Search Results

Search found 43935 results on 1758 pages for 'development process'.

Page 507/1758 | < Previous Page | 503 504 505 506 507 508 509 510 511 512 513 514  | Next Page >

  • Automated texture mapping

    - by brandon
    I have a set of seamless tiling textures. I want to be able to take an arbitrary model and create a UV map with these properties: No stretching (all textures tile appropriately so there is no stretching and sheering of the texture) The textures display on the correct axis relative to the model it's mapping to (if you look at the example, you can see some of the letters on the front are tilted, the y axis of the texture should be matching up with the y axis of the object. Some other faces have upside down letters too) the texture is as continuous as possible on the surface of the model (if two faces are adjacent, the texture continues on the adjacent face where it left off) the model is closed (all faces are completely enclosed by other faces) A few notes. This mapping will occur before triangulation. I realize there are ways to do this by hand and it's probably a hard problem to automatically map textures in general, but since these textures are seamless and I just need uniform coverage it seems like an easier problem. I'm looking for an algorithmic approach to this that I can apply in general, not a tool that does it. What approach would work for this, is there an existing one? (I assume so)

    Read the article

  • Hero/Character sprite size in comparison to tile size?

    - by Kid
    So I'm making this simple platformer where the Hero is 16x16 in size, but also, the tile size is 16x16. Which sounds fine right? But my game window/world is 800x416, which makes the Hero is really really tiny in comparison. This really surprised me, but given Ive never made a platformer before it is also a new discovery. Is there a rule set for scale in platformer games? I'd like to have my game window remain the size it is (800x416), cause the game involves large levels. But how big should my hero be? I hope I was clear with the question, and I appreciate any insight. Thanks

    Read the article

  • Making a surface transparent from blackness of texture

    - by Dan the Man
    I am making a "halo" shader in unity using GLSL. And I've come to a roadblock. What I need to do is take a texture, like the following, and make it transparent according to the darkness of it. And I don't want a cutout, because that cuts it off at a hard edge. This line of code doesn't seem to work. gl_FragColor = texture2D( vec4( _MainTex.r, _MainTex.g, _MainTex.b, _MainTex.a), vec2(textureCoordinates));

    Read the article

  • HLSL Pixel Shader that does palette swap

    - by derrace
    I have implemented a simple pixel shader which can replace a particular colour in a sprite with another colour. It looks something like this: sampler input : register(s0); float4 PixelShaderFunction(float2 coords: TEXCOORD0) : COLOR0 { float4 colour = tex2D(input, coords); if(colour.r == sourceColours[0].r && colour.g == sourceColours[0].g && colour.b == sourceColours[0].b) return targetColours[0]; return colour; } What I would like to do is have the function take in 2 textures, a default table, and a lookup table (both same dimensions). Grab the current pixel, and find the location XY (coords) of the matching RGB in the default table, and then substitute it with the colour found in the lookup table at XY. I have figured how to pass the Textures from C# into the function, but I am not sure how to find the coords in the default table by matching the colour. Could someone kindly assist? Thanks in advance.

    Read the article

  • Box2D Bicycle Wheels Motor Problem - Flash 2.1a

    - by Craig
    I have made a bicycle with Box2D using several polygons for the frame at different angles connected using weld joints, and I have revolute joints on the wheels with a motor. I have made some basic terrain (straight ground and a small ramp) and added keyboard input to control the bicycle with torque to balance it. All of this is done in with Box2D's Debug Draw. When the bicycle is on its back wheel but diagonally forward (kinda like this position - /) the motors just cause it go spinning backwards over when in reality it should either stay on its back wheel or go down onto both wheels. Here's my code the revolute joints: //Front Wheel Joint var frontWheelJointDef:b2RevoluteJointDef = new b2RevoluteJointDef(); frontWheelJointDef.Initialize(frontWheelBody, secondFrameBody, frontWheelBody.GetWorldCenter()); frontWheelJointDef.enableMotor=true; frontWheelJointDef.maxMotorTorque=10000; frontWheelJoint = _world.CreateJoint(frontWheelJointDef) as b2RevoluteJoint; //Rear Wheel Joint var rearWheelJointDef:b2RevoluteJointDef = new b2RevoluteJointDef(); rearWheelJointDef.Initialize(rearWheelBody, firstFrameBody, rearWheelBody.GetWorldCenter()); rearWheelJointDef.enableMotor=true; rearWheelJointDef.maxMotorTorque=10000; rearWheelJoint = _world.CreateJoint(rearWheelJointDef) as b2RevoluteJoint; And here's the relevant part of my update function: // up and down control wheels motor if (up) { motorSpeed-=0.5; } if (down) { motorSpeed += 0.5; } // left and right control cart torque if (left) { middleCentreFrameBody.ApplyTorque( -3); gearBody.ApplyTorque( -3); firstFrameBody.ApplyTorque( -3); secondFrameBody.ApplyTorque( -3); rearWheelToChainBody.ApplyTorque( -3); chainToFrontFrameBody.ApplyTorque( -3); topMiddleFrameBody.ApplyTorque( -3); } if (right) { middleCentreFrameBody.ApplyTorque( 3); gearBody.ApplyTorque( 3); firstFrameBody.ApplyTorque( 3); secondFrameBody.ApplyTorque( 3); rearWheelToChainBody.ApplyTorque( 3); chainToFrontFrameBody.ApplyTorque( 3); topMiddleFrameBody.ApplyTorque( 3); } // motor friction motorSpeed*=0.99; // motor max speed if (motorSpeed>100) { motorSpeed=100; } rearWheelJoint.SetMotorSpeed(motorSpeed); frontWheelJoint.SetMotorSpeed(motorSpeed); Any ideas what might be causing this? Thanks

    Read the article

  • How to fix bad Collada produced by FBX?

    - by David
    I tried to use the FBX SDK (2011.3.1) to load FBX files and save them as Collada files in order to be able to import FBX files in Panda3D. Unfortunately the resulting Collada files are not usable for several reasons, among them: There's a Maya specific extra technique diffuse <diffuse> <texture texture="Map__2-image" texcoord="CHANNEL0"> <extra> <technique profile="MAYA"> <wrapU sid="wrapU0">TRUE</wrapU> <wrapV sid="wrapV0">TRUE</wrapV> <blend_mode>ADD</blend_mode> </technique> </extra> </texture> </diffuse> It assigns a texcoord channel name that isn't referenced anywhere else in the file (in the previous code sample, no geometry uses "CHANNEL0"...) Every polygon is exported twice, a first time with a basic material (only diffuse color, specular color, etc.) and a second time with a textured material -- this doubles the number of polygons of each model without any valuable reason Anyway, the resulting Collada file cannot be opened correctly either with OpenCOLLADA or Panda3D's "dae2egg". Anyone has any experience on how to "fix" it and make it understandable by common and well-reputed Collada importers such as OpenCOLLADA?

    Read the article

  • Rendering performance in FlasCC + UDK when compared to Stage3d and UDK on Windows?

    - by Arthur Wulf White
    Adobe recently released the Flash C++ Compiler, which UDK uses to target Flash Player. Developers can now access UDK for browser applications. Does this mean greater performance than using a Stage3D engine (Away3D 4) and how much of a noticeable difference in performance would it make in rendering speeds? Is there any benchmark you could propose that would allow to compare them fairly? I am asking this to help myself understand the consequences in performance for deciding to use UDK in a browser based game. I would also like to know how it compares with UDK running natively in Windows? I am not asking which technology to use or which is better. Only interested in optimizing rendering speed in a 3d browser game with flash.

    Read the article

  • LWJGL glRotatef() without rotating axes?

    - by Brandon oubiub
    Okay so, I noticed when you rotate around an axis, say you do this: glRotatef(90.0f, 1.0f, 0.0f, 0.0f); That will rotate things 90 degrees around the x-axis. However, it also sort of rotates the y and z axes as well. So now the y-axis is pointing in and out of the screen, instead of up and down. So when I try to do stuff like this: glRotatef(90.0f, 1.0f, 0.0f, 0.0f); glRotatef(whatever, 0.0f, 1.0f, 0.0f); glRotatef(whatever2, 0.0f, 0.0f, 1.0f); The rotations around the y and z-axes end up not how I want them. I was wondering if there is any way I can sort of rotate just the axes back to their initial position after using glRotatef(), without rotating the object back. Or something like that, just so that when I rotate around the y-axis, it rotates around a vertical axis.

    Read the article

  • i don't understand how...

    - by Hristo
    how can something print 3 times when it only goes the printing code twice? I'm coding in C and the code is in a SIGCHLD signal handler I created. void chld_signalHandler() { int pidadf = (int) getpid(); printf("pidafdfaddf: %d\n", pidadf); while (1) { int termChildPID = waitpid(-1, NULL, WNOHANG); if (termChildPID == 0 || termChildPID == -1) { break; } dll_node_t *temp = head; while (temp != NULL) { printf("stuff\n"); if (temp-pid == termChildPID && temp-type == WORK) { printf("inside if\n"); // read memory mapped file b/w WORKER and MAIN // get statistics and write results to pipe char resultString[256]; // printing TIME int i; for (i = 0; i < 24; i++) { sprintf(resultString, "TIME; %d ; %d ; %d ; %s\n",i,1,2,temp->stats->mboxFileName); fwrite(resultString, strlen(resultString), 1, pipeFD); } remove_node(temp); break; } temp = temp-next; } printf("done printing from sigchld \n"); } return; } the output for my MAIN process is this: MAIN PROCESS 16214 created WORKER PROCESS 16220 for file class.sp10.cs241.mbox pidafdfaddf: 16214 stuff stuff inside if done printing from sigchld MAIN PROCESS 16214 created WORKER PROCESS 16221 for file class.sp10.cs225.mbox pidafdfaddf: 16214 stuff stuff inside if done printing from sigchld and the output for the MONITOR process is this: MONITOR: pipe is open for reading MONITOR PIPE: TIME; 0 ; 1 ; 2 ; class.sp10.cs225.mbox MONITOR PIPE: TIME; 0 ; 1 ; 2 ; class.sp10.cs225.mbox MONITOR PIPE: TIME; 0 ; 1 ; 2 ; class.sp10.cs241.mbox MONITOR: end of readpipe ( I've taken out repeating lines so I don't take up so much space ) Thanks, Hristo

    Read the article

  • Handling packet impersonating in client-server model online game

    - by TheDespite
    I am designing a server-client model game library/engine. How do I, and should I even bother to handle frequent update packet possible impersonating? In my current design anyone could copy a packet from someone else and modify it to execute any non-critical action for another client. I am currently compressing all datagrams so that adds just a tad of security. Edit: One way I thought about was to send a unique "key" to the verified client every x_time and then the client has to add that to all of it's update packets until a new key is sent. Edit2: I should have mentioned that I am not concerned about whether the actions described in the packet are available to the client at the time, this is all checked by the server which I thought was obvious. I am only concerned about someone sending packets for another client.

    Read the article

  • Ragdoll continuous movement

    - by Siddharth
    I have created a ragdoll for my game but the problem I found was that the ragdoll joints are not perfectly implemented so they are continuously moving. Ragdoll does not stand at fix place. I here paste my work for that and suggest some guidance about that so that it can stand on fix place. chest = new Chest(pX, pY, gameObject.getmChestTextureRegion(), gameObject); head = new Head(pX, pY - 16, gameObject.getmHeadTextureRegion(), gameObject); leftHand = new Hand(pX - 6, pY + 6, gameObject.getmHandTextureRegion() .clone(), gameObject); rightHand = new Hand(pX + 12, pY + 6, gameObject .getmHandTextureRegion().clone(), gameObject); rightHand.setFlippedHorizontal(true); leftLeg = new Leg(pX, pY + 18, gameObject.getmLegTextureRegion() .clone(), gameObject); rightLeg = new Leg(pX + 7, pY + 18, gameObject.getmLegTextureRegion() .clone(), gameObject); rightLeg.setFlippedHorizontal(true); gameObject.getmScene().registerTouchArea(chest); gameObject.getmScene().attachChild(chest); gameObject.getmScene().registerTouchArea(head); gameObject.getmScene().attachChild(head); gameObject.getmScene().registerTouchArea(leftHand); gameObject.getmScene().attachChild(leftHand); gameObject.getmScene().registerTouchArea(rightHand); gameObject.getmScene().attachChild(rightHand); gameObject.getmScene().registerTouchArea(leftLeg); gameObject.getmScene().attachChild(leftLeg); gameObject.getmScene().registerTouchArea(rightLeg); gameObject.getmScene().attachChild(rightLeg); // head revolute joint revoluteJointDef = new RevoluteJointDef(); revoluteJointDef.enableLimit = true; revoluteJointDef.initialize(head.getHeadBody(), chest.getChestBody(), chest.getChestBody().getWorldCenter()); revoluteJointDef.localAnchorA.set(0f, 0f); revoluteJointDef.localAnchorB.set(0f, -0.5f); revoluteJointDef.lowerAngle = (float) (0f / (180 / Math.PI)); revoluteJointDef.upperAngle = (float) (0f / (180 / Math.PI)); headRevoluteJoint = (RevoluteJoint) gameObject.getmPhysicsWorld() .createJoint(revoluteJointDef); // // left leg revolute joint revoluteJointDef.initialize(leftLeg.getLegBody(), chest.getChestBody(), chest.getChestBody().getWorldCenter()); revoluteJointDef.localAnchorA.set(0f, 0f); revoluteJointDef.localAnchorB.set(-0.15f, 0.75f); revoluteJointDef.lowerAngle = (float) (0f / (180 / Math.PI)); revoluteJointDef.upperAngle = (float) (0f / (180 / Math.PI)); leftLegRevoluteJoint = (RevoluteJoint) gameObject.getmPhysicsWorld() .createJoint(revoluteJointDef); // right leg revolute joint revoluteJointDef.initialize(rightLeg.getLegBody(), chest.getChestBody(), chest.getChestBody().getWorldCenter()); revoluteJointDef.localAnchorA.set(0f, 0f); revoluteJointDef.localAnchorB.set(0.15f, 0.75f); revoluteJointDef.lowerAngle = (float) (0f / (180 / Math.PI)); revoluteJointDef.upperAngle = (float) (0f / (180 / Math.PI)); rightLegRevoluteJoint = (RevoluteJoint) gameObject.getmPhysicsWorld() .createJoint(revoluteJointDef); // left hand revolute joint revoluteJointDef.initialize(leftHand.getHandBody(), chest.getChestBody(), chest.getChestBody().getWorldCenter()); revoluteJointDef.localAnchorA.set(0f, 0f); revoluteJointDef.localAnchorB.set(-0.25f, 0.1f); revoluteJointDef.lowerAngle = (float) (0f / (180 / Math.PI)); revoluteJointDef.upperAngle = (float) (0f / (180 / Math.PI)); leftHandRevoluteJoint = (RevoluteJoint) gameObject.getmPhysicsWorld() .createJoint(revoluteJointDef); // right hand revolute joint revoluteJointDef.initialize(rightHand.getHandBody(), chest.getChestBody(), chest.getChestBody().getWorldCenter()); revoluteJointDef.localAnchorA.set(0f, 0f); revoluteJointDef.localAnchorB.set(0.25f, 0.1f); revoluteJointDef.lowerAngle = (float) (0f / (180 / Math.PI)); revoluteJointDef.upperAngle = (float) (0f / (180 / Math.PI)); rightHandRevoluteJoint = (RevoluteJoint) gameObject.getmPhysicsWorld() .createJoint(revoluteJointDef);

    Read the article

  • How can I implement 2D cel shading in XNA?

    - by Artii
    So I was just wondering on how to give a scene I am rendering a hand drawn look (like say Crayon Physics). I don't really want to preprocess the sprites and was thinking of using a shader. Cel shading supplies the effect I want to achieve, but I am only aware of the 3D instances for it. So I wanted to ask if anyone knew a way to get this effect in 2D, or if cel shading would work just as fine on 2D scenes?

    Read the article

  • ray collision with rectangle and floating point accuracy

    - by phq
    I'm trying to solve a problem with a ray bouncing on a box. Actually it is a sphere but for simplicity the box dimensions are expanded by the sphere radius when doing the collision test making the sphere a single ray. It is done by projecting the ray onto all faces of the box and pick the one that is closest. However because I'm using floating point variables I fear that the projected point onto the surface might be interpreted as being below in the next iteration, also I will later allow the sphere to move which might make that scenario more likely. Also the bounce coefficient might be as low as zero, making the sphere continue along the surface. So my naive solution is to project not only forwards but backwards to catch those cases. That is where I got into problems shown in the figure: In the first iteration the first black arrow is calculated and we end up at a point on the surface of the box. In the second iteration the "back projection" hits the other surface making the second black arrow bounce on the wrong surface. If there are several boxes close to each other this has further consequences making the sphere fall through them all. So my main question is how to handle possible floating point accuracy when placing the sphere on the box surface so it does not fall through. In writing this question I got the idea to have a threshold to only accept back projections a certain amount much smaller than the box but larger than the possible accuracy limitation, this would only cause the "false" back projection when the sphere hit the box on an edge which would appear naturally. To clarify my original approach, the arrows shown in the image is not only the path the sphere travels but is also representing a single time step in the simulation. In reality the time step is much smaller about 0.05 of the box size. The path traveled is projected onto possible sides to avoid traveling past a thinner object at higher speeds. In normal situations the floating point accuracy is not an issue but there are two situations where I have the concern. When the new position at the end of the time step is located very close to the surface, very unlikely though. When using a bounce factor of 0, here it happens every time the sphere hit a box. To add some loss of accuracy, the motivation for my concern, is that the sphere and box are in different coordinate systems and thus the sphere location is transformed for every test. This last one is why I'm not willing to stand on luck that one floating point value lying on top of the box always will be interpreted the same. I did not know voronoi regions by name, but looking at it I'm not sure how it would be used in a projection scenario that I'm using here.

    Read the article

  • Performance due to entity update

    - by Rizzo
    I always think about 2 ways to code the global Step() function, both with pros and cons. Please note that AIStep is just to provide another more step for whoever who wants it. // Approach 1 step foreach( entity in entities ) { entity.DeltaStep( delta_time ); if( time_for_fixed_step ) entity.FixedStep(); if( time_for_AI_step ) entity.AIStep(); ... // all kind of updates you want } PRO: you just have to iterate once over all entities. CON: fidelity could be lower at some scenarios, since the entity.FixedStep() isn't going all at a time. // Approach 2 step foreach( entity in entities ) entity.DeltaStep( delta_time ); if( time_for_fixed_step ) foreach( entity in entities ) entity.FixedStep(); if( time_for_AI_step ) foreach( entity in entities ) entity.FixedStep(); // all kind of updates you want SEPARATED PRO: fidelity on FixedStep is higher, shouldn't be much time between all entities update, rather than Approach 1 where you may have to wait other updates until FixedStep() comes. CON: you iterate once for each kind of update. Also, a third approach could be a hybrid between both of them, something in the way of foreach( entity in entities ) { entity.DeltaStep( delta_time ); if( time_for_AI_step ) entity.AIStep(); // all kind of updates you want BUT FixedStep() } if( time_for_fixed_step ) { foreach( entity in entities ) { entity.FixedStep(); } } Just two loops, don't caring about time fidelity in nothing other than at FixedStep(). Any thoughts on this matter? Should it really matters to make all steps at once or am I thinking on problems that don't exist?

    Read the article

  • Simultaneous AI in turn based games

    - by Eduard Strehlau
    I want to hack together a roguelike. Now I thought about entity and world representation and got to a quite big problem. If you want all the AI to act simultaneously you would normally(in cellular automa for examble) just copy the cell buffer and let all action of indiviual cells depend on the copy. Actions which are not valid anymore after some cell before the cell you are currently operating on changed the original enviourment(blocking the path) are just ignored or reapplied with the "current"(between turns) environment. After all cells have acted you copy the current map to the buffer again. Now for an environment with complex AI and big(datawise) entities the copying would take too long. So I thought you could put every action and entity makes into a que(make no changes to the environment) and execute the whole que after everyone took their move. Every interaction on this que are realy interacting entities, so if a entity tries to attack another entity it sends a message to it, the consequences of the attack would be visible next turn, either by just examining the entity or asking the entity for data. This would remove problems like what happens if an entity dies middle in the cue but got actions or is messaged later on(all messages would go to null, and the messages from the entity would either just be sent or deleted(haven't decided yet) But what would happen if a monster spawns a fireball which by itself tracks the player(in the same turn). Should I add the fireball to the enviourment beforehand, so make a change to the environment before executing the action list or just add the ball to the "need updated" list as a special case so it doesn't exist in the environment and still operates on it, spawing after evaluating the action list? Are there any solutions or papers on this subject which I can take a look at? EDIT: I don't need information on writing a roguelike I need information on turn based ai in respective to a complex enviourment.

    Read the article

  • Identify which CCSprite is touched in Cocos2d

    - by PeterK
    I am trying to learn Cocos2d and is experimenting with Ray Wenderlich tutorial whack-a-mole: www.raywenderlich.com/2560/how-to-create-a-mole-whacking-game-with-cocos2d-part-1 In this tutorial three CCSprite's are popping up and you should click on them... However, i am trying to identify which mole, rat in my case, is popping up and place a CCSprite above that. Initially this looked like an easy task but i am failing. I am trying to NSLog LEFT HIT. i would guess the problem is in the If-statement and the last "227" height parameter. The left rat boundingBox = {{99.5, 146.5}, {165, 227}} (from NSLog). The key code is in the ccTouchBegan function: -(BOOL) ccTouchBegan:(UITouch *)touch withEvent:(UIEvent *)event { CGPoint touchLocation = [self convertTouchToNodeSpace:touch]; for (CCSprite *rat in rats) { if (rat.userData == FALSE) continue; if (CGRectContainsPoint(rat.boundingBox, touchLocation)) { //left: rat boundingBox = {{99.5, 146.5}, {165, 227}} //mid: rat boundingBox = {{349.5, 146.5}, {165, 227}} //right: rat boundingBox = {{599.5, 146.5}, {165, 227}} //>>>>Here is where i try to get a hit<<<< if (CGRectContainsPoint(CGRectMake(99.5, 146.55, 165, 227), touchLocation)) { NSLog(@">>>>HIT LEFT<<<<<"); } I would really appreciate a few ideas how to get this to work.

    Read the article

  • stack management in CLR

    - by enableDeepak
    I understand the basic concept of stack and heap but great if any1 can solve following confusions: Is there a single stack for entire application process or for each thread starting in a project a new stack is created? Is there a single Heap for entire application process or for each thread starting in a project a new stack is created? If Stack are created for each thread, then how process manage sequential flow of threads (and hence stacks)

    Read the article

  • Arrive steering behavior

    - by dbostream
    I bought a book called Programming game AI by example and I am trying to implement the arrive steering behavior. The problem I am having is that my objects oscillate around the target position; after oscillating less and less for awhile they finally come to a stop at the target position. Does anyone have any idea why this oscillating behavior occur? Since the examples accompanying the book are written in C++ I had to rewrite the code into C#. Below is the relevant parts of the steering behavior: private enum Deceleration { Fast = 1, Normal = 2, Slow = 3 } public MovingEntity Entity { get; private set; } public Vector2 SteeringForce { get; private set; } public Vector2 Target { get; set; } public Vector2 Calculate() { SteeringForce.Zero(); SteeringForce = SumForces(); SteeringForce.Truncate(Entity.MaxForce); return SteeringForce; } private Vector2 SumForces() { Vector2 force = new Vector2(); if (Activated(BehaviorTypes.Arrive)) { force += Arrive(Target, Deceleration.Slow); if (!AccumulateForce(force)) return SteeringForce; } return SteeringForce; } private Vector2 Arrive(Vector2 target, Deceleration deceleration) { Vector2 toTarget = target - Entity.Position; double distance = toTarget.Length(); if (distance > 0) { //because Deceleration is enumerated as an int, this value is required //to provide fine tweaking of the deceleration.. double decelerationTweaker = 0.3; double speed = distance / ((double)deceleration * decelerationTweaker); speed = Math.Min(speed, Entity.MaxSpeed); Vector2 desiredVelocity = toTarget * speed / distance; return desiredVelocity - Entity.Velocity; } return new Vector2(); } private bool AccumulateForce(Vector2 forceToAdd) { double magnitudeRemaining = Entity.MaxForce - SteeringForce.Length(); if (magnitudeRemaining <= 0) return false; double magnitudeToAdd = forceToAdd.Length(); if (magnitudeToAdd > magnitudeRemaining) magnitudeToAdd = magnitudeRemaining; SteeringForce += Vector2.NormalizeRet(forceToAdd) * magnitudeToAdd; return true; } This is the update method of my objects: public void Update(double deltaTime) { Vector2 steeringForce = Steering.Calculate(); Vector2 acceleration = steeringForce / Mass; Velocity = Velocity + acceleration * deltaTime; Velocity.Truncate(MaxSpeed); Position = Position + Velocity * deltaTime; } If you want to see the problem with your own eyes you can download a minimal example here. Thanks in advance.

    Read the article

  • Normal map applied as diffuse textures looks wrong

    - by KaiserJohaan
    Diffuse textures works fine, but I am having problem with normal maps, so I thought I'd tried to apply the normal maps as the diffuse map in my fragment shader so I could see everything is OK. I comment-out my normal map code and just set the diffuse map to the normal map and I get this: http://postimg.org/image/j9gudjl7r/ Looks like a smurf! This is the actual normal map of the main body: http://postimg.org/image/sbkyr6fg9/ Here is my fragment shader, notice I commented out normal map code so I could debug the normal map as a diffuse texture "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Here is my wrapper around a texture OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureFormat textureFormat, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); GLint glTextureFormat = (textureFormat == TextureFormat::TEXTURE_FORMAT_RGB ? GL_RGB : textureFormat == TextureFormat::TEXTURE_FORMAT_RGBA ? GL_RGBA : GL_RED); glTexImage2D(GL_TEXTURE_2D, 0, glTextureFormat, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } OpenGLTexture::~OpenGLTexture() { glDeleteBuffers(1, &mTexture); CHECK_GL_ERROR(mLogger); } And here is the sampler I create which is shared between Diffuse and normal textures // texture sampler setup glGenSamplers(1, &mTextureSampler); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_S, GL_REPEAT); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_T, GL_REPEAT); CHECK_GL_ERROR(mLogger); glSamplerParameterf(mTextureSampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, mCurrentAnisotropy); CHECK_GL_ERROR(mLogger); glUniform1i(glGetUniformLocation(mDefaultProgram.GetHandle(), "unifDiffuseTexture"), OpenGLTexture::TEXTURE_UNIT_DIFFUSE); CHECK_GL_ERROR(mLogger); glUniform1i(glGetUniformLocation(mDefaultProgram.GetHandle(), "unifNormalTexture"), OpenGLTexture::TEXTURE_UNIT_NORMAL); CHECK_GL_ERROR(mLogger); glBindSampler(OpenGLTexture::TEXTURE_UNIT_DIFFUSE, mTextureSampler); CHECK_GL_ERROR(mLogger); glBindSampler(OpenGLTexture::TEXTURE_UNIT_NORMAL, mTextureSampler); CHECK_GL_ERROR(mLogger); SetAnisotropicFiltering(mCurrentAnisotropy); The diffuse textures looks like they should, but the normal looks so wierd. Why is this?

    Read the article

  • Unexpected behaviour with glFramebufferTexture1D

    - by Roshan
    I am using render to texture concept with glFramebufferTexture1D. I am drawing a cube on non-default FBO with all the vertices as -1,1 (maximum) in X Y Z direction. Now i am setting viewport to X while rendering on non default FBO. My background is blue with white color of cube. For default FBO, i have created 1-D texture and attached this texture to above FBO with color attachment. I am setting width of texture equal to width*height of above FBO view-port. Now, when i render this texture to on another cube, i can see continuous white color on start or end of each face of the cube. That means part of the face is white and rest is blue. I am not sure whether this behavior is correct or not. I expect all the texels should be white as i am using -1 and 1 coordinates for cube rendered on non-default FBO. code: #define WIDTH 3 #define HEIGHT 3 GLfloat vertices8[]={ 1.0f,1.0f,1.0f, -1.0f,1.0f,1.0f, -1.0f,-1.0f,1.0f, 1.0f,-1.0f,1.0f,//face 1 1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,1.0f,-1.0f, 1.0f,1.0f,-1.0f,//face 2 1.0f,1.0f,1.0f, 1.0f,-1.0f,1.0f, 1.0f,-1.0f,-1.0f, 1.0f,1.0f,-1.0f,//face 3 -1.0f,1.0f,1.0f, -1.0f,1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,-1.0f,1.0f,//face 4 1.0f,1.0f,1.0f, 1.0f,1.0f,-1.0f, -1.0f,1.0f,-1.0f, -1.0f,1.0f,1.0f,//face 5 -1.0f,-1.0f,1.0f, -1.0f,-1.0f,-1.0f, 1.0f,-1.0f,-1.0f, 1.0f,-1.0f,1.0f//face 6 }; GLfloat vertices[]= { 0.5f,0.5f,0.5f, -0.5f,0.5f,0.5f, -0.5f,-0.5f,0.5f, 0.5f,-0.5f,0.5f,//face 1 0.5f,-0.5f,-0.5f, -0.5f,-0.5f,-0.5f, -0.5f,0.5f,-0.5f, 0.5f,0.5f,-0.5f,//face 2 0.5f,0.5f,0.5f, 0.5f,-0.5f,0.5f, 0.5f,-0.5f,-0.5f, 0.5f,0.5f,-0.5f,//face 3 -0.5f,0.5f,0.5f, -0.5f,0.5f,-0.5f, -0.5f,-0.5f,-0.5f, -0.5f,-0.5f,0.5f,//face 4 0.5f,0.5f,0.5f, 0.5f,0.5f,-0.5f, -0.5f,0.5f,-0.5f, -0.5f,0.5f,0.5f,//face 5 -0.5f,-0.5f,0.5f, -0.5f,-0.5f,-0.5f, 0.5f,-0.5f,-0.5f, 0.5f,-0.5f,0.5f//face 6 }; GLuint indices[] = { 0, 2, 1, 0, 3, 2, 4, 5, 6, 4, 6, 7, 8, 9, 10, 8, 10, 11, 12, 15, 14, 12, 14, 13, 16, 17, 18, 16, 18, 19, 20, 23, 22, 20, 22, 21 }; GLfloat texcoord[] = { 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0 }; glGenTextures(1, &id1); glBindTexture(GL_TEXTURE_1D, id1); glGenFramebuffers(1, &Fboid); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA, WIDTH*HEIGHT , 0, GL_RGBA, GL_UNSIGNED_BYTE,0); glBindFramebuffer(GL_FRAMEBUFFER, Fboid); glFramebufferTexture1D(GL_DRAW_FRAMEBUFFER,GL_COLOR_ATTACHMENT0,GL_TEXTURE_1D,id1,0); draw_cube(); glBindFramebuffer(GL_FRAMEBUFFER, 0); draw(); } draw_cube() { glViewport(0, 0, WIDTH, HEIGHT); glClearColor(0.0f, 0.0f, 0.5f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); glEnableVertexAttribArray(glGetAttribLocation(temp.psId,"position")); glVertexAttribPointer(glGetAttribLocation(temp.psId,"position"), 3, GL_FLOAT, GL_FALSE, 0,vertices8); glDrawArrays (GL_TRIANGLE_FAN, 0, 24); } draw() { glClearColor(1.0f, 0.0f, 0.0f, 1.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnableVertexAttribArray(glGetAttribLocation(shader_data.psId,"tk_position")); glVertexAttribPointer(glGetAttribLocation(shader_data.psId,"tk_position"), 3, GL_FLOAT, GL_FALSE, 0,vertices); nResult = GL_ERROR_CHECK((GL_NO_ERROR, "glVertexAttribPointer(position, 3, GL_FLOAT, GL_FALSE, 0,vertices);")); glEnableVertexAttribArray(glGetAttribLocation(shader_data.psId,"inputtexcoord")); glVertexAttribPointer(glGetAttribLocation(shader_data.psId,"inputtexcoord"), 2, GL_FLOAT, GL_FALSE, 0,texcoord); glBindTexture(*target11, id1); glDrawElements ( GL_TRIANGLES, 36,GL_UNSIGNED_INT, indices ); when i change WIDTH=HEIGHT=2, and call a glreadpixels with height, width equal to 4 in draw_cube() i can see first 2 pixels with white color, next two with blue(glclearcolor), next two white and then blue and so on.. Now when i change width parameter in glTeximage1D to 16 then ideally i should see alternate patches of white and blue right? But its not the case here. why so?

    Read the article

  • FreeType2 Crash on FT_Init_FreeType

    - by JoeyDewd
    I'm currently trying to learn how to use the FreeType2 library for drawing fonts with OpenGL. However, when I start the program it immediately crashes with the following error: "(Can't correctly start the application (0xc000007b))" Commenting the FT_Init_FreeType removes the error and my game starts just fine. I'm wondering if it's my code or has something to do with loading the dll file. My code: #include "SpaceGame.h" #include <ft2build.h> #include FT_FREETYPE_H //Freetype test FT_Library library; Game::Game(int Width, int Height) { //Freetype FT_Error error = FT_Init_FreeType(&library); if(error) { cout << "Error occured during FT initialisation" << endl; } And my current use of the FreeType2 files. Inside my bin folder (where debug .exe is located) is: freetype6.dll, libfreetype.dll.a, libfreetype-6.dll. In Code::Blocks, I've linked to the lib and include folder of the FreeType 2.3.5.1 version. And included a compiler flag: -lfreetype My program starts perfectly fine if I comment out the FT_Init function which means the includes, and library files should be fine. I can't find a solution to my problem and google isn't helping me so any help would be greatly appreciated.

    Read the article

  • Producing a smooth mesh from density cloud and marching cubes

    - by Wardy
    Based on my results from this question I decided to build myself a 3D noise map containing float values in place of my existing boolean point values. The effect I'm trying to produce is something like this, rather than typical rolling hills; which should explain the "missing cubes" in the image below. If I render my density map in normal "minecraft mode" (1 block per point in the density map) varying the size of the cube based on the value in my density map (floats in the range 0 to 1) I get something like this: I'm now happy that I can produce a density map for the marching cubes algorithm (which will need a little tweaking) but for some reason when I run it through my implementation it's not producing what I expect. My problem is that I'm getting something like the first image in this answer to my previous question, when I want to achieve the effect in the second image. Upon further investigation I can't see how marching cubes does the "move vertex along the edge" type logic (i.e. the difference between the two images on my previous link). I see that it does do some interpolation, but I'm not convinced I have the correct understanding of what I think it should do, because the code in question appears to give the same result regardless of whether I use boolean or float values. I took the code from here which is a C# implementation of marching cubes, but instead of using the MarchingCubesPrimitive I modified it to accept an object of type IDrawable, containing lists for the various collections (vertices, normals, UVs, indices), the logic was otherwise untouched. My understanding is that given a very low isovalue the accuracy level of the surface being rendered should increase, so in short "less 45 degree slows more rolling hills" type mesh output. However this isn't what I'm seeing. Have I missed something or is the implementation flawed and need to be fixed? EDIT: A little more detail on what I am seeing when I "marching cube" the data. Ok so firstly, ignore the fact that the meshes created by the chunks don't "connect" (i'll probably raise another question about this later). Then look at the shaping of the island, it's too ... square, from the voxels rendered as boxes you get the impression there's a clean soft gradual hill and yet from the image there are sharp falling edges even in the most central areas where the gradient in the first image looks the most smooth. The data is "regenerated" each time I run this so no 2 islands come out the same, and it's purely random so not based on noise, but still, how can it look so smooth in 1 image and so not smooth in the other?

    Read the article

  • Restoring projection matrix

    - by brainydexter
    I am learning to use FBOs and one of the things that I need to do when rendering something onto user defined FBO, I have to setup the projection, modelview and viewport for it. Once I am done rendering to the FBO, I need to restore these matrices. I found: glPushAttrib(GL_VIEWPORT_BIT); glPopAttrib(); to restore the viewport to its old state. Is there a way to restore the projection and modelview matrix to whatever it was earlier ? Tech: C++/OpenGL Thanks!

    Read the article

  • How are buttons made to be clicked?

    - by Johnny
    I just want to ask a general question. According to that answer, Ill continue thinking. You know in games there are lots of clickable items. Play button, exit, comboboxes maybe etc. My question is are those buttons drawn in same canvas with background and all other things, or for every different thing there is another canvas object? My question is about for general. Im not asking about a specific game, im asking how they are made generally. Im planning to start a game on Android, and Im confused actually how to design buttons, and other object. Probably Im going to use View/SurfaceView for now. I don't have much experience with OpenGL yet. Thanks in advance.

    Read the article

  • MiniMax function throws null pointer exception

    - by Sven
    I'm working on a school project, I have to build a tic tac toe game with the AI based on the MiniMax algorithm. The two player mode works like it should. I followed the code example on http://ethangunderson.com/blog/minimax-algorithm-in-c/. The only thing is that I get a NullPointer Exception when I run the code. And I can't wrap my finger around it. I placed a comment in the code where the exception is thrown. The recursive call is returning a null pointer, what is very strange because it can't.. When I place a breakpoint on the null return with the help of a if statement, then I see that there ARE still 2 to 3 empty places.. I probably overlooking something. Hope someone can tell me what I'm doing wrong. Here is the MiniMax code (the tic tac toe code is not important): /* * To change this template, choose Tools | Templates * and open the template in the editor. */ package MiniMax; import Game.Block; import Game.Board; import java.util.ArrayList; public class MiniMax { public static Place getBestMove(Board gameBoard, Block.TYPE player) { Place bestPlace = null; ArrayList<Place> emptyPlaces = gameBoard.getEmptyPlaces(); Board newBoard; //loop trough all the empty places for(Place emptyPlace : emptyPlaces) { newBoard = gameBoard.clone(); newBoard.setBlock(emptyPlace.getRow(), emptyPlace.getCell(), player); //no game won and still room to move if(newBoard.getWinner() == Block.TYPE.NONE && newBoard.getEmptyPlaces().size() > 0) { //is an node (has children) Place tempPlace = getBestMove(newBoard, invertPlayer(player)); //ERROR is thrown here! tempPlace is null. emptyPlace.setScore(tempPlace.getScore()); } else { //is an leaf if(newBoard.getWinner() == Block.TYPE.NONE) { emptyPlace.setScore(0); } else if(newBoard.getWinner() == Block.TYPE.X) { emptyPlace.setScore(-1); } else if(newBoard.getWinner() == Block.TYPE.O) { emptyPlace.setScore(1); } //if this move is better then our prev move, take it! if((bestPlace == null) || (player == Block.TYPE.X && emptyPlace.getScore() < bestPlace.getScore()) || (player == Block.TYPE.O && emptyPlace.getScore() > bestPlace.getScore())) { bestPlace = emptyPlace; } } } //This should never be null, but it does.. return bestPlace; } private static Block.TYPE invertPlayer(Block.TYPE player) { if(player == Block.TYPE.X) { return Block.TYPE.O; } return Block.TYPE.X; } }

    Read the article

< Previous Page | 503 504 505 506 507 508 509 510 511 512 513 514  | Next Page >