Search Results

Search found 5765 results on 231 pages for 'pre compilation'.

Page 5/231 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • UPK Pre-Built Content Update

    - by Karen Rihs
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} UPK pre-built content development efforts are always underway and growing. Over the last few months, the following new, upgraded, and revised modules became available:  NEW CONTENT RELEASES E-Business Suite 12.1 Install Base Process Manufacturing, Process Quality Fundamentals for EBS Fusion 11g Release 1 Receivables Assets Purchasing Distributed Order Orchestration Payables Functional Setup Manager Project Portfolio Management Self Service Procurement JDE E1 9.0 Accounts Payable 9.0 with 9.1 Tools Fundamentals 9.0 with 9.1 Tools General Ledger 9.0 with 9.1 Tools Accounts Receivable 9.0 with 9.1 Tools Procurement and Subcontract Management 9.0 with 9.1 Tools Oracle Utilities Customer Care and Billing 2.3.1 Administrative Setup User Tasks Primavera Primavera Contract Management 14 Primavera P6 Enterprise Project Portfolio Management 8.2 UPK CONTENT UPGRADES Agile CNM 1.2 Customer Needs Management E-Business Suite 12.1 Project Foundation JDE E1 9.1 Fixed Assets Accounting General Ledger Fundamentals Inventory Management Sales Order Management PeopleSoft 9.1 Reporting Tools for PeopleTools 8.5.2  UPK CONTENT REVISIONS Oracle Utilities for Meter Data Management 2.0.1 Administrative Setup User Tasks VEE and Usage Rules Working with Measurement Data PeopleSoft 9.0 and 9.1 Enterprise Learning Management Reporting Tools for HCM (previously Reporting Tools for HRMS) PeopleSoft 9.1 Expenses General Ledger Inventory Contracts Grants Strategic Sourcing For a list of modules currently available for each product line, visit the UPK Resource Library on Oracle.com. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} For more information on how your organization can take advantage of UPK pre-built content, see our previous blog,  Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The Value of UPK Pre-Built Content. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} - Karen Rihs, UPK Outbound Product Management

    Read the article

  • New OBI 11g on-line Sales & Pre-sales Partner Assessment Tests

    - by Mike.Hallett(at)Oracle-BI&EPM
    Our OBI partners can now update their specialisation certification to the latest product version 11g for OBI: until recently, the accreditation had examined skills for OBI 10g.   New OPN on-line Sales & Pre-sales Assessment Tests Available Oracle Business Intelligence Foundation Suite 11g Sales Specialist   Oracle Business Intelligence Foundation Suite 11g PreSales Specialist   Oracle Business Intelligence Foundation Suite 11g Support Specialist

    Read the article

  • New OBI 11G Online Sales & Pre-Sales Partner Assessment Tests

    - by Cinzia Mascanzoni
    OBI partners can now update their specialization certification to the latest product version 11g for OBI: until recently, the accreditation had examined skills for OBI 10g. New OPN on-line Sales & Pre-sales Assessment Tests Available Oracle Business Intelligence Foundation Suite 11g Sales Specialist Oracle Business Intelligence Foundation Suite 11g PreSales Specialist Oracle Business Intelligence Foundation Suite 11g Support Specialist Read more on Specialization

    Read the article

  • SQL Rally Relational Database Design Pre-Con Preview

    - by drsql
    On May 9, 2012, I will be presenting a pre-con session at the SQL Rally in Dallas, TX on relational database design. The fact is, database design is a topic that demands more than a simple one hour session to really do it right. So in my Relational Database Design Workshop, we will have seven times the amount of time in the typical session, giving us time to cover our topics in a bit more detail, look at a lot more designs/code, and even get some time to do some design as a group. Our topics will...(read more)

    Read the article

  • Compiling vs using pre-built binaries performance?

    - by Nick Rosencrantz
    Will performance be better (quicker) if I manually compile the source for a software component for the actual machine that it will be used on, compared to if the source was compiled on another platform perhaps for many different architectures? I got some good results compiling source that I downloaded and I wonder whether this was due to compiling it instead of downloading a pre-compiled binary which is often the case with software updates.

    Read the article

  • Creating an Alternate Install CD with pre installed users

    - by juzerali
    I want to create my own customized Ubuntu derivative and this question already gave me a very good start. My requirements are quite specific I want to roll out a CD with Set of users who are supposed to run them (root, admin, guest) pre-installed With their passwords already set Installation not asking for creating users on booting or during OS installation Autologin to guest user Is this even possible? Thanks to the community in advance :)

    Read the article

  • Creating a live CD with pre installed users

    - by juzerali
    I want to create my own customized Ubuntu derivative and this question already gave me a very good start. My requirements are quite specific I want to roll out a CD with Set of users who are supposed to run them (root, admin, guest) pre-installed With their passwords already set Installation not asking for creating users on booting or during OS installation Autologin to guest user Is this even possible? Thanks to the community in advance :)

    Read the article

  • A Variety of SQL Rally Pre-Cons

    The 2012 SQL Rally is coming in May to Dallas, TX and there are a number of pre-conference sessions that can help you learn about something that interests you at an inexpensive price. What are your servers really trying to tell you? Find out with new SQL Monitor 3.0, an easy-to-use tool built for no-nonsense database professionals.For effortless insights into SQL Server, download a free trial today.

    Read the article

  • Java conditional compilation: how to prevent code chunks to be compiled?

    - by khachik
    My project requires Java 1.6 for compilation and running. Now I have a requirement to make it working with Java 1.5 (from the marketing side). I want to replace method body (return type and arguments remain the same) to make it compiling with Java 1.5 without errors. Details: I have an utility class called OS which encapsulates all OS-specific things. It has a method public static void openFile(java.io.File file) throws java.io.IOException { // open the file using java.awt.Desktop ... } to open files like with double-click (start Windows command or open Mac OS X command equivalent). Since it cannot be compiled with Java 1.5, I want to exclude it during compilation and replace by another method which calls run32dll for Windows or open for Mac OS X using Runtime.exec. Question: How can I do that? Can annotations help here? Note: I use ant, and I can make two java files OS4J5.java and OS4J6.java which will contain the OS class with the desired code for Java 1.5 and 1.6 and copy one of them to OS.java before compiling (or an ugly way - replace the content of OS.java conditionally depending on java version) but I don't want to do that, if there is another way. Elaborating more: in C I could use ifdef, ifndef, in Python there is no compilation and I could check a feature using hasattr or something else, in Common Lisp I could use #+feature. Is there something similar for Java? Found this post but it doesn't seem to be helpful. Any help is greatly appreciated. kh.

    Read the article

  • Conditional compilation hackery in C# - is there a way to pull this off?

    - by Chris
    I have an internal API that I would like others to reference in their projects as a compiled DLL. When it's a standalone project that's referenced, I use conditional compilation (#if statements) to switch behavior of a key web service class depending on compilation symbols. The problem is, once an assembly is generated, it appears that it's locked into whatever the compilation symbols were when it was originally compiled - for instance, if this assembly is compiled with DEBUG and is referenced by another project, even if the other project is built as RELEASE, the assembly still acts as if it was in DEBUG as it doesn't need recompilation. That makes sense, just giving some background. Now I'm trying to work around that so I can switch the assembly's behavior by some other means, such as scanning the app/web config file for a switch. The problem is, some of the assembly's code I was switching between are attributes on methods, for example: #if PRODUCTION [SoapDocumentMethodAttribute("https://prodServer/Service_Test", RequestNamespace = "https://prodServer", ResponseNamespace = "https://prodServer")] #else [SoapDocumentMethodAttribute("https://devServer/Service_Test", RequestNamespace = "https://devServer", ResponseNamespace = "https://devServer")] #endif public string Service_Test() { // test service } Though there might be some syntactical sugar that allows me to flip between two attributes of the same type in another fashion, I don't know it. Any ideas? The alternative method would be to reference the entire project instead of the assembly, but I'd rather stick with just referencing the compiled DLL if I can. I'm also completely open to a whole new approach to solve the problem if that's what it takes.

    Read the article

  • upgrading from MVC4 to MVC5 pre-Release

    - by Jack M
    I have made that dreadful error of upgrading from MVC4 to MVC5 pre-release by updating the razor, and mvc webpage in my references I have System.Web.Mvc, System.Web.Webpages, System.Web.Webpages.Razor and System.Web.Razor as version v4.0.30319, when I run my application I get [A]System.Web.WebPages.Razor.Configuration.HostSection cannot be cast to [B]System.Web.WebPages.Razor.Configuration.HostSection. Type A originates from 'System.Web.WebPages.Razor, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' in the context 'Default' at location 'C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System.Web.WebPages.Razor\v4.0_2.0.0.0__31bf3856ad364e35\System.Web.WebPages.Razor.dll'. Type B originates from 'System.Web.WebPages.Razor, Version=3.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' in the context 'Default' at location 'C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Temporary ASP.NET Files\membership\c70f06fe\9163b1ca\assembly\dl3\291c956e\73c25daa_cf74ce01\System.Web.WebPages.Razor.dll'. is this the same as http://www.asp.net/whitepapers/mvc4-release-notes Thanks Adding a stacktrace: [InvalidCastException: [A]System.Web.WebPages.Razor.Configuration.HostSection cannot be cast to [B]System.Web.WebPages.Razor.Configuration.HostSection. Type A originates from 'System.Web.WebPages.Razor, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' in the context 'Default' at location 'C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System.Web.WebPages.Razor\v4.0_2.0.0.0__31bf3856ad364e35\System.Web.WebPages.Razor.dll'. Type B originates from 'System.Web.WebPages.Razor, Version=3.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' in the context 'Default' at location 'C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Temporary ASP.NET Files\c70f06fe\9163b1ca\assembly\dl3\291c956e\73c25daa_cf74ce01\System.Web.WebPages.Razor.dll'.] System.Web.WebPages.Razor.WebRazorHostFactory.CreateHostFromConfig(String virtualPath, String physicalPath) +193 System.Web.WebPages.Razor.RazorBuildProvider.GetHostFromConfig() +51 System.Web.WebPages.Razor.RazorBuildProvider.CreateHost() +24 System.Web.WebPages.Razor.RazorBuildProvider.get_Host() +34 System.Web.WebPages.Razor.RazorBuildProvider.EnsureGeneratedCode() +85 System.Web.WebPages.Razor.RazorBuildProvider.get_CodeCompilerType() +34 System.Web.Compilation.BuildProvider.GetCompilerTypeFromBuildProvider(BuildProvider buildProvider) +189 System.Web.Compilation.BuildProvidersCompiler.ProcessBuildProviders() +265 System.Web.Compilation.BuildProvidersCompiler.PerformBuild() +21 System.Web.Compilation.BuildManager.CompileWebFile(VirtualPath virtualPath) +580 System.Web.Compilation.BuildManager.GetVPathBuildResultInternal(VirtualPath virtualPath, Boolean noBuild, Boolean allowCrossApp, Boolean allowBuildInPrecompile, Boolean throwIfNotFound, Boolean ensureIsUpToDate) +571 System.Web.Compilation.BuildManager.GetVPathBuildResultWithNoAssert(HttpContext context, VirtualPath virtualPath, Boolean noBuild, Boolean allowCrossApp, Boolean allowBuildInPrecompile, Boolean throwIfNotFound, Boolean ensureIsUpToDate) +203 System.Web.Compilation.BuildManager.GetVirtualPathObjectFactory(VirtualPath virtualPath, HttpContext context, Boolean allowCrossApp, Boolean throwIfNotFound) +249 System.Web.Compilation.BuildManager.GetCompiledType(VirtualPath virtualPath) +17 System.Web.Mvc.BuildManagerCompiledView.Render(ViewContext viewContext, TextWriter writer) +90 System.Web.Mvc.ViewResultBase.ExecuteResult(ControllerContext context) +380 System.Web.Mvc.ControllerActionInvoker.InvokeActionResultFilterRecursive(IList`1 filters, Int32 filterIndex, ResultExecutingContext preContext, ControllerContext controllerContext, ActionResult actionResult) +109 System.Web.Mvc.ControllerActionInvoker.InvokeActionResultFilterRecursive(IList`1 filters, Int32 filterIndex, ResultExecutingContext preContext, ControllerContext controllerContext, ActionResult actionResult) +890 System.Web.Mvc.ControllerActionInvoker.InvokeActionResultWithFilters(ControllerContext controllerContext, IList`1 filters, ActionResult actionResult) +97 System.Web.Mvc.Async.<>c__DisplayClass1e.<BeginInvokeAction>b__1b(IAsyncResult asyncResult) +241 System.Web.Mvc.Controller.<BeginExecuteCore>b__1d(IAsyncResult asyncResult, ExecuteCoreState innerState) +29 System.Web.Mvc.Async.WrappedAsyncVoid`1.CallEndDelegate(IAsyncResult asyncResult) +111 System.Web.Mvc.Controller.EndExecuteCore(IAsyncResult asyncResult) +53 System.Web.Mvc.Async.WrappedAsyncVoid`1.CallEndDelegate(IAsyncResult asyncResult) +19 System.Web.Mvc.MvcHandler.<BeginProcessRequest>b__4(IAsyncResult asyncResult, ProcessRequestState innerState) +51 System.Web.Mvc.Async.WrappedAsyncVoid`1.CallEndDelegate(IAsyncResult asyncResult) +111 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +606 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +288

    Read the article

  • Hot: Pre-built Developer VMs from OTN

    - by Justin Kestelyn
    For those of you who haven't already played with it, Oracle VM VirtualBox is an awfully cool desktop virtualization tool. Even better, it's free. We OTN-ers like it even more than you will though because it allows us to freeze-dry entire software stacks into VM images. Developers can simply download a few files, assemble them with a script we provide, and then import and run the resulting pre-built VM in VirtualBox. Voila, instant (insert name here) stack. These VMs are particularly handy in support of in-person workshops, but there's no reason we can't make them available for everyone. Which we have done, in Java, database, and SOA/BPM flavors. (All "ingredients" are listed at the referenced link, and they are extensive.) Now that we have the kinks worked out, other flavors are sure to become available in 2011. Now go get 'em!

    Read the article

  • Pre-built Oracle VirtualBox Images

    - by james.bayer
    I’m thrilled to see that Justin Kestelyn has a post that pre-built Oracle VirtualBox images are now available on OTN.  There are VMs for various Oracle software stacks including one for Database, one for Java with Glassfish, and one for SOA and BPM products that includes WebLogic Server. This is just one example of the synergy of a combined Oracle and Sun delivering improvements for customers.  These VMs make it even more straight-forward to get started with Oracle software in a development environment without having to worry about initial software installation and configuration. I’ve been a bit quiet lately on the blogging front, but I’m currently working on another area leveraging the best of Oracle and Sun.  Oracle is uniquely positioned to deliver engineered systems that optimize the entire stack of software and hardware.  You’ve probably seen the announcements about Exalogic and I’m excited about the potential to deliver major advancements for middleware.  More to come…

    Read the article

  • Game development: Pre-production stage

    - by piers
    I´m starting up a new project. It´s going to be a web browser game, developed using HTML5, JavaScript and CSS3. I have some general questions regarding the process of game developing. Should you know everything about your game by the time you start writing the first lines of code? I mean should you know all the details, all the things the player can and can not do? Basically: should you be done writing down new ideas before you begin coding? I understand the pre-production process is about documenting, doing research etc. What does that mean? Does it mean I should open up Word and write down everything about the game? For example what should happen when you click on different things etc. Thanks for your help!

    Read the article

  • Sluggish/unresponsive trackpad on pre-unibody MacBook Pro

    - by Art
    I am running Ubuntu Natty Narwhal on pre-unibody MacBook Pro (2007 I believe). There seems to be a problem with trackpad - it barely works, in order to move cursor you have to move your finger a lot, and it terminates the 'gestures' abruptly - say you are moving the cursor with your finger and out of the blue it just stops, although the finger is still in contact with the surface of the trackpad. Those issues seem to dissapear as soon as I boot Mac OS X, so I suspect it is something Ubuntu-specific. Also, if I try to move the cursor with not just fingertip but increase the contact area, it seems to work just fine, although it is hardly convenient.

    Read the article

  • NEW - Oracle Certifications and Documentation Available for Pre-Acquisition Sun/BEA IdM Products

    - by Irina
    If you have been looking for Oracle certification information or documentation for the pre-Acquisition Sun/BEA Identity Management products, you can now find them at the Certifications Central Hub.Use this Hub if you're looking for Sun Identity Management documentation, certified configurations for Waveset, Identity Analytics, OpenSSO, and more. Scroll down, below the bullets, to the bottom of the table to find: Of course, you can still find a great wealth of certification information for current products at this hub, as in the past. Be sure to check before you install! In case you haven't used this page before, notice that you can get to the documentation, certifications and downloads for IdM products by clicking on "Identity Management" in the leftmost pane. In the new screen, you will see each IdM product, along with tabs for Downloads, Documentation, Community, and Learn More. Let us know if you don't find what you are looking for. Happy Trails.

    Read the article

  • NEW - Oracle Certifications and Documentation Available for Pre-Acquisition Sun/BEA Products

    - by PCat
    If you have been looking for Oracle certification information or documentation for the pre-Acquisition Sun/BEA products, such as WebLogic Portal (WLP) or WebCenter Interaction (WCI), formerly ALUI, you can now find them at the Certifications Central Hub.Use this Hub if you're looking for WLP/WCI documentation and certified configurations and more. Scroll down, below the bullets, to the bottom of the table to find: Of course, you can still find a great wealth of certification information for current products at this hub, as in the past. Be sure to check before you install! In case you haven't used this page before, notice that you can get to the documentation, certifications and downloads for WLP/WCI products by clicking on "WebLogic Portal" or "WebCenter Interaction" in the leftmost pane. In the new screen, you will see tabs for Overview, Downloads, Documentation and Community. Let us know if you don't find what you are looking for. Happy Trails.

    Read the article

  • How to do pre-loading

    - by Dave
    I have a question that is confusing me with making a game. For my game launch i pre load everything for the main menu then i loop the game to display it. But lets argue player wants to launch a new game or a specific level, then you preload the relevant sounds/graphics for that level right? How ever, the player must already be running the game loop if they are at the main menu, so you can't load in the game loop or you will load every frame...but im pretty sure most big games don't preload every level when you first run the game from desktop because it would take a long time on some of these games.... How is it done :S

    Read the article

  • Can I virtualize a pre-installed Windows 7?

    - by SpashHit
    I am considering buying a new computer with Windows 7 (64-bit) pre-installed. Would it be possible to install Ubuntu (preferably 64-bit) dual-boot on such a machine, and then, using VirtualBox / VMWare, etc. under Ubuntu, make a virtual machine that "points to" the existing Windows 7 OS (without making a copy of it)? Just to be clear... at the end of this process: I would have a machine that dual-booted both Windows 7 (64-bit) and Ubuntu (64-bit). If I choose to boot Ubuntu, I would then have the possibility of running a visualization of Windows 7 within Ubuntu. There would only be 1 copy of Windows 7 on the hard disk.

    Read the article

  • GPU optimization question: pre-computed or procedural?

    - by Jay
    Good morning, I'm learning shader program and need some general direction. I want to add noise to my laser beam (like this). Which is the best way to handle it? I could pre-compute an image and pass it to the shader. I could then use the image to change the opacity and easily animate the smoke by changing the offset of the texture lookup. I could also generate noise in the shader and do the same thing the texture was used for. Is it generally better to avoid I/O to the graphics card or the opposite? Thanks!

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >