Search Results

Search found 544 results on 22 pages for 'clustered'.

Page 5/22 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • SQL Server Add Primary Key

    - by Derek D.
    Adding a primary key can be done either after a table is created, or at the same a table is created. It is important to note, that by default a primary key is clustered. This may or may not be the preferred method of creation. For more information on clustered vs non [...]

    Read the article

  • SQL SERVER Disabled Index and UpdateStatistics

    When we try to update the statistics, it throws an error as if the clustered index is disabled. Now let us enable the clustered index only and attempt to update the statistics of the table right after that. Have you ever come across the situation where a conversation never gets over and it continues even [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Troubleshooting Application Timeouts in SQL Server

    - by Tara Kizer
    I recently received the following email from a blog reader: "We are having an OLTP database instance, using SQL Server 2005 with little to moderate traffic (10-20 requests/min). There are also bulk imports that occur at regular intervals in this DB and the import duration ranges between 10secs to 1 min, depending on the data size. Intermittently (2-3 times in a week), we face an issue, where queries get timed out (default of 30 secs set in application). On analyzing, we found two stored procedures, having queries with multiple table joins inside them of taking a long time (5-10 mins) in getting executed, when ideally the execution duration ranges between 5-10 secs. Execution plan of the same displayed Clustered Index Scan happening instead of Clustered Index Seek. All required Indexes are found to be present and Index fragmentation is also minimal as we Rebuild Indexes regularly alongwith Updating Statistics. With no other alternate options occuring to us, we restarted SQL server and thereafter the performance was back on track. But sometimes it was still giving timeout errors for some hits and so we also restarted IIS and that stopped the problem as of now." Rather than respond directly to the blog reader, I thought it would be more interesting to share my thoughts on this issue in a blog. There are a few things that I can think of that could cause abnormal timeouts: Blocking Bad plan in cache Outdated statistics Hardware bottleneck To determine if blocking is the issue, we can easily run sp_who/sp_who2 or a query directly on sysprocesses (select * from master..sysprocesses where blocking <> 0).  If blocking is present and consistent, then you'll need to determine whether or not to kill the parent blocking process.  Killing a process will cause the transaction to rollback, so you need to proceed with caution.  Killing the parent blocking process is only a temporary solution, so you'll need to do more thorough analysis to figure out why the blocking was present.  You should look into missing indexes and perhaps consider changing the database's isolation level to READ_COMMITTED_SNAPSHOT. The blog reader mentions that the execution plan shows a clustered index scan when a clustered index seek is normal for the stored procedure.  A clustered index scan might have been chosen either because that is what is in cache already or because of out of date statistics.  The blog reader mentions that bulk imports occur at regular intervals, so outdated statistics is definitely something that could cause this issue.  The blog reader may need to update statistics after imports are done if the imports are changing a lot of data (greater than 10%).  If the statistics are good, then the query optimizer might have chosen to scan rather than seek in a previous execution because the scan was determined to be less costly due to the value of an input parameter.  If this parameter value is rare, then its execution plan in cache is what we call a bad plan.  You want the best plan in cache for the most frequent parameter values.  If a bad plan is a recurring problem on your system, then you should consider rewriting the stored procedure.  You might want to break up the code into multiple stored procedures so that each can have a different execution plan in cache. To remove a bad plan from cache, you can recompile the stored procedure.  An alternative method is to run DBCC FREEPROCACHE which drops the procedure cache.  It is better to recompile stored procedures rather than dropping the procedure cache as dropping the procedure cache affects all plans in cache rather than just the ones that were bad, so there will be a temporary performance penalty until the plans are loaded into cache again. To determine if there is a hardware bottleneck occurring such as slow I/O or high CPU utilization, you will need to run Performance Monitor on the database server.  Hopefully you already have a baseline of the server so you know what is normal and what is not.  Be on the lookout for I/O requests taking longer than 12 milliseconds and CPU utilization over 90%.  The servers that I support typically are under 30% CPU utilization, but your baseline could be higher and be within a normal range. If restarting the SQL Server service fixes the problem, then the problem was most likely due to blocking or a bad plan in the procedure cache.  Rather than restarting the SQL Server service, which causes downtime, the blog reader should instead analyze the above mentioned things.  Proceed with caution when restarting the SQL Server service as all transactions that have not completed will be rolled back at startup.  This crash recovery process could take longer than normal if there was a long-running transaction running when the service was stopped.  Until the crash recovery process is completed on the database, it is unavailable to your applications. If restarting IIS fixes the problem, then the problem might not have been inside SQL Server.  Prior to taking this step, you should do analysis of the above mentioned things. If you can think of other reasons why the blog reader is facing this issue a few times a week, I'd love to hear your thoughts via a blog comment.

    Read the article

  • Joins in single-table queries

    - by Rob Farley
    Tables are only metadata. They don’t store data. I’ve written something about this before, but I want to take a viewpoint of this idea around the topic of joins, especially since it’s the topic for T-SQL Tuesday this month. Hosted this time by Sebastian Meine (@sqlity), who has a whole series on joins this month. Good for him – it’s a great topic. In that last post I discussed the fact that we write queries against tables, but that the engine turns it into a plan against indexes. My point wasn’t simply that a table is actually just a Clustered Index (or heap, which I consider just a special type of index), but that data access always happens against indexes – never tables – and we should be thinking about the indexes (specifically the non-clustered ones) when we write our queries. I described the scenario of looking up phone numbers, and how it never really occurs to us that there is a master list of phone numbers, because we think in terms of the useful non-clustered indexes that the phone companies provide us, but anyway – that’s not the point of this post. So a table is metadata. It stores information about the names of columns and their data types. Nullability, default values, constraints, triggers – these are all things that define the table, but the data isn’t stored in the table. The data that a table describes is stored in a heap or clustered index, but it goes further than this. All the useful data is going to live in non-clustered indexes. Remember this. It’s important. Stop thinking about tables, and start thinking about indexes. So let’s think about tables as indexes. This applies even in a world created by someone else, who doesn’t have the best indexes in mind for you. I’m sure you don’t need me to explain Covering Index bit – the fact that if you don’t have sufficient columns “included” in your index, your query plan will either have to do a Lookup, or else it’ll give up using your index and use one that does have everything it needs (even if that means scanning it). If you haven’t seen that before, drop me a line and I’ll run through it with you. Or go and read a post I did a long while ago about the maths involved in that decision. So – what I’m going to tell you is that a Lookup is a join. When I run SELECT CustomerID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 285; against the AdventureWorks2012 get the following plan: I’m sure you can see the join. Don’t look in the query, it’s not there. But you should be able to see the join in the plan. It’s an Inner Join, implemented by a Nested Loop. It’s pulling data in from the Index Seek, and joining that to the results of a Key Lookup. It clearly is – the QO wouldn’t call it that if it wasn’t really one. It behaves exactly like any other Nested Loop (Inner Join) operator, pulling rows from one side and putting a request in from the other. You wouldn’t have a problem accepting it as a join if the query were slightly different, such as SELECT sod.OrderQty FROM Sales.SalesOrderHeader AS soh JOIN Sales.SalesOrderDetail as sod on sod.SalesOrderID = soh.SalesOrderID WHERE soh.SalesPersonID = 285; Amazingly similar, of course. This one is an explicit join, the first example was just as much a join, even thought you didn’t actually ask for one. You need to consider this when you’re thinking about your queries. But it gets more interesting. Consider this query: SELECT SalesOrderID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 276 AND CustomerID = 29522; It doesn’t look like there’s a join here either, but look at the plan. That’s not some Lookup in action – that’s a proper Merge Join. The Query Optimizer has worked out that it can get the data it needs by looking in two separate indexes and then doing a Merge Join on the data that it gets. Both indexes used are ordered by the column that’s indexed (one on SalesPersonID, one on CustomerID), and then by the CIX key SalesOrderID. Just like when you seek in the phone book to Farley, the Farleys you have are ordered by FirstName, these seek operations return the data ordered by the next field. This order is SalesOrderID, even though you didn’t explicitly put that column in the index definition. The result is two datasets that are ordered by SalesOrderID, making them very mergeable. Another example is the simple query SELECT CustomerID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 276; This one prefers a Hash Match to a standard lookup even! This isn’t just ordinary index intersection, this is something else again! Just like before, we could imagine it better with two whole tables, but we shouldn’t try to distinguish between joining two tables and joining two indexes. The Query Optimizer can see (using basic maths) that it’s worth doing these particular operations using these two less-than-ideal indexes (because of course, the best indexese would be on both columns – a composite such as (SalesPersonID, CustomerID – and it would have the SalesOrderID column as part of it as the CIX key still). You need to think like this too. Not in terms of excusing single-column indexes like the ones in AdventureWorks2012, but in terms of having a picture about how you’d like your queries to run. If you start to think about what data you need, where it’s coming from, and how it’s going to be used, then you will almost certainly write better queries. …and yes, this would include when you’re dealing with regular joins across multiples, not just against joins within single table queries.

    Read the article

  • SQL SERVER – Identify Most Resource Intensive Queries – SQL in Sixty Seconds #029 – Video

    - by pinaldave
    There are a few questions I often get asked. I wonder how interesting is that in our daily life all of us have to often need the same kind of information at the same time. Here is the example of the similar questions: How many user created tables are there in the database? How many non clustered indexes each of the tables in the database have? Is table Heap or has clustered index on it? How many rows each of the tables is contained in the database? I finally wrote down a very quick script (in less than sixty seconds when I originally wrote it) which can answer above questions. I also created a very quick video to explain the results and how to execute the script. Here is the complete script which I have used in the SQL in Sixty Seconds Video. SELECT [schema_name] = s.name, table_name = o.name, MAX(i1.type_desc) ClusteredIndexorHeap, COUNT(i.TYPE) NoOfNonClusteredIndex, p.rows FROM sys.indexes i INNER JOIN sys.objects o ON i.[object_id] = o.[object_id] INNER JOIN sys.schemas s ON o.[schema_id] = s.[schema_id] LEFT JOIN sys.partitions p ON p.OBJECT_ID = o.OBJECT_ID AND p.index_id IN (0,1) LEFT JOIN sys.indexes i1 ON i.OBJECT_ID = i1.OBJECT_ID AND i1.TYPE IN (0,1) WHERE o.TYPE IN ('U') AND i.TYPE = 2 GROUP BY s.name, o.name, p.rows ORDER BY schema_name, table_name Related Tips in SQL in Sixty Seconds: Find Row Count in Table – Find Largest Table in Database Find Row Count in Table – Find Largest Table in Database – T-SQL Identify Numbers of Non Clustered Index on Tables for Entire Database Index Levels, Page Count, Record Count and DMV – sys.dm_db_index_physical_stats Index Levels and Delete Operations – Page Level Observation What would you like to see in the next SQL in Sixty Seconds video? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology, Video Tagged: Excel

    Read the article

  • Why is my query soooooo slow?

    - by geekrutherford
    A stored procedure used in our production environment recently became so slow it cause the calling web service to begin timing out. When running the stored procedure in Query Analyzer it took nearly 3 minutes to complete.   The stored procedure itself does little more than create a small bit of dynamic SQL which calls a view with a where clause at the end.   At first the thought was that the query used within the view needed to be optimized. The query is quite long and therefore easy to jump to this conclusion.   Fortunately, after bringing the issue to the attention of a coworker they asked "is there a where clause, and if so, is there an index on the column(s) in it?" I had no idea and quickly said as much. A quick check on the table/column utilized in the where clause indicated indeed there was no index.   Before adding the index, and after admitting I am no SQL wiz, I checked the internet for info on the difference between clustered and non-clustered indexes. I found the following site quite helpful OdeToCode. After adding the non-clustered index on the column, the query that used to take nearly 3 minutes now takes 10 seconds! Ah, if only I'd thought to do this ahead of time!

    Read the article

  • Query Performance Degrades with High Number of Logical Reads

    - by electricsk8
    I'm using Confio Ignite8 to derive this information, and monitor waits. I have one query that runs frequently, and I notice that on some days there is an extremely high number of logical reads incurred, +300,000,000 for 91,000 executions. On a good day, the logical reads are much lower, 18,000,000 for 94,000 executions. The execution plan for the query utilizes clustered index seeks, and is below. StmtText |--Nested Loops(Inner Join, OUTER REFERENCES:([f].[ParentId])) |--Clustered Index Seek(OBJECT:([StructuredFN].[dbo].[Folder].[PK_Folders] AS [f]), SEEK:([f].[FolderId]=(8125)), WHERE:([StructuredFN].[dbo].[Folder].[DealId] as [f].[DealId]=(300)) ORDERED FORWARD) |--Clustered Index Seek(OBJECT:([StructuredFN].[dbo].[Folder].[PK_Folders] AS [p]), SEEK:([p].[FolderId]=[StructuredFN].[dbo].[Folder].[ParentId] as [f].[ParentId]), WHERE:([StructuredFN].[dbo].[Folder].[DealId] as [p].[DealId]=(300)) ORDERED FORWARD) Output from showstatistics io ... Table 'Folder'. Scan count 0, logical reads 4, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Any ideas on how to troubleshoot where these high logical reads come from on certain days, and others nothing?

    Read the article

  • Reportviewer stored procedure [closed]

    - by Liesl
    I want to write a stored procedure for my invoice reportviewer. After invoice is generated in reportviewer it must also add the data to my Invoice table. This is all my tables in my database: CREATE TABLE [dbo].[Waybills]( [WaybillID] [int] IDENTITY(1,1) NOT NULL, [SenderName] [varchar](50) NULL, [SenderAddress] [varchar](50) NULL, [SenderContact] [int] NULL, [ReceiverName] [varchar](50) NULL, [ReceiverAddress] [varchar](50) NULL, [ReceiverContact] [int] NULL, [UnitDescription] [varchar](50) NULL, [UnitWeight] [int] NULL, [DateReceived] [date] NULL, [Payee] [varchar](50) NULL, [CustomerID] [int] NULL, PRIMARY KEY CLUSTERED CREATE TABLE [dbo].[Customer]( [CustomerID] [int] IDENTITY(1,1) NOT NULL, [customerName] [varchar](30) NULL, [CustomerAddress] [varchar](30) NULL, [CustomerContact] [varchar](30) NULL, [VatNo] [int] NULL, CONSTRAINT [PK_Customer] PRIMARY KEY CLUSTERED ) CREATE TABLE [dbo].[Cycle]( [CycleID] [int] IDENTITY(1,1) NOT NULL, [CycleNumber] [int] NULL, [StartDate] [date] NULL, [EndDate] [date] NULL ) ON [PRIMARY] CREATE TABLE [dbo].[Payments]( [PaymentID] [int] IDENTITY(1,1) NOT NULL, [Amount] [money] NULL, [PaymentDate] [date] NULL, [CustomerID] [int] NULL, PRIMARY KEY CLUSTERED Create table Invoices ( InvoiceID int IDENTITY(1,1), InvoiceNumber int, InvoiceDate date, BalanceBroughtForward money, OutstandingAmount money, CustomerID int, WaybillID int, PaymentID int, CycleID int PRIMARY KEY (InvoiceID), FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID), FOREIGN KEY (WaybillID) REFERENCES Waybills(WaybillID), FOREIGN KEY (PaymentID) REFERENCES Payments(PaymentID), FOREIGN KEY (CycleID) REFERENCES Cycle(CycleID) ) I want my sp to find all waybills for specific customer in a specific cycle with payments made from this client. All this data must then be added into the INVOICE table. Can someone please help me or show me on the right direction? create proc GenerateInvoice @StartDate date, @EndDate date, @Payee varchar(30) AS SELECT Waybills.WaybillNumber Waybills.SenderName, Waybills.SenderAddress, Waybills.SenderContact, Waybills.ReceiverName, Waybills.ReceiverAddress, Waybills.ReceiverContact, Waybills.UnitDescription, Waybills.UnitWeight, Waybills.DateReceived, Waybills.Payee, Payments.Amount, Payments.PaymentDate, Cycle.CycleNumber, Cycle.StartDate, Cycle.EndDate FROM Waybills CROSS JOIN Payments CROSS JOIN Cycle WHERE Waybills.ReceiverName = @Payee AND (Waybills.DateReceived BETWEEN (@StartDate) AND (@EndDate)) Insert Into Invoices (InvoiceNumber, InvoiceDate, BalanceBroughtForward, OutstandingAmount) Values (@InvoiceNumber, @InvoiceDate, @BalanceBroughtForward, @ OutstandingAmount) go

    Read the article

  • Just a few questions about Hyper-V virtual machines and clustering

    - by René Kåbis
    I have been using Microsoft’s Hyper-V technology for a little while now, but I am just now dipping my toe into clustering. In particular, I am trying to implement a fault-tolerant SQL DB. This involves setting up two VMs, clustering them via Failover Cluster, and then installing SQL Server in some fashion. I have two physical machines - one high-end and rather beefy “heavy lifter” to contain the majority of the VMs, and another “backup” (a repurposed desktop) to hold the essential “secondary” (or failover) AD-DC, SQL and FS VMs. The main reason why I find the failover cluster at the VM level so attractive is that it presents a single IP and DNS entry to the network as a whole - if one machine (physical or virtual) goes down, you might loose some ping and the connections get reset, but the network applications (Microsoft RMS connection to backend SQL) can still connect to a viable DB without having to mess around with the settings at all. My first question is in terms of SQL Server itself. If I have a cluster between two VMs, does it make more sense to install the SQL Server in Failover Cluster configuration or should I simply install it in a stand-alone config and mirror the DBs? For example, this post suggests just mirroring the DBs, but do I just mirror standalone DBs on standalone VMs, or can I get the network and failover benefits of clustered VMs while still utilizing (on each clustered VM) standalone DBs that have been mirrored between each other? As well, I have come across a lot of documentation about SQL clustering, but most assume a number (#2) of physical machines to hold not only the actual SQL VMs but also the Quorum and Witness stores. I will not be able to muster more than two physical machines. As such, I will have to be satisfied with a VM cluster that does not exceed two VMs (one for each physical machine). Another issue involves MSDTC - the Distributed Transaction Coordinator. When attempting to install the SQL Failover Cluster (I never completed it for this reason) it threw a hissy fit because MSDTC had not been clustered. Search as I might, I have not yet found a way to do so under Windows Server 2012 R2. I have found plenty of docs for Windows 2008 and 2008 R2, but these instructions don’t align with 2012 R2 (at least, not in a way that allows me to successfully cluster MSDTC). Plus, some of the instructions that I have found for SQL Server Failover Cluster installation suggest that a third “network device” - shared network storage (a SAN) - is required for the DB itself (and other functionality). I do not have this, and won’t be getting this. Most of my storage exists on the “heavy lifter” that was designed for all of the “primary” VMs. If that physical machine goes down, so does the storage. The secondary server does have enough resources for an AD-DC Server, an SQL server and a File Server, so it will handle the “secondary” failover versions of those VMs (clustered or not). My final question involves file servers. If I cluster file servers between two VMs (one on my “heavy lifter” and another on my “backup”, how do I mirror the data between them? Clustering VMs only provides a single point of access on the network for a resource, it doesn’t exactly replicate data between the two - that is left to the services that serve up that data. I am unsure how I can ensure that file server data between two clustered file server VMs can be properly mirrored. Remember, I only have two devices to be used here - my primary machine and a backup secondary. There is no chance of me obtaining a SAN or any other type of network attached storage. What exists on the machines must act as the storage. Thanks in advance for any suggestions.

    Read the article

  • SQL SERVER – How to Ignore Columnstore Index Usage in Query

    - by pinaldave
    Earlier I wrote about SQL SERVER – Fundamentals of Columnstore Index and very first question I received in email was as following. “We are using SQL Server 2012 CTP3 and so far so good. In our data warehouse solution we have created 1 non-clustered columnstore index on our large fact table. We have very unique situation but your article did not cover it. We are running few queries on our fact table which is working very efficiently but there is one query which earlier was running very fine but after creating this non-clustered columnstore index this query is running very slow. We dropped the columnstore index and suddenly this one query is running fast but other queries which were benefited by this columnstore index it is running slow. Any workaround in this situation?” In summary the question in simple words “How can we ignore using columnstore index in selective queries?” Very interesting question – you can use I can understand there may be the cases when columnstore index is not ideal and needs to be ignored the same. You can use the query hint IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX to ignore the columnstore index. SQL Server Engine will use any other index which is best after ignoring the columnstore index. Here is the quick script to prove the same. We will first create sample database and then create columnstore index on the same. Once columnstore index is created we will write simple query. This query will use columnstore index. We will then show the usage of the query hint. USE AdventureWorks GO -- Create New Table CREATE TABLE [dbo].[MySalesOrderDetail]( [SalesOrderID] [int] NOT NULL, [SalesOrderDetailID] [int] NOT NULL, [CarrierTrackingNumber] [nvarchar](25) NULL, [OrderQty] [smallint] NOT NULL, [ProductID] [int] NOT NULL, [SpecialOfferID] [int] NOT NULL, [UnitPrice] [money] NOT NULL, [UnitPriceDiscount] [money] NOT NULL, [LineTotal] [numeric](38, 6) NOT NULL, [rowguid] [uniqueidentifier] NOT NULL, [ModifiedDate] [datetime] NOT NULL ) ON [PRIMARY] GO -- Create clustered index CREATE CLUSTERED INDEX [CL_MySalesOrderDetail] ON [dbo].[MySalesOrderDetail] ( [SalesOrderDetailID]) GO -- Create Sample Data Table -- WARNING: This Query may run upto 2-10 minutes based on your systems resources INSERT INTO [dbo].[MySalesOrderDetail] SELECT S1.* FROM Sales.SalesOrderDetail S1 GO 100 -- Create ColumnStore Index CREATE NONCLUSTERED COLUMNSTORE INDEX [IX_MySalesOrderDetail_ColumnStore] ON [MySalesOrderDetail] (UnitPrice, OrderQty, ProductID) GO Now we have created columnstore index so if we run following query it will use for sure the same index. -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO We can specify Query Hint IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX as described in following query and it will not use columnstore index. -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID OPTION (IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX) GO Let us clean up the database. -- Cleanup DROP INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] GO TRUNCATE TABLE dbo.MySalesOrderDetail GO DROP TABLE dbo.MySalesOrderDetail GO Again, make sure that you use hint sparingly and understanding the proper implication of the same. Make sure that you test it with and without hint and select the best option after review of your administrator. Here is the question for you – have you started to use SQL Server 2012 for your validation and development (not on production)? It will be interesting to know the answer. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Rebuilding indexes does not change the fragmentation % for nonclustered indexes.

    - by Noddy
    For starters, I am no DBA and I am working on rebuilding the indexes. I made use of the amazing TSQL script from msdn to alter index based onthe fragmente percent returned by dm_db_index_physical_stats and if the fragment percent is more than 30 then do a REBUILD or do a REORGANISE. What I found out was, in the first iteration, there were 87 records which needed defrag.I ran the script and all the 87 indexes (clustered & nonclustered) were rebuilt or reindexed. When I got the stats from dm_db_index_physical_stats , there were still 27 records which needed defrag and all of theses were NON CLUSTERED Indexes. All the Clustered indexes were fixed. No matter how many times I run the script to defrag these records, I still have the same indexes to be defraged and most of them with the same fragmentation %. Nothing seems to change after this. Note: I did not perform any inserts/ updates/ deletes to the tables during these iterations. Still the Rebuild/reorganise did not result in any change. More information: Using SQL 2008 Script as available in msdn http://msdn.microsoft.com/en-us/library/ms188917.aspx Could you please explain why these 27 records of non clustered indexes are not being changed/ modified ? Any help on this would be highly appreciated. Nod

    Read the article

  • Tomcat - Spring Framework - MySQL, Load balancing design

    - by Mat Banik
    Lets say I have Spring Framework App that is running on Tomcat and uses MySQL database: What would be the best solution in this instance that would allow for sociability (price/performance/integration time)? More precisely: What would be on the Web Load balancer box, and who should be the tomcat web server clustered? What would be on the Database Load balancer box and how should be the database servers clustered? And if at all possible specific technical integration links would be of great help.

    Read the article

  • Webmin Cluster Copy Protocol

    - by hozza
    Just toying with a clustered server farm for fun (as you do) and experimenting with Webmin and its 'clustered' modules. It has a feature that can copy files from one server to another on a repeating basis. Does this feature/module use cron jobs and what protocol does it use to copy the files? I have searched all about the net and yet I cannot find any decent documentation on webmin or its features. Is it just poorly documented or am I missing something?

    Read the article

  • How to do client side NFS failover in Linux?

    - by Doug
    I have a CentOS 6.3 client that needs to access NFS storage. There are two NFS servers that serve up the same content stored on a SAN with a clustered filesystem. How do I set up CentOS to failover to the backup NFS server if needed? When I Google, I keep reading that Linux does not support this, but that would be strange since there is plenty of information out there on how to set up a clustered Linux NFS server farm...

    Read the article

  • EF4 generates invalid script

    - by Jaxidian
    When I right-click in a .EDMX file and click Generate Database From Model, the resulting script is obviously wrong because of the table names. What it generates is the following script. Note the table names in the DROP TABLE part versus the CREATE TABLE part. Why is this inconsistent? This is obviously not a reusable script. What I created was an Entity named "Address" and an Entity named "Company", etc (all singular). The EntitySet names are pluralized. The "Pluralize New Objects" boolean does not change this either. So what's the deal? For what it's worth, I originally generated the EDMX by pointing it to a database that had tables with non-pluralized names and now that I've made some changes, I want to go back the other way. I'd like to have the option to go back and forth as neither the db-first nor the model-first model is ideal in all scenarios, and I have the control to ensure that there will be no merging issues from multiple people going both ways at the same time. -- -------------------------------------------------- -- Dropping existing FOREIGN KEY constraints -- NOTE: if the constraint does not exist, an ignorable error will be reported. -- -------------------------------------------------- ALTER TABLE [Address] DROP CONSTRAINT [FK_Address_StateID-State_ID]; GO ALTER TABLE [Company] DROP CONSTRAINT [FK_Company_AddressID-Address_ID]; GO ALTER TABLE [Employee] DROP CONSTRAINT [FK_Employee_BossEmployeeID-Employee_ID]; GO ALTER TABLE [Employee] DROP CONSTRAINT [FK_Employee_CompanyID-Company_ID]; GO ALTER TABLE [Employee] DROP CONSTRAINT [FK_Employee_PersonID-Person_ID]; GO ALTER TABLE [Person] DROP CONSTRAINT [FK_Person_AddressID-Address_ID]; GO -- -------------------------------------------------- -- Dropping existing tables -- NOTE: if the table does not exist, an ignorable error will be reported. -- -------------------------------------------------- DROP TABLE [Address]; GO DROP TABLE [Company]; GO DROP TABLE [Employee]; GO DROP TABLE [Person]; GO DROP TABLE [State]; GO -- -------------------------------------------------- -- Creating all tables -- -------------------------------------------------- -- Creating table 'Addresses' CREATE TABLE [Addresses] ( [ID] int IDENTITY(1,1) NOT NULL, [StreetAddress] nvarchar(100) NOT NULL, [City] nvarchar(100) NOT NULL, [StateID] int NOT NULL, [Zip] nvarchar(10) NOT NULL ); GO -- Creating table 'Companies' CREATE TABLE [Companies] ( [ID] int IDENTITY(1,1) NOT NULL, [Name] nvarchar(100) NOT NULL, [AddressID] int NOT NULL ); GO -- Creating table 'People' CREATE TABLE [People] ( [ID] int IDENTITY(1,1) NOT NULL, [FirstName] nvarchar(100) NOT NULL, [LastName] nvarchar(100) NOT NULL, [AddressID] int NOT NULL ); GO -- Creating table 'States' CREATE TABLE [States] ( [ID] int IDENTITY(1,1) NOT NULL, [Name] nvarchar(100) NOT NULL, [Abbreviation] nvarchar(2) NOT NULL ); GO -- Creating table 'Employees' CREATE TABLE [Employees] ( [ID] int IDENTITY(1,1) NOT NULL, [PersonID] int NOT NULL, [CompanyID] int NOT NULL, [Position] nvarchar(100) NOT NULL, [BossEmployeeID] int NULL ); GO -- -------------------------------------------------- -- Creating all PRIMARY KEY constraints -- -------------------------------------------------- -- Creating primary key on [ID] in table 'Addresses' ALTER TABLE [Addresses] ADD CONSTRAINT [PK_Addresses] PRIMARY KEY ([ID] ); GO -- Creating primary key on [ID] in table 'Companies' ALTER TABLE [Companies] ADD CONSTRAINT [PK_Companies] PRIMARY KEY ([ID] ); GO -- Creating primary key on [ID] in table 'People' ALTER TABLE [People] ADD CONSTRAINT [PK_People] PRIMARY KEY ([ID] ); GO -- Creating primary key on [ID] in table 'States' ALTER TABLE [States] ADD CONSTRAINT [PK_States] PRIMARY KEY ([ID] ); GO -- Creating primary key on [ID] in table 'Employees' ALTER TABLE [Employees] ADD CONSTRAINT [PK_Employees] PRIMARY KEY ([ID] ); GO -- -------------------------------------------------- -- Creating all FOREIGN KEY constraints -- -------------------------------------------------- -- Creating foreign key on [StateID] in table 'Addresses' ALTER TABLE [Addresses] ADD CONSTRAINT [FK_Address_StateID_State_ID] FOREIGN KEY ([StateID]) REFERENCES [States] ([ID]) ON DELETE NO ACTION ON UPDATE NO ACTION; -- Creating non-clustered index for FOREIGN KEY 'FK_Address_StateID_State_ID' CREATE INDEX [IX_FK_Address_StateID_State_ID] ON [Addresses] ([StateID]); GO -- Creating foreign key on [AddressID] in table 'Companies' ALTER TABLE [Companies] ADD CONSTRAINT [FK_Company_AddressID_Address_ID] FOREIGN KEY ([AddressID]) REFERENCES [Addresses] ([ID]) ON DELETE NO ACTION ON UPDATE NO ACTION; -- Creating non-clustered index for FOREIGN KEY 'FK_Company_AddressID_Address_ID' CREATE INDEX [IX_FK_Company_AddressID_Address_ID] ON [Companies] ([AddressID]); GO -- Creating foreign key on [AddressID] in table 'People' ALTER TABLE [People] ADD CONSTRAINT [FK_Person_AddressID_Address_ID] FOREIGN KEY ([AddressID]) REFERENCES [Addresses] ([ID]) ON DELETE NO ACTION ON UPDATE NO ACTION; -- Creating non-clustered index for FOREIGN KEY 'FK_Person_AddressID_Address_ID' CREATE INDEX [IX_FK_Person_AddressID_Address_ID] ON [People] ([AddressID]); GO -- Creating foreign key on [CompanyID] in table 'Employees' ALTER TABLE [Employees] ADD CONSTRAINT [FK_Employee_CompanyID_Company_ID] FOREIGN KEY ([CompanyID]) REFERENCES [Companies] ([ID]) ON DELETE NO ACTION ON UPDATE NO ACTION; -- Creating non-clustered index for FOREIGN KEY 'FK_Employee_CompanyID_Company_ID' CREATE INDEX [IX_FK_Employee_CompanyID_Company_ID] ON [Employees] ([CompanyID]); GO -- Creating foreign key on [BossEmployeeID] in table 'Employees' ALTER TABLE [Employees] ADD CONSTRAINT [FK_Employee_BossEmployeeID_Employee_ID] FOREIGN KEY ([BossEmployeeID]) REFERENCES [Employees] ([ID]) ON DELETE NO ACTION ON UPDATE NO ACTION; -- Creating non-clustered index for FOREIGN KEY 'FK_Employee_BossEmployeeID_Employee_ID' CREATE INDEX [IX_FK_Employee_BossEmployeeID_Employee_ID] ON [Employees] ([BossEmployeeID]); GO -- Creating foreign key on [PersonID] in table 'Employees' ALTER TABLE [Employees] ADD CONSTRAINT [FK_Employee_PersonID_Person_ID] FOREIGN KEY ([PersonID]) REFERENCES [People] ([ID]) ON DELETE NO ACTION ON UPDATE NO ACTION; -- Creating non-clustered index for FOREIGN KEY 'FK_Employee_PersonID_Person_ID' CREATE INDEX [IX_FK_Employee_PersonID_Person_ID] ON [Employees] ([PersonID]); GO -- -------------------------------------------------- -- Script has ended -- --------------------------------------------------

    Read the article

  • Sql server indexed view

    - by Jose
    OK, I'm confused about sql server indexed views(using 2008) I've got an indexed view called AssignmentDetail when I look at the execution plan for select * from AssignmentDetail it shows the execution plan of all the underlying indexes of all the other tables that the indexed view is supposed to abstract away. I would think that the execution plan woul simply be an clustered index scan of PK_AssignmentDetail(the name of the clustered index for my view) but it doesn't. There seems to be no performance gain with this indexed view what am I supposed to do? Should I also create a non-clustered index with all of the columns so that it doesn't have to hit all the other indexes? Any insight would be greatly appreciated

    Read the article

  • Data Access from single table in sql server 2005 is too slow

    - by Muhammad Kashif Nadeem
    Following is the script of table. Accessing data from this table is too slow. SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO CREATE TABLE [dbo].[Emails]( [id] [int] IDENTITY(1,1) NOT NULL, [datecreated] [datetime] NULL CONSTRAINT [DF_Emails_datecreated] DEFAULT (getdate()), [UID] [nvarchar](250) COLLATE Latin1_General_CI_AS NULL, [From] [nvarchar](100) COLLATE Latin1_General_CI_AS NULL, [To] [nvarchar](100) COLLATE Latin1_General_CI_AS NULL, [Subject] [nvarchar](max) COLLATE Latin1_General_CI_AS NULL, [Body] [nvarchar](max) COLLATE Latin1_General_CI_AS NULL, [HTML] [nvarchar](max) COLLATE Latin1_General_CI_AS NULL, [AttachmentCount] [int] NULL, [Dated] [datetime] NULL ) ON [PRIMARY] Following query takes 50 seconds to fetch data. select id, datecreated, UID, [From], [To], Subject, AttachmentCount, Dated from emails If I include Body and Html in select then time is event worse. indexes are on: id unique clustered From Non unique non clustered To Non unique non clustered Tabls has currently 180000+ records. There might be 100,000 records each month so this will become more slow as time will pass. Does splitting data into two table will solve the problem? What other indexes should be there?

    Read the article

  • Slow query with unexpected scan

    - by zerkms
    Hello I have this query: SELECT * FROM SAMPLE SAMPLE INNER JOIN TEST TEST ON SAMPLE.SAMPLE_NUMBER = TEST.SAMPLE_NUMBER INNER JOIN RESULT RESULT ON TEST.TEST_NUMBER = RESULT . TEST_NUMBER WHERE SAMPLED_DATE BETWEEN '2010-03-17 09:00' AND '2010-03-17 12:00' the biggest table here is RESULT, contains 11.1M records. The left 2 tables about 1M. this query works slowly (more than 10 minutes) and returns about 800 records. executing plan shows clustered index scan over all 11M records. RESULT.TEST_NUMBER is a clustered primary key. if I change 2010-03-17 09:00 to 2010-03-17 10:00 - i get about 40 records. it executes for 300ms. and plan shows clustered index seek if i replace * in SELECT clause to RESULT.TEST_NUMBER (covered with index) - then all become fast in first case too. this points to hdd io issues, but doesn't clarifies changing plan. so, any ideas?

    Read the article

  • foreign key and index issue

    - by George2
    Hello everyone, I am using SQL Server 2008 Enterprise. I have a table and one of its column is referring to another column in another table (in the same database) as foreign key, here is the related SQL statement, in more details, column [AnotherID] in table [Foo] refers to another table [Goo]'s column [GID] as foreign key. [GID] is primary key and clustered index on table [Goo]. My question is, in this way, if I do not create index on [AnotherID] column on [Foo] explicitly, will there be an index created automatically for [AnotherID] column on [Foo] -- because its foreign key reference column [GID] on table [Goo] already has primary clustered key index? CREATE TABLE [dbo].[Foo]( [ID] [bigint] IDENTITY(1,1) NOT NULL, [AnotherID] [int] NULL, [InsertTime] [datetime] NULL CONSTRAINT DEFAULT (getdate()), CONSTRAINT [PK_Foo] PRIMARY KEY CLUSTERED ( [ID] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] ) ON [PRIMARY] ALTER TABLE [dbo].[Foo] WITH CHECK ADD CONSTRAINT [FK_Foo] FOREIGN KEY([Goo]) REFERENCES [dbo].[Goo] ([GID]) ALTER TABLE [dbo].[Foo] CHECK CONSTRAINT [FK_Foo] thanks in advance, George

    Read the article

  • Index View Index Creation Failing

    - by aBetterGamer
    I'm trying to create an index on a view and it keeps failing, I'm pretty sure its b/c I'm using an alias for the column. Not sure how or if I can do it this way. Below is a simplified scenario. CREATE VIEW v_contracts WITH SCHEMABINDING AS SELECT t1.contractid as 'Contract.ContractID' t2.name as 'Customer.Name' FROM contract t1 JOIN customer t2 ON t1.contractid = t2.contractid GO CREATE UNIQUE CLUSTERED INDEX v_contracts_idx ON v_contracts(t1.contractid) GO --------------------------- Incorrect syntax near '.'. CREATE UNIQUE CLUSTERED INDEX v_contracts_idx ON v_contracts(contractid) GO --------------------------- Column name 'contractid' does not exist in the target table or view. CREATE UNIQUE CLUSTERED INDEX v_contracts_idx ON v_contracts(Contract.ContractID) GO --------------------------- Incorrect syntax near '.'. Anyone know how to create an indexed view using aliased columns please let me know.

    Read the article

  • Rejuvenated: Script Creates and Drops for Candidate Keys and Referencing Foreign Keys

    - by Adam Machanic
    Once upon a time it was 2004, and I wrote what I have to say was a pretty cool little script . (Yes, I know the post is dated 2006, but that's because I dropped the ball and failed to back-date the posts when I moved them over here from my prior blog space.) The impetus for creating this script was (and is) simple: Changing keys can be a painful experience. Sometimes you want to make a clustered key nonclustered, or a nonclustered key clustered. Or maybe you want to add a column to the key. Or remove...(read more)

    Read the article

  • SQL SERVER – Online Index Rebuilding Index Improvement in SQL Server 2012

    - by pinaldave
    Have you ever faced situation when you see something working and you feel it should not be working? Well, I had similar moments few days ago. I know that SQL Server 2008 supports online indexing. However, I also know that I cannot rebuild index ONLINE if I have used VARCHAR(MAX), NVARCHAR(MAX) or few other data types. While I held my belief very strongly I came across situation, where I had to go online and do little bit reading from Book Online. Here is the similar example. First of all – run following code in SQL Server 2008 or SQL Server 2008 R2. USE TempDB GO CREATE TABLE TestTable (ID INT, FirstCol NVARCHAR(10), SecondCol NVARCHAR(MAX)) GO CREATE CLUSTERED INDEX [IX_TestTable] ON TestTable (ID) GO CREATE NONCLUSTERED INDEX [IX_TestTable_Cols] ON TestTable (FirstCol) INCLUDE (SecondCol) GO USE [tempdb] GO ALTER INDEX [IX_TestTable_Cols] ON [dbo].[TestTable] REBUILD WITH (ONLINE = ON) GO DROP TABLE TestTable GO Now run the same code in SQL Server 2012 version. Observe the difference between both of the execution. You will be get following resultset. In SQL Server 2008/R2 it will throw following error: Msg 2725, Level 16, State 2, Line 1 An online operation cannot be performed for index ‘IX_TestTable_Cols’ because the index contains column ‘SecondCol’ of data type text, ntext, image, varchar(max), nvarchar(max), varbinary(max), xml, or large CLR type. For a non-clustered index, the column could be an include column of the index. For a clustered index, the column could be any column of the table. If DROP_EXISTING is used, the column could be part of a new or old index. The operation must be performed offline. In SQL Server 2012 it will run successfully and will not throw any error. Command(s) completed successfully. I always thought it will throw an error if there is VARCHAR(MAX) or NVARCHAR(MAX) used in table schema definition. When I saw this result it was clear to me that it will be for sure not bug enhancement in SQL Server 2012. For matter for the fact, I always wanted this feature to be added in SQL Server Engine as this will enable ONLINE Index Rebuilding for mission critical tables which needs to be always online. I quickly searched online and landed on Jacob Sebastian’s blog where he has blogged about it as well. Well, is there any other new feature in SQL Server 2012 which gave you good surprise? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Index, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • The Legend of the Filtered Index

    - by Johnm
    Once upon a time there was a big and bulky twenty-nine million row table. He tempestuously hoarded data like a maddened shopper amid a clearance sale. Despite his leviathan nature and eager appetite he loved to share his treasures. Multitudes from all around would embark upon an epiphanous journey to sample contents of his mythical purse of knowledge. After a long day of performing countless table scans the table was overcome with fatigue. After a short period of unavailability, he decided that he needed to consider a new way to share his prized possessions in a more efficient manner. Thus, a non-clustered index was born. She dutifully directed the pilgrims that sought the table's data - no longer would those despicable table scans darken the doorsteps of this quaint village. and yet, the table's veracious appetite did not wane. Any bit or byte that wondered near him was consumed with vigor. His columns and rows continued to expand beyond the expectations of even the most liberal estimation. As his rows grew grander they became more difficult to organize and maintain. The once bright and cheerful disposition of the non-clustered index began to dim. The wait time for those who sought the table's treasures began to increase. Some of those who came to nibble upon the banquet of knowledge even timed-out and never realized their aspired enlightenment. After a period of heart-wrenching introspection, the table decided to drop the index and attempt another solution. At the darkest hour of the table's desperation came a grand flash of light. As his eyes regained their vision there stood several creatures who looked very similar to his former, beloved, non-clustered index. They all spoke in unison as they introduced themselves: "Fear not, for we come to organize your data and direct those who seek to partake in it. We are the filtered index." Immediately, the filtered indexes began to scurry about. One took control of the past quarter's data. Another took control of the previous quarter's data. All of the remaining filtered indexes followed suit. As the nearly gluttonous habits of the table scaled forward more filtered indexes appeared. Regardless of the table's size, all of the eagerly awaiting data seekers were delivered data as quickly as a Jimmy John's sandwich. The table was moved to tears. All in the land of data rejoiced and all lived happily ever after, at least until the next data challenge crept from the fearsome cave of the unknown. The End.

    Read the article

  • Operator of the week - Assert

    - by Fabiano Amorim
    Well my friends, I was wondering how to help you in a practical way to understand execution plans. So I think I'll talk about the Showplan Operators. Showplan Operators are used by the Query Optimizer (QO) to build the query plan in order to perform a specified operation. A query plan will consist of many physical operators. The Query Optimizer uses a simple language that represents each physical operation by an operator, and each operator is represented in the graphical execution plan by an icon. I'll try to talk about one operator every week, but so as to avoid having to continue to write about these operators for years, I'll mention only of those that are more common: The first being the Assert. The Assert is used to verify a certain condition, it validates a Constraint on every row to ensure that the condition was met. If, for example, our DDL includes a check constraint which specifies only two valid values for a column, the Assert will, for every row, validate the value passed to the column to ensure that input is consistent with the check constraint. Assert  and Check Constraints: Let's see where the SQL Server uses that information in practice. Take the following T-SQL: IF OBJECT_ID('Tab1') IS NOT NULL   DROP TABLE Tab1 GO CREATE TABLE Tab1(ID Integer, Gender CHAR(1))  GO  ALTER TABLE TAB1 ADD CONSTRAINT ck_Gender_M_F CHECK(Gender IN('M','F'))  GO INSERT INTO Tab1(ID, Gender) VALUES(1,'X') GO To the command above the SQL Server has generated the following execution plan: As we can see, the execution plan uses the Assert operator to check that the inserted value doesn't violate the Check Constraint. In this specific case, the Assert applies the rule, 'if the value is different to "F" and different to "M" than return 0 otherwise returns NULL'. The Assert operator is programmed to show an error if the returned value is not NULL; in other words, the returned value is not a "M" or "F". Assert checking Foreign Keys Now let's take a look at an example where the Assert is used to validate a foreign key constraint. Suppose we have this  query: ALTER TABLE Tab1 ADD ID_Genders INT GO  IF OBJECT_ID('Tab2') IS NOT NULL   DROP TABLE Tab2 GO CREATE TABLE Tab2(ID Integer PRIMARY KEY, Gender CHAR(1))  GO  INSERT INTO Tab2(ID, Gender) VALUES(1, 'F') INSERT INTO Tab2(ID, Gender) VALUES(2, 'M') INSERT INTO Tab2(ID, Gender) VALUES(3, 'N') GO  ALTER TABLE Tab1 ADD CONSTRAINT fk_Tab2 FOREIGN KEY (ID_Genders) REFERENCES Tab2(ID) GO  INSERT INTO Tab1(ID, ID_Genders, Gender) VALUES(1, 4, 'X') Let's look at the text execution plan to see what these Assert operators were doing. To see the text execution plan just execute SET SHOWPLAN_TEXT ON before run the insert command. |--Assert(WHERE:(CASE WHEN NOT [Pass1008] AND [Expr1007] IS NULL THEN (0) ELSE NULL END))      |--Nested Loops(Left Semi Join, PASSTHRU:([Tab1].[ID_Genders] IS NULL), OUTER REFERENCES:([Tab1].[ID_Genders]), DEFINE:([Expr1007] = [PROBE VALUE]))           |--Assert(WHERE:(CASE WHEN [Tab1].[Gender]<>'F' AND [Tab1].[Gender]<>'M' THEN (0) ELSE NULL END))           |    |--Clustered Index Insert(OBJECT:([Tab1].[PK]), SET:([Tab1].[ID] = RaiseIfNullInsert([@1]),[Tab1].[ID_Genders] = [@2],[Tab1].[Gender] = [Expr1003]), DEFINE:([Expr1003]=CONVERT_IMPLICIT(char(1),[@3],0)))           |--Clustered Index Seek(OBJECT:([Tab2].[PK]), SEEK:([Tab2].[ID]=[Tab1].[ID_Genders]) ORDERED FORWARD) Here we can see the Assert operator twice, first (looking down to up in the text plan and the right to left in the graphical plan) validating the Check Constraint. The same concept showed above is used, if the exit value is "0" than keep running the query, but if NULL is returned shows an exception. The second Assert is validating the result of the Tab1 and Tab2 join. It is interesting to see the "[Expr1007] IS NULL". To understand that you need to know what this Expr1007 is, look at the Probe Value (green text) in the text plan and you will see that it is the result of the join. If the value passed to the INSERT at the column ID_Gender exists in the table Tab2, then that probe will return the join value; otherwise it will return NULL. So the Assert is checking the value of the search at the Tab2; if the value that is passed to the INSERT is not found  then Assert will show one exception. If the value passed to the column ID_Genders is NULL than the SQL can't show a exception, in that case it returns "0" and keeps running the query. If you run the INSERT above, the SQL will show an exception because of the "X" value, but if you change the "X" to "F" and run again, it will show an exception because of the value "4". If you change the value "4" to NULL, 1, 2 or 3 the insert will be executed without any error. Assert checking a SubQuery: The Assert operator is also used to check one subquery. As we know, one scalar subquery can't validly return more than one value: Sometimes, however, a  mistake happens, and a subquery attempts to return more than one value . Here the Assert comes into play by validating the condition that a scalar subquery returns just one value. Take the following query: INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1), 'F')    INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1), 'F')    |--Assert(WHERE:(CASE WHEN NOT [Pass1016] AND [Expr1015] IS NULL THEN (0) ELSE NULL END))        |--Nested Loops(Left Semi Join, PASSTHRU:([tempdb].[dbo].[Tab1].[ID_TipoSexo] IS NULL), OUTER REFERENCES:([tempdb].[dbo].[Tab1].[ID_TipoSexo]), DEFINE:([Expr1015] = [PROBE VALUE]))              |--Assert(WHERE:([Expr1017]))             |    |--Compute Scalar(DEFINE:([Expr1017]=CASE WHEN [tempdb].[dbo].[Tab1].[Sexo]<>'F' AND [tempdb].[dbo].[Tab1].[Sexo]<>'M' THEN (0) ELSE NULL END))              |         |--Clustered Index Insert(OBJECT:([tempdb].[dbo].[Tab1].[PK__Tab1__3214EC277097A3C8]), SET:([tempdb].[dbo].[Tab1].[ID_TipoSexo] = [Expr1008],[tempdb].[dbo].[Tab1].[Sexo] = [Expr1009],[tempdb].[dbo].[Tab1].[ID] = [Expr1003]))              |              |--Top(TOP EXPRESSION:((1)))              |                   |--Compute Scalar(DEFINE:([Expr1008]=[Expr1014], [Expr1009]='F'))              |                        |--Nested Loops(Left Outer Join)              |                             |--Compute Scalar(DEFINE:([Expr1003]=getidentity((1856985942),(2),NULL)))              |                             |    |--Constant Scan              |                             |--Assert(WHERE:(CASE WHEN [Expr1013]>(1) THEN (0) ELSE NULL END))              |                                  |--Stream Aggregate(DEFINE:([Expr1013]=Count(*), [Expr1014]=ANY([tempdb].[dbo].[Tab1].[ID_TipoSexo])))             |                                       |--Clustered Index Scan(OBJECT:([tempdb].[dbo].[Tab1].[PK__Tab1__3214EC277097A3C8]))              |--Clustered Index Seek(OBJECT:([tempdb].[dbo].[Tab2].[PK__Tab2__3214EC27755C58E5]), SEEK:([tempdb].[dbo].[Tab2].[ID]=[tempdb].[dbo].[Tab1].[ID_TipoSexo]) ORDERED FORWARD)  You can see from this text showplan that SQL Server as generated a Stream Aggregate to count how many rows the SubQuery will return, This value is then passed to the Assert which then does its job by checking its validity. Is very interesting to see that  the Query Optimizer is smart enough be able to avoid using assert operators when they are not necessary. For instance: INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT ID_TipoSexo FROM Tab1 WHERE ID = 1), 'F') INSERT INTO Tab1(ID_TipoSexo, Sexo) VALUES((SELECT TOP 1 ID_TipoSexo FROM Tab1), 'F')  For both these INSERTs, the Query Optimiser is smart enough to know that only one row will ever be returned, so there is no need to use the Assert. Well, that's all folks, I see you next week with more "Operators". Cheers, Fabiano

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >