Search Results

Search found 4755 results on 191 pages for 'scripting dictionary'.

Page 5/191 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • What do you look for in a scripting language?

    - by Jon Purdy
    I'm writing a little embedded language for another project. While game development was not its original intent, it's starting to look like a good fit, and I figure I'll develop it in that vein at some point. Without revealing any details (to avoid bias), I'm curious to know: What features do you love in a scripting language for game development? If you've used Lua, Python, or another embedded language such as Tcl or Guile as your primary scripting language in a game project, what aspects did you find the most useful? Language features (lambdas, classes, parallelism) Implementation features (performance optimisations, JIT, hardware acceleration) Integration features (C, C++, or .NET bindings) Or something entirely different?

    Read the article

  • Advice for Windows XP Scripting, WSH versus PowerShell

    - by Greg Graham
    After much experience scripting in the Unix/Linux open-source world, using languages such as Bourne Shell, Perl, Python, and Ruby, I now find myself needing to do some Windows XP admin scripting. It appears that the legacy environment is Windows Script Host (WSH), which can use various scripting languages, but the primary language is VBScript, and is based on COM objects. However, the future appears to be Windows PowerShell, which is based on .NET. I haven't done Basic since Applesoft in the 70s, so I'm not keen on learning VBScript, although I did learn enough to write a small script to mount network drives. If I'm going to spend time to really learn this, I'm leaning towards investing my time in the .NET PowerShell environment, if it truly is the future. I did some C# Windows Forms programming a couple of years ago, so I have some exposure to .NET, which also makes PowerShell attractive. Understanding that no one has a crystal ball to predict the future of Microsoft, I would like hear from anyone who is a PowerShell user and thinks it's worthwhile, or if there is anyone that knows of serious drawbacks to PowerShell, and recommends that I stay away from it. Update: I ended up using WSH/VBScript for a particular script that I am installing as a startup script on user's Windows XP workstations. All I have to do is copy it to their Startup folder, and I'm done. However, I only learned enough WSH to accomplish this one job. I am glad to see that PowerShell is the future, and when I have more complicated scripting tasks, I'll to turn PowerShell.

    Read the article

  • Composite Key Dictionary

    - by AaronLS
    I have some objects in List, let's say List<MyClass> and MyClass has several properties. I would like to create an index of the list based on 3 properties of of MyClass. In this case 2 of the properties are int's, and one property is a datetime. Basically I would like to be able to do something like: Dictionary< CompositeKey , MyClass > MyClassListIndex = Dictionary< CompositeKey , MyClass >(); //Populate dictionary with items from the List<MyClass> MyClassList MyClass aMyClass = Dicitonary[(keyTripletHere)]; I sometimes create multiple dictionaries on a list to index different properties of the classes it holds. I am not sure how best to handle composite keys though. I considered doing a checksum of the three values but this runs the risk of collisions.

    Read the article

  • C# dictionary uniqueness for sibling classes using IEquatable<T>

    - by anthony
    I would like to store insances of two classes in a dictionary structure and use IEquatable to determine uniqueness of these instances. Both of these classes share an (abstract) base class. Consider the following classes: abstract class Foo { ... } class SubFoo1 : Foo { ... } class SubFoo2 : Foo { ... } The dictionary will be delcared: Dictionary<Foo, Bar> Which classes should be declared as IEquatable? And what should the generic type T be for those declarations? Is this even possible?

    Read the article

  • Dictionary with delegate or switch?

    - by Samvel Siradeghyan
    Hi, I am writing a parser, which call some functions dependent on some value. I can implement this logic with simple switch like this switch(some_val) { case 0: func0(); break; case 1: func1(); break; } or with delegates and dictionary like this delegate void some_delegate(); Dictionary<int, some_delegate> some_dictionary = new Dictionary<int, some_delegate>(); some_dictionary[0] = func0; some_dictionary[1] = func1; some_dictionary[some_value].Invoke(); Are this two methods equal and which is preferred? Thanks.

    Read the article

  • WCF issues with KnownType for Dictionary

    - by Tom Frey
    Hi, I have a service that implements the following DataMember: [DataMember] public Dictionary<string, List<IOptionQueryResult>> QueryResultItems { get; set; } I have the class "OptionQuerySingleResult" which inherits from IOptionQueryResult. Now, I understand that I need to make the OptionQueryResult type "known" to the Service and thus tried to add the KnownType in various ways: [KnownType(typeof(Dictionary<string, OptionQuerySingleResult[]>))] [KnownType(typeof(Dictionary<string, List<OptionQuerySingleResult>>))] [KnownType(typeof(OptionQuerySingleResult)] However, none of those approaches worked and on the client side I'm either getting that deserialization failed or the server simply aborted the request, causing a connection aborted error. Does anyone have an idea on what's the proper way to get this to work? I'd like to add, the if I change the QueryResultItems definition to use the concrete type, instead of the interface, everything works just fine. Thanks, Tom

    Read the article

  • Odd nested dictionary behavior in python

    - by adept
    Im new two python and am trying to grow a dictionary of dictionaries. I have done this in php and perl but python is behaving very differently. Im sure it makes sense to those more familiar with python. Here is my code: colnames = ['name','dob','id']; tablehashcopy = {}; tablehashcopy = dict.fromkeys(colnames,{}); tablehashcopy['name']['hi'] = 0; print(tablehashcopy); Output: {'dob': {'hi': 0}, 'name': {'hi': 0}, 'id': {'hi': 0}} The problem arises from the 2nd to last statement(i put the print in for convenience). I expected to find that one element has been added to the 'name' dictionary with the key 'hi' and the value 0. But this key,value pair has been added to EVERY sub-dictionary. Why? I have tested this on my ubuntu machine in both python 2.6 and python 3.1 the behaviour is the same.

    Read the article

  • Iterate through a VB6 Dictionary

    - by Dinah
    I'm a non-VB6 person who had the misfortune of inheriting a buggy legacy VB6/Classic ASP project. There's a section where a lot of entries are put into a Dictionary and I want to see all it contains. I tried this (oParams is a Dictionary): Dim o As Object Dim sDicTempAggr As String sDicTempAggr = "" For Each o In oParams sDicTempAggr = sDicTempAggr & ", " & o Next Which returned: Object doesn't support this property or method : 438 Using Option Explicit, how do I iterate through a VB6 Dictionary to find out everything it contains?

    Read the article

  • Python faster way to read fixed length fields form a file into dictionary

    - by Martlark
    I have a file of names and addresses as follows (example line) OSCAR ,CANNONS ,8 ,STIEGLITZ CIRCUIT And I want to read it into a dictionary of name and value. Here self.field_list is a list of the name, length and start point of the fixed fields in the file. What ways are there to speed up this method? (python 2.6) def line_to_dictionary(self, file_line,rec_num): file_line = file_line.lower() # Make it all lowercase return_rec = {} # Return record as a dictionary for (field_start, field_length, field_name) in self.field_list: field_data = file_line[field_start:field_start+field_length] if (self.strip_fields == True): # Strip off white spaces first field_data = field_data.strip() if (field_data != ''): # Only add non-empty fields to dictionary return_rec[field_name] = field_data # Set hidden fields # return_rec['_rec_num_'] = rec_num return_rec['_dataset_name_'] = self.name return return_rec

    Read the article

  • Custom iterator for dictionary?

    - by aaginor
    Hi folks, in my C#-Application, I have a Dictionary object. When iterating over the object using foreach, I naturally get each element of the dictionary. But I want only certain elements to be iterated, depending on the value of a property of MyValue. class MyValue { public bool AmIIncludedInTheIteration { get; set; } ... } Whenever AmIIncludedInTheIteration is false, the item shall not be returned by foreach. I understand that I need to implement my own iterator and override the Dictionary-Iterator somewhere. Can anyone here give me a short HowTo? Thanks in advance, Frank

    Read the article

  • Object pointer value as key into dictionary

    - by Ranking Stackingblocks
    I want to use the object's reference value as a key into a dictionary, as opposed to a copy of value of the object. So, I essentially want to store an object associated with a particular instance of another object in a dictionary and retrieve that value later. Is this possible? Is it completely against the idea of NSDictionary? I can tell that I am probably approaching this the wrong way because the dictionary wants me to implement NSCopying on the object itself, which doesn't really make sense in terms of what I'm doing. I can see that what I should really be doing is wrapping the pointer value, but that seems a little mad. Advice would be appreciated.

    Read the article

  • Undocumented feature of Dictionary?

    - by Jon
    Dictionary<string, int> testdic = new Dictionary<string, int>(); testdic.Add("cat", 1); testdic.Add("dog", 2); testdic.Add("rat", 3); testdic.Remove("cat"); testdic.Add("bob", 4); Fill the dictionary and then remove the first element. Then add a new element. Bob then appears at position 1 instead of at the end, therefore it seems to remember removed entries and re-uses that memory space? Is this documented anywhere because I can't see it on MSDN and has caused me a day of grief because I assumed it would just keep adding to the end.

    Read the article

  • Static dictionary in .Net Thread safety

    - by Emmanuel
    Reading msdn documentation for dictionaries it says : "Public static (Shared in Visual Basic) members of this type are thread safe. Any instance members are not guaranteed to be thread safe." Those this mean that with a dictionary such as this : static object syncObject = new object(); static Dictionary<string,MyObject> mydictionary= new Dictionary<string, MyObject>(); Is doing something like the code below unnecessary? lock (syncObject) { context = new TDataContext(); mydictionary.Add("key", myObject); }

    Read the article

  • Convert sets to frozensets as values of a dictionary

    - by Space_C0wb0y
    I have dictionary that is built as part of the initialization of my object. I know that it will not change during the lifetime of the object. The dictionary maps keys to sets. I want to convert all the values from sets to frozensets, to make sure they do not get changed. Currently I do that like this: for key in self.my_dict.iterkeys(): self.my_dict[key] = frozenset(self.my_dict[key]) Is there a simpler way to achieve this? I cannot build frozenset right away, because I do not how much items will be in each set until i have built the complete dictionary.

    Read the article

  • Python raises a KeyError (for an out of dictionary key) even though the key IS in the dictionary

    - by ignorantslut
    I'm getting a KeyError for an out of dictionary key, even though I know the key IS in fact in the dictionary. Any ideas as to what might be causing this? print G.keys() returns the following: ['24', '25', '20', '21', '22', '23', '1', '3', '2', '5', '4', '7', '6', '9', '8', '11', '10', '13', '12', '15', '14', '17', '16', '19', '18'] but when I try to access a value in the dictionary on the next line of code... for w in G[v]: #note that in this example, v = 17 I get the following error message: KeyError: 17 Any help, tips, or advice are all appreciated. Thanks.

    Read the article

  • An Xml Serializable PropertyBag Dictionary Class for .NET

    - by Rick Strahl
    I don't know about you but I frequently need property bags in my applications to store and possibly cache arbitrary data. Dictionary<T,V> works well for this although I always seem to be hunting for a more specific generic type that provides a string key based dictionary. There's string dictionary, but it only works with strings. There's Hashset<T> but it uses the actual values as keys. In most key value pair situations for me string is key value to work off. Dictionary<T,V> works well enough, but there are some issues with serialization of dictionaries in .NET. The .NET framework doesn't do well serializing IDictionary objects out of the box. The XmlSerializer doesn't support serialization of IDictionary via it's default serialization, and while the DataContractSerializer does support IDictionary serialization it produces some pretty atrocious XML. What doesn't work? First off Dictionary serialization with the Xml Serializer doesn't work so the following fails: [TestMethod] public void DictionaryXmlSerializerTest() { var bag = new Dictionary<string, object>(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42, 45, 66 }); TestContext.WriteLine(this.ToXml(bag)); } public string ToXml(object obj) { if (obj == null) return null; StringWriter sw = new StringWriter(); XmlSerializer ser = new XmlSerializer(obj.GetType()); ser.Serialize(sw, obj); return sw.ToString(); } The error you get with this is: System.NotSupportedException: The type System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],[System.Object, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]] is not supported because it implements IDictionary. Got it! BTW, the same is true with binary serialization. Running the same code above against the DataContractSerializer does work: [TestMethod] public void DictionaryDataContextSerializerTest() { var bag = new Dictionary<string, object>(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42, 45, 66 }); TestContext.WriteLine(this.ToXmlDcs(bag)); } public string ToXmlDcs(object value, bool throwExceptions = false) { var ser = new DataContractSerializer(value.GetType(), null, int.MaxValue, true, false, null); MemoryStream ms = new MemoryStream(); ser.WriteObject(ms, value); return Encoding.UTF8.GetString(ms.ToArray(), 0, (int)ms.Length); } This DOES work but produces some pretty heinous XML (formatted with line breaks and indentation here): <ArrayOfKeyValueOfstringanyType xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays" xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <KeyValueOfstringanyType> <Key>key</Key> <Value i:type="a:string" xmlns:a="http://www.w3.org/2001/XMLSchema">Value</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key2</Key> <Value i:type="a:decimal" xmlns:a="http://www.w3.org/2001/XMLSchema">100.10</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key3</Key> <Value i:type="a:guid" xmlns:a="http://schemas.microsoft.com/2003/10/Serialization/">2cd46d2a-a636-4af4-979b-e834d39b6d37</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key4</Key> <Value i:type="a:dateTime" xmlns:a="http://www.w3.org/2001/XMLSchema">2011-09-19T17:17:05.4406999-07:00</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key5</Key> <Value i:type="a:boolean" xmlns:a="http://www.w3.org/2001/XMLSchema">true</Value> </KeyValueOfstringanyType> <KeyValueOfstringanyType> <Key>Key7</Key> <Value i:type="a:base64Binary" xmlns:a="http://www.w3.org/2001/XMLSchema">Ki1C</Value> </KeyValueOfstringanyType> </ArrayOfKeyValueOfstringanyType> Ouch! That seriously hurts the eye! :-) Worse though it's extremely verbose with all those repetitive namespace declarations. It's good to know that it works in a pinch, but for a human readable/editable solution or something lightweight to store in a database it's not quite ideal. Why should I care? As a little background, in one of my applications I have a need for a flexible property bag that is used on a free form database field on an otherwise static entity. Basically what I have is a standard database record to which arbitrary properties can be added in an XML based string field. I intend to expose those arbitrary properties as a collection from field data stored in XML. The concept is pretty simple: When loading write the data to the collection, when the data is saved serialize the data into an XML string and store it into the database. When reading the data pick up the XML and if the collection on the entity is accessed automatically deserialize the XML into the Dictionary. (I'll talk more about this in another post). While the DataContext Serializer would work, it's verbosity is problematic both for size of the generated XML strings and the fact that users can manually edit this XML based property data in an advanced mode. A clean(er) layout certainly would be preferable and more user friendly. Custom XMLSerialization with a PropertyBag Class So… after a bunch of experimentation with different serialization formats I decided to create a custom PropertyBag class that provides for a serializable Dictionary. It's basically a custom Dictionary<TType,TValue> implementation with the keys always set as string keys. The result are PropertyBag<TValue> and PropertyBag (which defaults to the object type for values). The PropertyBag<TType> and PropertyBag classes provide these features: Subclassed from Dictionary<T,V> Implements IXmlSerializable with a cleanish XML format ToXml() and FromXml() methods to export and import to and from XML strings Static CreateFromXml() method to create an instance It's simple enough as it's merely a Dictionary<string,object> subclass but that supports serialization to a - what I think at least - cleaner XML format. The class is super simple to use: [TestMethod] public void PropertyBagTwoWayObjectSerializationTest() { var bag = new PropertyBag(); bag.Add("key", "Value"); bag.Add("Key2", 100.10M); bag.Add("Key3", Guid.NewGuid()); bag.Add("Key4", DateTime.Now); bag.Add("Key5", true); bag.Add("Key7", new byte[3] { 42,45,66 } ); bag.Add("Key8", null); bag.Add("Key9", new ComplexObject() { Name = "Rick", Entered = DateTime.Now, Count = 10 }); string xml = bag.ToXml(); TestContext.WriteLine(bag.ToXml()); bag.Clear(); bag.FromXml(xml); Assert.IsTrue(bag["key"] as string == "Value"); Assert.IsInstanceOfType( bag["Key3"], typeof(Guid)); Assert.IsNull(bag["Key8"]); //Assert.IsNull(bag["Key10"]); Assert.IsInstanceOfType(bag["Key9"], typeof(ComplexObject)); } This uses the PropertyBag class which uses a PropertyBag<string,object> - which means it returns untyped values of type object. I suspect for me this will be the most common scenario as I'd want to store arbitrary values in the PropertyBag rather than one specific type. The same code with a strongly typed PropertyBag<decimal> looks like this: [TestMethod] public void PropertyBagTwoWayValueTypeSerializationTest() { var bag = new PropertyBag<decimal>(); bag.Add("key", 10M); bag.Add("Key1", 100.10M); bag.Add("Key2", 200.10M); bag.Add("Key3", 300.10M); string xml = bag.ToXml(); TestContext.WriteLine(bag.ToXml()); bag.Clear(); bag.FromXml(xml); Assert.IsTrue(bag.Get("Key1") == 100.10M); Assert.IsTrue(bag.Get("Key3") == 300.10M); } and produces typed results of type decimal. The types can be either value or reference types the combination of which actually proved to be a little more tricky than anticipated due to null and specific string value checks required - getting the generic typing right required use of default(T) and Convert.ChangeType() to trick the compiler into playing nice. Of course the whole raison d'etre for this class is the XML serialization. You can see in the code above that we're doing a .ToXml() and .FromXml() to serialize to and from string. The XML produced for the first example looks like this: <?xml version="1.0" encoding="utf-8"?> <properties> <item> <key>key</key> <value>Value</value> </item> <item> <key>Key2</key> <value type="decimal">100.10</value> </item> <item> <key>Key3</key> <value type="___System.Guid"> <guid>f7a92032-0c6d-4e9d-9950-b15ff7cd207d</guid> </value> </item> <item> <key>Key4</key> <value type="datetime">2011-09-26T17:45:58.5789578-10:00</value> </item> <item> <key>Key5</key> <value type="boolean">true</value> </item> <item> <key>Key7</key> <value type="base64Binary">Ki1C</value> </item> <item> <key>Key8</key> <value type="nil" /> </item> <item> <key>Key9</key> <value type="___Westwind.Tools.Tests.PropertyBagTest+ComplexObject"> <ComplexObject> <Name>Rick</Name> <Entered>2011-09-26T17:45:58.5789578-10:00</Entered> <Count>10</Count> </ComplexObject> </value> </item> </properties>   The format is a bit cleaner than the DataContractSerializer. Each item is serialized into <key> <value> pairs. If the value is a string no type information is written. Since string tends to be the most common type this saves space and serialization processing. All other types are attributed. Simple types are mapped to XML types so things like decimal, datetime, boolean and base64Binary are encoded using their Xml type values. All other types are embedded with a hokey format that describes the .NET type preceded by a three underscores and then are encoded using the XmlSerializer. You can see this best above in the ComplexObject encoding. For custom types this isn't pretty either, but it's more concise than the DCS and it works as long as you're serializing back and forth between .NET clients at least. The XML generated from the second example that uses PropertyBag<decimal> looks like this: <?xml version="1.0" encoding="utf-8"?> <properties> <item> <key>key</key> <value type="decimal">10</value> </item> <item> <key>Key1</key> <value type="decimal">100.10</value> </item> <item> <key>Key2</key> <value type="decimal">200.10</value> </item> <item> <key>Key3</key> <value type="decimal">300.10</value> </item> </properties>   How does it work As I mentioned there's nothing fancy about this solution - it's little more than a subclass of Dictionary<T,V> that implements custom Xml Serialization and a couple of helper methods that facilitate getting the XML in and out of the class more easily. But it's proven very handy for a number of projects for me where dynamic data storage is required. Here's the code: /// <summary> /// Creates a serializable string/object dictionary that is XML serializable /// Encodes keys as element names and values as simple values with a type /// attribute that contains an XML type name. Complex names encode the type /// name with type='___namespace.classname' format followed by a standard xml /// serialized format. The latter serialization can be slow so it's not recommended /// to pass complex types if performance is critical. /// </summary> [XmlRoot("properties")] public class PropertyBag : PropertyBag<object> { /// <summary> /// Creates an instance of a propertybag from an Xml string /// </summary> /// <param name="xml">Serialize</param> /// <returns></returns> public static PropertyBag CreateFromXml(string xml) { var bag = new PropertyBag(); bag.FromXml(xml); return bag; } } /// <summary> /// Creates a serializable string for generic types that is XML serializable. /// /// Encodes keys as element names and values as simple values with a type /// attribute that contains an XML type name. Complex names encode the type /// name with type='___namespace.classname' format followed by a standard xml /// serialized format. The latter serialization can be slow so it's not recommended /// to pass complex types if performance is critical. /// </summary> /// <typeparam name="TValue">Must be a reference type. For value types use type object</typeparam> [XmlRoot("properties")] public class PropertyBag<TValue> : Dictionary<string, TValue>, IXmlSerializable { /// <summary> /// Not implemented - this means no schema information is passed /// so this won't work with ASMX/WCF services. /// </summary> /// <returns></returns> public System.Xml.Schema.XmlSchema GetSchema() { return null; } /// <summary> /// Serializes the dictionary to XML. Keys are /// serialized to element names and values as /// element values. An xml type attribute is embedded /// for each serialized element - a .NET type /// element is embedded for each complex type and /// prefixed with three underscores. /// </summary> /// <param name="writer"></param> public void WriteXml(System.Xml.XmlWriter writer) { foreach (string key in this.Keys) { TValue value = this[key]; Type type = null; if (value != null) type = value.GetType(); writer.WriteStartElement("item"); writer.WriteStartElement("key"); writer.WriteString(key as string); writer.WriteEndElement(); writer.WriteStartElement("value"); string xmlType = XmlUtils.MapTypeToXmlType(type); bool isCustom = false; // Type information attribute if not string if (value == null) { writer.WriteAttributeString("type", "nil"); } else if (!string.IsNullOrEmpty(xmlType)) { if (xmlType != "string") { writer.WriteStartAttribute("type"); writer.WriteString(xmlType); writer.WriteEndAttribute(); } } else { isCustom = true; xmlType = "___" + value.GetType().FullName; writer.WriteStartAttribute("type"); writer.WriteString(xmlType); writer.WriteEndAttribute(); } // Actual deserialization if (!isCustom) { if (value != null) writer.WriteValue(value); } else { XmlSerializer ser = new XmlSerializer(value.GetType()); ser.Serialize(writer, value); } writer.WriteEndElement(); // value writer.WriteEndElement(); // item } } /// <summary> /// Reads the custom serialized format /// </summary> /// <param name="reader"></param> public void ReadXml(System.Xml.XmlReader reader) { this.Clear(); while (reader.Read()) { if (reader.NodeType == XmlNodeType.Element && reader.Name == "key") { string xmlType = null; string name = reader.ReadElementContentAsString(); // item element reader.ReadToNextSibling("value"); if (reader.MoveToNextAttribute()) xmlType = reader.Value; reader.MoveToContent(); TValue value; if (xmlType == "nil") value = default(TValue); // null else if (string.IsNullOrEmpty(xmlType)) { // value is a string or object and we can assign TValue to value string strval = reader.ReadElementContentAsString(); value = (TValue) Convert.ChangeType(strval, typeof(TValue)); } else if (xmlType.StartsWith("___")) { while (reader.Read() && reader.NodeType != XmlNodeType.Element) { } Type type = ReflectionUtils.GetTypeFromName(xmlType.Substring(3)); //value = reader.ReadElementContentAs(type,null); XmlSerializer ser = new XmlSerializer(type); value = (TValue)ser.Deserialize(reader); } else value = (TValue)reader.ReadElementContentAs(XmlUtils.MapXmlTypeToType(xmlType), null); this.Add(name, value); } } } /// <summary> /// Serializes this dictionary to an XML string /// </summary> /// <returns>XML String or Null if it fails</returns> public string ToXml() { string xml = null; SerializationUtils.SerializeObject(this, out xml); return xml; } /// <summary> /// Deserializes from an XML string /// </summary> /// <param name="xml"></param> /// <returns>true or false</returns> public bool FromXml(string xml) { this.Clear(); // if xml string is empty we return an empty dictionary if (string.IsNullOrEmpty(xml)) return true; var result = SerializationUtils.DeSerializeObject(xml, this.GetType()) as PropertyBag<TValue>; if (result != null) { foreach (var item in result) { this.Add(item.Key, item.Value); } } else // null is a failure return false; return true; } /// <summary> /// Creates an instance of a propertybag from an Xml string /// </summary> /// <param name="xml"></param> /// <returns></returns> public static PropertyBag<TValue> CreateFromXml(string xml) { var bag = new PropertyBag<TValue>(); bag.FromXml(xml); return bag; } } } The code uses a couple of small helper classes SerializationUtils and XmlUtils for mapping Xml types to and from .NET, both of which are from the WestWind,Utilities project (which is the same project where PropertyBag lives) from the West Wind Web Toolkit. The code implements ReadXml and WriteXml for the IXmlSerializable implementation using old school XmlReaders and XmlWriters (because it's pretty simple stuff - no need for XLinq here). Then there are two helper methods .ToXml() and .FromXml() that basically allow your code to easily convert between XML and a PropertyBag object. In my code that's what I use to actually to persist to and from the entity XML property during .Load() and .Save() operations. It's sweet to be able to have a string key dictionary and then be able to turn around with 1 line of code to persist the whole thing to XML and back. Hopefully some of you will find this class as useful as I've found it. It's a simple solution to a common requirement in my applications and I've used the hell out of it in the  short time since I created it. Resources You can find the complete code for the two classes plus the helpers in the Subversion repository for Westwind.Utilities. You can grab the source files from there or download the whole project. You can also grab the full Westwind.Utilities assembly from NuGet and add it to your project if that's easier for you. PropertyBag Source Code SerializationUtils and XmlUtils Westwind.Utilities Assembly on NuGet (add from Visual Studio) © Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • A Scripting language for XNA

    - by RCIX
    I've written a game engine, which i want to integrate scripting into. However, i've looked at the available choices, which seem to be the following: Xnua Jint Managed Scripting The problems with those are (respectively): Built for XNA 1 -- there's an XNA 3.1 port but it's under the Apache license which i'm not sure is compatible with our goals (and it has a bit obtuse syntax) Appears to not properly use type-safe objects (e.g. ArrayList over generics) Is in beta, and only runs on XNA 3.0 So, to summarize my specific needs (in order of importance most to least): Needs to run on XNA 3.1 Needs to run on the XBox and Windows Should have a relatively simple API -- something closer to Jint's than Xnua's preferably uses Lua, C#, or similar languages Must be commercially sellable -- if some form of credit is needed, then that's fine. Are there any scripting solutions that meet my needs, or will i have to (eventually) roll my own?

    Read the article

  • xcode scripting language

    - by PurplePilot
    i notice that Java has a number of ancillary scripting languages. Clojure and Groovy for example. My understanding is that these can be used when the full might and power of Java does not need to be applied and a speedy cludge can be hacked in Groovy/Clojure. But at the end of the day the scripting tools contribution gets compiled into the application Question 1) Is there a similar scripting in x-code? I was not so interested in Python or Ruby in this situation as they are languages in their own right added in, as indeed i think can happen in Java, but i was looking for a purpose built tools. Question 2) If there is such a tool would it count the application out vis-a-vis the new Apple guidelines as to what can be used to generate iXxx apps?

    Read the article

  • iphone dictionary autocorrect [closed]

    - by Raj More
    I have the iPhone 3G with OS 3.1 3.0.1 on it. Every time I type a text message that includes the word "me", it gets auto corrected to "mr". So my friends get a text that says "call mr when you get done" or "jack told mr about it yesterday" how do i change this autocorrect so it stops changing my "me" to a "mr"?

    Read the article

  • Firefox: fast dictionary language switching

    - by Lo'oris
    I have two language dictionaries installed on Firefox 3.6, and I would like to be able to switch really fast between them, using the keyboard. At the moment the only way I know I can switch is right clicking in a text input field, go into Language, and then click the language. I would instead to be able to switch between those two just hitting two keys at most, if possible just one (something like F13). Searching for addons I've found tons of extensions somewhat related but that don't actually do what I want.

    Read the article

  • Set attributes from dictionary in python

    - by Oscar Reyes
    Is it possible to create an object from a dictionary in python in such a way that each key is an attribute of that object? Something like this: dict = { 'name': 'Oscar', 'lastName': 'Reyes', 'age':32 } e = Employee( dict ) print e.name # Oscar print e.age + 10 # 42 I think it would be pretty much the inverse of this question: Python dictionary from an object's fields

    Read the article

  • IXmlSerializable Dictionary

    - by Shimmy
    I was trying to create a generic Dictionary that implements IXmlSerializable. Here is my trial: Sub Main() Dim z As New SerializableDictionary(Of String, String) z.Add("asdf", "asd") Console.WriteLine(z.Serialize) End Sub Result: <?xml version="1.0" encoding="utf-16"?><Entry key="asdf" value="asd" /> I placed a breakpoint on top of the WriteXml method and I see that when it stops, the writer contains no data at all, and IMHO it should contain the root element and the xml declaration. <Serializable()> _ Public Class SerializableDictionary(Of TKey, TValue) : Inherits Dictionary(Of TKey, TValue) : Implements IXmlSerializable Private Const EntryString As String = "Entry" Private Const KeyString As String = "key" Private Const ValueString As String = "value" Private Shared ReadOnly AttributableTypes As Type() = New Type() {GetType(Boolean), GetType(Byte), GetType(Char), GetType(DateTime), GetType(Decimal), GetType(Double), GetType([Enum]), GetType(Guid), GetType(Int16), GetType(Int32), GetType(Int64), GetType(SByte), GetType(Single), GetType(String), GetType(TimeSpan), GetType(UInt16), GetType(UInt32), GetType(UInt64)} Private Shared ReadOnly GetIsAttributable As Predicate(Of Type) = Function(t) AttributableTypes.Contains(t) Private Shared ReadOnly IsKeyAttributable As Boolean = GetIsAttributable(GetType(TKey)) Private Shared ReadOnly IsValueAttributable As Boolean = GetIsAttributable(GetType(TValue)) Private Shared ReadOnly GetElementName As Func(Of Boolean, String) = Function(isKey) If(isKey, KeyString, ValueString) Public Function GetSchema() As System.Xml.Schema.XmlSchema Implements System.Xml.Serialization.IXmlSerializable.GetSchema Return Nothing End Function Public Sub WriteXml(ByVal writer As XmlWriter) Implements IXmlSerializable.WriteXml For Each entry In Me writer.WriteStartElement(EntryString) WriteData(IsKeyAttributable, writer, True, entry.Key) WriteData(IsValueAttributable, writer, False, entry.Value) writer.WriteEndElement() Next End Sub Private Sub WriteData(Of T)(ByVal attributable As Boolean, ByVal writer As XmlWriter, ByVal isKey As Boolean, ByVal value As T) Dim name = GetElementName(isKey) If attributable Then writer.WriteAttributeString(name, value.ToString) Else Dim serializer As New XmlSerializer(GetType(T)) writer.WriteStartElement(name) serializer.Serialize(writer, value) writer.WriteEndElement() End If End Sub Public Sub ReadXml(ByVal reader As XmlReader) Implements IXmlSerializable.ReadXml Dim empty = reader.IsEmptyElement reader.Read() If empty Then Exit Sub Clear() While reader.NodeType <> XmlNodeType.EndElement While reader.NodeType = XmlNodeType.Whitespace reader.Read() Dim key = ReadData(Of TKey)(IsKeyAttributable, reader, True) Dim value = ReadData(Of TValue)(IsValueAttributable, reader, False) Add(key, value) If Not IsKeyAttributable AndAlso Not IsValueAttributable Then reader.ReadEndElement() Else reader.Read() While reader.NodeType = XmlNodeType.Whitespace reader.Read() End While End While reader.ReadEndElement() End While End Sub Private Function ReadData(Of T)(ByVal attributable As Boolean, ByVal reader As XmlReader, ByVal isKey As Boolean) As T Dim name = GetElementName(isKey) Dim type = GetType(T) If attributable Then Return Convert.ChangeType(reader.GetAttribute(name), type) Else Dim serializer As New XmlSerializer(type) While reader.Name <> name reader.Read() End While reader.ReadStartElement(name) Dim value = serializer.Deserialize(reader) reader.ReadEndElement() Return value End If End Function Public Shared Function Serialize(ByVal dictionary As SerializableDictionary(Of TKey, TValue)) As String Dim sb As New StringBuilder(1024) Dim sw As New StringWriter(sb) Dim xs As New XmlSerializer(GetType(SerializableDictionary(Of TKey, TValue))) xs.Serialize(sw, dictionary) sw.Dispose() Return sb.ToString End Function Public Shared Function Deserialize(ByVal xml As String) As SerializableDictionary(Of TKey, TValue) Dim xs As New XmlSerializer(GetType(SerializableDictionary(Of TKey, TValue))) Dim xr As New XmlTextReader(xml, XmlNodeType.Document, Nothing) Return xs.Deserialize(xr) xr.Close() End Function Public Function Serialize() As String Dim sb As New StringBuilder Dim xw = XmlWriter.Create(sb) WriteXml(xw) xw.Close() Return sb.ToString End Function Public Sub Parse(ByVal xml As String) Dim xr As New XmlTextReader(xml, XmlNodeType.Document, Nothing) ReadXml(xr) xr.Close() End Sub End Class

    Read the article

  • IXmlSerializable Dictionary problem

    - by Shimmy
    I was trying to create a generic Dictionary that implements IXmlSerializable. Here is my trial: Sub Main() Dim z As New SerializableDictionary(Of String, String) z.Add("asdf", "asd") Console.WriteLine(z.Serialize) End Sub Result: <?xml version="1.0" encoding="utf-16"?><Entry key="asdf" value="asd" /> I placed a breakpoint on top of the WriteXml method and I see that when it stops, the writer contains no data at all, and IMHO it should contain the root element and the xml declaration. <Serializable()> _ Public Class SerializableDictionary(Of TKey, TValue) : Inherits Dictionary(Of TKey, TValue) : Implements IXmlSerializable Private Const EntryString As String = "Entry" Private Const KeyString As String = "key" Private Const ValueString As String = "value" Private Shared ReadOnly AttributableTypes As Type() = New Type() {GetType(Boolean), GetType(Byte), GetType(Char), GetType(DateTime), GetType(Decimal), GetType(Double), GetType([Enum]), GetType(Guid), GetType(Int16), GetType(Int32), GetType(Int64), GetType(SByte), GetType(Single), GetType(String), GetType(TimeSpan), GetType(UInt16), GetType(UInt32), GetType(UInt64)} Private Shared ReadOnly GetIsAttributable As Predicate(Of Type) = Function(t) AttributableTypes.Contains(t) Private Shared ReadOnly IsKeyAttributable As Boolean = GetIsAttributable(GetType(TKey)) Private Shared ReadOnly IsValueAttributable As Boolean = GetIsAttributable(GetType(TValue)) Private Shared ReadOnly GetElementName As Func(Of Boolean, String) = Function(isKey) If(isKey, KeyString, ValueString) Public Function GetSchema() As System.Xml.Schema.XmlSchema Implements System.Xml.Serialization.IXmlSerializable.GetSchema Return Nothing End Function Public Sub WriteXml(ByVal writer As XmlWriter) Implements IXmlSerializable.WriteXml For Each entry In Me writer.WriteStartElement(EntryString) WriteData(IsKeyAttributable, writer, True, entry.Key) WriteData(IsValueAttributable, writer, False, entry.Value) writer.WriteEndElement() Next End Sub Private Sub WriteData(Of T)(ByVal attributable As Boolean, ByVal writer As XmlWriter, ByVal isKey As Boolean, ByVal value As T) Dim name = GetElementName(isKey) If attributable Then writer.WriteAttributeString(name, value.ToString) Else Dim serializer As New XmlSerializer(GetType(T)) writer.WriteStartElement(name) serializer.Serialize(writer, value) writer.WriteEndElement() End If End Sub Public Sub ReadXml(ByVal reader As XmlReader) Implements IXmlSerializable.ReadXml Dim empty = reader.IsEmptyElement reader.Read() If empty Then Exit Sub Clear() While reader.NodeType <> XmlNodeType.EndElement While reader.NodeType = XmlNodeType.Whitespace reader.Read() Dim key = ReadData(Of TKey)(IsKeyAttributable, reader, True) Dim value = ReadData(Of TValue)(IsValueAttributable, reader, False) Add(key, value) If Not IsKeyAttributable AndAlso Not IsValueAttributable Then reader.ReadEndElement() Else reader.Read() While reader.NodeType = XmlNodeType.Whitespace reader.Read() End While End While reader.ReadEndElement() End While End Sub Private Function ReadData(Of T)(ByVal attributable As Boolean, ByVal reader As XmlReader, ByVal isKey As Boolean) As T Dim name = GetElementName(isKey) Dim type = GetType(T) If attributable Then Return Convert.ChangeType(reader.GetAttribute(name), type) Else Dim serializer As New XmlSerializer(type) While reader.Name <> name reader.Read() End While reader.ReadStartElement(name) Dim value = serializer.Deserialize(reader) reader.ReadEndElement() Return value End If End Function Public Shared Function Serialize(ByVal dictionary As SerializableDictionary(Of TKey, TValue)) As String Dim sb As New StringBuilder(1024) Dim sw As New StringWriter(sb) Dim xs As New XmlSerializer(GetType(SerializableDictionary(Of TKey, TValue))) xs.Serialize(sw, dictionary) sw.Dispose() Return sb.ToString End Function Public Shared Function Deserialize(ByVal xml As String) As SerializableDictionary(Of TKey, TValue) Dim xs As New XmlSerializer(GetType(SerializableDictionary(Of TKey, TValue))) Dim xr As New XmlTextReader(xml, XmlNodeType.Document, Nothing) Return xs.Deserialize(xr) xr.Close() End Function Public Function Serialize() As String Dim sb As New StringBuilder Dim xw = XmlWriter.Create(sb) WriteXml(xw) xw.Close() Return sb.ToString End Function Public Sub Parse(ByVal xml As String) Dim xr As New XmlTextReader(xml, XmlNodeType.Document, Nothing) ReadXml(xr) xr.Close() End Sub End Class

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >