Search Results

Search found 32185 results on 1288 pages for 'row level security'.

Page 50/1288 | < Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >

  • Oracle IRM video demonstration of seperating duties of document security

    - by Simon Thorpe
    One thing an Information Rights Management technology should do well is separate out three main areas of responsibility.The business process of defining and controlling the classifications to which content is secured and the definition of the roles employees, customers, partners and contractors have when accessing secured content. Allow IT to manage the server and perform the role of authorizing the creation of new classifications to meet business needs but yet once the classification has been created and handed off to the business, IT no longer plays a role on the ongoing management. Empower the business to take ownership of classifications to which their own content is secured. For example an employee who is leading an acquisition project should be responsible for defining who has access to confidential project documents. This person should be able to manage the rights users have in the classification and also be the point of contact for those wishing to gain rights. Oracle IRM has since it's creation in the late 1990's had this core model at the heart of its design. Due in part to the important seperation of rights from the documents themselves, Oracle IRM places the right functionality within the right parts of the business. For example some IRM technologies allow the end user to make decisions about what users can print, edit or save a secured document. This in practice results in a wide variety of content secured with a plethora of options that don't conform to any policy. With Oracle IRM users choose from a list of classifications to which they have been given the ability to secure information against. Their role in the classification was given to them by the business owner of the classification, yet the definition of the role resides within the realm of corporate security who own the overall business classification policies. It is this type of design and philosophy in Oracle IRM that makes it an enterprise solution that works beyond a few users and a few secured documents to hundreds of thousands of users and millions of documents. This following video shows how Oracle IRM 11g, the market leading document security solution, lets the security organization manage and create classifications whilst the business owns and manages them. If you want to experience using Oracle IRM secured content and the effects of different roles users have, why not sign up for our free demonstration.

    Read the article

  • Issue 55 - Skin Object Tokens, Optimized Control Panel, OWS Validation and Security, RAD

    April 2010 Welcome to Issue 55 of DNN Creative Magazine In this issue we focus on the new Skin Object token method introduced in DotNetNuke 5 for adding tokens into a DotNetNuke skin. A Skin Object Token is a web user control which covers skin elements such as the logo, menu, search, login links, date, copyright, languages, links, banners, privacy, terms of use, etc. Following this we demonstrate how to install and use two Advanced DotNetNuke Admin Control Panels which are available for free from Oliver Hine. These control panels provide an optimized version of the admin control panel to improve performance and page load times, as well as a ribbon bar control panel which adds additional features. Next, we continue the Open Web Studio tutorials, this month we demonstrate some very advanced techniques for building a car parts application in Open Web Studio. Throughout the tutorial we cover form input, validation, how to use dependant drop down lists, populating checkbox lists and introduce a new concept of data level security. Data level security allows you to control which data a user can access within a module. To finish, we have part five of the "How to Build a News Application with DotNetMushroom Rapid Application Developer (RAD)" article, where we demonstrate how to implement paging. This issue comes complete with 14 videos. Skinning: Skin Object Tokens for DotNetNuke 5 (8 videos - 64mins) Free Module: Advanced Optimized Control Panel by Oliver Hine (1 video - 11mins) Module Development Series: Form Validation, Dependant Drop Downs and Data Level Security in OWS (5 videos - 44mins) How to Implement Paging with DotNetMushroom RAD View issue 55 to download all of the videos in one zip file DNN Creative Magazine for DotNetNuke Web Designers Covering DotNetNuke module video reviews, video tutorials, mp3 interviews, resources and web design tips for working with DotNetNuke. In 55 issues we have created 563 videos!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • SQL Azure Security: DoS

    - by Herve Roggero
    Since I decided to understand in more depth how SQL Azure works I started to dig into its performance characteristics. So I decided to write an application that allows me to put SQL Azure to the test and compare results with a local SQL Server database. One of the options I added is the ability to issue the same command on multiple threads to get certain performance metrics. That's when I stumbled on an interesting security feature of SQL Azure: its Denial of Service (DoS) detection engine. What this security feature does is that it performs a check on the number of connections being established, and if the rate of connection is too high, SQL Azure blocks all communication from that machine. I am still trying to learn more about this specific feature, but it appears that going to the SQL Azure portal and testing the connection from the portal "resets" the feature and you are allowed to connect again... until you reach the login threashold. In the specific test I was performing, all the logins were successful. I haven't tried to login with an invalid account or password... that will be for next time. On my Linked In group (SQL Server and SQL Azure Security: http://www.linkedin.com/groups?gid=2569994&trk=hb_side_g) Chip Andrews (www.sqlsecurity.com) pointed out that this feature in itself could present an internal threat. In theory, a rogue application could be issuing many login requests from a NATed network, which could potentially prevent any production system from connecting to SQL Azure within the same network. My initial response was that this could indeed be the case. However, while the TCP protocol contains the latest NATed IP address of a machine (which masks the origin of the machine making the SQL request), the TDS protocol itself contains the IP Address of the machine making the initial request; so technically there would be a way for SQL Azure to block only the internal IP address making the rogue requests.  So this warrants further investigation... stay tuned...

    Read the article

  • Security Alert for CVE-2010-0886 and CVE-2010-0887 Released

    - by eric.maurice
    Hi, this is Eric Maurice again! Oracle just released a Security Alert to announce the availability of fixes for two vulnerabilities (CVE-2010-0886 and CVE-2010-0887) affecting Oracle Java SE and Oracle Java For Business. Both vulnerabilities only affect Java when running in a 32-bit web browser. These vulnerabilities are not present in Java running on servers or standalone Java desktop applications and do not impact any Oracle server based software. The first vulnerability (CVE-2010-0886) affects the Java Deployment Toolkit (version 6 update 10 through 19) on Windows only. The second vulnerability (CVE-2010-0887) affects the Java Plug-in (version 6 update 18 and 19) on Windows, Solaris and Linux. Both vulnerabilities may allow an attacker to run commands on the user's system with the privileges of the user, whose system may have become compromised by visiting a malicious web site. Oracle rated the severity of both vulnerabilities with a CVSS Base Score of 10.0 because many Windows users grant themselves administrative privileges. However, on other platforms, or for Windows users with limited privileges, the CVSS Base Score is only 7.5, because a successful exploitation of these vulnerabilities cannot result in a full compromise of the affected system. Users can quickly determine if they are running vulnerable versions of Java by pointing their browser to http://www.java.com/en/download/help/testvm.xml. Java SE users can visit http://www.java.com and download the most recent release of Java SE to address these vulnerabilities. Because of the criticality of these vulnerabilities, and the publicity they received as a result of their disclosure before the availability of a fix, Oracle recommends that all customers and Java users update their Java installation to the most recent version (6 update 20). For More Information: The advisory for the Security Alert for CVE-2010-0886 and CVE-2010-0887 is located at http://www.oracle.com/technology/deploy/security/alerts/alert-cve-2010-0886.html

    Read the article

  • Security in Robots and Automated Systems

    - by Roger Brinkley
    Alex Dropplinger posted a Freescale blog on Securing Robotics and Automated Systems where she asks the question,“How should we secure robotics and automated systems?”.My first thought on this was duh, make sure your robot is running Java. Java's built-in services for authentication, authorization, encryption/confidentiality, and the like can be leveraged and benefit robotic or autonomous implementations. Leveraging these built-in services and pluggable encryption models of Java makes adding security to an exist bot implementation much easier. But then I thought I should ask an expert on robotics so I fired the question off to Paul Perrone of Perrone Robotics. Paul's build automated vehicles and other forms of embedded devices like auto monitoring of commercial vehicles on highways.He says that most of the works that robots do now are autonomous so it isn't a problem in the short term. But long term projects like collision avoidance technology in automobiles are going to require it.Some of the work he's doing with his Java-based MAX, set of software building blocks containing a wide range of low level and higher level software modules that developers can use to build simple to complex robot and automation applications faster and cheaper, already provide some support for JAUS compliance and because their based on Java, access to standards based security APIs.But, as Paul explained to me, "the bottom line is…it depends on the criticality level of the bot, it's network connectivity, and whether or not a standards compliance is required."

    Read the article

  • Wer kennt Oracle Label Security?

    - by Heinz-Wilhelm Fabry (DBA Community)
    Oracle Label Security (OLS) ist eine Option der Enterprise Edition der Datenbank seit der Datenbankversion 9.0.1. Es handelt sich bei OLS um eine fertige Anwendung, die vollständig auf Oracle Virtual Private Database (VPD) aufgebaut ist. Obwohl es sich also bei OLS um ein 'gestandenes' Oracle Produkt handelt, ist es vielen Kunden unbekannt. Oder vielleicht sollte man präziser sagen: Kaum ein Kunde redet über OLS. Das liegt sicherlich in erster Linie daran, dass Kunden, die sensibel für Security Fragen sind, sowieso nicht gerne Auskunft geben über die Massnahmen, die sie selbst ergriffen haben, sich zu schützen. Wenn man dann noch bedenkt, dass die Kunden, die OLS einsetzen, häufig aus Bereichen stammen, die für ihre Diskretion bekannt sind - Dienste, Polizei, Militär, Banken - hat man einen weiteren Grund dafür gefunden, warum so wenige über OLS reden. Das ist allerdings bedauerlich, denn besonders in dieser Zeit steigenden Security Bewusstseins, verdient OLS auf jeden Fall mehr Aufmerksamkeit. Dieser Tipp möchte deshalb dazu beitragen, OLS bekannter zu machen. Dazu werden zunächst einige einführende Informationen zu OLS gegeben. Danach wird anhand eines kleinen Beispiels gezeigt, wie man mit OLS arbeitet. Ergänzend sei hier noch erwähnt, dass der Einsatz von OLS keinerlei Veränderungen an vorhandenen Anwendungen erfordert. In der Oracle Terminologie heisst das: OLS ist transparent für Anwender und Anwendungen. Zum vollständigen Artikel geht es hier.

    Read the article

  • Thunderbird: "Could not initialize the application's security component" [closed]

    - by user unknown
    In Thunderbird, on startup, I get the error message: "Could not initialize the application's security component" The message continues to check permissions of the profile, and free disk space. df -h shows, that I have 19G free disk space. find . -not -perm -644 -not -perm -600 -ls shows: No file without rw-permissions for me. Before the error occured, thunderbird worked well. But I changed my main mail-account. I had two, let's call them A and B, and used mainly A, but now I wanted to deaktivate it, and receive and send automatically via the second. I Had problems moving the filters from inbox A to inbox B (missing copy-functionality). In the web, I found (mollazine) hints, to move key3.db, cert8.db and secmode.db out of the way, but it didn't work for me. Another hint was to uninstall Quickcam(?. sic!), but I don't have Quickcam. A third to recreate the profile, but I have subdirectories, filters, addressbook, groups - mails back to the year 2003. I don't want to risk the loss of data. The whole errormessage is: Could not initialize the application's security component. The most likely cause is problems with files in your application's profile directory. Please check that this directory has no read/write restrictions and your hard disk is not full or close to full. It is recommended that you exit the application and fix the problem. If you continue to use this session, you might see incorrect application behaviour when accessing security features. When I open the error-console, it is empty.

    Read the article

  • Which isolation level should I use for the following insert-if-not-present transaction?

    - by Steve Guidi
    I've written a linq-to-sql program that essentially performs an ETL task, and I've noticed many places where parallelization will improve its performance. However, I'm concerned about preventing uniquness constraint violations when two threads perform the following task (psuedo code). Record CreateRecord(string recordText) { using (MyDataContext database = GetDatabase()) { Record existingRecord = database.MyTable.FirstOrDefault(record.KeyPredicate()); if(existingRecord == null) { existingRecord = CreateRecord(recordText); database.MyTable.InsertOnSubmit(existingRecord); } database.SubmitChanges(); return existingRecord; } } In general, this code executes a SELECT statement to test for record existance, followed by an INSERT statement if the record doesn't exist. It is encapsulated by an implicit transaction. When two threads run this code for the same instance of recordText, I want to prevent them from simultaneously determining that the record doesn't exist, thereby both attempting to create the same record. An isolation level and explicit transaction will work well, except I'm not certain which isolation level I should use -- Serializable should work, but seems too strict. Is there a better choice?

    Read the article

  • SQL SERVER – Securing TRUNCATE Permissions in SQL Server

    - by pinaldave
    Download the Script of this article from here. On December 11, 2010, Vinod Kumar, a Databases & BI technology evangelist from Microsoft Corporation, graced Ahmedabad by spending some time with the Community during the Community Tech Days (CTD) event. As he was running through a few demos, Vinod asked the audience one of the most fundamental and common interview questions – “What is the difference between a DELETE and TRUNCATE?“ Ahmedabad SQL Server User Group Expert Nakul Vachhrajani has come up with excellent solutions of the same. I must congratulate Nakul for this excellent solution and as a encouragement to User Group member, I am publishing the same article over here. Nakul Vachhrajani is a Software Specialist and systems development professional with Patni Computer Systems Limited. He has functional experience spanning legacy code deprecation, system design, documentation, development, implementation, testing, maintenance and support of complex systems, providing business intelligence solutions, database administration, performance tuning, optimization, product management, release engineering, process definition and implementation. He has comprehensive grasp on Database Administration, Development and Implementation with MS SQL Server and C, C++, Visual C++/C#. He has about 6 years of total experience in information technology. Nakul is an member of the Ahmedabad and Gandhinagar SQL Server User Groups, and actively contributes to the community by actively participating in multiple forums and websites like SQLAuthority.com, BeyondRelational.com, SQLServerCentral.com and many others. Please note: The opinions expressed herein are Nakul own personal opinions and do not represent his employer’s view in anyway. All data from everywhere here on Earth go through a series of  four distinct operations, identified by the words: CREATE, READ, UPDATE and DELETE, or simply, CRUD. Putting in Microsoft SQL Server terms, is the process goes like this: INSERT, SELECT, UPDATE and DELETE/TRUNCATE. Quite a few interesting responses were received and evaluated live during the session. To summarize them, the most important similarity that came out was that both DELETE and TRUNCATE participate in transactions. The major differences (not all) that came out of the exercise were: DELETE: DELETE supports a WHERE clause DELETE removes rows from a table, row-by-row Because DELETE moves row-by-row, it acquires a row-level lock Depending upon the recovery model of the database, DELETE is a fully-logged operation. Because DELETE moves row-by-row, it can fire off triggers TRUNCATE: TRUNCATE does not support a WHERE clause TRUNCATE works by directly removing the individual data pages of a table TRUNCATE directly occupies a table-level lock. (Because a lock is acquired, and because TRUNCATE can also participate in a transaction, it has to be a logged operation) TRUNCATE is, therefore, a minimally-logged operation; again, this depends upon the recovery model of the database Triggers are not fired when TRUNCATE is used (because individual row deletions are not logged) Finally, Vinod popped the big homework question that must be critically analyzed: “We know that we can restrict a DELETE operation to a particular user, but how can we restrict the TRUNCATE operation to a particular user?” After returning home and having a nice cup of coffee, I noticed that my gray cells immediately started to work. Below was the result of my research. As what is always said, the devil is in the details. Upon looking at the Permissions section for the TRUNCATE statement in Books On Line, the following jumps right out: “The minimum permission required is ALTER on table_name. TRUNCATE TABLE permissions default to the table owner, members of the sysadmin fixed server role, and the db_owner and db_ddladmin fixed database roles, and are not transferable. However, you can incorporate the TRUNCATE TABLE statement within a module, such as a stored procedure, and grant appropriate permissions to the module using the EXECUTE AS clause.“ Now, what does this mean? Unlike DELETE, one cannot directly assign permissions to a user/set of users allowing or revoking TRUNCATE rights. However, there is a way to circumvent this. It is important to recall that in Microsoft SQL Server, database engine security surrounds the concept of a “securable”, which is any object like a table, stored procedure, trigger, etc. Rights are assigned to a principal on a securable. Refer to the image below (taken from the SQL Server Books On Line). urable”, which is any object like a table, stored procedure, trigger, etc. Rights are assigned to a principal on a securable. Refer to the image below (taken from the SQL Server Books On Line). SETTING UP THE ENVIRONMENT – (01A_Truncate Table Permissions.sql) Script Provided at the end of the article. By the end of this demo, one will be able to do all the CRUD operations, except the TRUNCATE, and the other will only be able to execute the TRUNCATE. All you will need for this test is any edition of SQL Server 2008. (With minor changes, these scripts can be made to work with SQL 2005.) We begin by creating the following: 1.       A test database 2.        Two database roles: associated logins and users 3.       Switch over to the test database and create a test table. Then, add some data into it. I am using row constructors, which is new to SQL 2008. Creating the modules that will be used to enforce permissions 1.       We have already created one of the modules that we will be assigning permissions to. That module is the table: TruncatePermissionsTest 2.       We will now create two stored procedures; one is for the DELETE operation and the other for the TRUNCATE operation. Please note that for all practical purposes, the end result is the same – all data from the table TruncatePermissionsTest is removed Assigning the permissions Now comes the most important part of the demonstration – assigning permissions. A permissions matrix can be worked out as under: To apply the security rights, we use the GRANT and DENY clauses, as under: That’s it! We are now ready for our big test! THE TEST (01B_Truncate Table Test Queries.sql) Script Provided at the end of the article. I will now need two separate SSMS connections, one with the login AllowedTruncate and the other with the login RestrictedTruncate. Running the test is simple; all that’s required is to run through the script – 01B_Truncate Table Test Queries.sql. What I will demonstrate here via screen-shots is the behavior of SQL Server when logged in as the AllowedTruncate user. There are a few other combinations than what are highlighted here. I will leave the reader the right to explore the behavior of the RestrictedTruncate user and these additional scenarios, as a form of self-study. 1.       Testing SELECT permissions 2.       Testing TRUNCATE permissions (Remember, “deny by default”?) 3.       Trying to circumvent security by trying to TRUNCATE the table using the stored procedure Hence, we have now proved that a user can indeed be assigned permissions to specifically assign TRUNCATE permissions. I also hope that the above has sparked curiosity towards putting some security around the probably “destructive” operations of DELETE and TRUNCATE. I would like to wish each and every one of the readers a very happy and secure time with Microsoft SQL Server. (Please find the scripts – 01A_Truncate Table Permissions.sql and 01B_Truncate Table Test Queries.sql that have been used in this demonstration. Please note that these scripts contain purely test-level code only. These scripts must not, at any cost, be used in the reader’s production environments). 01A_Truncate Table Permissions.sql /* ***************************************************************************************************************** Developed By          : Nakul Vachhrajani Functionality         : This demo is focused on how to allow only TRUNCATE permissions to a particular user How to Use            : 1. Run through, step-by-step through the sequence till Step 08 to create a test database 2. Switch over to the "Truncate Table Test Queries.sql" and execute it step-by-step in two different SSMS windows, one where you have logged in as 'RestrictedTruncate', and the other as 'AllowedTruncate' 3. Come back to "Truncate Table Permissions.sql" 4. Execute Step 10 to cleanup! Modifications         : December 13, 2010 - NAV - Updated to add a security matrix and improve code readability when applying security December 12, 2010 - NAV - Created ***************************************************************************************************************** */ -- Step 01: Create a new test database CREATE DATABASE TruncateTestDB GO USE TruncateTestDB GO -- Step 02: Add roles and users to demonstrate the security of the Truncate operation -- 2a. Create the new roles CREATE ROLE AllowedTruncateRole; GO CREATE ROLE RestrictedTruncateRole; GO -- 2b. Create new logins CREATE LOGIN AllowedTruncate WITH PASSWORD = 'truncate@2010', CHECK_POLICY = ON GO CREATE LOGIN RestrictedTruncate WITH PASSWORD = 'truncate@2010', CHECK_POLICY = ON GO -- 2c. Create new Users using the roles and logins created aboave CREATE USER TruncateUser FOR LOGIN AllowedTruncate WITH DEFAULT_SCHEMA = dbo GO CREATE USER NoTruncateUser FOR LOGIN RestrictedTruncate WITH DEFAULT_SCHEMA = dbo GO -- 2d. Add the newly created login to the newly created role sp_addrolemember 'AllowedTruncateRole','TruncateUser' GO sp_addrolemember 'RestrictedTruncateRole','NoTruncateUser' GO -- Step 03: Change over to the test database USE TruncateTestDB GO -- Step 04: Create a test table within the test databse CREATE TABLE TruncatePermissionsTest (Id INT IDENTITY(1,1), Name NVARCHAR(50)) GO -- Step 05: Populate the required data INSERT INTO TruncatePermissionsTest VALUES (N'Delhi'), (N'Mumbai'), (N'Ahmedabad') GO -- Step 06: Encapsulate the DELETE within another module CREATE PROCEDURE proc_DeleteMyTable WITH EXECUTE AS SELF AS DELETE FROM TruncateTestDB..TruncatePermissionsTest GO -- Step 07: Encapsulate the TRUNCATE within another module CREATE PROCEDURE proc_TruncateMyTable WITH EXECUTE AS SELF AS TRUNCATE TABLE TruncateTestDB..TruncatePermissionsTest GO -- Step 08: Apply Security /* *****************************SECURITY MATRIX*************************************** =================================================================================== Object                   | Permissions |                 Login |             | AllowedTruncate   |   RestrictedTruncate |             |User:NoTruncateUser|   User:TruncateUser =================================================================================== TruncatePermissionsTest  | SELECT,     |      GRANT        |      (Default) | INSERT,     |                   | | UPDATE,     |                   | | DELETE      |                   | -------------------------+-------------+-------------------+----------------------- TruncatePermissionsTest  | ALTER       |      DENY         |      (Default) -------------------------+-------------+----*/----------------+----------------------- proc_DeleteMyTable | EXECUTE | GRANT | DENY -------------------------+-------------+-------------------+----------------------- proc_TruncateMyTable | EXECUTE | DENY | GRANT -------------------------+-------------+-------------------+----------------------- *****************************SECURITY MATRIX*************************************** */ /* Table: TruncatePermissionsTest*/ GRANT SELECT, INSERT, UPDATE, DELETE ON TruncateTestDB..TruncatePermissionsTest TO NoTruncateUser GO DENY ALTER ON TruncateTestDB..TruncatePermissionsTest TO NoTruncateUser GO /* Procedure: proc_DeleteMyTable*/ GRANT EXECUTE ON TruncateTestDB..proc_DeleteMyTable TO NoTruncateUser GO DENY EXECUTE ON TruncateTestDB..proc_DeleteMyTable TO TruncateUser GO /* Procedure: proc_TruncateMyTable*/ DENY EXECUTE ON TruncateTestDB..proc_TruncateMyTable TO NoTruncateUser GO GRANT EXECUTE ON TruncateTestDB..proc_TruncateMyTable TO TruncateUser GO -- Step 09: Test --Switch over to the "Truncate Table Test Queries.sql" and execute it step-by-step in two different SSMS windows: --    1. one where you have logged in as 'RestrictedTruncate', and --    2. the other as 'AllowedTruncate' -- Step 10: Cleanup sp_droprolemember 'AllowedTruncateRole','TruncateUser' GO sp_droprolemember 'RestrictedTruncateRole','NoTruncateUser' GO DROP USER TruncateUser GO DROP USER NoTruncateUser GO DROP LOGIN AllowedTruncate GO DROP LOGIN RestrictedTruncate GO DROP ROLE AllowedTruncateRole GO DROP ROLE RestrictedTruncateRole GO USE MASTER GO DROP DATABASE TruncateTestDB GO 01B_Truncate Table Test Queries.sql /* ***************************************************************************************************************** Developed By          : Nakul Vachhrajani Functionality         : This demo is focused on how to allow only TRUNCATE permissions to a particular user How to Use            : 1. Switch over to this from "Truncate Table Permissions.sql", Step #09 2. Execute this step-by-step in two different SSMS windows a. One where you have logged in as 'RestrictedTruncate', and b. The other as 'AllowedTruncate' 3. Return back to "Truncate Table Permissions.sql" 4. Execute Step 10 to cleanup! Modifications         : December 12, 2010 - NAV - Created ***************************************************************************************************************** */ -- Step 09A: Switch to the test database USE TruncateTestDB GO -- Step 09B: Ensure that we have valid data SELECT * FROM TruncatePermissionsTest GO -- (Expected: Following error will occur if logged in as "AllowedTruncate") -- Msg 229, Level 14, State 5, Line 1 -- The SELECT permission was denied on the object 'TruncatePermissionsTest', database 'TruncateTestDB', schema 'dbo'. --Step 09C: Attempt to Truncate Data from the table without using the stored procedure TRUNCATE TABLE TruncatePermissionsTest GO -- (Expected: Following error will occur) --  Msg 1088, Level 16, State 7, Line 2 --  Cannot find the object "TruncatePermissionsTest" because it does not exist or you do not have permissions. -- Step 09D:Regenerate Test Data INSERT INTO TruncatePermissionsTest VALUES (N'London'), (N'Paris'), (N'Berlin') GO -- (Expected: Following error will occur if logged in as "AllowedTruncate") -- Msg 229, Level 14, State 5, Line 1 -- The INSERT permission was denied on the object 'TruncatePermissionsTest', database 'TruncateTestDB', schema 'dbo'. --Step 09E: Attempt to Truncate Data from the table using the stored procedure EXEC proc_TruncateMyTable GO -- (Expected: Will execute successfully with 'AllowedTruncate' user, will error out as under with 'RestrictedTruncate') -- Msg 229, Level 14, State 5, Procedure proc_TruncateMyTable, Line 1 -- The EXECUTE permission was denied on the object 'proc_TruncateMyTable', database 'TruncateTestDB', schema 'dbo'. -- Step 09F:Regenerate Test Data INSERT INTO TruncatePermissionsTest VALUES (N'Madrid'), (N'Rome'), (N'Athens') GO --Step 09G: Attempt to Delete Data from the table without using the stored procedure DELETE FROM TruncatePermissionsTest GO -- (Expected: Following error will occur if logged in as "AllowedTruncate") -- Msg 229, Level 14, State 5, Line 2 -- The DELETE permission was denied on the object 'TruncatePermissionsTest', database 'TruncateTestDB', schema 'dbo'. -- Step 09H:Regenerate Test Data INSERT INTO TruncatePermissionsTest VALUES (N'Spain'), (N'Italy'), (N'Greece') GO --Step 09I: Attempt to Delete Data from the table using the stored procedure EXEC proc_DeleteMyTable GO -- (Expected: Following error will occur if logged in as "AllowedTruncate") -- Msg 229, Level 14, State 5, Procedure proc_DeleteMyTable, Line 1 -- The EXECUTE permission was denied on the object 'proc_DeleteMyTable', database 'TruncateTestDB', schema 'dbo'. --Step 09J: Close this SSMS window and return back to "Truncate Table Permissions.sql" Thank you Nakul to take up the challenge and prove that Ahmedabad and Gandhinagar SQL Server User Group has talent to solve difficult problems. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Best Practices, Pinal Dave, Readers Contribution, Readers Question, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Security, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • Modern programming language with intuitive concurrent programming abstractions

    - by faif
    I am interested in learning concurrent programming, focusing on the application/user level (not system programming). I am looking for a modern high level programming language that provides intuitive abstractions for writing concurrent applications. I want to focus on languages that increase productivity and hide the complexity of concurrent programming. To give some examples, I don't consider a good option writing multithreaded code in C, C++, or Java because IMHO my productivity is reduced and their programming model is not intuitive. On the other hand, languages that increase productivity and offer more intuitive abstractions such as Python and the multiprocessing module, Erlang, Clojure, Scala, etc. would be good options. What would you recommend based on your experience and why?

    Read the article

  • getting "No LoginModules configured" for JAAS login under WebSphere security domain

    - by user1739040
    I have a JAX-RPC web service running on WebSphere V7. It requires a UserNameToken for security. I have a custom login module (MyLoginModule) which extracts the username and password, and that module is defined as a JAAS application login in the websphere admin console. Using IBM RAD 8.0, I have bound the token consumer to the login module using the JAAS config name of the module. This all works fine and happy on my development server. Now I realize, that for deployment to another server, I am required to move the JAAS login from global security to a security domain. When I do that, it breaks my web service. I get this SOAP Fault message: com.ibm.wsspi.wssecurity.SoapSecurityException: WSEC6520E: Construction of the login context failed. The exception is : javax.security.auth.login.LoginException: No LoginModules configured for MyLoginModule According to the IBM docs: The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data aliases can all be configured at the domain level. By default, all of the applications in the system have access to the JAAS logins configured at the global level. The security runtime first checks for the JAAS logins at the domain level. If it does not find them, it then checks for them in the global security configuration. Configure any of these JAAS logins at a domain only when you need to specify a login that is used exclusively by the applications in the security domain. So I am looking to make sure my application is in the domain, and I have tried everything I can think of. (I have assigned the domain to "all scopes", to the entire cell, etc.) No luck, I keep getting the same error response to my web service client. Any help or hints are appreciated.

    Read the article

  • XNA Level Select Menu

    - by user29901
    I'll try to explain this the best I can. I'm trying to create a level select menu for a game I'm making. The menu is basically a group of blocks numbered 1-16, similar to something like the Angry Birds menu. What I've done is created a cursor, basically just an outline to surround a block, that the user can move to select what level they want to play. What I want it do is move from block to block instead of simply moving around on the X and Y axes as it does now. So my question is, how can I get the cursor (highLight in the below code) to move from block to block(destinationRectangle1 etc. in the code)? /// Field for the "cursor" Vector2 highLightPos = new Vector2(400, 200); ///This is the Update code KeyboardState keyBoardState = Keyboard.GetState(); if (keyBoardState.IsKeyDown(Keys.Up)) highLightPos.Y--; if (keyBoardState.IsKeyDown(Keys.Down)) highLightPos.Y++; if (keyBoardState.IsKeyDown(Keys.Right)) highLightPos.X++; if (keyBoardState.IsKeyDown(Keys.Left)) highLightPos.X--; /// This is the draw code SpriteBatch spriteBatch = ScreenManager.SpriteBatch; Rectangle screenRectangle = new Rectangle(0, 0, 1280, 720); Rectangle destinationRectangle1 = new Rectangle(400, 200, 64, 64); Rectangle frameRectangle1 = new Rectangle(0, 0, 64, 64); Rectangle destinationRectangle2 = new Rectangle(500, 200, 64, 64); Rectangle frameRectangle2 = new Rectangle(64, 0, 64, 64); Rectangle destinationRectangle3 = new Rectangle(600, 200, 64, 64); Rectangle frameRectangle3 = new Rectangle(128, 0, 64, 64); Rectangle destinationRectangle4 = new Rectangle(700, 200, 64, 64); Rectangle frameRectangle4 = new Rectangle(192, 0, 64, 64); Rectangle destinationRectangle5 = new Rectangle(800, 200, 64, 64); Rectangle frameRectangle5 = new Rectangle(256, 0, 64, 64); Rectangle destinationRectangle6 = new Rectangle(400, 300, 64, 64); Rectangle frameRectangle6 = new Rectangle(320, 0, 64, 64); Rectangle destinationRectangle7 = new Rectangle(500, 300, 64, 64); Rectangle frameRectangle7 = new Rectangle(384, 0, 64, 64); Rectangle destinationRectangle8 = new Rectangle(600, 300, 64, 64); Rectangle frameRectangle8 = new Rectangle(448, 0, 64, 64); Rectangle destinationRectangle9 = new Rectangle(700, 300, 64, 64); Rectangle frameRectangle9 = new Rectangle(0, 64, 64, 64); Rectangle destinationRectangle10 = new Rectangle(800, 300, 64, 64); Rectangle frameRectangle10 = new Rectangle(64, 64, 64, 64); Rectangle destinationRectangle11 = new Rectangle(400, 400, 64, 64); Rectangle frameRectangle11 = new Rectangle(128, 64, 64, 64); Rectangle destinationRectangle12 = new Rectangle(500, 400, 64, 64); Rectangle frameRectangle12 = new Rectangle(192, 64, 64, 64); Rectangle destinationRectangle13 = new Rectangle(600, 400, 64, 64); Rectangle frameRectangle13 = new Rectangle(256, 64, 64, 64); Rectangle destinationRectangle14 = new Rectangle(700, 400, 64, 64); Rectangle frameRectangle14 = new Rectangle(320, 64, 64, 64); Rectangle destinationRectangle15 = new Rectangle(800, 400, 64, 64); Rectangle frameRectangle15 = new Rectangle(384, 64, 64, 64); Rectangle destinationRectangle16 = new Rectangle(600, 500, 64, 64); Rectangle frameRectangle16 = new Rectangle(448, 64, 64, 64); spriteBatch.Begin(); spriteBatch.Draw(forestBG, screenRectangle, Color.White); spriteBatch.Draw(highLight, highLightPos, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle1, frameRectangle1, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle2, frameRectangle2, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle3, frameRectangle3, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle4, frameRectangle4, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle5, frameRectangle5, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle6, frameRectangle6, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle7, frameRectangle7, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle8, frameRectangle8, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle9, frameRectangle9, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle10, frameRectangle10, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle11, frameRectangle11, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle12, frameRectangle12, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle13, frameRectangle13, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle14, frameRectangle14, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle15, frameRectangle15, Color.White); spriteBatch.Draw(levelSelectTiles, destinationRectangle16, frameRectangle16, Color.White); spriteBatch.End(); PS, I'm aware that this code is probably inefficient, cumbersome or that there's a better way to draw parts of a tile sheet. Any suggestions would be appreciated.

    Read the article

  • @CodeStock 2012 Review: Rob Gillen ( @argodev ) - Anatomy of a Buffer Overflow Attack

    Anatomy of a Buffer Overflow AttackSpeaker: Rob GillenTwitter: @argodevBlog: rob.gillenfamily.net Honestly, this talk was over my head due to my lack of knowledge of low level programming, and I think that most of the other attendees would agree. However I did get the basic concepts that we was trying to get across. Fortunately most high level programming languages handle most of the low level concerns regarding preventing buffer overflow attacks. What I got from this talk was to validate all input data from external sources.

    Read the article

  • How can i find touch typing lesson for words with middle row only

    - by user1838032
    I am learning touch typing. i want practice step by step. Is there any site where i can have the options of the keys to select and then have lesson for those slected keys only. I means i select the keys from keyboard and then system prepares the lesson for only those keys with random combination. Current i want to practice keys asdf gh jkl; Now i am not able to find practice for that whole row only. i mena random combinatins

    Read the article

  • Create an Asp.net Gridview with Checkbox in each row

    - by ybbest
    One of the frequent requirements for Asp.net Gridview is to add a checkbox for each row and a checkbox to select all the items like the Gridview below. This can be easily achieved by using jQuery. You can find the complete source doe here. $(document).ready(function () { $(‘input[name$="CDSelectAll"]‘).click(function () { if ($(this).attr(“checked”)) { $(‘input[name$="CDSelect"]‘).attr(‘checked’, ‘checked’); } else { $(‘input[name$="CDSelect"]‘).removeAttr(‘checked’); } }); });

    Read the article

  • Stairway to Database Source Control Level 2: Getting a Database into Source Control

    In this level, we're going to continue the philosophy of learning by example, and get a database into our SVN repository. We will also consider our overall approach to source control for databases, and the manner in which our team will develop these databases, concurrently. 24% of devs don’t use database source control – make sure you aren’t one of themVersion control is standard for application code, but databases haven’t caught up. So what steps can you take to put your SQL databases under version control? Why should you start doing it? Read more to find out…

    Read the article

  • genetic algorithm for leveling/build test

    - by Renan Malke Stigliani
    I'm starting o build a online PVP (duel like, one-to-one) game, where there is leveling, skill points, special attacks and all the common stuff. Since I never did anything like that, I'm still thinking about the maths behind the level/skill/special balances. So I thought good way of testing the best/combo builds would implement a Genetic Algorith. It'd be like that: Generate a big portion of random characters Make them fight, level them up accordingly to the victories(more XP)/losses(less XP) Mate the winners, crossing their builds, to try to make even best characters Add some more random chars, emulating new players Repeat the process for some time, or util find some chars who can beat everyone butts So I could play with the math and try to find the balance where the top x% chars would be a mix of various build types. So, is it a good idea, or there are some other easier method to do the balance? PS: I like this also, because it sounds funny

    Read the article

  • @CodeStock 2012 Review: Rob Gillen ( @argodev ) - Anatomy of a Buffer Overflow Attack

    Anatomy of a Buffer Overflow AttackSpeaker: Rob GillenTwitter: @argodevBlog: rob.gillenfamily.net Honestly, this talk was over my head due to my lack of knowledge of low level programming, and I think that most of the other attendees would agree. However I did get the basic concepts that we was trying to get across. Fortunately most high level programming languages handle most of the low level concerns regarding preventing buffer overflow attacks. What I got from this talk was to validate all input data from external sources.

    Read the article

  • Use alpha or opacity on a table row using CSS [migrated]

    - by mserin
    I have a CSS stylesheet for a webpage. The webpage has a table with a background color of white (set in the rows, not the table). I would like to set the opacity or alpha to 50%. I have tried so many variations, but come up with no luck. A typical row in the HTML file is: <tr> <td>&nbsp;</td> <td>Twitter</td> </tr> The CSS settings for table rows (which works perfectly) is: tr { font-family: Arial, Helvetica, sans-serif; background:rgb(255,255,255); } To get the alpha, I tried tr { font-family: Arial, Helvetica, sans-serif; background-color:rgba(255,255,255,0.5); } I have also tried background-color-opacity: 0.5; Any other suggestions?

    Read the article

  • Level selection view - similiar to Angry Bird's

    - by Piotr
    I am making game and need to prepare view for level selection. Could you recommend me some opensource library which could I use? I need icons to vibrate after long pressing one of them, some callbacks after choosing them, possibility to prepare custom icon's view, page control and horizontal scrolling. I was trying to use OpenSpringBoard but weirdly couldn't see scrollview and pagecontrol working in this project - it seems that there's possibility to use only one page. On the other hand, myLauncher(https://github.com/dlinsin/myLauncher) isn't so easy to include in project, as I need a seperate view with some delegate methods. I need to be compatible with iOS 4.2

    Read the article

  • Why should we use low level languages if a high level one like python can do almost everything? [closed]

    - by killown
    I know python is not suitable for things like microcontrolers, make drivers etc, but besides that, you can do everything using python, companys get stuck with speed optimizations for real hard time system but does forget other factors which one you can just upgrade your hardware for speed proposes in order to get your python program fit in it, if you think how much cust can the company have to maintain a system written in C, the comparison is like that: for example: 10 programmers to mantain a system written in c and just one programmer to mantain a system written in python, with python you can buy some better hardware to fit your python program, I think that low level languages tend to get more cost, since programmers aren't so cheaply than a hardware upgrade, then, this is my point, why should a system be written in c instead of python?

    Read the article

  • High level project workflow

    - by user775060
    We are a small software company trying our hand at our second game. Since our first games' process was a living nightmare (since we used webdevelopment workflow) I have decided to educate myself on how to manage a game project on a high level. How does your process work, from idea to launch? Preferably in situations where you have a team that needs to cooperate. I've seen these 2 links, which are useful in a way, but was wondering if there are better/more comprehensive ways to do this? http://www.goodcontroller.com/blog/?p=136 http://gogogic.wordpress.com/2009/02/09/symbol6-how-we-created-an-iphone-game/ All input would be infinitely appreciated.

    Read the article

  • No Cost 1-Click Remarketer Level Training

    - by martin.morganti(at)oracle.com
    The Remarketer level has proven to be a great success as a way of enabling Remarketers to Jump start a resale business with Oracle. As part of the Knowledge Zone for the 1-Click Products we have some no cost training available - the Oracle 1-Click Technology Products Guided Learning Path - which explains about the program and how to position Oracle products. We have been working to increase the training that is available for Remarketers and I am pleased to let you know that we have recently added more no cost training. The training path that we have released is the Oracle Database 11g 1-Click Technology Sales Guided Learning Path . This set of courses provides more detail on the Oracle 11G Database and will help you to better uncover and exploit opportunities for you to sell Oracle 11G as part of your solutions. So if you are interested in a No Fees, No Barriers No Excuses way to resell Oracle 1-Click products look at the Remarketer page and take the free 1-Click Guided Learning paths in the Training Section to kick start your activity.

    Read the article

  • cross resolution level design advice [on hold]

    - by Mike
    I was looking for some beginner advice regarding level design across multiple resolutions. I believe the answer is likely "it depends", but any input from anyone with real experience is very appreciated. Basically, I am building a 2D Super Metroid type game. If rooms/levels are to be a tiled grid, what are some general best practices for designing rooms when taking into account different resolutions? Since more or less tiles could fit vertically on a single screen depending on the resolution, is it better to design towards possibly having more of the room visible depending on the screen (with a bare minimum needed for gameplay), or should I fix the design at a certain tile height and scale the graphics?

    Read the article

< Previous Page | 46 47 48 49 50 51 52 53 54 55 56 57  | Next Page >