Search Results

Search found 23545 results on 942 pages for 'parallel task library'.

Page 5/942 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Process runs slower as a scheduled task than it does interactively

    - by Charlie
    I have a scheduled task which is very CPU- and IO-intensive, and takes about four hours to run (building source code, if you're curious). The task is a Powershell script which spawns various sub-processes to do its work. When I run the same process interactively from a Powershell prompt, as the same user account, it runs in about two and a half hours. The task is running on Windows Server 2008 R2. What I want to know is why it takes so much longer to run as a scheduled task - more than an hour longer. One thing I noticed is that the task scheduler runs at Below-Normal priority, so when my task starts, it inherits the same lowered priority. However, I've updated the script to set the Powershell process priority back to Normal, and it still takes just as long. Anybody have an idea what could be different between the two scenarios? I've ruled out differences in processor and IO load - this task is the only thing the system is used for, so there's nothing else running that could be competing for resources.

    Read the article

  • legitimacy of the tasks in the task scheduler

    - by Eyad
    Is there a way to know the source and legitimacy of the tasks in the task scheduler in windows server 2008 and 2003? Can I check if the task was added by Microsoft (ie: from sccm) or by a 3rd party application? For each task in the task scheduler, I want to verify that the task has not been created by a third party application. I only want to allow standards Microsoft Tasks and disable all other non-standards tasks. I have created a PowerShell script that goes through all the xml files in the C:\Windows\System32\Tasks directory and I was able to read all the xml task files successfully but I am stuck on how to validate the tasks. Here is the script for your reference: Function TaskSniper() { #Getting all the fils in the Tasks folder $files = Get-ChildItem "C:\Windows\System32\Tasks" -Recurse | Where-Object {!$_.PSIsContainer}; [Xml] $StandardXmlFile = Get-Content "Edit Me"; foreach($file in $files) { #constructing the file path $path = $file.DirectoryName + "\" + $file.Name #reading the file as an XML doc [Xml] $xmlFile = Get-Content $path #DS SEE: http://social.technet.microsoft.com/Forums/en-US/w7itprogeneral/thread/caa8422f-6397-4510-ba6e-e28f2d2ee0d2/ #(get-authenticodesignature C:\Windows\System32\appidpolicyconverter.exe).status -eq "valid" #Display something $xmlFile.Task.Settings.Hidden } } Thank you

    Read the article

  • Task Scheduler permissions error for some jobs

    - by MaseBase
    I have recently moved to a 64-bit Windows Server 2008 R2. I setup my Scheduled Tasks to run under one user (TaskUser) specifically created for the scheduler and most run just fine. However some of them do not run under TaskUser but will for my own credentials. Here is the Event Log entry I found, which from my research points me to believe that it doesn't have permissions, but it does. It also has the option "Run with highest privileges" checked on. I have seen this particular checkbox work wonders on some tasks, but I have a number of them that it's not helping for. The error is ERROR_ELEVATION_REQUIRED but the user is a member of the administrators group and has folder/file permission and is set to "Run with highest privileges" Log Name: Microsoft-Windows-UAC/Operational Source: Microsoft-Windows-UAC Date: 4/27/2010 2:21:44 PM Event ID: 1 Task Category: (1) Level: Error Keywords: User: LIVE\TaskUser Computer: www2 Description: The process failed to handle ERROR_ELEVATION_REQUIRED during the creation of a child process. Event Xml: <Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event"> <System> <Provider Name="Microsoft-Windows-UAC" Guid="{E7558269-3FA5-46ED-9F4D-3C6E282DDE55}" /> <EventID>1</EventID> <Version>0</Version> <Level>2</Level> <Task>1</Task> <Opcode>0</Opcode> <Keywords>0x8000000000000000</Keywords> <TimeCreated SystemTime="2010-04-27T21:21:44.407053800Z" /> <EventRecordID>19</EventRecordID> <Correlation /> <Execution ProcessID="2460" ThreadID="5960" /> <Channel>Microsoft-Windows-UAC/Operational</Channel> <Computer>www2</Computer> <Security UserID="S-1-5-21-4017510424-2083581016-1307463562-1640" /> </System> <EventData></EventData> </Event> The errors shown in the Task Scheduler History tab display these results and states This operation requires an interactive window station. (0x800705B3) EventID 103 Task Scheduler failed to launch action "F:\App\Path\ConsoleApp.exe" in instance "{1a6d3450-b85a-40c0-b3db-72b98c1aa395}" of task "\taskFolder\taskName". Additional Data: Error Value: 2147943859. EventID 203 Task Scheduler failed to start instance "{1a6d3450-b85a-40c0-b3db-72b98c1aa395}" of "\taskFolder\taskName" task for user "LIVE\TaskUser" . Additional Data: Error Value: 2147943859.

    Read the article

  • Parallelism in .NET – Part 18, Task Continuations with Multiple Tasks

    - by Reed
    In my introduction to Task continuations I demonstrated how the Task class provides a more expressive alternative to traditional callbacks.  Task continuations provide a much cleaner syntax to traditional callbacks, but there are other reasons to switch to using continuations… Task continuations provide a clean syntax, and a very simple, elegant means of synchronizing asynchronous method results with the user interface.  In addition, continuations provide a very simple, elegant means of working with collections of tasks. Prior to .NET 4, working with multiple related asynchronous method calls was very tricky.  If, for example, we wanted to run two asynchronous operations, followed by a single method call which we wanted to run when the first two methods completed, we’d have to program all of the handling ourselves.  We would likely need to take some approach such as using a shared callback which synchronized against a common variable, or using a WaitHandle shared within the callbacks to allow one to wait for the second.  Although this could be accomplished easily enough, it requires manually placing this handling into every algorithm which requires this form of blocking.  This is error prone, difficult, and can easily lead to subtle bugs. Similar to how the Task class static methods providing a way to block until multiple tasks have completed, TaskFactory contains static methods which allow a continuation to be scheduled upon the completion of multiple tasks: TaskFactory.ContinueWhenAll. This allows you to easily specify a single delegate to run when a collection of tasks has completed.  For example, suppose we have a class which fetches data from the network.  This can be a long running operation, and potentially fail in certain situations, such as a server being down.  As a result, we have three separate servers which we will “query” for our information.  Now, suppose we want to grab data from all three servers, and verify that the results are the same from all three. With traditional asynchronous programming in .NET, this would require using three separate callbacks, and managing the synchronization between the various operations ourselves.  The Task and TaskFactory classes simplify this for us, allowing us to write: var server1 = Task.Factory.StartNew( () => networkClass.GetResults(firstServer) ); var server2 = Task.Factory.StartNew( () => networkClass.GetResults(secondServer) ); var server3 = Task.Factory.StartNew( () => networkClass.GetResults(thirdServer) ); var result = Task.Factory.ContinueWhenAll( new[] {server1, server2, server3 }, (tasks) => { // Propogate exceptions (see below) Task.WaitAll(tasks); return this.CompareTaskResults( tasks[0].Result, tasks[1].Result, tasks[2].Result); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This is clean, simple, and elegant.  The one complication is the Task.WaitAll(tasks); statement. Although the continuation will not complete until all three tasks (server1, server2, and server3) have completed, there is a potential snag.  If the networkClass.GetResults method fails, and raises an exception, we want to make sure to handle it cleanly.  By using Task.WaitAll, any exceptions raised within any of our original tasks will get wrapped into a single AggregateException by the WaitAll method, providing us a simplified means of handling the exceptions.  If we wait on the continuation, we can trap this AggregateException, and handle it cleanly.  Without this line, it’s possible that an exception could remain uncaught and unhandled by a task, which later might trigger a nasty UnobservedTaskException.  This would happen any time two of our original tasks failed. Just as we can schedule a continuation to occur when an entire collection of tasks has completed, we can just as easily setup a continuation to run when any single task within a collection completes.  If, for example, we didn’t need to compare the results of all three network locations, but only use one, we could still schedule three tasks.  We could then have our completion logic work on the first task which completed, and ignore the others.  This is done via TaskFactory.ContinueWhenAny: var server1 = Task.Factory.StartNew( () => networkClass.GetResults(firstServer) ); var server2 = Task.Factory.StartNew( () => networkClass.GetResults(secondServer) ); var server3 = Task.Factory.StartNew( () => networkClass.GetResults(thirdServer) ); var result = Task.Factory.ContinueWhenAny( new[] {server1, server2, server3 }, (firstTask) => { return this.ProcessTaskResult(firstTask.Result); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, instead of working with all three tasks, we’re just using the first task which finishes.  This is very useful, as it allows us to easily work with results of multiple operations, and “throw away” the others.  However, you must take care when using ContinueWhenAny to properly handle exceptions.  At some point, you should always wait on each task (or use the Task.Result property) in order to propogate any exceptions raised from within the task.  Failing to do so can lead to an UnobservedTaskException.

    Read the article

  • Parallelism in .NET – Part 11, Divide and Conquer via Parallel.Invoke

    - by Reed
    Many algorithms are easily written to work via recursion.  For example, most data-oriented tasks where a tree of data must be processed are much more easily handled by starting at the root, and recursively “walking” the tree.  Some algorithms work this way on flat data structures, such as arrays, as well.  This is a form of divide and conquer: an algorithm design which is based around breaking up a set of work recursively, “dividing” the total work in each recursive step, and “conquering” the work when the remaining work is small enough to be solved easily. Recursive algorithms, especially ones based on a form of divide and conquer, are often a very good candidate for parallelization. This is apparent from a common sense standpoint.  Since we’re dividing up the total work in the algorithm, we have an obvious, built-in partitioning scheme.  Once partitioned, the data can be worked upon independently, so there is good, clean isolation of data. Implementing this type of algorithm is fairly simple.  The Parallel class in .NET 4 includes a method suited for this type of operation: Parallel.Invoke.  This method works by taking any number of delegates defined as an Action, and operating them all in parallel.  The method returns when every delegate has completed: Parallel.Invoke( () => { Console.WriteLine("Action 1 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 2 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 3 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); } ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Running this simple example demonstrates the ease of using this method.  For example, on my system, I get three separate thread IDs when running the above code.  By allowing any number of delegates to be executed directly, concurrently, the Parallel.Invoke method provides us an easy way to parallelize any algorithm based on divide and conquer.  We can divide our work in each step, and execute each task in parallel, recursively. For example, suppose we wanted to implement our own quicksort routine.  The quicksort algorithm can be designed based on divide and conquer.  In each iteration, we pick a pivot point, and use that to partition the total array.  We swap the elements around the pivot, then recursively sort the lists on each side of the pivot.  For example, let’s look at this simple, sequential implementation of quicksort: public static void QuickSort<T>(T[] array) where T : IComparable<T> { QuickSortInternal(array, 0, array.Length - 1); } private static void QuickSortInternal<T>(T[] array, int left, int right) where T : IComparable<T> { if (left >= right) { return; } SwapElements(array, left, (left + right) / 2); int last = left; for (int current = left + 1; current <= right; ++current) { if (array[current].CompareTo(array[left]) < 0) { ++last; SwapElements(array, last, current); } } SwapElements(array, left, last); QuickSortInternal(array, left, last - 1); QuickSortInternal(array, last + 1, right); } static void SwapElements<T>(T[] array, int i, int j) { T temp = array[i]; array[i] = array[j]; array[j] = temp; } Here, we implement the quicksort algorithm in a very common, divide and conquer approach.  Running this against the built-in Array.Sort routine shows that we get the exact same answers (although the framework’s sort routine is slightly faster).  On my system, for example, I can use framework’s sort to sort ten million random doubles in about 7.3s, and this implementation takes about 9.3s on average. Looking at this routine, though, there is a clear opportunity to parallelize.  At the end of QuickSortInternal, we recursively call into QuickSortInternal with each partition of the array after the pivot is chosen.  This can be rewritten to use Parallel.Invoke by simply changing it to: // Code above is unchanged... SwapElements(array, left, last); Parallel.Invoke( () => QuickSortInternal(array, left, last - 1), () => QuickSortInternal(array, last + 1, right) ); } This routine will now run in parallel.  When executing, we now see the CPU usage across all cores spike while it executes.  However, there is a significant problem here – by parallelizing this routine, we took it from an execution time of 9.3s to an execution time of approximately 14 seconds!  We’re using more resources as seen in the CPU usage, but the overall result is a dramatic slowdown in overall processing time. This occurs because parallelization adds overhead.  Each time we split this array, we spawn two new tasks to parallelize this algorithm!  This is far, far too many tasks for our cores to operate upon at a single time.  In effect, we’re “over-parallelizing” this routine.  This is a common problem when working with divide and conquer algorithms, and leads to an important observation: When parallelizing a recursive routine, take special care not to add more tasks than necessary to fully utilize your system. This can be done with a few different approaches, in this case.  Typically, the way to handle this is to stop parallelizing the routine at a certain point, and revert back to the serial approach.  Since the first few recursions will all still be parallelized, our “deeper” recursive tasks will be running in parallel, and can take full advantage of the machine.  This also dramatically reduces the overhead added by parallelizing, since we’re only adding overhead for the first few recursive calls.  There are two basic approaches we can take here.  The first approach would be to look at the total work size, and if it’s smaller than a specific threshold, revert to our serial implementation.  In this case, we could just check right-left, and if it’s under a threshold, call the methods directly instead of using Parallel.Invoke. The second approach is to track how “deep” in the “tree” we are currently at, and if we are below some number of levels, stop parallelizing.  This approach is a more general-purpose approach, since it works on routines which parse trees as well as routines working off of a single array, but may not work as well if a poor partitioning strategy is chosen or the tree is not balanced evenly. This can be written very easily.  If we pass a maxDepth parameter into our internal routine, we can restrict the amount of times we parallelize by changing the recursive call to: // Code above is unchanged... SwapElements(array, left, last); if (maxDepth < 1) { QuickSortInternal(array, left, last - 1, maxDepth); QuickSortInternal(array, last + 1, right, maxDepth); } else { --maxDepth; Parallel.Invoke( () => QuickSortInternal(array, left, last - 1, maxDepth), () => QuickSortInternal(array, last + 1, right, maxDepth)); } We no longer allow this to parallelize indefinitely – only to a specific depth, at which time we revert to a serial implementation.  By starting the routine with a maxDepth equal to Environment.ProcessorCount, we can restrict the total amount of parallel operations significantly, but still provide adequate work for each processing core. With this final change, my timings are much better.  On average, I get the following timings: Framework via Array.Sort: 7.3 seconds Serial Quicksort Implementation: 9.3 seconds Naive Parallel Implementation: 14 seconds Parallel Implementation Restricting Depth: 4.7 seconds Finally, we are now faster than the framework’s Array.Sort implementation.

    Read the article

  • Task Scheduler Disable Google Updater Error

    - by muntoo
    Whenever I try to disable GoogleUpdateTaskUser in Vista using Task Scheduler, I get the following: --------------------------- Task Scheduler --------------------------- Not enough quota is available to process this command.GoogleUpdateTaskMachineUA --------------------------- OK --------------------------- After clicking OK: --------------------------- Task Scheduler --------------------------- This task could not be modified as requested. --------------------------- OK --------------------------- I tried this with all the "GoogleUpdate" stuff you can see in the picture below. Any ideas? THIS confirms it should work.

    Read the article

  • Which databases support parallel processing across multiple servers?

    - by David
    I need a database engine that can utilize multiple servers for processing a single SQL query in parallel. So far I know that this is possible with the some engines, though none of them are feasible for me either because of pricing or missing features. The engines currently known to me are: MS SQL (enterprise) DB2 (enterprise) Oracle (enterprise) GridSQL Greenplum Which other engines have this feature? Do you have any experience with using this feature? Edit: I have now proposed a method for creating one myself. Any input is welcome. Edit: I have found another one: Informix Extended Parallel Server

    Read the article

  • Parallel Port Problem in 12.04

    - by Frank Oberle
    I have a “dumb” printer attached to a parallel port in my machine which works fine under the “other” resident operating system (from Redmond) on the same machine. I recently added Ubuntu 12.04 as a dual boot on the machine, but Ubuntu doesn't seem to recognize the parallel port at all. All I need to set up a printer is a really plain-vanilla fixed pitch text-only generic driver, which is present, but no parallel ports show up. (The other printers, all on USB ports, seem to work just fine). Following what appeared to me to be the most reasonable of the many conflicting pieces of advice on the web, here's what I did: I added the following lines to /etc/modules parport_pc ppdev parport Then, after rebooting, I checked to see that the lines were still present, and they were. I ran dmesg | grep par and got the following references in the output that seemed like they might have to do with the parallel port: [ 14.169511] parport_pc 0000:03:07.0: PCI INT A -> GSI 21 (level, low) -> IRQ 21 [ 14.169516] PCI parallel port detected: 9710:9805, I/O at 0xce00(0xcd00), IRQ 21 [ 14.169577] parport0: PC-style at 0xce00 (0xcd00), irq 21, using FIFO [PCSPP,TRISTATE,COMPAT,ECP] [ 14.354254] lp0: using parport0 (interrupt-driven). [ 14.571358] ppdev: user-space parallel port driver [ 16.588304] type=1400 audit(1347226670.386:5): apparmor="STATUS" operation="profile_load" name="/usr/lib/cups/backend/cups-pdf" pid=964 comm="apparmor_parser" [ 16.588756] type=1400 audit(1347226670.386:6): apparmor="STATUS" operation="profile_load" name="/usr/sbin/cupsd" pid=964 comm="apparmor_parser" [ 16.673679] type=1400 audit(1347226670.470:7): apparmor="STATUS" operation="profile_load" name="/usr/lib/lightdm/lightdm/lightdm-guest-session-wrapper" pid=1010 comm="apparmor_parser" [ 16.675252] type=1400 audit(1347226670.470:8): apparmor="STATUS" operation="profile_load" name="/usr/lib/telepathy/mission-control-5" pid=1014 comm="apparmor_parser" [ 16.675716] type=1400 audit(1347226670.470:9): apparmor="STATUS" operation="profile_load" name="/usr/lib/telepathy/telepathy-*" pid=1014 comm="apparmor_parser" [ 16.676636] type=1400 audit(1347226670.474:10): apparmor="STATUS" operation="profile_replace" name="/usr/lib/cups/backend/cups-pdf" pid=1015 comm="apparmor_parser" [ 16.677124] type=1400 audit(1347226670.474:11): apparmor="STATUS" operation="profile_replace" name="/usr/sbin/cupsd" pid=1015 comm="apparmor_parser" [ 1545.725328] parport0: ppdev0 forgot to release port I have no idea what any of that means, but the line “parport0: ppdev0 forgot to release port ” seems unusual. I was still unable to add a printer for my old clunker, so I tried the direct approach, typing echo “Hello” > /dev/lp0 and received a Permission denied message. I then tried echo “Hello” > /dev/parport0 which didn't give me any message at all, but still didn't print anything. Running the command sudo /usr/lib/cups/backend/parallel gives the following: direct parallel:/dev/lp0 "unknown" "LPT #1" "" "" Checking the permissions for /dev/parport0, Owner, Group, and Other are all set to read and write. crw-rw---- 1 root lp 6, 0 Sep 9 16:37 /dev/lp0 crw-rw-rw- 1 root lp 99, 0 Sep 9 16:37 /dev/parport0 The output of the command lpinfo -v includes the following line: direct parallel:/dev/lp0 I've read several web postings that seem to suggest this has been a problem for several years, but the bug reports were closed because there wasn't enough information to address the issue (shades of Microsoft!). Any suggestions as to what I might be missing here?

    Read the article

  • Improve efficiency when using parallel to read from compressed stream

    - by Yoga
    Is another question extended from the previous one [1] I have a compressed file and stream them to feed into a python program, e.g. bzcat data.bz2 | parallel --no-notice -j16 --pipe python parse.py > result.txt The parse.py can read from stdin continusuoly and print to stdout My ec2 instance is 16 cores but from the top command it is showing 3 to 4 load average only. From the ps, I am seeing a lot of stuffs like.. sh -c 'dd bs=1 count=1 of=/tmp/7D_YxccfY7.chr 2>/dev/null'; I know I can improve using the -a in.txtto improve performance, but with my case I am streaming from bz2 (I cannot exact it since I don't have enought disk space) How to improve the efficiency for my case? [1] Gnu parallel not utilizing all the CPU

    Read the article

  • Creating a task that runs at incorrect login credentials

    - by GDA
    I'm trying to set up a personalized security option on my computer to take a picture using the webcam whenever someone tries to log onto my computer using an incorrect password. I've set up the task in the task scheduler, and I can get it to pass, but then the problem begins. When the task passes, it triggers like a million times and keeps going until I disable the task. Does anybody know why it might be doing that and how to make it not?

    Read the article

  • "The user account does not have permission to run this task"

    - by Ken
    I'm trying to get a scheduled task to run on Windows Server 2008. It has been working fine for months, and then hung, so I killed it, and now I can't get it to start. (In case it's not obvious, I'm not a Windows sysadmin by any stretch of the imagination. I inherited responsibility for this system, more or less.) The error it gives is: "The user account does not have permission to run this task". The task's "author" is "A". The task's "When running the task, use the following user account:" is "B". And my user is "C". All of A, B, C are members of the Administrators group, so I'm a bit puzzled as to why it thinks I don't have permissions to run this. Ideas?

    Read the article

  • Windows XP Task Management: no execution

    - by Ice09
    Hi, we used the following scenario sucessfully over a long period of time: Remotely log onto a Win XP server, which is used by one user most/all of time Schedule a task using the "task planner" Task was run at "almost" each scheduled point of time (seldom it did not start, presumably when someone else was logged in). For some time now, we share the server with several users. Even though I checked an option for running independently of the logged in user, this option does not seem to work. Now, the task is seldom executed, not seldom not executed. Now, the question is: is there some other option I can't see which disables the execution OR, even better, is there some other tool which we can use for task scheduling on Win XP servers with several different users?

    Read the article

  • Understanding C# async / await (2) Awaitable / Awaiter Pattern

    - by Dixin
    What is awaitable Part 1 shows that any Task is awaitable. Actually there are other awaitable types. Here is an example: Task<int> task = new Task<int>(() => 0); int result = await task.ConfigureAwait(false); // Returns a ConfiguredTaskAwaitable<TResult>. The returned ConfiguredTaskAwaitable<TResult> struct is awaitable. And it is not Task at all: public struct ConfiguredTaskAwaitable<TResult> { private readonly ConfiguredTaskAwaiter m_configuredTaskAwaiter; internal ConfiguredTaskAwaitable(Task<TResult> task, bool continueOnCapturedContext) { this.m_configuredTaskAwaiter = new ConfiguredTaskAwaiter(task, continueOnCapturedContext); } public ConfiguredTaskAwaiter GetAwaiter() { return this.m_configuredTaskAwaiter; } } It has one GetAwaiter() method. Actually in part 1 we have seen that Task has GetAwaiter() method too: public class Task { public TaskAwaiter GetAwaiter() { return new TaskAwaiter(this); } } public class Task<TResult> : Task { public new TaskAwaiter<TResult> GetAwaiter() { return new TaskAwaiter<TResult>(this); } } Task.Yield() is a another example: await Task.Yield(); // Returns a YieldAwaitable. The returned YieldAwaitable is not Task either: public struct YieldAwaitable { public YieldAwaiter GetAwaiter() { return default(YieldAwaiter); } } Again, it just has one GetAwaiter() method. In this article, we will look at what is awaitable. The awaitable / awaiter pattern By observing different awaitable / awaiter types, we can tell that an object is awaitable if It has a GetAwaiter() method (instance method or extension method); Its GetAwaiter() method returns an awaiter. An object is an awaiter if: It implements INotifyCompletion or ICriticalNotifyCompletion interface; It has an IsCompleted, which has a getter and returns a Boolean; it has a GetResult() method, which returns void, or a result. This awaitable / awaiter pattern is very similar to the iteratable / iterator pattern. Here is the interface definitions of iteratable / iterator: public interface IEnumerable { IEnumerator GetEnumerator(); } public interface IEnumerator { object Current { get; } bool MoveNext(); void Reset(); } public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IDisposable, IEnumerator { T Current { get; } } In case you are not familiar with the out keyword, please find out the explanation in Understanding C# Covariance And Contravariance (2) Interfaces. The “missing” IAwaitable / IAwaiter interfaces Similar to IEnumerable and IEnumerator interfaces, awaitable / awaiter can be visualized by IAwaitable / IAwaiter interfaces too. This is the non-generic version: public interface IAwaitable { IAwaiter GetAwaiter(); } public interface IAwaiter : INotifyCompletion // or ICriticalNotifyCompletion { // INotifyCompletion has one method: void OnCompleted(Action continuation); // ICriticalNotifyCompletion implements INotifyCompletion, // also has this method: void UnsafeOnCompleted(Action continuation); bool IsCompleted { get; } void GetResult(); } Please notice GetResult() returns void here. Task.GetAwaiter() / TaskAwaiter.GetResult() is of such case. And this is the generic version: public interface IAwaitable<out TResult> { IAwaiter<TResult> GetAwaiter(); } public interface IAwaiter<out TResult> : INotifyCompletion // or ICriticalNotifyCompletion { bool IsCompleted { get; } TResult GetResult(); } Here the only difference is, GetResult() return a result. Task<TResult>.GetAwaiter() / TaskAwaiter<TResult>.GetResult() is of this case. Please notice .NET does not define these IAwaitable / IAwaiter interfaces at all. As an UI designer, I guess the reason is, IAwaitable interface will constraint GetAwaiter() to be instance method. Actually C# supports both GetAwaiter() instance method and GetAwaiter() extension method. Here I use these interfaces only for better visualizing what is awaitable / awaiter. Now, if looking at above ConfiguredTaskAwaitable / ConfiguredTaskAwaiter, YieldAwaitable / YieldAwaiter, Task / TaskAwaiter pairs again, they all “implicitly” implement these “missing” IAwaitable / IAwaiter interfaces. In the next part, we will see how to implement awaitable / awaiter. Await any function / action In C# await cannot be used with lambda. This code: int result = await (() => 0); will cause a compiler error: Cannot await 'lambda expression' This is easy to understand because this lambda expression (() => 0) may be a function or a expression tree. Obviously we mean function here, and we can tell compiler in this way: int result = await new Func<int>(() => 0); It causes an different error: Cannot await 'System.Func<int>' OK, now the compiler is complaining the type instead of syntax. With the understanding of the awaitable / awaiter pattern, Func<TResult> type can be easily made into awaitable. GetAwaiter() instance method, using IAwaitable / IAwaiter interfaces First, similar to above ConfiguredTaskAwaitable<TResult>, a FuncAwaitable<TResult> can be implemented to wrap Func<TResult>: internal struct FuncAwaitable<TResult> : IAwaitable<TResult> { private readonly Func<TResult> function; public FuncAwaitable(Func<TResult> function) { this.function = function; } public IAwaiter<TResult> GetAwaiter() { return new FuncAwaiter<TResult>(this.function); } } FuncAwaitable<TResult> wrapper is used to implement IAwaitable<TResult>, so it has one instance method, GetAwaiter(), which returns a IAwaiter<TResult>, which wraps that Func<TResult> too. FuncAwaiter<TResult> is used to implement IAwaiter<TResult>: public struct FuncAwaiter<TResult> : IAwaiter<TResult> { private readonly Task<TResult> task; public FuncAwaiter(Func<TResult> function) { this.task = new Task<TResult>(function); this.task.Start(); } bool IAwaiter<TResult>.IsCompleted { get { return this.task.IsCompleted; } } TResult IAwaiter<TResult>.GetResult() { return this.task.Result; } void INotifyCompletion.OnCompleted(Action continuation) { new Task(continuation).Start(); } } Now a function can be awaited in this way: int result = await new FuncAwaitable<int>(() => 0); GetAwaiter() extension method As IAwaitable shows, all that an awaitable needs is just a GetAwaiter() method. In above code, FuncAwaitable<TResult> is created as a wrapper of Func<TResult> and implements IAwaitable<TResult>, so that there is a  GetAwaiter() instance method. If a GetAwaiter() extension method  can be defined for Func<TResult>, then FuncAwaitable<TResult> is no longer needed: public static class FuncExtensions { public static IAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { return new FuncAwaiter<TResult>(function); } } So a Func<TResult> function can be directly awaited: int result = await new Func<int>(() => 0); Using the existing awaitable / awaiter - Task / TaskAwaiter Remember the most frequently used awaitable / awaiter - Task / TaskAwaiter. With Task / TaskAwaiter, FuncAwaitable / FuncAwaiter are no longer needed: public static class FuncExtensions { public static TaskAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { Task<TResult> task = new Task<TResult>(function); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter<TResult>. } } Similarly, with this extension method: public static class ActionExtensions { public static TaskAwaiter GetAwaiter(this Action action) { Task task = new Task(action); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter. } } an action can be awaited as well: await new Action(() => { }); Now any function / action can be awaited: await new Action(() => HelperMethods.IO()); // or: await new Action(HelperMethods.IO); If function / action has parameter(s), closure can be used: int arg0 = 0; int arg1 = 1; int result = await new Action(() => HelperMethods.IO(arg0, arg1)); Using Task.Run() The above code is used to demonstrate how awaitable / awaiter can be implemented. Because it is a common scenario to await a function / action, so .NET provides a built-in API: Task.Run(): public class Task2 { public static Task Run(Action action) { // The implementation is similar to: Task task = new Task(action); task.Start(); return task; } public static Task<TResult> Run<TResult>(Func<TResult> function) { // The implementation is similar to: Task<TResult> task = new Task<TResult>(function); task.Start(); return task; } } In reality, this is how we await a function: int result = await Task.Run(() => HelperMethods.IO(arg0, arg1)); and await a action: await Task.Run(() => HelperMethods.IO());

    Read the article

  • library put in /usr/local/lib is not loaded

    - by IARI
    Let me state in advance: One might think this question would is for server fault, but I think is is Ubuntu (config) specific. In short: I have put libwkhtmltox.so in /usr/local/lib as stated in installation instructions linked below, but it appears the library is not loaded. I am trying to install php-wkhtmltox, a php extension for wkhtmltox on my local desktop (Ubuntu 12.04). I have extracted the source and changed to the corresponding directory. After running phpize, ./configure fails at checking for libwkhtmltox support... yes, shared not found configure: error: Please install libwkhtmltox I suspect the reason the library is not loaded is that the path is not checked!? how do I proceed? Here are instructions I followed: http://davidbomba.com/index.php/2011/08/04/php-wkhtmltox/ http://roundhere.net/journal/install-wkhtmltopdf-php-bindings/

    Read the article

  • How to Force an Exception from a Task to be Observed in a Continuation Task?

    - by Richard
    I have a task to perform an HttpWebRequest using Task<WebResponse>.Factory.FromAsync(req.BeginGetRespone, req.EndGetResponse) which can obviously fail with a WebException. To the caller I want to return a Task<HttpResult> where HttpResult is a helper type to encapsulate the response (or not). In this case a 4xx or 5xx response is not an exception. Therefore I've attached two continuations to the request task. One with TaskContinuationOptions OnlyOnRanToCompletion and the other with OnlyOnOnFaulted. And then wrapped the whole thing in a Task<HttpResult> to pick up the one result whichever continuation completes. Each of the three child tasks (request plus two continuations) is created with the AttachedToParent option. But when the caller waits on the returned outer task, an AggregateException is thrown is the request failed. I want to, in the on faulted continuation, observe the WebException so the client code can just look at the result. Adding a Wait in the on fault continuation throws, but a try-catch around this doesn't help. Nor does looking at the Exception property (as section "Observing Exceptions By Using the Task.Exception Property" hints here). I could install a UnobservedTaskException event handler to filter, but as the event offers no direct link to the faulted task this will likely interact outside this part of the application and is a case of a sledgehammer to crack a nut. Given an instance of a faulted Task<T> is there any means of flagging it as "fault handled"? Simplified code: public static Task<HttpResult> Start(Uri url) { var webReq = BuildHttpWebRequest(url); var result = new HttpResult(); var taskOuter = Task<HttpResult>.Factory.StartNew(() => { var tRequest = Task<WebResponse>.Factory.FromAsync( webReq.BeginGetResponse, webReq.EndGetResponse, null, TaskCreationOptions.AttachedToParent); var tError = tRequest.ContinueWith<HttpResult>( t => HandleWebRequestError(t, result), TaskContinuationOptions.AttachedToParent |TaskContinuationOptions.OnlyOnFaulted); var tSuccess = tRequest.ContinueWith<HttpResult>( t => HandleWebRequestSuccess(t, result), TaskContinuationOptions.AttachedToParent |TaskContinuationOptions.OnlyOnRanToCompletion); return result; }); return taskOuter; } with: private static HttpDownloaderResult HandleWebRequestError( Task<WebResponse> respTask, HttpResult result) { Debug.Assert(respTask.Status == TaskStatus.Faulted); Debug.Assert(respTask.Exception.InnerException is WebException); // Try and observe the fault: Doesn't help. try { respTask.Wait(); } catch (AggregateException e) { Log("HandleWebRequestError: waiting on antecedent task threw inner: " + e.InnerException.Message); } // ... populate result with details of the failure for the client ... return result; } (HandleWebRequestSuccess will eventually spin off further tasks to get the content of the response...) The client should be able to wait on the task and then look at its result, without it throwing due to a fault that is expected and already handled.

    Read the article

  • (External) Java library for creating Tree structure ?

    - by suVasH.....
    I am planning to implement a tree structure where every node has two children and a parent along with various other node properties (and I'd want to do this in Java ) Now, the way to it probably is to create the node such that it links to other nodes ( linked list trick ), but I was wondering if there is any good external library to handle all this low level stuff. ( for eg. the ease of stl::vector vs array in C++ ). I've heard of JDots, but still since i haven't started (and haven't programmed a lot in Java), I'd rather hear out before I begin.

    Read the article

  • Unofficial Prep guide for TS: Microsoft Lync Server 2010, Configuring (70-664)

    - by Enrique Lima
    Managing Users and Client Access (20 percent)   Objective Materials Configure user accounts http://technet.microsoft.com/en-us/library/gg182543.aspx Deploy and maintain clients http://technet.microsoft.com/en-us/library/gg412773.aspx Configure conferencing policies http://technet.microsoft.com/en-us/library/gg182561.aspx Configure IM policies http://technet.microsoft.com/en-us/library/gg182558.aspx Deploy and maintain Lync Server 2010 devices http://technet.microsoft.com/en-us/library/gg412773.aspx Resolve client access issues http://technet.microsoft.com/en-us/library/gg398307.aspx   Configuring a Lync Server 2010 Topology (21 percent)   Objective Materials Prepare to deploy a topology http://technet.microsoft.com/en-us/library/gg398630.aspx Configure Lync Server 2010 by using Topology Builder http://technet.microsoft.com/en-us/library/gg398420.aspx Configure role-based access control in Lync Server 2010 http://technet.microsoft.com/en-us/library/gg412794.aspx http://technet.microsoft.com/en-us/library/gg425917.aspx Configure a location information server http://technet.microsoft.com/en-us/library/gg398390.aspx Configure server pools for load balancing http://technet.microsoft.com/en-us/library/gg398827.aspx   Configuring Enterprise Voice (19 percent)   Objective Materials Configure voice policies http://technet.microsoft.com/en-us/library/gg398450.aspx Configure dial plans http://technet.microsoft.com/en-us/library/gg398922.aspx Manage routing http://technet.microsoft.com/en-us/library/gg425890.aspx http://technet.microsoft.com/en-us/library/gg182596.aspx Configure Microsoft Exchange Unified Messaging integration http://technet.microsoft.com/en-us/library/gg398768.aspx Configure dial-in conferencing http://technet.microsoft.com/en-us/library/gg398600.aspx Configure call admission control http://technet.microsoft.com/en-us/library/gg520942.aspx Configure Response Group Services (RGS) http://technet.microsoft.com/en-us/library/gg398584.aspx Configure Call Park and Unassigned Number http://technet.microsoft.com/en-us/library/gg399014.aspx http://technet.microsoft.com/en-us/library/gg425944.aspx Manage a Mediation Server pool and PSTN Gateway http://technet.microsoft.com/en-us/library/gg412780.aspx   Configuring Lync Server 2010 for External Access (19 percent)   Objective Materials Configure Edge Services http://technet.microsoft.com/en-us/library/gg398918.aspx Configure a firewall http://technet.microsoft.com/en-us/library/gg425882.aspx Configure a reverse proxy http://technet.microsoft.com/en-us/library/gg425779.aspx   Monitoring and Maintaining Lync Server 2010 (21 percent)   Objective Materials Back up and restore Lync Server 2010 http://technet.microsoft.com/en-us/library/gg412771.aspx Configure monitoring and archiving http://technet.microsoft.com/en-us/library/gg398199.aspx http://technet.microsoft.com/en-us/library/gg398507.aspx http://technet.microsoft.com/en-us/library/gg520950.aspx http://technet.microsoft.com/en-us/library/gg520990.aspx Implement troubleshooting tools http://technet.microsoft.com/en-us/library/gg425800.aspx Use PowerShell to test Lync Server 2010 http://technet.microsoft.com/en-us/library/gg398474.aspx

    Read the article

  • How to find location of installed library

    - by Raven
    Background: I'm trying to build my program but first I need to set up libraries in netbeans. My project is using GLU and therefore I installed libglu-dev. I didn't note location where the libraries were located and now I can't find them.. I've switched to Linux just a few days ago and so far I'm very content with it, however I couldn't google this one out and becoming frustrated.. Is there way to find out where files of package were installed without running installation again? I mean if I got library xxx and installed it some time ago, is there somecommand xxx that will print this info? I've already tried locate, find and whereis commands but either I'm missing something or I just can't do it correctly.. for libglu, locate returns: /usr/share/bug/libglu1-mesa /usr/share/bug/libglu1-mesa/control /usr/share/bug/libglu1-mesa/script /usr/share/doc/libglu1-mesa /usr/share/doc/libglu1-mesa/changelog.Debian.gz /usr/share/doc/libglu1-mesa/copyright /usr/share/lintian/overrides/libglu1-mesa /var/lib/dpkg/info/libglu1-mesa:i386.list /var/lib/dpkg/info/libglu1-mesa:i386.md5sums /var/lib/dpkg/info/libglu1-mesa:i386.postinst /var/lib/dpkg/info/libglu1-mesa:i386.postrm /var/lib/dpkg/info/libglu1-mesa:i386.shlibs Other two commands fail to find anything. Now locate did it's job but I'm sure none of those paths is where the library actually resides (at least everything I was linking so far was in /usr/lib or usr/local/lib). The libglu was introduced just as example, I'm looking for general solution for this problem.

    Read the article

  • Databases supporting parallel processing across multiple servers

    - by David
    I need a database engine that can utilize multiple servers for processing a single SQL query in parallel. So far I know that this is possible with the some engines, though none of them are feasible for me either because of pricing or missing features. The engines currently known to me are: MS SQL (enterprise) DB2 (enterprise) Oracle (enterprise) GridSQL Greenplum

    Read the article

  • Linux shared library that uses a shared library undefined symbol

    - by johnnycrash
    two shared libraries liba.so and libb.so. liba.so uses libb.so. All c files are compiled with -fPIC. Linking uses -shared. When we call dlopen on liba.so it cannot find symbols in libb.so...we get the "undefined symbol" error. We can dlopen libb.so with no errors. We know that liba is finding libb because we don't get a file not found error. We get a file not found error when we delete libb.so. We tried -lutil and no luck. Any ideas???? oh yeah. gcc 4.1.2

    Read the article

  • Parallel File Copy

    - by Jon
    I have a list of files I need to copy on a Linux system - each file ranges from 10 to 100GB in size. I only want to copy to the local filesystem. Is there a way to do this in parallel - with multiple processes each responsible for copying a file - in a simple manner? I can easily write a multithreaded program to do this, but I'm interested in finding out if there's a low level Linux method for doing this.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >