Search Results

Search found 28170 results on 1127 pages for '16 bit animation'.

Page 50/1127 | < Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >

  • Animating translation and scaling of view in Android

    - by hgpc
    I have to animate a view from state A to B with changes to its scale, position and scrolling. I know everything about state A (widthA, heightA, topA, leftA, scrollXA, scrollYA) and state B (widthB, heightB, topB, leftB, scrollXB, scrollYB). So far I wrote the following code: AnimationSet animation = new AnimationSet(true); int toXDelta; // What goes here? int toYDelta; // What goes here? TranslateAnimation translateAnimation = new TranslateAnimation(1, toXDelta, 1, toYDelta); translateAnimation.setDuration(duration); animation.addAnimation(translateAnimation); float scale = (float) widthB / (float) widthA; ScaleAnimation scaleAnimation = new ScaleAnimation(1, scale, 1, scale); scaleAnimation.setDuration(duration); animation.addAnimation(scaleAnimation); animation.setAnimationListener(new AnimationListener() { @Override public void onAnimationEnd(Animation arg0) { view.clearAnimation(); // Change view to state B } @Override public void onAnimationRepeat(Animation arg0) {} @Override public void onAnimationStart(Animation arg0) {} }); view.startAnimation(animation); Is this the right way to do this? If so, how should I calculate the values of toXDelta and toYDelta? I'm having trouble finding the exact formula. Thanks!

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • " this kernel required an X86-64 CPU, but only detected a i686 CPU"

    - by jy19
    I recently decided to use Virtualbox to run Ubuntu, but I get the message this kernel required an X86-64 CPU, but only detected a i686 CPU I've already enabled virtualization in BIOS, but that doesn't seem to work. Many other solutions suggest that I should download the 32-bit version, and not the 64-bit. I'm not sure about that though, since my computer clearly says "64-bit operating system" under systems. But I might just be mistaken.

    Read the article

  • Android AnimationDrawable and knowing when animation ends

    - by LostDroid
    I want to do an animation with several image-files, and for this the AnimationDrawable works very well. However, I need to know when the animation starts and when it ends (i.e add a listener like the Animation.AnimationListener). After having searched for answers, I'm having a bad feeling the AnimationDrawable does not support listeners.. Does anyone know how to do frame-by-frame image animation on Android?

    Read the article

  • iPhone - UIView Animation on UIButton - button unclickable for portion of duration.

    - by Robert
    I am trying to have a button move around the screen and still be clickable. I have it moving around the screen correctly, but the odd thing is that I can't click the button until the final second of the animation. The button is still moving and yet after a certain threshold I can click it. Any idea what is happening? Any idea for some other way I can do what I want? Thanks for any help.

    Read the article

  • Animation not start immediately when the target view is out of window

    - by funnything
    Hi. When I apply some animation to the view, which is out of window, the animation not start immediately. And then, I scroll the screen to show the animation target view, the animation will start. I hope to the animation will start immediately when it apply. Any ideas? Bellow is sample code. Thank you. public class AnimationValidationActivity extends Activity { private ViewSwitcher _viewSwitcher; private Button _button; /** * utility method for animation */ private Animation buildTranslateAnimation( float fromXDelta , float toXDelta , float fromYDelta , float toYDelta ) { Animation ret = new TranslateAnimation( fromXDelta , toXDelta , fromYDelta , toYDelta ); ret.setDuration( 1000 ); return ret; } /** * build view in place of layout.xml */ private View buildView() { ScrollView ret = new ScrollView( this ); ret.setLayoutParams( new LinearLayout.LayoutParams( LinearLayout.LayoutParams.FILL_PARENT , LinearLayout.LayoutParams.WRAP_CONTENT ) ); LinearLayout parent = new LinearLayout( this ); parent.setLayoutParams( new LinearLayout.LayoutParams( LinearLayout.LayoutParams.FILL_PARENT , LinearLayout.LayoutParams.WRAP_CONTENT ) ); parent.setOrientation( LinearLayout.VERTICAL ); ret.addView( parent ); _viewSwitcher = new ViewSwitcher( this ); _viewSwitcher.setLayoutParams( new LinearLayout.LayoutParams( LinearLayout.LayoutParams.FILL_PARENT , 100 ) ); parent.addView( _viewSwitcher ); View spacer = new View( this ); spacer.setLayoutParams( new LinearLayout.LayoutParams( LinearLayout.LayoutParams.FILL_PARENT , getWindow() .getWindowManager().getDefaultDisplay().getHeight() ) ); parent.addView( spacer ); _button = new Button( this ); _button.setText( "button" ); parent.addView( _button ); return ret; } @Override public void onCreate( Bundle savedInstanceState ) { super.onCreate( savedInstanceState ); setContentView( buildView() ); _viewSwitcher.setFactory( new ViewSwitcher.ViewFactory() { @Override public View makeView() { TextView view = new TextView( AnimationValidationActivity.this ); view.setLayoutParams( new ViewSwitcher.LayoutParams( ViewSwitcher.LayoutParams.FILL_PARENT , ViewSwitcher.LayoutParams.FILL_PARENT ) ); view.setBackgroundColor( 0xffffffff ); view.setText( "foobar" ); return view; } } ); _button.setOnClickListener( new View.OnClickListener() { @Override public void onClick( View v ) { _viewSwitcher.setInAnimation( buildTranslateAnimation( _viewSwitcher.getWidth() , 0 , 0 , 0 ) ); _viewSwitcher.setOutAnimation( buildTranslateAnimation( 0 , - _viewSwitcher.getWidth() , 0 , 0 ) ); int color = new Random().nextInt(); _viewSwitcher.getNextView().setBackgroundColor( 0xff000000 | color & 0xffffff ); _viewSwitcher.showNext(); } } ); } }

    Read the article

  • How to add assemblies in a 64-bit machine?

    - by marko
    My old cmd-script: C:\Windows\Microsoft.NET\Framework\v2.0.50727\RegAsm blabla.dll C:\Windows\Microsoft.NET\Framework\v2.0.50727\GacUtil -i blabla.dll (Which works fine in my old machine.) But now I have a script for a 64-bit machine (Windows Server 2008 R2): C:\Windows\Microsoft.NET\Framework64\v2.0.50727\RegAsm blabla.dll C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin\NETFX 4.0 Tools\GacUtil -i blabla.dll Then I get this message: C:\Windows\Microsoft.NET\Framework64\v2.0.50727\RegAsm blabla.dll Microsoft (R) .NET Framework Assembly Registration Utility 2.0.50727.5420 Copyright (C) Microsoft Corporation 1998-2004. All rights reserved. Types registered successfully C:\Program Files\Microsoft SDKs\Windows\v7 .1\Bin\NETFX 4.0 Tools\GacUtil -i blabla.dll 'C:\Program' is not recognized as an internal or external command, operable program or batch file. The second command is not successful.

    Read the article

  • Could my 64-bit server be somehow identifying itself as a 32-bit server?

    - by Deane
    Has anyone ever heard of a 64-bit OS identifying itself as a 32-bit OS? We have a Windows Server 2008 R2 x64 development server. We've been trying to activate it with a product key from MSDN, but it keeps telling us the the key is invalid. I've opened a ticket with MSDN for this. Then something odd happened -- I tried to install a 64-bit version of SQL Server 2005. After it extracted, we got this message: This version of hotfix.exe is not compatible with the version of Windows you're running. Check your computer's system information to see whether you need an x86 (32-bit) or x64 (64-bit) version of the program... Now, we're pretty sure this is a 64-bit OS. Computer Properties says: System Type: 64-bit Operating System Also, we have both a "Program Files" and a "Program Files (x64)" directory. I don't know how the product key activator or the SQL install program attempts to divine the type of OS, but could it be...wrong?

    Read the article

  • Thunderbird gives " Not enough disk space " alert, after trying to download more emails ( Win 7, 64 bit )

    - by James C
    So, today I have installed Mozilla Thunderbird 24.2.0 on my Windows 7 (64 bit) machine. It was downloading emails, until it hit an error. An alert showed up saying : "There is not enough disk space to download new messages. Try deleting old mail, emptying the Trash folder, and compacting your mail folders, and then try again." Now, disk space is not a problem, there is enough free space left ( almost 50 % of the drive ). How to stop the alert and continue downloading ?

    Read the article

  • Installing Oracle Client 11.1.0.7 on Windows Server 2008 64-bit. What does "Install Location" and "S

    - by Anders
    I am trying to install Oracle Client 11.1.0.7 on a Windows Server 2008 64-bit. To some this might not be rocket science but I can't understand what the options under the install screen "Specify Home Details" mean. The defaults given suggest that I use Oracle Base and install software under my own account name. It also suggests that each user should have a separate Oracle Base. This seems counter intuitive to me. I am doing a server install after all. All I want to use the installation for is to connect to an Oracle Database from Reporting Services. Can I safely ignore this and just accept the defaults? What are the implications if I change the location to a common directory?

    Read the article

  • Can I run ubuntu server 64 bit in a VirtualBox on a macbook host ?

    - by Doron
    Hello, I have a macbook pro with Intel Core 2 Due (It's actually not Pro, but it's a January 2009 unibody macbook - when there were both a unibody macbook, and a unibody macbook pro). I'm a php developer. I just installed a new hard drive, and in an effort to create a better development environment, I decided I'll try to create a virtual machine running ubuntu server. Since I need it to work fast (and since, well - it's just better, even if by a little) and I'll already have a delay due to the nature of the apache server being on a virtual host - I want to install a 64 bit version of ubuntu server. Can VirtualBox handle it? Is it s good idea to create such a development environment ? Thank you.

    Read the article

  • Connecting via ShrewSoft VPN client means no LAN internet access (Windows 7 64 bit) - any advice please?

    - by iwishiknewmoreaboutnetworking
    I have a Windows 7 64 bit desktop machine which is connected to a LAN. I recently installed ShrewSoft VPN client v 2.1.7 on my machine so that I can connect to a license server hosted by my customer. They are running a Cisco VPN server and I originally tried (unsuccessfully!) to use the Cisco VPN client for Windows 64 bit but the default gateway wasn't being configured correctly after loading in my pcf file. Using ShrewSoft I am able to import the same pcf file, and successfully connect to the machine I need to using the VPN client software. The client machine I need to connect to has IP address 1.52.90.33. The problem is that when I am connected to the customer network using the VPN client application (and after a few minutes) I lose my LAN internet connection. I can only presume that this is because, by default the ShrewSoft VPN client application automatically tunnels all traffic through the VPN connection. I know there is an option to switch off the "Tunnel All" option on the Policy tab of the application and enter a Remote Network Resource (to "Include" or "Exclude") as "Address" and "Netmask" IP addresses however I am not sure what I need to enter here. Here is my ipconfig output before connecting to the VPN (with suffixes blanked out): Windows IP Configuration Ethernet adapter Local Area Connection: Connection-specific DNS Suffix . : ***.*** Link-local IPv6 Address . . . . . : fe80::8de3:9dbe:393a:33ba%11 IPv4 Address. . . . . . . . . . . : 150.237.13.17 Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : 150.237.13.1 Tunnel adapter 6TO4 Adapter: Connection-specific DNS Suffix . : ***.*** IPv6 Address. . . . . . . . . . . : 2002:96ed:d11::96ed:d11 Default Gateway . . . . . . . . . : 2002:c058:6301::c058:6301 Tunnel adapter Local Area Connection* 9: Connection-specific DNS Suffix . : IPv6 Address. . . . . . . . . . . : 2001:0:4137:9e76:2cf9:38c4:6912:f2ee Link-local IPv6 Address . . . . . : fe80::2cf9:38c4:6912:f2ee%12 Default Gateway . . . . . . . . . : Tunnel adapter isatap.***.***: Media State . . . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : ***.*** Here is my route print output before connecting to the VPN: =========================================================================== Interface List 11...20 cf 30 9d ec 2a ......Realtek RTL8168D/8111D Family PCI-E Gigabit Ethern et NIC (NDIS 6.20) 1...........................Software Loopback Interface 1 14...00 00 00 00 00 00 00 e0 Microsoft 6to4 Adapter 12...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface 13...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter #2 =========================================================================== IPv4 Route Table =========================================================================== Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 150.237.13.1 150.237.13.17 2 127.0.0.0 255.0.0.0 On-link 127.0.0.1 306 127.0.0.1 255.255.255.255 On-link 127.0.0.1 306 127.255.255.255 255.255.255.255 On-link 127.0.0.1 306 150.237.13.0 255.255.255.0 On-link 150.237.13.17 257 150.237.13.17 255.255.255.255 On-link 150.237.13.17 257 150.237.13.255 255.255.255.255 On-link 150.237.13.17 257 224.0.0.0 240.0.0.0 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 150.237.13.17 257 255.255.255.255 255.255.255.255 On-link 12

    Read the article

  • Cannot install Java 7 update 9 32-bit on Win 7 64

    - by J. Parrino
    As there were several versons of Java on my laptop, I decided to uninstall them all and reinstall only the current version. I uninstalled all 64-bit and 32-bit versions using Revo Uninstaller. After dowloading the current versions, when attempting to install them, I get a message that both the 64-bit and 32-bit versions cannot be installed as they are already installed. Both the Windows 7 Programs and Features and Revo show no Java installed at al. I then tried the Microsoft Fixit for install and uninstall issues (KB 2438651). I was then able to install the 64-bit version, but continued to have the issue with the 32-bit version. I ran CCleaner, Glary Utilities and Auslogics Registry Cleaner, and noticed Java keys that were to be uninstalled. After cleaning the registry, I attemped to install the 32-bit version of Java once more, to no avail. Any suggestions on how to rectify this problem? Thank you for any guidance you can provide.

    Read the article

  • Is there a library or other way to do 128-bit math operations?

    - by samoz
    I am writing a cryptography application and need to work with 128 bit numbers. In addition to standard add, subtract, multiply, divide, and comparisons, I also need a power and modulo function as well. Does anyone know of a library or other implementation that can do this? If not 128-bit, is there a 64-bit option available?

    Read the article

  • How do uppercase and lowercase letters differ by only one bit?

    - by Vibhakar SInha
    I have found one example in Data and Communication Networking book written by Behrouza Forouzan regarding upper- and lowercase letters which differ by only one bit in the 7 bit code. For example, character A is 1000001 (0x41) and character a is 1100001 (0x61).The difference is in bit 6, which is 0 in uppercase letters and 1 in lowercase letters. If we know the code for one case, we can easily find the code for the other by adding or subtracting 32 in decimal, or we can just flip the sixth bit. What does all this mean? I have found myself very confused with all these things. Could someone provide examples of how these things really work out?

    Read the article

  • Tomcat on Windows x64 using 32-bit JDK

    - by Erik
    Hoping someone can help. The rub: I can't get Tomcat 5.5 to start as a windows service on 64-bit windows using a 32-bit JDK. the details: I've been running Tomcat 5.5 on Windows Server 2008 (x64) as a service for some time using a 64-bit JDK. I'm being forced to install a 32-bit JDK on this 64-bit machine so I can make use of the Java JAI libraries (no 64-bit JAI version). I have to run Tomcat using this 32-bit JDK. I can run Tomcat using the 32-bit JDK if I start it using /bin/startup.bat Problem is, it will not start as a windows service. I'm using the Tomcat bundled procrun executables. Has anyone had success starting Tomcat as a service using a 32-bit JDK on a 64-bit machine? Thanks for your expertise.

    Read the article

  • What is a good 64-bit NASM assembly reference?

    - by Xill
    I have been able to find plenty of 16 and 32-bit NASM assembly references like here, but the only thing I could find on 64-bit NASM was what was in the small section of the NASM manual here. Are there any good sites or books that would have a better explanation of 64-bit assembly (Windows or Linux/Unix) with some good code examples?

    Read the article

  • Exception Handling Differences Between 32/64 Bit

    - by Alois Kraus
    I do quite a bit of debugging .NET applications but from time to time I see things that are impossible (at a first look). I may ask you dear reader what your mental exception handling model is. Exception handling is easy after all right? Lets suppose the following code:         private void F1(object sender, EventArgs e)         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new Exception("even worse Exception");             }           }           private void F2()         {             try             {                 F3();             }             finally             {                 throw new Exception("other exception");             }         }           private void F3()         {             throw new NotImplementedException();         }   What will the call stack look like when you break into the catch(Exception) clause in Windbg (32 and 64 bit on .NET 3.5 SP1)? The mental model I have is that when an exception is thrown the stack frames are unwound until the catch handler can execute. An exception does propagate the call chain upwards.   So when F3 does throw an exception the control flow will resume at the finally handler in F2 which does throw another exception hiding the original one (that is nasty) and then the new Exception will be catched in F1 where the catch handler is executed. So we should see in the catch handler in F1 as call stack only the F1 stack frame right? Well lets try it out in Windbg. For this I created a simple Windows Forms application with one button which does execute the F1 method in its click handler. When you compile the application for 64 bit and the catch handler is reached you will find with the following commands in Windbg   Load sos extension from the same path where mscorwks was loaded in the current process .loadby sos mscorwks   Beak on clr exceptions sxe clr   Continue execution g   Dump mixed call stack container C++  and .NET Stacks interleaved 0:000> !DumpStack OS Thread Id: 0x1d8 (0) Child-SP         RetAddr          Call Site 00000000002c88c0 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002c8990 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002c8a60 000007ff005dd7f4 mscorwks!JIT_Throw+0x130 00000000002c8c10 000007fefa6942e1 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)+0xb4 00000000002c8c60 000007fefa661012 mscorwks!ExceptionTracker::CallHandler+0x145 00000000002c8d60 000007fefa711a72 mscorwks!ExceptionTracker::CallCatchHandler+0x9e 00000000002c8df0 0000000077b055cd mscorwks!ProcessCLRException+0x25e 00000000002c8e90 0000000077ae55f8 ntdll!RtlpExecuteHandlerForUnwind+0xd 00000000002c8ec0 000007fefa637c1a ntdll!RtlUnwindEx+0x539 00000000002c9560 000007fefa711a21 mscorwks!ClrUnwindEx+0x36 00000000002c9a70 0000000077b0554d mscorwks!ProcessCLRException+0x20d 00000000002c9b10 0000000077ae5d1c ntdll!RtlpExecuteHandlerForException+0xd 00000000002c9b40 0000000077b1fe48 ntdll!RtlDispatchException+0x3cb 00000000002ca220 000007fefdaeaa7d ntdll!KiUserExceptionDispatcher+0x2e 00000000002ca7e0 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002ca8b0 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002ca980 000007ff005dd8df mscorwks!JIT_Throw+0x130 00000000002cab30 000007fefa6942e1 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F2()+0x9f 00000000002cab80 000007fefa71b5b3 mscorwks!ExceptionTracker::CallHandler+0x145 00000000002cac80 000007fefa70dcd0 mscorwks!ExceptionTracker::ProcessManagedCallFrame+0x683 00000000002caed0 000007fefa7119af mscorwks!ExceptionTracker::ProcessOSExceptionNotification+0x430 00000000002cbd90 0000000077b055cd mscorwks!ProcessCLRException+0x19b 00000000002cbe30 0000000077ae55f8 ntdll!RtlpExecuteHandlerForUnwind+0xd 00000000002cbe60 000007fefa637c1a ntdll!RtlUnwindEx+0x539 00000000002cc500 000007fefa711a21 mscorwks!ClrUnwindEx+0x36 00000000002cca10 0000000077b0554d mscorwks!ProcessCLRException+0x20d 00000000002ccab0 0000000077ae5d1c ntdll!RtlpExecuteHandlerForException+0xd 00000000002ccae0 0000000077b1fe48 ntdll!RtlDispatchException+0x3cb 00000000002cd1c0 000007fefdaeaa7d ntdll!KiUserExceptionDispatcher+0x2e 00000000002cd780 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002cd850 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002cd920 000007ff005dd968 mscorwks!JIT_Throw+0x130 00000000002cdad0 000007ff005dd875 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F3()+0x48 00000000002cdb10 000007ff005dd786 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F2()+0x35 00000000002cdb60 000007ff005dbe6a WindowsFormsApplication1!WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)+0x46 00000000002cdbc0 000007ff005dd452 System_Windows_Forms!System.Windows.Forms.Control.OnClick(System.EventArgs)+0x5a   Hm okaaay. I see my method F1 two times in this call stack. Looks like we did get some recursion bug. But that can´t be given the obvious code above. Let´s try the same thing in a 32 bit process.  0:000> !DumpStack OS Thread Id: 0x33e4 (0) Current frame: KERNELBASE!RaiseException+0x58 ChildEBP RetAddr  Caller,Callee 0028ed38 767db727 KERNELBASE!RaiseException+0x58, calling ntdll!RtlRaiseException 0028ed4c 68b9008c mscorwks!Binder::RawGetClass+0x20, calling mscorwks!Module::LookupTypeDef 0028ed5c 68b904ff mscorwks!Binder::IsClass+0x23, calling mscorwks!Binder::RawGetClass 0028ed68 68bfb96f mscorwks!Binder::IsException+0x14, calling mscorwks!Binder::IsClass 0028ed78 68bfb996 mscorwks!IsExceptionOfType+0x23, calling mscorwks!Binder::IsException 0028ed80 68bfbb1c mscorwks!RaiseTheExceptionInternalOnly+0x2a8, calling KERNEL32!RaiseExceptionStub 0028eda8 68ba0713 mscorwks!Module::ResolveStringRef+0xe0, calling mscorwks!BaseDomain::GetStringObjRefPtrFromUnicodeString 0028edc8 68b91e8d mscorwks!SetObjectReferenceUnchecked+0x19 0028ede0 68c8e910 mscorwks!JIT_Throw+0xfc, calling mscorwks!RaiseTheExceptionInternalOnly 0028ee44 68c8e734 mscorwks!JIT_StrCns+0x22, calling mscorwks!LazyMachStateCaptureState 0028ee54 68c8e865 mscorwks!JIT_Throw+0x1e, calling mscorwks!LazyMachStateCaptureState 0028eea4 02ffaecd (MethodDesc 0x7af08c +0x7d WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)), calling mscorwks!JIT_Throw 0028eeec 02ffaf19 (MethodDesc 0x7af098 +0x29 WindowsFormsApplication1.Form1.F2()), calling 06370634 0028ef58 02ffae37 (MethodDesc 0x7a7bb0 +0x4f System.Windows.Forms.Control.OnClick(System.EventArgs))   That does look more familar. The call stack has been unwound and we do see only some frames into the history where the debugger was smart enough to find out that we have called F2 from F1. The exception handling on 64 bit systems does work quite differently which seems to have the nice property to remember the called methods not only during the first pass of exception filter clauses (during first pass all catch handler are called if they are going to catch the exception which is about to be thrown)  but also when the actual stack unwind has taken place. This makes it possible to follow not only the call stack right at the moment but also to look into the “history” of the catch/finally clauses. In a 64 bit process you only need to look at the ExceptionTracker to find out if a catch or finally handler was called. The two frames ProcessManagedCallFrame/CallHandler does indicate a finally clause whereas CallCatchHandler/CallHandler indicates a catch clause. That was a interesting one. Oh and by the way if you manage to load the Microsoft symbols you can also find out the hidden exception which. When you encounter in the call stack a line 0016eb34 75b79617 KERNELBASE!RaiseException+0x58 ====> Exception Code e0434f4d cxr@16e850 exr@16e838 Then it is a good idea to execute .exr 16e838 !analyze –v to find out more. In the managed world it is even easier since we can dump the objects allocated on the stack which have not yet been garbage collected to look at former method parameters. The command !dso which is the abbreviation for dump stack objects will give you 0:000> !dso OS Thread Id: 0x46c (0) ESP/REG  Object   Name 0016dd4c 020737f0 System.Exception 0016dd98 020737f0 System.Exception 0016dda8 01f5c6cc System.Windows.Forms.Button 0016ddac 01f5d2b8 System.EventHandler 0016ddb0 02071744 System.Windows.Forms.MouseEventArgs 0016ddc0 01f5d2b8 System.EventHandler 0016ddcc 01f5c6cc System.Windows.Forms.Button 0016dddc 020737f0 System.Exception 0016dde4 01f5d2b8 System.EventHandler 0016ddec 02071744 System.Windows.Forms.MouseEventArgs 0016de40 020737f0 System.Exception 0016de80 02071744 System.Windows.Forms.MouseEventArgs 0016de8c 01f5d2b8 System.EventHandler 0016de90 01f5c6cc System.Windows.Forms.Button 0016df10 02073784 System.SByte[] 0016df5c 02073684 System.NotImplementedException 0016e2a0 02073684 System.NotImplementedException 0016e2e8 01ed69f4 System.Resources.ResourceManager From there it is easy to do 0:000> !pe 02073684 Exception object: 02073684 Exception type: System.NotImplementedException Message: Die Methode oder der Vorgang sind nicht implementiert. InnerException: <none> StackTrace (generated):     SP       IP       Function     0016ECB0 006904AD WindowsFormsApplication2!WindowsFormsApplication2.Form1.F3()+0x35     0016ECC0 00690411 WindowsFormsApplication2!WindowsFormsApplication2.Form1.F2()+0x29     0016ECF0 0069038F WindowsFormsApplication2!WindowsFormsApplication2.Form1.F1(System.Object, System.EventArgs)+0x3f StackTraceString: <none> HResult: 80004001 to see the former exception. That´s all for today.

    Read the article

< Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >