to set this model. In 2008 R2 64-Bit standard edition it also requires trace flag 845 to be set, in 2008 R2 32-bit editions it requires sp_configure 'awe enabled' 1.   3. Large Page Model The Large page model is set using trace flag 834 and potentially offers a small performance boost for systems that are configured with large pages. It is characterized by: - Static - memory is allocated at startup and does not change. - OS uses large (>2MB) pages - Non-Pageable The large page model is supported with Hyper-V Dynamic Memory (and Hyper-V also supports large pages), but you get no benefit from using Dynamic Memory with this model since SQL Server memory does not grow or shrink. The rest of this article will focus on the locked and conventional SQL Server memory models.   When does SQL Server grow? For “dynamic” configurations (Conventional and Locked memory models), the sqlservr.exe process grows – allocates and commits memory from the OS – in response to a workload. As much memory is allocated as is required to optimally run the query and buffer data for future queries, subject to limitations imposed by:   - SQL Server max server memory setting. If this configuration option is set, the buffer pool is not allowed to grow to more than this value. In SQL Server 2008 this value represents single page allocations, and in “Denali” it represents any size page allocations and also managed CLR procedure allocations.   - Memory signals from OS. The operating system sets a signal on memory resource notification objects to indicate whether it has memory available or whether it is low on available memory. If there is only 32MB free for every 4GB of memory a low memory signal is set, which continues until 64MB/4GB is free. If there is 96MB/4GB free the operating system sets a high memory signal. SQL Server only allocates memory when the high memory signal is set.   To summarize, for SQL Server to grow you need three conditions: a workload, max server memory setting higher than the current allocation, high memory signals from the OS.    When does SQL Server shrink caches? SQL Server as a rule does not like to return memory to the OS, but it will shrink its caches in response to memory pressure. Memory pressure can be divided into “internal” and “external”.   - External memory pressure occurs when the operating system is running low on memory and low memory signals are set. The SQL Server Resource Monitor checks for low memory signals approximately every 5 seconds and it will attempt to free memory until the signals stop.   To free memory SQL Server does the following: ·         Frees unused memory. ·         Notifies Memory Manager Clients to release memory o   Caches – Free unreferenced cache objects. o   Buffer pool - Based on oldest access times.   The freed memory is released back to the operating system. This process continues until the low memory resource notifications stop.    - Internal memory pressure occurs when the size of different caches and allocations increase but the SQL Server process needs to keep its total memory within a target value. For example if max server memory is set and certain caches are growing large, it will cause SQL to free memory for re-use internally, but not to release memory back to the OS. If you lower the value of max server memory you will generate internal memory pressure that will cause SQL to release memory back to the OS.    Memory pressure handling has not changed much since SQL 2005 and it was described in detail in a blog post by Slava Oks.   Note that SQL Server Express is an exception to the above behavior. Unlike other editions it does not assume it is the most important process running on the system but tries to be more “desktop” friendly. It will empty its working set after a period of inactivity.   How does SQL Server respond to changing OS memory?    In SQL Server 2005 support for Hot-Add memory was introduced. This feature, available in Enterprise and above editions, allows the server to make use of any extra physical memory that was added after SQL Server started. Being able to add physical memory when the system is running is limited to specialized hardware, but with the Hyper-V Dynamic Memory feature, when new memory is allocated to a guest virtual machine, it looks like hot-add physical memory to the guest. What this means is that thanks to the hot-add memory feature, SQL Server 2005 and higher can dynamically grow if more “physical” memory is granted to a guest VM by Hyper-V dynamic memory.   SQL Server checks OS memory every second and dynamically adjusts its “target” (based on available OS memory and max server memory) accordingly.   In “Denali” Standard Edition will also have sqlserver.exe support for hot-add memory when running virtualized (i.e. detecting and acting on Hyper-V Dynamic Memory allocations).   How does a SQL Server workload in a guest VM impact Hyper-V dynamic memory scheduling?   When a SQL workload causes the sqlserver.exe process to grow its working set, the Hyper-V memory scheduler will detect memory pressure in the guest VM and add memory to it. SQL Server will then detect the extra memory and grow according to workload demand. In our tests we have seen this feedback process cause a guest VM to grow quickly in response to SQL workload - we are still working on characterizing this ramp-up.    How does SQL Server respond when Hyper-V removes memory from a guest VM through ballooning?   If pressure from other VM's cause Hyper-V Dynamic Memory to take memory away from a VM through ballooning (allocating memory with a virtual device driver and returning it to the host OS), Windows Memory Manager will page out unlocked portions of memory and signal low resource notification events. When SQL Server detects these events it will shrink memory until the low memory notifications stop (see cache shrinking description above).    This raises another question. Can we make SQL Server release memory more readily and hence behave more "dynamically" without compromising performance? In certain circumstances where the application workload is predictable it may be possible to have a job which varies "max server memory" according to need, lowering it when the engine is inactive and raising it before a period of activity. This would have limited applicaability but it is something we're looking into.   What Memory Management changes are there in SQL Server “Denali”?   In SQL Server “Denali” (aka SQL11) the Memory Manager has been re-written to be more efficient. The main changes are summarized in this post. An important change with respect to Hyper-V Dynamic Memory support is that now the max server memory setting includes any size page allocations and managed CLR procedure allocations it now represents a closer approximation to total sqlserver.exe memory usage. This makes it easier to calculate a value for max server memory, which becomes important when configuring virtual machines to work well with Hyper-V Dynamic Memory Startup and Maximum RAM settings.   Another important change is no more AWE or hot-add support for 32-bit edition. This means if you're running a 32-bit edition of Denali you're limited to a 4GB address space and will not be able to take advantage of dynamically added OS memory that wasn't present when SQL Server started (though Hyper-V Dynamic Memory is still a supported configuration).   In part 3 we’ll develop some best practices for configuring and using SQL Server with Dynamic Memory. Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • How can I tell the size of my app during development?

    - by Newbyman
    My programming decissions are directly related to how much room I have left, or worse perhaps how much I need to shave off in order to get up the 10mb limit. I have read that Apple has quietly increased the 3G & Edge download limit from 10mb up to 20mb in preparation for the iPad in April. Either way, my real question is how can I gauge a rough estimate of how large my app will end while I'm still in the development phase? Is the file size of my development folder roughly 1 to 1 ratio? Is the compressed file size of my development a better approximation? My .xcodeproj file is only a couple hundred kB, but the size of my folder is 11.8 MB. I have a .sqlite database, less than 20 small png images and a Settings.Bundle. The rest are unknown Xcode files related to build, build for iphoneOS, simulator etc.... My source code is rather large with around 1000 lines in most of the major controllers, all in all around 48 .h&.m files. But my classes folder inside my development folder is less than 800kb. Digging around inside my Build file, there is lots of iphone simulator files and debugging files which I don't think will contribute to the final product. The Application file states that it is around 2.3 MB. However, this is such a large difference from the 11.8 MB, I have to wonder if this is just another piece of the equation. I have the app on the my device, I'm in the testing phase. Therefore, I though that I would try to see how large the working version was on the device by checking in iTunes, however my development app is visible on the right-hand the application's iphone screen, but no information about the app most importantly its size. I also checked in Organizer, I used the lower portion of the screen-(Applications), found my application and selected the drop down arrow which gave my "Application Data" and a download arrow button to the right to save a file on my desktop, named with the unique AppleID. Inside the folder it had three folders-(documents, library, tmp) the documents had a copy of my .sqlite database, the library a few more files but not anything obvious or of size, and the tmp was empty. All in all the entire folder was only 164kb-which tells me that this is not the right place to find the size either. I understand that the size is considered to be the size of my binary plus all the additional files and images that I have add. Does anyone have a effective way of guaging how large the binary is or the relating the development folder size to what the final App Store application size will end up. I know that questions have been posted with similar aspects, but I could not find any answered post that really described...what files, or how to determine size specifically. I know that this question looks like a book, but I just wanted to be specific in conveying exactly what I'm looking for and the attempts thus far. *Note all files are unzipped and still in regular working Xcode order of a single app with no brought-in builds or referenced projects. I'm sure that this is straight forward, I just don't know where to look?

    Read the article

  • Odd C++ template behaviour with static member vars

    - by jon hanson
    This piece of code is supposed to calculate an approximation to e (i.e. the mathematical constant ~ 2.71828183) at compile-time, using the following approach; e1 = 2 / 1 e2 = (2 * 2 + 1) / (2 * 1) = 5 / 2 = 2.5 e3 = (3 * 5 + 1) / (3 * 2) = 16 / 6 ~ 2.67 e4 = (4 * 16 + 1) / (4 * 6) = 65 / 24 ~ 2.708 ... e(i) = (e(i-1).numer * i + 1) / (e(i-1).denom * i) The computation is returned via the result static member however, after 2 iterations it yields zero instead of the expected value. I've added a static member function f() to compute the same value and that doesn't exhibit the same problem. #include <iostream> #include <iomanip> // Recursive case. template<int ITERS, int NUMERATOR = 2, int DENOMINATOR = 1, int I = 2> struct CalcE { static const double result; static double f () {return CalcE<ITERS, NUMERATOR * I + 1, DENOMINATOR * I, I + 1>::f ();} }; template<int ITERS, int NUMERATOR, int DENOMINATOR, int I> const double CalcE<ITERS, NUMERATOR, DENOMINATOR, I>::result = CalcE<ITERS, NUMERATOR * I + 1, DENOMINATOR * I, I + 1>::result; // Base case. template<int ITERS, int NUMERATOR, int DENOMINATOR> struct CalcE<ITERS, NUMERATOR, DENOMINATOR, ITERS> { static const double result; static double f () {return result;} }; template<int ITERS, int NUMERATOR, int DENOMINATOR> const double CalcE<ITERS, NUMERATOR, DENOMINATOR, ITERS>::result = static_cast<double>(NUMERATOR) / DENOMINATOR; // Test it. int main (int argc, char* argv[]) { std::cout << std::setprecision (8); std::cout << "e2 ~ " << CalcE<2>::result << std::endl; std::cout << "e3 ~ " << CalcE<3>::result << std::endl; std::cout << "e4 ~ " << CalcE<4>::result << std::endl; std::cout << "e5 ~ " << CalcE<5>::result << std::endl; std::cout << std::endl; std::cout << "e2 ~ " << CalcE<2>::f () << std::endl; std::cout << "e3 ~ " << CalcE<3>::f () << std::endl; std::cout << "e4 ~ " << CalcE<4>::f () << std::endl; std::cout << "e5 ~ " << CalcE<5>::f () << std::endl; return 0; } I've tested this with VS 2008 and VS 2010, and get the same results in each case: e2 ~ 2 e3 ~ 2.5 e4 ~ 0 e5 ~ 0 e2 ~ 2 e3 ~ 2.5 e4 ~ 2.6666667 e5 ~ 2.7083333 Why does result not yield the expected values whereas f() does? According to Rotsor's comment below, this does work with GCC, so I guess the question is, am i relying on some type of undefined behaviour with regards to static initialisation order, or is this a bug with Visual Studio?

    Read the article

  • Generating strongly biased radom numbers for tests

    - by nobody
    I want to run tests with randomized inputs and need to generate 'sensible' random numbers, that is, numbers that match good enough to pass the tested function's preconditions, but hopefully wreak havoc deeper inside its code. math.random() (I'm using Lua) produces uniformly distributed random numbers. Scaling these up will give far more big numbers than small numbers, and there will be very few integers. I would like to skew the random numbers (or generate new ones using the old function as a randomness source) in a way that strongly favors 'simple' numbers, but will still cover the whole range, I.e. extending up to positive/negative infinity (or ±1e309 for double). This means: numbers up to, say, ten should be most common, integers should be more common than fractions, numbers ending in 0.5 should be the most common fractions, followed by 0.25 and 0.75; then 0.125, and so on. A different description: Fix a base probability x such that probabilities will sum to one and define the probability of a number n as xk where k is the generation in which n is constructed as a surreal number1. That assigns x to 0, x2 to -1 and +1, x3 to -2, -1/2, +1/2 and +2, and so on. This gives a nice description of something close to what I want (it skews a bit too much), but is near-unusable for computing random numbers. The resulting distribution is nowhere continuous (it's fractal!), I'm not sure how to determine the base probability x (I think for infinite precision it would be zero), and computing numbers based on this by iteration is awfully slow (spending near-infinite time to construct large numbers). Does anyone know of a simple approximation that, given a uniformly distributed randomness source, produces random numbers very roughly distributed as described above? I would like to run thousands of randomized tests, quantity/speed is more important than quality. Still, better numbers mean less inputs get rejected. Lua has a JIT, so performance can't be reasonably predicted. Jumps based on randomness will break every prediction, and many calls to math.random() will be slow, too. This means a closed formula will be better than an iterative or recursive one. 1 Wikipedia has an article on surreal numbers, with a nice picture. A surreal number is a pair of two surreal numbers, i.e. x := {n|m}, and its value is the number in the middle of the pair, i.e. (for finite numbers) {n|m} = (n+m)/2 (as rational). If one side of the pair is empty, that's interpreted as increment (or decrement, if right is empty) by one. If both sides are empty, that's zero. Initially, there are no numbers, so the only number one can build is 0 := { | }. In generation two one can build numbers {0| } =: 1 and { |0} =: -1, in three we get {1| } =: 2, {|1} =: -2, {0|1} =: 1/2 and {-1|0} =: -1/2 (plus some more complex representations of known numbers, e.g. {-1|1} ? 0). Note that e.g. 1/3 is never generated by finite numbers because it is an infinite fraction – the same goes for floats, 1/3 is never represented exactly.

    Read the article

  • Matlab Image watermarking question , using both SVD and DWT

    - by Georgek
    Hello all . here is a code that i got over the net ,and it is supposed to embed a watermark of size(50*20) called _copyright.bmp in the Code below . the size of the cover object is (512*512), it is called _lena_std_bw.bmp.What we did here is we did DWT2 2 times for the image , when we reached our second dwt2 cA2 size is 128*128. You should notice that the blocksize and it equals 4, it is used to determine the max msg size based on cA2 according to the following code:max_message=RcA2*CcA2/(blocksize^2). in our current case max_message would equal 128*128/(4^2)=1024. i want to embed a bigger watermark in the 2nd dwt2 and lets say the size of that watermark is 400*10(i can change the dimension using MS PAINT), what i have to do is change the size of the blocksize to 2. so max_message=4096.Matlab gives me 3 errors and they are : ??? Error using == plus Matrix dimensions must agree. Error in == idwt2 at 93 x = upsconv2(a,{Lo_R,Lo_R},sx,dwtEXTM,shift)+ ... % Approximation. Error in == two_dwt_svd_low_low at 88 CAA1 = idwt2(cA22,cH2,cV2,cD2,'haar',[RcA1,CcA1]); The origional Code is (the origional code where blocksize =4): %This algorithm makes DWT for the whole image and after that make DWT for %cH1 and make SVD for cH2 and embed the watermark in every level after SVD %(1) -------------- Embed Watermark ------------------------------------ %Add the watermar W to original image I and give the watermarked image in J %-------------------------------------------------------------------------- % set the gain factor for embeding and threshold for evaluation clc; clear all; close all; % save start time start_time=cputime; % set the value of threshold and alpha thresh=.5; alpha =0.01; % read in the cover object file_name='_lena_std_bw.bmp'; cover_object=double(imread(file_name)); % determine size of watermarked image Mc=size(cover_object,1); %Height Nc=size(cover_object,2); %Width % read in the message image and reshape it into a vector file_name='_copyright.bmp'; message=double(imread(file_name)); T=message; Mm=size(message,1); %Height Nm=size(message,2); %Width % perform 1-level DWT for the whole cover image [cA1,cH1,cV1,cD1] = dwt2(cover_object,'haar'); % determine the size of cA1 [RcA1 CcA1]=size(cA1) % perform 2-level DWT for cA1 [cA2,cH2,cV2,cD2] = dwt2(cA1,'haar'); % determine the size of cA2 [RcA2 CcA2]=size(cA2) % set the value of blocksize blocksize=4 % reshape the watermark to a vector message_vector=round(reshape(message,Mm*Nm,1)./256); W=message_vector; % determine maximum message size based on cA2, and blocksize max_message=RcA2*CcA2/(blocksize^2) % check that the message isn't too large for cover if (length(message) max_message) error('Message too large to fit in Cover Object') end %----------------------- process the image in blocks ---------------------- x=1; y=1; for (kk = 1:length(message_vector)) [cA2u cA2s cA2v]=svd(cA2(y:y+blocksize-1,x:x+blocksize-1)); % if message bit contains zero, modify S of the original image if (message_vector(kk) == 0) cA2s = cA2s*(1 + alpha); % otherwise mask is filled with zeros else cA2s=cA2s; end cA22(y:y+blocksize-1,x:x+blocksize-1)=cA2u*cA2s*cA2v; % move to next block of mask along x; If at end of row, move to next row if (x+blocksize) >= CcA2 x=1; y=y+blocksize; else x=x+blocksize; end end % perform IDWT CAA1 = idwt2(cA22,cH2,cV2,cD2,'haar',[RcA1,CcA1]); watermarked_image= idwt2(CAA1,cH1,cV1,cD1,'haar',[Mc,Nc]); % convert back to uint8 watermarked_image_uint8=uint8(watermarked_image); % write watermarked Image to file imwrite(watermarked_image_uint8,'dwt_watermarked.bmp','bmp'); % display watermarked image figure(1) imshow(watermarked_image_uint8,[]) title('Watermarked Image') %(2) ---------------------------------------------------------------------- %---------- Extract Watermark from attacked watermarked image ------------- %-------------------------------------------------------------------------- % read in the watermarked object file_name='dwt_watermarked.bmp'; watermarked_image=double(imread(file_name)); % determine size of watermarked image Mw=size(watermarked_image,1); %Height Nw=size(watermarked_image,2); %Width % perform 1-level DWT for the whole watermarked image [ca1,ch1,cv1,cd1] = dwt2(watermarked_image,'haar'); % determine the size of ca1 [Rca1 Cca1]=size(ca1); % perform 2-level DWT for ca1 [ca2,ch2,cv2,cd2] = dwt2(ca1,'haar'); % determine the size of ca2 [Rca2 Cca2]=size(ca2); % process the image in blocks % for each block get a bit for message x=1; y=1; for (kk = 1:length(message_vector)) % sets correlation to 1 when patterns are identical to avoid /0 errors % otherwise calcluate difference between the cover image and the % watermarked image [cA2u cA2s cA2v]=svd(cA2(y:y+blocksize-1,x:x+blocksize-1)); [ca2u1 ca2s1 ca2v1]=svd(ca2(y:y+blocksize-1,x:x+blocksize-1)); correlation(kk)=diag(ca2s1-cA2s)'*diag(ca2s1-cA2s)/(alpha*alpha)/(diag(cA2s)*diag(cA2s)); % move on to next block. At and of row move to next row if (x+blocksize) >= Cca2 x=1; y=y+blocksize; else x=x+blocksize; end end % if correlation exceeds average correlation correlation(kk)=correlation(kk)+mean(correlation(1:Mm*Nm)); for kk = 1:length(correlation) if (correlation(kk) > thresh*alpha);%thresh*mean(correlation(1:Mo*No))) message_vector(kk)=0; end end % reshape the message vector and display recovered watermark. figure(2) message=reshape(message_vector(1:Mm*Nm),Mm,Nm); imshow(message,[]) title('Recovered Watermark') % display processing time elapsed_time=cputime-start_time, please do help,its my graduation project and i have been trying this code for along time but failed miserable. Thanks in advance

    Read the article

  • Optimizing python code performance when importing zipped csv to a mongo collection

    - by mark
    I need to import a zipped csv into a mongo collection, but there is a catch - every record contains a timestamp in Pacific Time, which must be converted to the local time corresponding to the (longitude,latitude) pair found in the same record. The code looks like so: def read_csv_zip(path, timezones): with ZipFile(path) as z, z.open(z.namelist()[0]) as input: csv_rows = csv.reader(input) header = csv_rows.next() check,converters = get_aux_stuff(header) for csv_row in csv_rows: if check(csv_row): row = { converter[0]:converter[1](value) for converter, value in zip(converters, csv_row) if allow_field(converter) } ts = row['ts'] lng, lat = row['loc'] found_tz_entry = timezones.find_one(SON({'loc': {'$within': {'$box': [[lng-tz_lookup_radius, lat-tz_lookup_radius],[lng+tz_lookup_radius, lat+tz_lookup_radius]]}}})) if found_tz_entry: tz_name = found_tz_entry['tz'] local_ts = ts.astimezone(timezone(tz_name)).replace(tzinfo=None) row['tz'] = tz_name else: local_ts = (ts.astimezone(utc) + timedelta(hours = int(lng/15))).replace(tzinfo = None) row['local_ts'] = local_ts yield row def insert_documents(collection, source, batch_size): while True: items = list(itertools.islice(source, batch_size)) if len(items) == 0: break; try: collection.insert(items) except: for item in items: try: collection.insert(item) except Exception as exc: print("Failed to insert record {0} - {1}".format(item['_id'], exc)) def main(zip_path): with Connection() as connection: data = connection.mydb.data timezones = connection.timezones.data insert_documents(data, read_csv_zip(zip_path, timezones), 1000) The code proceeds as follows: Every record read from the csv is checked and converted to a dictionary, where some fields may be skipped, some titles be renamed (from those appearing in the csv header), some values may be converted (to datetime, to integers, to floats. etc ...) For each record read from the csv, a lookup is made into the timezones collection to map the record location to the respective time zone. If the mapping is successful - that timezone is used to convert the record timestamp (pacific time) to the respective local timestamp. If no mapping is found - a rough approximation is calculated. The timezones collection is appropriately indexed, of course - calling explain() confirms it. The process is slow. Naturally, having to query the timezones collection for every record kills the performance. I am looking for advises on how to improve it. Thanks. EDIT The timezones collection contains 8176040 records, each containing four values: > db.data.findOne() { "_id" : 3038814, "loc" : [ 1.48333, 42.5 ], "tz" : "Europe/Andorra" } EDIT2 OK, I have compiled a release build of http://toblerity.github.com/rtree/ and configured the rtree package. Then I have created an rtree dat/idx pair of files corresponding to my timezones collection. So, instead of calling collection.find_one I call index.intersection. Surprisingly, not only there is no improvement, but it works even more slowly now! May be rtree could be fine tuned to load the entire dat/idx pair into RAM (704M), but I do not know how to do it. Until then, it is not an alternative. In general, I think the solution should involve parallelization of the task. EDIT3 Profile output when using collection.find_one: >>> p.sort_stats('cumulative').print_stats(10) Tue Apr 10 14:28:39 2012 ImportDataIntoMongo.profile 64549590 function calls (64549180 primitive calls) in 1231.257 seconds Ordered by: cumulative time List reduced from 730 to 10 due to restriction <10> ncalls tottime percall cumtime percall filename:lineno(function) 1 0.012 0.012 1231.257 1231.257 ImportDataIntoMongo.py:1(<module>) 1 0.001 0.001 1230.959 1230.959 ImportDataIntoMongo.py:187(main) 1 853.558 853.558 853.558 853.558 {raw_input} 1 0.598 0.598 370.510 370.510 ImportDataIntoMongo.py:165(insert_documents) 343407 9.965 0.000 359.034 0.001 ImportDataIntoMongo.py:137(read_csv_zip) 343408 2.927 0.000 287.035 0.001 c:\python27\lib\site-packages\pymongo\collection.py:489(find_one) 343408 1.842 0.000 274.803 0.001 c:\python27\lib\site-packages\pymongo\cursor.py:699(next) 343408 2.542 0.000 271.212 0.001 c:\python27\lib\site-packages\pymongo\cursor.py:644(_refresh) 343408 4.512 0.000 253.673 0.001 c:\python27\lib\site-packages\pymongo\cursor.py:605(__send_message) 343408 0.971 0.000 242.078 0.001 c:\python27\lib\site-packages\pymongo\connection.py:871(_send_message_with_response) Profile output when using index.intersection: >>> p.sort_stats('cumulative').print_stats(10) Wed Apr 11 16:21:31 2012 ImportDataIntoMongo.profile 41542960 function calls (41542536 primitive calls) in 2889.164 seconds Ordered by: cumulative time List reduced from 778 to 10 due to restriction <10> ncalls tottime percall cumtime percall filename:lineno(function) 1 0.028 0.028 2889.164 2889.164 ImportDataIntoMongo.py:1(<module>) 1 0.017 0.017 2888.679 2888.679 ImportDataIntoMongo.py:202(main) 1 2365.526 2365.526 2365.526 2365.526 {raw_input} 1 0.766 0.766 502.817 502.817 ImportDataIntoMongo.py:180(insert_documents) 343407 9.147 0.000 491.433 0.001 ImportDataIntoMongo.py:152(read_csv_zip) 343406 0.571 0.000 391.394 0.001 c:\python27\lib\site-packages\rtree-0.7.0-py2.7.egg\rtree\index.py:384(intersection) 343406 379.957 0.001 390.824 0.001 c:\python27\lib\site-packages\rtree-0.7.0-py2.7.egg\rtree\index.py:435(_intersection_obj) 686513 22.616 0.000 38.705 0.000 c:\python27\lib\site-packages\rtree-0.7.0-py2.7.egg\rtree\index.py:451(_get_objects) 343406 6.134 0.000 33.326 0.000 ImportDataIntoMongo.py:162(<dictcomp>) 346 0.396 0.001 30.665 0.089 c:\python27\lib\site-packages\pymongo\collection.py:240(insert) EDIT4 I have parallelized the code, but the results are still not very encouraging. I am convinced it could be done better. See my own answer to this question for details.

    Read the article

  • Matlab code works with one version but not the other

    - by user1325655
    I have a code that works in Matlab version R2010a but shows errors in matlab R2008a. I am trying to implement a self organizing fuzzy neural network with extended kalman filter. I have the code running but it only works in matlab version R2010a. It doesn't work with other versions. Any help? Code attach function [ c, sigma , W_output ] = SOFNN( X, d, Kd ) %SOFNN Self-Organizing Fuzzy Neural Networks %Input Parameters % X(r,n) - rth traning data from nth observation % d(n) - the desired output of the network (must be a row vector) % Kd(r) - predefined distance threshold for the rth input %Output Parameters % c(IndexInputVariable,IndexNeuron) % sigma(IndexInputVariable,IndexNeuron) % W_output is a vector %Setting up Parameters for SOFNN SigmaZero=4; delta=0.12; threshold=0.1354; k_sigma=1.12; %For more accurate results uncomment the following %format long; %Implementation of a SOFNN model [size_R,size_N]=size(X); %size_R - the number of input variables c=[]; sigma=[]; W_output=[]; u=0; % the number of neurons in the structure Q=[]; O=[]; Psi=[]; for n=1:size_N x=X(:,n); if u==0 % No neuron in the structure? c=x; sigma=SigmaZero*ones(size_R,1); u=1; Psi=GetMePsi(X,c,sigma); [Q,O] = UpdateStructure(X,Psi,d); pT_n=GetMeGreatPsi(x,Psi(n,:))'; else [Q,O,pT_n] = UpdateStructureRecursively(X,Psi,Q,O,d,n); end; KeepSpinning=true; while KeepSpinning %Calculate the error and if-part criteria ae=abs(d(n)-pT_n*O); %approximation error [phi,~]=GetMePhi(x,c,sigma); [maxphi,maxindex]=max(phi); % maxindex refers to the neuron's index if ae>delta if maxphi<threshold %enlarge width [minsigma,minindex]=min(sigma(:,maxindex)); sigma(minindex,maxindex)=k_sigma*minsigma; Psi=GetMePsi(X,c,sigma); [Q,O] = UpdateStructure(X,Psi,d); pT_n=GetMeGreatPsi(x,Psi(n,:))'; else %Add a new neuron and update structure ctemp=[]; sigmatemp=[]; dist=0; for r=1:size_R dist=abs(x(r)-c(r,1)); distIndex=1; for j=2:u if abs(x(r)-c(r,j))<dist distIndex=j; dist=abs(x(r)-c(r,j)); end; end; if dist<=Kd(r) ctemp=[ctemp; c(r,distIndex)]; sigmatemp=[sigmatemp ; sigma(r,distIndex)]; else ctemp=[ctemp; x(r)]; sigmatemp=[sigmatemp ; dist]; end; end; c=[c ctemp]; sigma=[sigma sigmatemp]; Psi=GetMePsi(X,c,sigma); [Q,O] = UpdateStructure(X,Psi,d); KeepSpinning=false; u=u+1; end; else if maxphi<threshold %enlarge width [minsigma,minindex]=min(sigma(:,maxindex)); sigma(minindex,maxindex)=k_sigma*minsigma; Psi=GetMePsi(X,c,sigma); [Q,O] = UpdateStructure(X,Psi,d); pT_n=GetMeGreatPsi(x,Psi(n,:))'; else %Do nothing and exit the while KeepSpinning=false; end; end; end; end; W_output=O; end function [Q_next, O_next,pT_n] = UpdateStructureRecursively(X,Psi,Q,O,d,n) %O=O(t-1) O_next=O(t) p_n=GetMeGreatPsi(X(:,n),Psi(n,:)); pT_n=p_n'; ee=abs(d(n)-pT_n*O); %|e(t)| temp=1+pT_n*Q*p_n; ae=abs(ee/temp); if ee>=ae L=Q*p_n*(temp)^(-1); Q_next=(eye(length(Q))-L*pT_n)*Q; O_next=O + L*ee; else Q_next=eye(length(Q))*Q; O_next=O; end; end function [ Q , O ] = UpdateStructure(X,Psi,d) GreatPsiBig = GetMeGreatPsi(X,Psi); %M=u*(r+1) %n - the number of observations [M,~]=size(GreatPsiBig); %Others Ways of getting Q=[P^T(t)*P(t)]^-1 %************************************************************************** %opts.SYM = true; %Q = linsolve(GreatPsiBig*GreatPsiBig',eye(M),opts); % %Q = inv(GreatPsiBig*GreatPsiBig'); %Q = pinv(GreatPsiBig*GreatPsiBig'); %************************************************************************** Y=GreatPsiBig\eye(M); Q=GreatPsiBig'\Y; O=Q*GreatPsiBig*d'; end %This function works too with x % (X=X and Psi is a Matrix) - Gets you the whole GreatPsi % (X=x and Psi is the row related to x) - Gets you just the column related with the observation function [GreatPsi] = GetMeGreatPsi(X,Psi) %Psi - In a row you go through the neurons and in a column you go through number of %observations **** Psi(#obs,IndexNeuron) **** GreatPsi=[]; [N,U]=size(Psi); for n=1:N x=X(:,n); GreatPsiCol=[]; for u=1:U GreatPsiCol=[ GreatPsiCol ; Psi(n,u)*[1; x] ]; end; GreatPsi=[GreatPsi GreatPsiCol]; end; end function [phi, SumPhi]=GetMePhi(x,c,sigma) [r,u]=size(c); %u - the number of neurons in the structure %r - the number of input variables phi=[]; SumPhi=0; for j=1:u % moving through the neurons S=0; for i=1:r % moving through the input variables S = S + ((x(i) - c(i,j))^2) / (2*sigma(i,j)^2); end; phi = [phi exp(-S)]; SumPhi = SumPhi + phi(j); %phi(u)=exp(-S) end; end %This function works too with x, it will give you the row related to x function [Psi] = GetMePsi(X,c,sigma) [~,u]=size(c); [~,size_N]=size(X); %u - the number of neurons in the structure %size_N - the number of observations Psi=[]; for n=1:size_N [phi, SumPhi]=GetMePhi(X(:,n),c,sigma); PsiTemp=[]; for j=1:u %PsiTemp is a row vector ex: [1 2 3] PsiTemp(j)=phi(j)/SumPhi; end; Psi=[Psi; PsiTemp]; %Psi - In a row you go through the neurons and in a column you go through number of %observations **** Psi(#obs,IndexNeuron) **** end; end

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

< Previous Page | 1 2 3 4 5