Search Results

Search found 112 results on 5 pages for 'approximation'.

Page 3/5 | < Previous Page | 1 2 3 4 5  | Next Page >

  • Extrapolation using fft in octave

    - by CFP
    Using GNU octave, I'm computing a fft over a piece of signal, then eliminating some frequencies, and finally reconstructing the signal. This give me a nice approximation of the signal ; but it doesn't give me a way to extrapolate the data. Suppose basically that I have plotted three periods and a half of f: x -> sin(x) + 0.5*sin(3*x) + 1.2*sin(5*x) and then added a piece of low amplitude, zero-centered random noise. With fft/ifft, I can easily remove most of the noise ; but then how do I extrapolate 3 more periods of my signal data? (other of course that duplicating the signal). The math way is easy : you have a decomposition of your function as an infinite sum of sines/cosines, and you just need to extract a partial sum and apply it anywhere. But I don't quite get the programmatic way... Thanks!

    Read the article

  • Heuristic algorithm for load balancing among threads.

    - by Il-Bhima
    I'm working on a multithreaded program where I have a number of worker threads performing tasks of unequal length. I want to load-balance the tasks to ensure that they do roughly the same amount of work. For task T_i I have a number c_i which provides a good approximation to the amount of work that is required for that task. I'm looking for an efficient (O(N) N = num tasks or better) algorithm which will give me "roughly" a good load balance given the values of c_i. It doesn't have to be optimal, but I would like to be able to have some theoretical bounds on how bad the resulting allocations are. Any ideas?

    Read the article

  • Guessing the time zone from an arbitrary "location" string?

    - by Thomas
    I'm trying to run some statistics over the Stack Overflow data dump, and for that I would like to know the time zone for each user. However, all I have to go on is the completely free-form "location" string. I'll stress that I'm only looking for an approximation of the time zone; of course, in general this is an unsolvable problem. However, many people fill out their country, state and/or city, which should give a pretty good indication. It's okay if it fails for other cases. It doesn't have to be reliable, it doesn't have to be accurate, it doesn't have to cover all bases. I don't want to waste too much time on this, so I'm wondering if there is some code out there that can make a reasonable guess. Any language, platform, API or library goes. Any ideas?

    Read the article

  • null coalescing operator for javascript?

    - by Daniel Schaffer
    I assumed this question has already been asked here, but I couldn't find any, so here it goes: Is there a null coalescing operator in Javascript? For example, in C#, I can do this: String someString = null; var whatIWant = someString ?? "Cookies!"; The best approximation I can figure out for Javascript is using the conditional operator: var someString = null; var whatIWant = someString ? someString : 'Cookies!'; Which is sorta icky IMHO. Can I do better?

    Read the article

  • B-V to Kelvin formula

    - by PeanutPower
    Whilst looking for a "B-V color index to temperature conversion formula" I found this javascript: var C1 = 3.979145; var C2 = -0.654499; var C3 = 1.74069; var C4 = -4.608815; var C5 = 6.7926; var C6 = -5.39691; var C7 = 2.19297; var C8 = -.359496; bmv = parseFloat(BV); with (Math) { logt= C1 +C2*bmv +C3*pow(bmv,2) +C4*pow(bmv,3) +C5*pow(bmv,4) +C6*pow(bmv,5) +C7*pow(bmv,6) +C8*pow(bmv,7); t=pow(10,logt); } Which is supposed to convert B-V color index to temperature. Does anyone understand how this is working and if the output value is an approximation for temperature in celcius or kelvin? Is it something to do with products of logarithms?

    Read the article

  • Obfuscating Geocode results to protect privacy?

    - by Kevin
    I have an app that finds other users within a 20 mile radius on a google map and associates an icon with each of them. However, I do not want their exact points to be given but rather an approximation. I've wrestled with a few ideas on how to do this: Only Geocode the Zip Code, make graphic icons for 1-99, use the icon to represent how many results are within the zip code, and use the info window to show hyperlinks to the individual results. The only problem is, I'd like each individual icon to be shown because it just looks a lot better. Add/Subtract a random number to the lat/lng values stored with each user and add a translucent circle around the icon. What do you guys suggest?

    Read the article

  • Computationally simple Pseudo-Gaussian Distribution with varying mean and standard deviation?

    - by mstksg
    This picture from wikipedia has a nice example of the sort of functions I'd ideally like to generate http://en.wikipedia.org/wiki/File:Normal_Distribution_PDF.svg Right now I'm using the Irwin-Hall Distribution, which is more or less a Polynomial approximation of the Gaussian distribution...basically, you use uniform random number generator and iterate it x times, and take the average. The more iterations, the more like a Gaussian Distribution it is. It's pretty nice; however I'd like to be able to have one where I can vary the mean. For example, let's say I wanted a number between the range 0 and 10, but around 7. Like, the mean (if I repeated this function multiple times) would turn out to be 7, but the actual range is 0-10. Is there one I should look up, or should I work on doing some fancy maths with standard Gaussian Distributions?

    Read the article

  • Where can I find simple beta cdf implementation.

    - by Gacek
    I need to use beta distribution and inverse beta distribution in my project. There is quite good but complicated implementation in GSL, but I don't want to use such a big library only to get one function. I would like to either, implement it on my own or link some simple library. Do you know any sources that could help me? I'm looking for any books/articles about numerical approximation of beta PDF, libraries where it could be implemented. Any other suggestions would be also appreciated. Any programming language, but C++/C# preffered.

    Read the article

  • C# Speech Recognition - Is this what the user said?

    - by RichieACC
    I have need to write an application which uses a speech recognition engine -- either the built in vista one, or a third party one -- that can display a word or phrase, and recognise when the user reads it (or an approximation of it). I also need to be able to switch quickly between languages, without changing the language of the operating system. The users will be using the system for very short periods. The application needs to work without the requirement of first training the recognition engine to the users' voices. It would also be fantastic if this could work on Windows XP or lesser versions of Windows Vista. Optionally, the system needs to be able to read information on the screen back to the user, in the user's selected language. I can work around this specification using pre-recorded voice-overs, but the preferred method would be to use a text-to-speech engine. Can anyone recommend something for me?

    Read the article

  • Surface Detection in 2d Game?

    - by GamiShini
    I'm working on a 2D Platform game, and I was wondering what's the best (performance-wise) way to implement Surface (Collision) Detection. So far I'm thinking of constructing a list of level objects constructed of a list of lines, and I draw tiles along the lines. ( http://img375.imageshack.us/img375/1704/lines.png ). I'm thinking every object holds the ID of the surface that he walks on, in order to easily manipulate his y position while walking up/downhill. Something like this: //Player/MovableObject class MoveLeft() { this.Position.Y = Helper.GetSurfaceById(this.SurfaceId).GetYWhenXIs(this.Position.X) } So the logic I use to detect "droping/walking on surface" is a simple point (player's lower legs)-touches-line (surface) check (with some safety approximation - let`s say 1-2 pixels over the line). Is this approach OK? I`ve been having difficulty trying to find reading material for this problem, so feel free to drop links/advice.

    Read the article

  • A simple algorithm for polygon intersection

    - by Elazar Leibovich
    I'm looking for a very simple algorithm for computing the polygon intersection/clipping. That is, given polygons P, Q, I wish to find polygon T which is contained in P and in Q, and I wish T to be maximal among all possible polygons. I don't mind the run time (I have a few very small polygons), I can also afford getting an approximation of the polygons' intersection (that is, a polygon with less points, but which is still contained in the polygons' intersection). But it is really important for me that the algorithm will be simple (cheaper testing) and preferably short (less code). edit: please note, I wish to obtain a polygon which represent the intersection. I don't need only a boolean answer to the question of whether the two polygons intersect.

    Read the article

  • How can I test if a point lies within a 3d shape with its surface defined by a point cloud?

    - by Ben
    Hi I have a collection of points which describe the surface of a shape that should be roughly spherical, and I need a method with which to determine if any other given point lies within this shape. I've previously been approximating the shape as an exact sphere, but this has proven too inaccurate and I need a more accurate method. Simplicity and speed is favourable over complete accuracy, a good approximation will suffice. I've come across techniques for converting a point cloud to a 3d mesh, but most things I have found have been very complicated, and I am looking for something as simple as possible. Any ideas? Many thanks, Ben.

    Read the article

  • How to get Doxygen to recognize custom latex command

    - by Halpo
    Is there a way to use extra latex packages and/or extra latex commands with Doxygen code documentation system. For example I define the shortcut in a custom sty file. \newcommand{\tf}{\Theta_f} Then I use it about 300 time in the code, which is across about a dozen files. /*! Stochastic approximation of the latent response*/ void dual_bc_genw( //... double const * const psi, ///< \f$ \psi = B\tf \f$ //... ){/* lots of brilliant code */} But how do I get the system to recognize the extra package.

    Read the article

  • Python __setattr__ and __getattr__ for global scope?

    - by KT
    Suppose I need to create my own small DSL that would use Python to describe a certain data structure. E.g. I'd like to be able to write something like f(x) = some_stuff(a,b,c) and have Python, instead of complaining about undeclared identifiers or attempting to invoke the function some_stuff, convert it to a literal expression for my further convenience. It is possible to get a reasonable approximation to this by creating a class with properly redefined __getattr__ and __setattr__ methods and use it as follows: e = Expression() e.f[e.x] = e.some_stuff(e.a, e.b, e.c) It would be cool though, if it were possible to get rid of the annoying "e." prefixes and maybe even avoid the use of []. So I was wondering, is it possible to somehow temporarily "redefine" global name lookups and assignments? On a related note, maybe there are good packages for easily achieving such "quoting" functionality for Python expressions?

    Read the article

  • Compute column widths in a HTML-like manner (based on cell contents)

    - by cipak
    Hi, I have a grid of data that I want to export to RTF, PDF etc. using various (and not perfect) PHP converters/generators. What I am missing most is the HTML table automatic adjustment of column widths based on the lengths of strings in the cells (strings contain line breaks which complicate things a bit, as they should be preserved). I need an algorithm that, given the contents of the cells (plain text), a total width of the table and an average width of a character, would return a width for each column. I wouldn't want to reinvent the wheel if something is already available. Of course it can't be perfect if the font is variable width, but an approximation would do just fine. Or maybe it could have a configurable table with widths for each character. Any hint would be appreciated. Thank you.

    Read the article

  • BCB: how to get the (approximate) width of a character in a given TFont?

    - by mawg
    It's a TMemo, not that that should make any difference. Googling suggests that I can use Canvas->TextWidth() but those are Delphi examples and BCB doesn't seem to offer this property. I really want something analogous to memo->Font->Height for width. I realize that not all fonts are fixed width, so a good estimate will do. All that I need is to take the width of a TMemo in pixels and make a reasonable guess at how many characters of the current font it will hold. Of course, if I really want to be lazy, I can just google for the average height/width ratio, since height is known. Remember, an approximation is good enough for me if it is tricky to get exact. http://www.plainlanguagenetwork.org/type/utbo211.htm says, " A width to height ratio of 3:5 (0.6) is recommended for most applications"

    Read the article

  • How can I write faster JavaScript?

    - by a paid nerd
    I'm writing an HTML5 canvas visualization. According to the Chrome Developer Tools profiler, 90% of the work is being done in (program), which I assume is the V8 interpreter at work calling functions and switching contexts and whatnot. Other than logic optimizations (e.g., only redrawing parts of the visualization that have changed), what can I do to optimize the CPU usage of my JavaScript? I'm willing to sacrifice some amount of readability and extensibility for performance. Is there a big list I'm missing because my Google skills suck? I have some ideas but I'm not sure if they're worth it: Limit function calls When possible, use arrays instead of objects and properties Use variables for math operation results as much as possible Cache common math operations such as Math.PI / 180 Use sin and cos approximation functions instead of Math.sin() and Math.cos() Reuse objects when passing around data instead of creating new ones Replace Math.abs() with ~~ Study jsperf.com until my eyes bleed Use a preprocessor on my JavaScript to do some of the above operations

    Read the article

  • file names based on file content

    - by Mark
    So iow, some algorithm to generate a unique, reasonable length filename based on binary file content. Two files that have the same binary content should have the same name. Obviously there would be limits to this, as presumably you couldn't have unique reasonable length filenames for each of a large set of large files only differing at a handful of bit positions. But presumably there is some heuristic, best approximation to this that for example exploits known attributes of typical image files. If I had the name of some algorithm that does this I can google it and find other approaches as well.

    Read the article

  • Abort early in a fold

    - by Heptic
    What's the best way to terminate a fold early? As a simplified example, imagine I want to sum up the numbers in an Iterable, but if I encounter something I'm not expecting (say an odd number) I might want to terminate. This is a first approximation def sumEvenNumbers(nums: Iterable[Int]): Option[Int] = { nums.foldLeft (Some(0): Option[Int]) { case (None, _) => None case (Some(s), n) if n % 2 == 0 => Some(s + n) case (Some(_), _) => None } } However, this solution is pretty ugly (as in, if I did a .foreach and a return -- it'd be much cleaner and clearer) and worst of all, it traverses the entire iterable even if it encounters a non-even number. So what would be the best way to write a fold like this, that terminates early? Should I just go and write this recursively, or is there a more accepted way?

    Read the article

  • How to do geometric projection shadows?

    - by John Murdoch
    I have decided that since my game world is mostly flat I don't need better shadows than geometric projections - at least for now. The only problem is I don't even know how to do those properly - that is to produce a 4x4 matrix which would render shadows for my objects (that is, I guess, project them on a horizontal XZ plane). I would like a light source at infinity (e.g., the sun at some point in the sky) and thus parallel projection. My current code does something that looks almost right for small flying objects, but actually is a very rude approximation, as it doesn't project the objects onto the ground, but simply moves them there (I think). Also it always wrongly assumes the sun is always on the zenith (projecting straight down). Gdx.gl20.glEnable(GL10.GL_BLEND); Gdx.gl20.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA); //shells shellTexture.bind(); shader.begin(); for (ShellState state : shellStates.values()) { transform.set(camera.combined); transform.mul(state.transform); shader.setUniformMatrix("u_worldView", transform); shader.setUniformi("u_texture", 0); shellMesh.render(shader, GL10.GL_TRIANGLES); } shader.end(); // shadows shader.begin(); for (ShellState state : shellStates.values()) { transform.set(camera.combined); m4.set(state.transform); state.transform.getTranslation(v3); m4.translate(0, -v3.y + 0.5f, 0); // TODO HACK: + 0.5f is a hack to ensure the shadow appears above the ground; this is overall a hack as we are just moving the shell to the surface instead of projecting it on the surface! transform.mul(m4); shader.setUniformMatrix("u_worldView", transform); shader.setUniformi("u_texture", 0); // TODO: make shadow black somehow shellMesh.render(shader, GL10.GL_TRIANGLES); } shader.end(); Gdx.gl.glDisable(GL10.GL_BLEND); So my questions are: a) What is the proper way to produce a Matrix4 to pass to openGL which would render the shadows for my objects? b) I am supposed to use another fragment shader for the shadows which would paint them in semi-transparent grey, correct? c) The limitation of this simplistic approach is that whenever there is some object on the ground (it is not flat) the shadows will not be drawn, correct? d) Do I need to add something very small to the y (up) coordinate to avoid z-fighting with ground textures? Or is the fact they will be semi-transparent enough to resolve that problem?

    Read the article

  • Count unique visitors by group of visited places

    - by Mathieu
    I'm facing the problem of counting the unique visitors of groups of places. Here is the situation: I have visitors that can visit places. For example, that can be internet users visiting web pages, or customers going to restaurants. A visitor can visit as much places as he wishes, and a place can be visited by several visitors. A visitor can come to the same place several times. The places belong to groups. A group can obviously contain several places, and places can belong to several groups. Given that, for each visitor, we can have a list of visited places, how can I have the number of unique visitors per group of places? Example: I have visitors A, B, C and D; and I have places x, y and z. I have these visiting lists: [ A -> [x,x,y,x], B -> [], C -> [z,z], D -> [y,x,x,z] ] Having these number of unique visitors per place is quite easy: [ x -> 2, // A and D visited x y -> 2, // A and D visited y z -> 2 // C and D visited z ] But if I have these groups: [ G1 -> [x,y,z], G2 -> [x,z], G3 -> [x,y] ] How can I have this information? [ G1 -> 3, // A, C and D visited x or y or z G2 -> 3, // A, C and D visited x or z G3 -> 2 // A and D visited x or y ] Additional notes : There are so many places that it is not possible to store information about every possible group; It's not a problem if approximation are made. I don't need 100% precision. Having a fast algorithm that tells me that there were 12345 visits in a group instead of 12543 is better than a slow algorithm telling the exact number. Let's say there can be ~5% deviation. Is there an algorithm or class of algorithms that addresses this type of problem?

    Read the article

  • What's the best way to create a static utility class in python? Is using metaclasses code smell?

    - by rsimp
    Ok so I need to create a bunch of utility classes in python. Normally I would just use a simple module for this but I need to be able to inherit in order to share common code between them. The common code needs to reference the state of the module using it so simple imports wouldn't work well. I don't like singletons, and classes that use the classmethod decorator do not have proper support for python properties. One pattern I see used a lot is creating an internal python class prefixed with an underscore and creating a single instance which is then explicitly imported or set as the module itself. This is also used by fabric to create a common environment object (fabric.api.env). I've realized another way to accomplish this would be with metaclasses. For example: #util.py class MetaFooBase(type): @property def file_path(cls): raise NotImplementedError def inherited_method(cls): print cls.file_path #foo.py from util import * import env class MetaFoo(MetaFooBase): @property def file_path(cls): return env.base_path + "relative/path" def another_class_method(cls): pass class Foo(object): __metaclass__ = MetaFoo #client.py from foo import Foo file_path = Foo.file_path I like this approach better than the first pattern for a few reasons: First, instantiating Foo would be meaningless as it has no attributes or methods, which insures this class acts like a true single interface utility, unlike the first pattern which relies on the underscore convention to dissuade client code from creating more instances of the internal class. Second, sub-classing MetaFoo in a different module wouldn't be as awkward because I wouldn't be importing a class with an underscore which is inherently going against its private naming convention. Third, this seems to be the closest approximation to a static class that exists in python, as all the meta code applies only to the class and not to its instances. This is shown by the common convention of using cls instead of self in the class methods. As well, the base class inherits from type instead of object which would prevent users from trying to use it as a base for other non-static classes. It's implementation as a static class is also apparent when using it by the naming convention Foo, as opposed to foo, which denotes a static class method is being used. As much as I think this is a good fit, I feel that others might feel its not pythonic because its not a sanctioned use for metaclasses which should be avoided 99% of the time. I also find most python devs tend to shy away from metaclasses which might affect code reuse/maintainability. Is this code considered code smell in the python community? I ask because I'm creating a pypi package, and would like to do everything I can to increase adoption.

    Read the article

  • Incorrect results for frustum cull

    - by DeadMG
    Previously, I had a problem with my frustum culling producing too optimistic results- that is, including many objects that were not in the view volume. Now I have refactored that code and produced a cull that should be accurate to the actual frustum, instead of an axis-aligned box approximation. The problem is that now it never returns anything to be in the view volume. As the mathematical support library I'm using does not provide plane support functions, I had to code much of this functionality myself, and I'm not really the mathematical type, so it's likely that I've made some silly error somewhere. As follows is the relevant code: class Plane { public: Plane() { r0 = Math::Vector(0,0,0); normal = Math::Vector(0,1,0); } Plane(Math::Vector p1, Math::Vector p2, Math::Vector p3) { r0 = p1; normal = Math::Cross((p2 - p1), (p3 - p1)); } Math::Vector r0; Math::Vector normal; }; This class represents one plane as a point and a normal vector. class Frustum { public: Frustum( const std::array<Math::Vector, 8>& points ) { planes[0] = Plane(points[0], points[1], points[2]); planes[1] = Plane(points[4], points[5], points[6]); planes[2] = Plane(points[0], points[1], points[4]); planes[3] = Plane(points[2], points[3], points[6]); planes[4] = Plane(points[0], points[2], points[4]); planes[5] = Plane(points[1], points[3], points[5]); } Plane planes[6]; }; The points are passed in order where (the inverse of) each bit of the index of each point indicates whether it's the left, top, and back of the frustum, respectively. As such, I just picked any three points where they all shared one bit in common to define the planes. My intersection test is as follows (based on this): bool Intersects(Math::AABB lhs, const Frustum& rhs) const { for(int i = 0; i < 6; i++) { Math::Vector pvertex = lhs.TopRightFurthest; Math::Vector nvertex = lhs.BottomLeftClosest; if (rhs.planes[i].normal.x <= -0.0f) { std::swap(pvertex.x, nvertex.x); } if (rhs.planes[i].normal.y <= -0.0f) { std::swap(pvertex.y, nvertex.y); } if (rhs.planes[i].normal.z <= -0.0f) { std::swap(pvertex.z, nvertex.z); } if (Math::Dot(rhs.planes[i].r0, nvertex) < 0.0f) { return false; } } return true; } Also of note is that because I'm using a left-handed co-ordinate system, I wrote my Cross function to return the negative of the formula given on Wikipedia. Any suggestions as to where I've made a mistake?

    Read the article

  • Maximizing the Value of Software

    - by David Dorf
    A few years ago we decided to increase our investments in documenting retail processes and architectures.  There were several goals but the main two were to help retailers maximize the value they derive from our software and help system integrators implement our software faster.  The sale is only part of our success metric -- its actually more important that the customer realize the benefits of the software.  That's when we actually celebrate. This week many of our customers are gathered in Chicago to discuss their successes during our annual Crosstalk conference.  That provides the perfect forum to announce the release of the Oracle Retail Reference Library.  The RRL is available for free to Oracle Retail customers and partners.  It contains 1000s of hours of work and represents years of experience in the retail industry.  The Retail Reference Library is composed of three offerings: Retail Reference Model We've been sharing the RRM for several years now, with lots of accolades.  The RRM is a set of business process diagrams at varying levels of granularity. This release marks the debut of Visio documents, which should make it easier for retailers to adopt and edit the diagrams.  The processes represent an approximation of the Oracle Retail software, but at higher levels they are pretty generic and therefore usable with other software as well.  Using these processes, the business and IT are better able to communicate the expectations of the software.  They can be used to guide customization when necessary, and help identify areas for optimization in the organization. Retail Reference Architecture When embarking on a software implementation project, it can be daunting to start from a blank sheet of paper.  So we offer the RRA, a comprehensive set of documents that describe the retail enterprise in terms of logical architecture, physical deployments, and systems integration.  These documents and diagrams describe how all the systems typically found in a retailer enterprise work together.  They serve as a way to jump-start implementations using best practices we've captured over the years. Retail Semantic Glossary Have you ever seen two people argue over something because they're using misaligned terminology?  Its a huge waste and happens all the time.  The Retail Semantic Glossary is a simple application that allows retailers to define terms and metrics in a centralized database.  This initial version comes with limited content with the goal of adding more over subsequent releases.  This is the single source for defining key performance indicators, metrics, algorithms, and terms so that the retail organization speaks in a consistent language. These three offerings are downloaded from MyOracleSupport separately and linked together using the start page above.  Everything is navigated using a Web browser.  See the Oracle Retail Documentation blog for more details.

    Read the article

  • How to get an ARM CPU clock speed in Linux?

    - by MiKy
    I have an ARM-based embedded machine based on S3C2416 board. According to the specifications I have available there should be a 533 MHz ARM9 (ARM926EJ-S according to /proc/cpuinfo), however the software running on it "feels" slow, compared to the same software on my Android phone with a 528MHz ARM CPU. /proc/cpuinfo tells me that BogoMIPS is 266.24. I know that I should not trust BogoMIPS regarding performance ("Bogo" = bogus), however I would like to get a measurement on the actual CPU speed. On x86, I could use the rdtsc instruction to get the time stamp counter, wait a second (sleep(1)), read the counter again to get an approximation on the CPU speed, and according to my experience, this value was close enough to the real CPU speed. How can I find the actual CPU speed of given ARM processor? Update I found this simple Pi calculator, which I compiled both for my Android phone and the ARM board. The results are as follows: S3C2416 # cat /proc/cpuinfo Processor : ARM926EJ-S rev 5 (v5l) BogoMIPS : 266.24 Features : swp half fastmult edsp java ... #./pi_arm 10000 Calculation of PI using FFT and AGM, ver. LG1.1.2-MP1.5.2a.memsave ... 8.50 sec. (real time) Android # cat /proc/cpuinfo Processor : ARMv6-compatible processor rev 2 (v6l) BogoMIPS : 527.56 Features : swp half thumb fastmult edsp java # ./pi_android 10000 Calculation of PI using FFT and AGM, ver. LG1.1.2-MP1.5.2a.memsave ... 5.95 sec. (real time) So it seems that the ARM926EJ-S is slower than my Android phone, but not twice slower as I would expect by the BogoMIPS figures. I am still unsure about the clock speed of the ARM9 CPU.

    Read the article

< Previous Page | 1 2 3 4 5  | Next Page >