Search Results

Search found 5954 results on 239 pages for 'cpu cores'.

Page 5/239 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • SPARC M7 Chip - 32 cores - Mind Blowing performance

    - by Angelo-Oracle
    The M7 Chip Oracle just announced its Next Generation Processor at the HotChips HC26 conference. As the Tech Lead in our Systems Division's Partner group, I had a front row seat to the extraordinary price performance advantage of Oracle current T5 and M6 based systems. Partner after partner tested  these systems and were impressed with it performance. Just read some of the quotes to see what our partner has been saying about our hardware. We just announced our next generation processor, the M7. This has 32 cores (up from 16-cores in T5 and 12-cores in M6). With 20 nm technology  this is our most advanced processor. The processor has more cores than anything else in the industry today. After the Sun acquisition Oracle has released 5 processors in 4 years and this is the 6th.  The S4 core  The M7 is built using the foundation of the S4 core. This is the next generation core technology. Like its predecessor, the S4 has 8 dynamic threads. It increases the frequency while maintaining the Pipeline depth. Each core has its own fine grain power estimator that keeps the core within its power envelop in 250 nano-sec granularity. Each core also includes Software in Silicon features for Application Acceleration Support. Each core includes features to improve Application Data Integrity, with almost no performance loss. The core also allows using part of the Virtual Address to store meta-data.  User-Level Synchronization Instructions are also part of the S4 core. Each core has 16 KB Instruction and 16 KB Data L1 cache. The Core Clusters  The cores on the M7 chip are organized in sets of 4-core clusters. The core clusters share  L2 cache.  All four cores in the complex share 256 KB of 4 way set associative L2 Instruction Cache, with over 1/2 TB/s of throughput. Two cores share 256 KB of 8 way set associative L2 Data Cache, with over 1/2 TB/s of throughput. With this innovative Core Cluster architecture, the M7 doubles core execution bandwidth. to maximize per-thread performance.  The Chip  Each  M7 chip has 8 sets of these core-clusters. The chip has 64 MB on-chip L3 cache. This L3 caches is shared among all the cores and is partitioned into 8 x 8 MB chunks. Each chunk is  8-way set associative cache. The aggregate bandwidth for the L3 cache on the chip is over 1.6TB/s. Each chip has 4 DDR4 memory controllers and can support upto 16 DDR4 DIMMs, allowing for 2 TB of RAM/chip. The chip also includes 4 internal links of PCIe Gen3 I/O controllers.  Each chip has 7 coherence links, allowing for 8 of these chips to be connected together gluelessly. Also 32 of these chips can be connected in an SMP configuration. A potential system with 32 chips will have 1024 cores and 8192 threads and 64 TB of RAM.  Software in Silicon The M7 chip has many built in Application Accelerators in Silicon. These features will be exposed to our Software partners using the SPARC Accelerator Program.  The M7  has built-in logic to decompress data at the speed of memory access. This means that applications can directly work on compressed data in memory increasing the data access rates. The VA Masking feature allows the use of part of the virtual address to store meta-data.  Realtime Application Data Integrity The Realtime Application Data Integrity feature helps applications safeguard against invalid, stale memory reference and buffer overflows. The first 4-bits if the Pointer can be used to store a version number and this version number is also maintained in the memory & cache lines. When a pointer accesses memory the hardware checks to make sure the two versions match. A SEGV signal is raised when there is a mismatch. This feature can be used by the Database, applications and the OS.  M7 Database In-Memory Query Accelerator The M7 chip also includes a In-Silicon Query Engines.  These accelerate tasks that work on In-Memory Columnar Vectors. Oracle In-Memory options stores data in Column Format. The M7 Query Engine can speed up In-Memory Format Conversion, Value and Range Comparisons and Set Membership lookups. This engine can work on Compressed data - this means not only are we accelerating the query performance but also increasing the memory bandwidth for queries.  SPARC Accelerated Program  At the Hotchips conference we also introduced the SPARC Accelerated Program to provide our partners and third part developers access to all the goodness of the M7's SPARC Application Acceleration features. Please get in touch with us if you are interested in knowing more about this program. 

    Read the article

  • How to read oom-killer syslog messages?

    - by Grant
    I have a Ubuntu 12.04 server which sometimes dies completely - no SSH, no ping, nothing until it is physically rebooted. After the reboot, I see in syslog that the oom-killer killed, well, pretty much everything. There's a lot of detailed memory usage information in them. How do I read these logs to see what caused the OOM issue? The server has far more memory than it needs, so it shouldn't be running out of memory. Oct 25 07:28:04 nldedip4k031 kernel: [87946.529511] oom_kill_process: 9 callbacks suppressed Oct 25 07:28:04 nldedip4k031 kernel: [87946.529514] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529516] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529518] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:04 nldedip4k031 kernel: [87946.529519] Call Trace: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529525] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529528] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529530] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529532] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529535] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529537] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529541] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529543] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529546] [] vfs_read+0x8c/0x160 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529548] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529550] [] sys_read+0x3d/0x70 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529554] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529555] Mem-Info: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529556] DMA per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529557] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529558] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529560] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529561] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529562] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529563] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529564] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529565] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529566] Normal per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529567] CPU 0: hi: 186, btch: 31 usd: 179 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529568] CPU 1: hi: 186, btch: 31 usd: 182 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529569] CPU 2: hi: 186, btch: 31 usd: 132 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529570] CPU 3: hi: 186, btch: 31 usd: 175 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529571] CPU 4: hi: 186, btch: 31 usd: 91 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529572] CPU 5: hi: 186, btch: 31 usd: 173 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529573] CPU 6: hi: 186, btch: 31 usd: 159 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529574] CPU 7: hi: 186, btch: 31 usd: 164 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529575] HighMem per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529576] CPU 0: hi: 186, btch: 31 usd: 165 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529577] CPU 1: hi: 186, btch: 31 usd: 183 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529578] CPU 2: hi: 186, btch: 31 usd: 185 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529579] CPU 3: hi: 186, btch: 31 usd: 138 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529580] CPU 4: hi: 186, btch: 31 usd: 155 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529581] CPU 5: hi: 186, btch: 31 usd: 104 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529582] CPU 6: hi: 186, btch: 31 usd: 133 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529583] CPU 7: hi: 186, btch: 31 usd: 170 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529586] active_anon:5523 inactive_anon:354 isolated_anon:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529586] active_file:2815 inactive_file:6849119 isolated_file:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529587] unevictable:0 dirty:449 writeback:10 unstable:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529587] free:1304125 slab_reclaimable:104672 slab_unreclaimable:3419 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529588] mapped:2661 shmem:138 pagetables:313 bounce:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529591] DMA free:4252kB min:780kB low:972kB high:1168kB active_anon:0kB inactive_anon:0kB active_file:4kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15756kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11564kB slab_unreclaimable:4kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1 all_unreclaimable? yes Oct 25 07:28:04 nldedip4k031 kernel: [87946.529594] lowmem_reserve[]: 0 869 32460 32460 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529599] Normal free:44052kB min:44216kB low:55268kB high:66324kB active_anon:0kB inactive_anon:0kB active_file:616kB inactive_file:568kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:890008kB mlocked:0kB dirty:0kB writeback:0kB mapped:4kB shmem:0kB slab_reclaimable:407124kB slab_unreclaimable:13672kB kernel_stack:992kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:2083 all_unreclaimable? yes Oct 25 07:28:04 nldedip4k031 kernel: [87946.529602] lowmem_reserve[]: 0 0 252733 252733 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529606] HighMem free:5168196kB min:512kB low:402312kB high:804112kB active_anon:22092kB inactive_anon:1416kB active_file:10640kB inactive_file:27395920kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:32349872kB mlocked:0kB dirty:1796kB writeback:40kB mapped:10640kB shmem:552kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:1252kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Oct 25 07:28:04 nldedip4k031 kernel: [87946.529609] lowmem_reserve[]: 0 0 0 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529611] DMA: 6*4kB 6*8kB 6*16kB 5*32kB 5*64kB 4*128kB 2*256kB 1*512kB 0*1024kB 1*2048kB 0*4096kB = 4232kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529616] Normal: 297*4kB 180*8kB 119*16kB 73*32kB 67*64kB 47*128kB 35*256kB 13*512kB 5*1024kB 1*2048kB 1*4096kB = 44052kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529622] HighMem: 1*4kB 6*8kB 27*16kB 11*32kB 2*64kB 1*128kB 0*256kB 0*512kB 4*1024kB 1*2048kB 1260*4096kB = 5168196kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529627] 6852076 total pagecache pages Oct 25 07:28:04 nldedip4k031 kernel: [87946.529628] 0 pages in swap cache Oct 25 07:28:04 nldedip4k031 kernel: [87946.529629] Swap cache stats: add 0, delete 0, find 0/0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529630] Free swap = 3998716kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529631] Total swap = 3998716kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.571914] 8437743 pages RAM Oct 25 07:28:04 nldedip4k031 kernel: [87946.571916] 8209409 pages HighMem Oct 25 07:28:04 nldedip4k031 kernel: [87946.571917] 159556 pages reserved Oct 25 07:28:04 nldedip4k031 kernel: [87946.571917] 6862034 pages shared Oct 25 07:28:04 nldedip4k031 kernel: [87946.571918] 123540 pages non-shared Oct 25 07:28:04 nldedip4k031 kernel: [87946.571919] [ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name Oct 25 07:28:04 nldedip4k031 kernel: [87946.571927] [ 421] 0 421 709 152 3 0 0 upstart-udev-br Oct 25 07:28:04 nldedip4k031 kernel: [87946.571929] [ 429] 0 429 773 326 5 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571931] [ 567] 0 567 772 224 4 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571932] [ 568] 0 568 772 231 7 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571934] [ 764] 0 764 712 103 1 0 0 upstart-socket- Oct 25 07:28:04 nldedip4k031 kernel: [87946.571936] [ 772] 103 772 815 164 5 0 0 dbus-daemon Oct 25 07:28:04 nldedip4k031 kernel: [87946.571938] [ 785] 0 785 1671 600 1 -17 -1000 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571940] [ 809] 101 809 7766 380 1 0 0 rsyslogd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571942] [ 869] 0 869 1158 213 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571943] [ 873] 0 873 1158 214 6 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571945] [ 911] 0 911 1158 215 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571947] [ 912] 0 912 1158 214 2 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571949] [ 914] 0 914 1158 213 1 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571950] [ 916] 0 916 618 86 1 0 0 atd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571952] [ 917] 0 917 655 226 3 0 0 cron Oct 25 07:28:04 nldedip4k031 kernel: [87946.571954] [ 948] 0 948 902 159 3 0 0 irqbalance Oct 25 07:28:04 nldedip4k031 kernel: [87946.571956] [ 993] 0 993 1145 363 3 0 0 master Oct 25 07:28:04 nldedip4k031 kernel: [87946.571957] [ 1002] 104 1002 1162 333 1 0 0 qmgr Oct 25 07:28:04 nldedip4k031 kernel: [87946.571959] [ 1016] 0 1016 730 149 2 0 0 mdadm Oct 25 07:28:04 nldedip4k031 kernel: [87946.571961] [ 1057] 0 1057 6066 2160 3 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571963] [ 1086] 0 1086 1158 213 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571965] [ 1088] 33 1088 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571967] [ 1089] 33 1089 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571969] [ 1090] 33 1090 6175 1451 3 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571971] [ 1091] 33 1091 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571972] [ 1092] 33 1092 6191 1451 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571974] [ 1109] 33 1109 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571976] [ 1151] 33 1151 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571978] [ 1201] 104 1201 1803 652 1 0 0 tlsmgr Oct 25 07:28:04 nldedip4k031 kernel: [87946.571980] [ 2475] 0 2475 2435 812 0 0 0 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571982] [ 2494] 0 2494 1745 839 1 0 0 bash Oct 25 07:28:04 nldedip4k031 kernel: [87946.571984] [ 2573] 0 2573 3394 1689 0 0 0 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571986] [ 2589] 0 2589 5014 457 3 0 0 rsync Oct 25 07:28:04 nldedip4k031 kernel: [87946.571988] [ 2590] 0 2590 7970 522 1 0 0 rsync Oct 25 07:28:04 nldedip4k031 kernel: [87946.571990] [ 2652] 104 2652 1150 326 5 0 0 pickup Oct 25 07:28:04 nldedip4k031 kernel: [87946.571992] Out of memory: Kill process 421 (upstart-udev-br) score 1 or sacrifice child Oct 25 07:28:04 nldedip4k031 kernel: [87946.572407] Killed process 421 (upstart-udev-br) total-vm:2836kB, anon-rss:156kB, file-rss:452kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.573107] init: upstart-udev-bridge main process (421) killed by KILL signal Oct 25 07:28:04 nldedip4k031 kernel: [87946.573126] init: upstart-udev-bridge main process ended, respawning Oct 25 07:28:34 nldedip4k031 kernel: [87976.461570] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461573] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461576] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:34 nldedip4k031 kernel: [87976.461578] Call Trace: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461585] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461588] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461591] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461595] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461599] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461602] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461606] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461609] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461613] [] vfs_read+0x8c/0x160 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461616] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461619] [] sys_read+0x3d/0x70 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461624] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461626] Mem-Info: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461628] DMA per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461629] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461631] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461633] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461634] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461636] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461638] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461639] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461641] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461642] Normal per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461644] CPU 0: hi: 186, btch: 31 usd: 61 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461646] CPU 1: hi: 186, btch: 31 usd: 49 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461647] CPU 2: hi: 186, btch: 31 usd: 8 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461649] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461651] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461652] CPU 5: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461654] CPU 6: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461656] CPU 7: hi: 186, btch: 31 usd: 30 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461657] HighMem per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461658] CPU 0: hi: 186, btch: 31 usd: 4 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461660] CPU 1: hi: 186, btch: 31 usd: 204 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461662] CPU 2: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461663] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461665] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461667] CPU 5: hi: 186, btch: 31 usd: 31 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461668] CPU 6: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461670] CPU 7: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461674] active_anon:5441 inactive_anon:412 isolated_anon:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461674] active_file:2668 inactive_file:6922842 isolated_file:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461675] unevictable:0 dirty:836 writeback:0 unstable:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461676] free:1231664 slab_reclaimable:105781 slab_unreclaimable:3399 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461677] mapped:2649 shmem:138 pagetables:313 bounce:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461682] DMA free:4248kB min:780kB low:972kB high:1168kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15756kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11560kB slab_unreclaimable:4kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:5687 all_unreclaimable? yes Oct 25 07:28:34 nldedip4k031 kernel: [87976.461686] lowmem_reserve[]: 0 869 32460 32460 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461693] Normal free:44184kB min:44216kB low:55268kB high:66324kB active_anon:0kB inactive_anon:0kB active_file:20kB inactive_file:1096kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:890008kB mlocked:0kB dirty:4kB writeback:0kB mapped:4kB shmem:0kB slab_reclaimable:411564kB slab_unreclaimable:13592kB kernel_stack:992kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1816 all_unreclaimable? yes Oct 25 07:28:34 nldedip4k031 kernel: [87976.461697] lowmem_reserve[]: 0 0 252733 252733 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461703] HighMem free:4878224kB min:512kB low:402312kB high:804112kB active_anon:21764kB inactive_anon:1648kB active_file:10652kB inactive_file:27690268kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:32349872kB mlocked:0kB dirty:3340kB writeback:0kB mapped:10592kB shmem:552kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:1252kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Oct 25 07:28:34 nldedip4k031 kernel: [87976.461708] lowmem_reserve[]: 0 0 0 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461711] DMA: 8*4kB 7*8kB 6*16kB 5*32kB 5*64kB 4*128kB 2*256kB 1*512kB 0*1024kB 1*2048kB 0*4096kB = 4248kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461719] Normal: 272*4kB 178*8kB 76*16kB 52*32kB 42*64kB 36*128kB 23*256kB 20*512kB 7*1024kB 2*2048kB 1*4096kB = 44176kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461727] HighMem: 1*4kB 45*8kB 31*16kB 24*32kB 5*64kB 3*128kB 1*256kB 2*512kB 4*1024kB 2*2048kB 1188*4096kB = 4877852kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461736] 6925679 total pagecache pages Oct 25 07:28:34 nldedip4k031 kernel: [87976.461737] 0 pages in swap cache Oct 25 07:28:34 nldedip4k031 kernel: [87976.461739] Swap cache stats: add 0, delete 0, find 0/0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461740] Free swap = 3998716kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461741] Total swap = 3998716kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.524951] 8437743 pages RAM Oct 25 07:28:34 nldedip4k031 kernel: [87976.524953] 8209409 pages HighMem Oct 25 07:28:34 nldedip4k031 kernel: [87976.524954] 159556 pages reserved Oct 25 07:28:34 nldedip4k031 kernel: [87976.524955] 6936141 pages shared Oct 25 07:28:34 nldedip4k031 kernel: [87976.524956] 124602 pages non-shared Oct 25 07:28:34 nldedip4k031 kernel: [87976.524957] [ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name Oct 25 07:28:34 nldedip4k031 kernel: [87976.524966] [ 429] 0 429 773 326 5 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524968] [ 567] 0 567 772 224 4 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524971] [ 568] 0 568 772 231 7 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524973] [ 764] 0 764 712 103 3 0 0 upstart-socket- Oct 25 07:28:34 nldedip4k031 kernel: [87976.524976] [ 772] 103 772 815 164 2 0 0 dbus-daemon Oct 25 07:28:34 nldedip4k031 kernel: [87976.524979] [ 785] 0 785 1671 600 1 -17 -1000 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524981] [ 809] 101 809 7766 380 1 0 0 rsyslogd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524983] [ 869] 0 869 1158 213 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524986] [ 873] 0 873 1158 214 6 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524988] [ 911] 0 911 1158 215 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524990] [ 912] 0 912 1158 214 2 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524992] [ 914] 0 914 1158 213 1 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524995] [ 916] 0 916 618 86 1 0 0 atd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524997] [ 917] 0 917 655 226 3 0 0 cron Oct 25 07:28:34 nldedip4k031 kernel: [87976.524999] [ 948] 0 948 902 159 5 0 0 irqbalance Oct 25 07:28:34 nldedip4k031 kernel: [87976.525002] [ 993] 0 993 1145 363 3 0 0 master Oct 25 07:28:34 nldedip4k031 kernel: [87976.525004] [ 1002] 104 1002 1162 333 1 0 0 qmgr Oct 25 07:28:34 nldedip4k031 kernel: [87976.525007] [ 1016] 0 1016 730 149 2 0 0 mdadm Oct 25 07:28:34 nldedip4k031 kernel: [87976.525009] [ 1057] 0 1057 6066 2160 3 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525012] [ 1086] 0 1086 1158 213 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.525014] [ 1088] 33 1088 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525017] [ 1089] 33 1089 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525019] [ 1090] 33 1090 6175 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525021] [ 1091] 33 1091 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525024] [ 1092] 33 1092 6191 1451 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525026] [ 1109] 33 1109 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525029] [ 1151] 33 1151 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525031] [ 1201] 104 1201 1803 652 1 0 0 tlsmgr Oct 25 07:28:34 nldedip4k031 kernel: [87976.525033] [ 2475] 0 2475 2435 812 0 0 0 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.525036] [ 2494] 0 2494 1745 839 1 0 0 bash Oct 25 07:28:34 nldedip4k031 kernel: [87976.525038] [ 2573] 0 2573 3394 1689 3 0 0 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.525040] [ 2589] 0 2589 5014 457 3 0 0 rsync Oct 25 07:28:34 nldedip4k031 kernel: [87976.525043] [ 2590] 0 2590 7970 522 1 0 0 rsync Oct 25 07:28:34 nldedip4k031 kernel: [87976.525045] [ 2652] 104 2652 1150 326 5 0 0 pickup Oct 25 07:28:34 nldedip4k031 kernel: [87976.525048] [ 2847] 0 2847 709 89 0 0 0 upstart-udev-br Oct 25 07:28:34 nldedip4k031 kernel: [87976.525050] Out of memory: Kill process 764 (upstart-socket-) score 1 or sacrifice child Oct 25 07:28:34 nldedip4k031 kernel: [87976.525484] Killed process 764 (upstart-socket-) total-vm:2848kB, anon-rss:204kB, file-rss:208kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.526161] init: upstart-socket-bridge main process (764) killed by KILL signal Oct 25 07:28:34 nldedip4k031 kernel: [87976.526180] init: upstart-socket-bridge main process ended, respawning Oct 25 07:28:44 nldedip4k031 kernel: [87986.439671] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439674] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439676] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:44 nldedip4k031 kernel: [87986.439678] Call Trace: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439684] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439686] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439688] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439691] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439694] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439696] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439699] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439702] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439704] [] vfs_read+0x8c/0x160 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439707] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439709] [] sys_read+0x3d/0x70 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439712] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439714] Mem-Info: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439714] DMA per-cpu: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439716] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439717] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439718] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439719] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439720] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439721] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439722] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439723] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439724] Normal per-cpu: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439725] CPU 0: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439726] CPU 1: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439727] CPU 2: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439728] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439729] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:33:48 nldedip4k031 kernel: imklog 5.8.6, log source = /proc/kmsg started. Oct 25 07:33:48 nldedip4k031 rsyslogd: [origin software="rsyslogd" swVersion="5.8.6" x-pid="2880" x-info="http://www.rsyslog.com"] start Oct 25 07:33:48 nldedip4k031 rsyslogd: rsyslogd's groupid changed to 103 Oct 25 07:33:48 nldedip4k031 rsyslogd: rsyslogd's userid changed to 101 Oct 25 07:33:48 nldedip4k031 rsyslogd-2039: Could not open output pipe '/dev/xconsole' [try http://www.rsyslog.com/e/2039 ]

    Read the article

  • How much faster is a 64bit CPU than 32bit CPU? [closed]

    - by W.N.
    I just need the result in theory. I'm not an expert in computer architecture, just a software developer. Most of my friends think 64bit-CPU is 2 times faster than 32bit-CPU. But I think 64-CPU is 2 ^ 2 = 4 times faster than 32bit-CPU (in theory). Which is the right answer to this question? And, if there were 128bit-CPU, how many times would it faster than a 32bit-CPU? PS: I searched with Google, and found a link that referred to benchmarks that supported my answer. I've seen a benchmark where 64bit was 4x faster but that was with a particular encryption where the extra registers available made the difference

    Read the article

  • chrome memory and cpu footprint

    - by nmizar
    I've searched the forums for an answer but I couldn't find quite the answer I was looking for [1] , so I thought I it could as well be of interest to more people around here. I carry out a big part of my job on the browser (or for the browser, if you want to put it that way). I tend to use Chrome, because it's got natively many of the newest features that I need (DevTools stuff, mainly but not only). BTW, I'm usually running the last available Chrome version/build on a desktop Vaio with 4GB RAM and dual core CPU and Ubuntu 12.04 as distro and Gnome as window manager. So, I was curious about a) why does Chrome spawn so many threads even opening only three of four tabs and b) is there any way to allocate more memory to Chrome to prevent its performance from degrading? Thanks in advance, Nacho PS [1] I found threads about Chrome freezing or running out of memory but not about the reasons for this being so or for avoiding it to happen. PPS Of course, I could always buy a newer and more capable machine and that is exactly what I'm trying to evaluate: is this a question of outdated hardware or the problem will keep appearing on any (decently but not hugely sized) machine?

    Read the article

  • Linux Scheduler (not using all cores on multi-core machine) RHEL6

    - by User512
    I'm seeing strange behavior on one of my servers (running RHEL 6). There seems to be something wrong with the scheduler. Here's the test program I'm using: #include <stdio.h> #include <unistd.h> #include <stdlib.h> void RunClient(int i) { printf("Starting client %d\n", i); while (true) { } } int main(int argc, char** argv) { for (int i = 0; i < 4; ++i) { pid_t p_id = fork(); if (p_id == -1) { perror("fork"); } else if (p_id == 0) { RunClient(i); exit(0); } } return 0; } This machine has a lot more than 4 cores so we'd expect all processes to be running at 100%. When I check on top, the cpu usage varies. Sometimes it's split (100%, 33%, 33%, 33%), other times it's split (100%, 100%, 50%, 50%). When I try this test on another server of ours (running RHEL 5), there are no issues (it's 100%, 100%, 100%, 100%) as expected. What's causing this and how can I fix it? Thanks

    Read the article

  • Where is my CPU usage going?

    - by Josh
    My Ubuntu 10.04 Lucid virtual machine is saying it's at 100% CPU usage... but all I'm running is Thunderbird. According to top, CPU usage should be ~25.9%... How do I interpret this conflicting output from top? top - 13:55:26 up 3:35, 4 users, load average: 3.03, 2.59, 2.48 Tasks: 178 total, 1 running, 177 sleeping, 0 stopped, 0 zombie Cpu(s): 16.0%us, 79.7%sy, 0.0%ni, 0.0%id, 0.0%wa, 1.3%hi, 3.0%si, 0.0%st Mem: 509364k total, 479108k used, 30256k free, 3092k buffers Swap: 2096440k total, 58380k used, 2038060k free, 225116k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 7708 jnet 20 0 480m 109m 17m S 18.4 22.1 21:59.14 thunderbird-bin 4615 jnet 20 0 5488 1268 1040 S 2.3 0.2 5:00.03 nx-rootless-ses 7124 jnet 20 0 56688 27m 4812 S 2.0 5.5 6:35.09 nxagent 6724 nx 20 0 9628 1400 636 S 1.6 0.3 3:26.59 sshd 30106 root 20 0 2544 1236 908 R 0.7 0.2 0:00.33 top 19 root 20 0 0 0 0 S 0.3 0.0 0:22.45 ata/0 38 root 20 0 0 0 0 S 0.3 0.0 0:05.53 scsi_eh_1 345 root 20 0 0 0 0 S 0.3 0.0 0:04.72 kjournald 1719 root 20 0 3260 1192 944 S 0.3 0.2 0:17.36 vmware-guestd 1 root 20 0 2804 1356 940 S 0.0 0.3 0:01.99 init 2 root 20 0 0 0 0 S 0.0 0.0 0:00.01 kthreadd 3 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0 4 root 20 0 0 0 0 S 0.0 0.0 0:00.15 ksoftirqd/0 5 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0 ... Specifically I'm referring to the fact that the CPU usage totals show 0% idle time: Cpu(s): 16.0%us, 79.7%sy, 0.0%ni, 0.0%id, 0.0%wa, 1.3%hi, 3.0%si, 0.0%st Yet when adding up the percentages in the %CPU column I get 25.9%, not 100%!

    Read the article

  • Ubuntu on VPS becomes unresponsive: BUG: soft lockup - CPU#0 stuck for 22s

    - by Bhante Nandiya
    We have a VPS running Ubuntu, on Xen. The problem is this, about once a day, for about 20-50 minutes, at a random time, the server becomes completely unresponsive to the outside world. After this period, it becomes responsive again, as if nothing had happened, it doesn't lose uptime, it doesn't restart. It just starts responding again as if it had been in suspended animation. These outages occur under conditions of non-exceptional memory and cpu, for example 70% mem, 5% cpu. I have stopped all non-essential services so the usage is very even. These outages don't particularly occur during times of increased memory/cpu (during daily tasks), they sometimes occur at times of very low cpu use (<2%), but in the past also occured during swapping. These blackouts have been occurring both under Ubuntu 12.04 LTS, and Ubuntu 14.04 LTS - no change at all (I upgraded Ubuntu specifically to see if it helped this problem). It is possible to log into our webhosts site, and use their administration console to see error messages from during this time. Presumably, these messages are from the Xen virtualization, the main message goes like this: BUG: soft lockp - CPU#0 stuck for 22s! [ksoftireqd/0:3] (repeats many times) SysRq : Emergency Sync (Sometimes this is the only message in the console) Others seen previously under different load situations include: BUG: soft lockup - CPU#0 stuck for 22s! [swapper/0:0] (repeated many times) or: INFO: rcu_sched detected stall on CPU 0 (t=15000 jiffies) (repeated many times with t getting bigger) From googling around I've tried various kernel parameters such as nohz=off and acpi=off to no avail. All tech support has said is that other Ubuntu installations are not suffering the same problem. Anyone got any ideas or experience with this problem?

    Read the article

  • Apache using 100% CPU, once again

    - by CBenni
    Recently, apache2 started using 100% of CPU power: top gives me From other, similar threads, I took the tip to use mod_status. Aside from HUGE amounts of NULL requests, it gives: CPU Usage: u2.16 s1.32 cu0 cs0 - .0835% CPU load 1.2 requests/sec - 17.6 kB/second - 14.6 kB/request 8 requests currently being processed, 42 idle workers The access and error logs do not show anything surprising or intriguing at all. Note the .8% CPU usage. Another tip was to use strace: root@server:~# strace -p 1956 Process 1956 attached - interrupt to quit restart_syscall(<... resuming interrupted call ...> And remains like this for at least half an hour, without producing any additional output. Restarting apache fixed the problem for less than a second The server runs a few custom python scripts aswell as a django-powered website on apache2 (up-to-date), but even turning the scripts off (or not having them active in the first place) did not change anything. After I stopped apache and powered my server off, powered it on a few minutes afterwards and restarted all my services, the CPU usage remained low for several hours, just in order to pop up again randomly (?) The DigitalOcean CPU stats on my server are: You can see how the CPU usage was super high for almost half a day until I restarted the bot - just to remain stable for several hours and then pop up again. I am completely at a loss of words and don't know what I could do to find out what piece of my code is giving me these problems or if apache itself is the cause... Therefore I would greatly appreciate any hints to the questions: What else can I try to do? Which things might I not have checked? Is this definitely in my own code? How do you find what part of python code crashes an app via a infinite loop or similar?

    Read the article

  • Why won't Windows use the other CPU cores?

    - by revloc02
    In Windows Task Manager the Performance tab shows the first CPU maxed out, the other 7 just idling along with the occasional spike. What gives? More info: I've got 8GB and only 4.5GB are being used. The Processes tab has no indication of any process hogging processing power. In fact System Idle Process is 98-99. When I program stuff and have like 8 to 12 applications going (several directly unrelated to programming of course) my computer slows to a crawl. Sysyem Info: Intel Core i7-2600K Processor (quad-core with hyper-threading), 8GB RAM, Intel BOXDZ68BC LGA 1155 Motherboard, 500GB HDD

    Read the article

  • ESXi and Windows Server CPU parking

    - by Chris J
    For those that don't know, CPU parking is a feature in recent Windows Server releases that allows Windows to pretty much drop a CPU core to zero use, and having nothing use it. It's been introduced as a power-saving measure. There's more detail about it here, amongst other places. However what I'm curious about is whether this matter on a virtualised guest - or is CPU parking more of a hindrance than a help, given that the physical CPUs are managed by ESXi, not Windows, and that a parked CPU is less likely to deal with traffic unless the scheduler deems there's enough work to unpark the CPU? I've not found anything about this - I do suspect it will be very much based on a given workload, but I've not seen any discussion (unlike, say, whether hyper-threading has any effect, which seems to be discussed regularly). Whilst I do understand the "test with your workload" I was wondering if there was any advice/guidelines out there that I've missed.

    Read the article

  • HIGH CPU usage by PHP on a VPS Magento Server

    - by Anil
    My server running magento is 4gb ram and 4 core cpu. But still i am struggling with the high CPU usage. I only have 10 visitors at any given point of time. I am not sure if the PHP has to take this high % CPU usage. Attached is the TOP result. top - 09:18:32 up 2 days, 15:44, 1 user, load average: 1.16, 2.02, 1.99 Tasks: 179 total, 2 running, 177 sleeping, 0 stopped, 0 zombie Cpu(s): 46.7%us, 3.9%sy, 0.1%ni, 46.9%id, 1.0%wa, 0.0%hi, 0.0%si, 1.4%st Mem: 3919972k total, 3164968k used, 755004k free, 530820k buffers Swap: 1048568k total, 379352k used, 669216k free, 1536388k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 15897 vpsadmin 20 0 431m 168m 54m R 91.7 4.4 2:16.16 php-cgi 12308 vpsadmin 20 0 404m 163m 73m S 29.3 4.3 15:15.90 php-cgi 3644 mysql 20 0 1528m 80m 4944 S 9.8 2.1 1899:58 mysqld 4969 apache 20 0 471m 6228 2824 S 2.0 0.2 0:18.53 httpd 16148 root 20 0 15024 1220 864 R 2.0 0.0 0:00.01 top 1 root 20 0 19364 1064 844 S 0.0 0.0 0:02.50 init

    Read the article

  • Is it possible to control my CPU frequency?

    - by Tim
    My laptop's CPU Type is: Mobile AMD Turion 64 ML-30, 1600 MHz (8 x 200) I was wondering how to find out if its CPU frequency is controllable? What softwares or other ways can control my CPU frequency? My OSes are Windows XP and Ubuntu. Can I control CPU frequency so that the CPU temperature can be controlled not to exceed some temperature? Thanks and regards! More information: My laptop is Acer Aspire 5000. Its motherboard is reported by Speccy as: Manufacturer: Acer, Inc. Model: Lugano M Version: Not Applicable Chipset Vendor: SiS Chipset Model: 760GX Chipset Revision: 03 Southbridge Vendor: SiS Southbridge Model: LPC Bridge Southbridge Revision: 25 BIOS Brand: Acer Version: 3A19 Date: 05/17/05

    Read the article

  • About the External Graphics Card and CPU usage

    - by Balaji
    Hi, We are Rendering 16 live Streams at our client machine through one of our applications and the resolution of the video streams are as 4CIF/MPEG4/25FPS/4000Kbits. The configuration fo the client machine is below. HP Desktop Machine: Microsoft Windows XP Intel (R) Core2 Duo CPU E8400 @ 3.00 GHz 2.99 GHz, 1.94 GB of RAM Intel (R) Q45/Q43 Series Express Chipset (Inbuild) The CPU usage of the machine peaks 99% for 16 straems. After some discussion, we had decided to install external graphics card to reduce the CPU usage. So that, we have tried following graphics cards. NVIDIA Quadro NVS 440 - 128 MB Radeon HD 4350 - 512 MB GDDR2 Redeon HD 4350 - 1GB DDR2 ASUS EAH 4350 Silent 1GB DDR2 But the performance wise no difference, even worst. So, what is the pupuse of these external graphics cards? Really it will reduce the CPU usage? What parameters have to check, if we want to reduce the CPU usage? Please do the needful as soon as possible. Regards Balaji

    Read the article

  • About the External Graphics Card and CPU usage

    - by Balaji
    We are Rendering 16 live Streams at our client machine through one of our applications and the resolution of the video streams are as 4CIF/MPEG4/25FPS/4000Kbits. The configuration of the client machine is below. HP Desktop Machine: Microsoft Windows XP Intel (R) Core2 Duo CPU E8400 @ 3.00 GHz 2.99 GHz, 1.94 GB of RAM Intel (R) Q45/Q43 Series Express Chipset (Inbuild) The CPU usage of the machine peaks 99% for 16 streams. After some discussion, we had decided to install external graphics card to reduce the CPU usage. So that, we have tried following graphics cards. NVIDIA Quadro NVS 440 - 128 MB Radeon HD 4350 - 512 MB GDDR2 Redeon HD 4350 - 1GB DDR2 ASUS EAH 4350 Silent 1GB DDR2 But the performance wise there has been no difference - even a drop in performance. So, what is the purpose of these external graphics cards? Really it will reduce the CPU usage? What parameters have to check, if we want to reduce the CPU usage?

    Read the article

  • Correct CPU Frequency in BIOS

    - by akula
    One of the machines I have is a 10 year old one. I can't discard it due to some sentiment (Mom). Legacy board: Mercury 810e, 133 MHz FSB Processor: Pentium III Tualatin 1.2 GHz Observation: I see an entry in the BIOS for the CPU Frequency from 6.0 to 11.0. Last value is Safe Mode. I don't know what value to choose for my CPU. So I'm running that CPU in "Safe Mode". What is the correct value for this CPU? Is Safe Mode really safe to run this CPU?

    Read the article

  • AMD FX CPU drivers/patch

    - by Mubeen Shahid
    I am using Ubuntu since 2009 on notebooks with Intel CPUs. However now, that I am using AMD's FX 6300, I am interested in knowing if there exists anything from Ubuntu (specifically any kernel enhancements/drivers/patches) for AMD's FX "family 15h" Piledrivers. Reason: I would like to have a kernel which uses the hardware to its full capacity, be able to use the latest instruction sets, for max. performance. I did some tests, started with compiling stable 3.9.7 on my 12.04 LTS box, and during compilation I choose processor vendor AMD (unchecked Intel/VIA/etc.), and when I started Ubuntu with this compiled kernel, in the section "System Settings - Additional Drivers" I found that, in addition to graphic card's drivers, there were AMD family 15h drivers also. However, I would prefer something in this regard tested/signed by Ubuntu developers. P.S: 1- the kernel that I have compiled has some issues with Nvidia graphics drivers, so I deleted kernel 3.9.7 and installed signed 3.8.xx from Ubuntu repositories. 2- incase if somebody is planning to advise me to install "AMD64", I am not talking about AMD64 (which is in fact for 64-bit platform).

    Read the article

  • Byobu not displaying correct CPU temptrature

    - by aserwin
    I have an AMD FX 8120 proccy that is overclocked to 4100Mhz. Since the overclocking, Byobu and other temprature reading apps (Conky, etc) do not read the temprature accurately. I can see the correct temp in the bios, and with no overclocking everything inside of Gnome reads correctly. Why should this be? It is (seemingly) obviously an issue with Ubuntu (or perhaps Gnome?). Has anyone else experienced this?

    Read the article

  • lm-sensor and cpu temperatures

    - by nalsanj
    i am on ubuntu Precise Pangolin. The processor is Intel i3. a desktop. i installed lm-sensors and below is the report "sensors" gave coretemp-isa-0000 Adapter: ISA adapter Core 0: +30.0°C (high = +89.0°C, crit = +105.0°C) Core 2: +33.0°C (high = +89.0°C, crit = +105.0°C) w83627dhg-isa-0a10 Adapter: ISA adapter Vcore: +0.93 V (min = +0.00 V, max = +1.74 V) in1: +0.75 V (min = +1.99 V, max = +1.99 V) ALARM AVCC: +3.36 V (min = +2.98 V, max = +3.63 V) +3.3V: +3.36 V (min = +2.98 V, max = +3.63 V) in4: +1.30 V (min = +0.90 V, max = +1.77 V) in5: +0.76 V (min = +1.15 V, max = +0.90 V) ALARM in6: +1.06 V (min = +0.94 V, max = +2.03 V) 3VSB: +3.36 V (min = +2.98 V, max = +3.63 V) Vbat: +3.36 V (min = +2.70 V, max = +3.30 V) ALARM fan1: 0 RPM (min = 3515 RPM, div = 128) ALARM fan2: 0 RPM (min = 10546 RPM, div = 128) ALARM fan3: 0 RPM (min = 10546 RPM, div = 128) ALARM fan5: 0 RPM (min = 10546 RPM, div = 128) ALARM temp1: +39.0°C (high = -121.0°C, hyst = +9.0°C) ALARM sensor = diode temp2: +39.0°C (high = +80.0°C, hyst = +75.0°C) sensor = diode temp3: +127.0°C (high = +80.0°C, hyst = +75.0°C) ALARM sensor = thermistor cpu0_vid: +2.050 V intrusion0: OK radeon-pci-0100 Adapter: PCI adapter temp1: +70.5°C The fans sensors are detecting 0 RPM and some temperatures are out of range - the ALARMs above but i dont understand it very well. Can someone help out?

    Read the article

  • watchdog/0 process using all my CPU suddenly

    - by jeffery_the_wind
    I have a fresh installation of Ubuntu 12.04, I have been running it for about a week. Suddenly today I noticed my computer freezes every 5 seconds. I restarted the computer and I still get this. I believe it is a process called watchdog/0 that is using all the resources. See the attached pictures. How can I stop this? I can barely use my computer like this. UPDATE Well I just did a cold reboot, (shutdown, unplug, and plug back in, and turn on) and it seems to have fixed it. After looking at the man page for watchdog, it seems that this process may stay on during a restart? so it is more like a soft restart? Why that happens I don't know.

    Read the article

  • Corsair Hydro i series cpu cooler fan control

    - by user214690
    Im relatively new at Ubuntu and have found an answer to basically every single issue ive ever had thru this site... Otherthan this. I have been toying with the idea of a Corsair h80i for my dual boot system (win7/U12.10) and mostly use it in ubuntu. I have done some research on the interweb regarding fan control in linux and nearly ran up short untill I came across this thread: http://ubuntuforums.org/archive/index.php/t-2096166.html And it seems to have worked around it. (altho I have not tested it for myself) Is there any program/library/source that can be used to control the fans without having to MacGuyver it??

    Read the article

  • Is CPU Performance Affected by Age?

    - by Jason Fitzpatrick
    Your computer feels a little slower than it did this time last year; is that change something you can chalk up to an aging processor? Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-drive grouping of Q&A web sites. How to Factory Reset Your Android Phone or Tablet When It Won’t Boot Our Geek Trivia App for Windows 8 is Now Available Everywhere How To Boot Your Android Phone or Tablet Into Safe Mode

    Read the article

  • High CPU usage by 'svchost.exe' and 'coreServiceShell.exe'

    - by kush.impetus
    I am having a laptop running on Windows 7 Ultimate 32-bit. Since past few days, my laptop is facing a serious problem. Whenever I connect to Internet, either svchost.exe or coreServiceShell.exe or both hog the CPU. The coreServiceShell.exe consumes a lot of RAM also. Going into the details, I found that high CPU usage of svchost.exe is caused by Network Location Awareness service. And the high CPU usage of coreServiceShell.exe is caused by Trend Micro Titanium Internet Security 2012. That kind'a makes me think that Trend Micro may be the root of the problem. After further testing, I found that if I use IE or Firefox to browse the Internet, immediately after connecting to Internet, things are normal. See and But if I use Google Chrome, the coreServiceShell.exe hogs both CPU and RAM. At this point, if I disconnect the Internet, the CPU and RAM usage by coreServiceShell.exe continues to be high till I close the Chrome. Also, when I close the Chrome, while Internet is connected, svchost.exe continues to hog CPU but coreServiceShell.exe leaves the race. That makes think that Chrome is the root of the problem, but again, tracing coreServiceShell.exe takes me back to Trend Micro Internet Security. Stopping the Protection by the Trend Micro Internet Security doesn't help either (I am not able to stop its services though). I have updated the Chrome, but no help. I just can't figure out who is the culprit. I can't do without the Google Chrome (of course, by not using it) because of its immensely useful and indispensable features both during browsing and development. Secondly, I can't uninstall the Trend Micro Internet security Suite since it still has few months before it expires and is proving me reliable protection. What could be the cause of the problem and what can I do to resolve this? Thanks in advance

    Read the article

  • Enable CPU fan always on

    - by Gundars Meness
    I am using 3 years old overheating laptop and I want my CPU fan to be spinning 24/7 regardless of the consequences. How to make it spin? The problem is that CPU & GPU heats up to 68°C (154 F) right after boot and never goes down, because CPU fan is not spinning full throttle. It starts spinning faster when temperature goes over 70°C and stops when it reaches seventy again. When doing heavy work on databases, it gets from 70 to 90 in no-time and automatically powers off. Bios does not contain any "fan spin 100%" options, just "spin slowly all the time" and "auto" which is more useless than the first one since my fan doesn't have pwm wire. Currently I'm solving this with cooling stand (3x5V), but it isn't much of a help. I would rather use the CPU fan since it is the only fan directly responsible for cooling down CPU/GPU. But how to make it spin 100% all the time? Should I attach it's red power wire to motherboard to get constant 5V (is there such option?), or is there an option to control it via software? Laptop: Samsung R528 2.3 GHz Intel i3 with Nvidia GeForce 310M Bios: Phoenix 03KT.M003.20100622.KSJ (and that is latest update) OS: Ubuntu 12.04.2 LTS with 3.2.0.51 kernel CPU fan: Image/Description Has 5V 0,4A and only 3 pins, no pwm. P.S. Yes, I did clean everything with alcohol, freed the air vents, changed thermal paste etc; that reduced temperature by 4 degrees.

    Read the article

  • Investigating a potential CPU failure

    - by Jernej
    On a Ubuntu server that I am using for computations I have recently observed that some CPU extensive programs (GUROBI,CPLEX) often segfault. Being in correspondence with tech support of the respective programs I was suggested that it may be a hardware issue. The administrator of the server performed a detailed memtest and it turned out that the RAM modules appear to be fine. Hence I've used the tool mprime to test the CPU and the following two lines appear multiple times durring the execution of the stress tests: [Worker #4 Oct 18 18:47] FATAL ERROR: Rounding was 0.498046875, expected less than 0.4 [Worker #4 Oct 18 18:47] Hardware failure detected, consult stress.txt file. The stress.txt file in itself is not very verbose about what could be the cause of this error so I would like to ask whether anyone here happens to know what could be the cause of this issue? Is there some other test I could perform to nail the problem even further? The temperature of the system (and all cores) was fine during the entire stress test (+69.0°C (high = +80.0°C, crit = +98.0°C)) the CPU in question is a Intel Core i7-2600K CPU @ 3.40GHz and is not overclocked or modified in any way. Also what is interesting that if I run mprime to only stress the CPU all tests pass fine. The error is only triggered when I let mprime stress the CPU+RAM.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >